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We introduce a background gauge akin to the Landau-DeWitt gauge but deformed by the presence of a
gauge parameter for the quantization of Euclidean Yang-Mills theories. In the limit where the background
field vanishes, standard linear covariant gauges are recovered. This gauge allows for an explicit
investigation of the effects of infinitesimal Gribov copies and their impact to background and gauge
parameter dependence of physical correlators. Similarly to linear covariant gauges, the introduction of
gauge-invariant dressed fields is essential to restore the Becchi-Rouet-Stora-Tyutin (BRST) symmetry.
Hence, we construct a BRST symmetric action in linear covariant background gauges which eliminates
regular infinitesimal Gribov copies in analogy to the recently introduced BRST invariant (refined) Gribov-
Zwanziger action. The issue of background dependence and its relation to gauge parameter dependence is
discussed in the light of nonperturbative effects driven by the elimination of Gribov copies.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is one of the most
fascinating building blocks of the Standard Model of
particle physics. At large energy scales, i.e., in the ultra-
violet regime, the theory exhibits asymptotic freedom [1,2].
It means that at very short lengths the theory behaves as a
(confined) free field theory. Towards the infrared, i.e., at
low energies, the coupling constant grows and, perturba-
tively, hits a Landau pole due to the failure of perturbative
methods, since the coupling becomes sufficiently large.
Hence, the description of dynamical effects at low energies
demands the use of nonperturbative techniques such as
lattice simulations, functional methods, effective models
accounting for topological configurations and nonpertur-
bative effects, and holographic models. We refer the reader
to, e.g., [3,4]. Color confinement and chiral symmetry
breaking, phenomena that are not described by perturbative
tools, are expected to be captured by one or by a cross-
fertilization of the above mentioned methods. Thus, QCD
is a complete theory in the ultraviolet with a very rich
dynamics in the infrared and allows one to use and develop

highly sophisticated quantum-field theoretic methods for
its comprehension. Interestingly, the removal of quarks
does not spoil some of the properties just described: gluons
are still confined and asymptotic freedom is still present.
It means that, potentially, removing quarks can be a first
reasonable simplification for the understanding of the
mechanism behind confinement due to the already very
complicated nonlinear dynamics of Yang-Mills theories.
Pure Yang-Mills theories are perturbatively renormaliz-

able and unitary in four dimensions. Observables are gauge
invariant and, as in any quantum field theory, they can be
constructed out of the (unphysical) gauge-dependent corre-
lation functions. Since we aim at accessing nonperturbative
regimes of Yang-Mills theories, the simple computation of
correlation functions within perturbation theory is not
enough. The computation of gauge-fixed correlation func-
tions in the continuum at strongly correlated energy scales
can be achieved by functionalmethods such as the functional
renormalization group and Schwinger-Dyson equations; see,
e.g., [5–16]. In the present work we take a different avenue
where perturbative methods are applied, after taking into
account nonperturbative features in the path integral ofYang-
Mills theories, though. These effects are due to the necessity
of improving the Faddeev-Popov gauge-fixing procedure
[17] in the infrared. As it is well known since the seminal
work by Gribov [18] and the rigorous mathematical result
by Singer [19], there is no local covariant gauge-fixing
condition which can completely remove the gauge redun-
dancy and that is continuous in field space. In particular,
configurations which satisfy the gauge condition and are
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connected by gauge transformations are still present in the
gauge-fixed path integral of Yang-Mills theories. Such
spurious configurations are known as Gribov copies.
Removing such configurations from the path integral results
in a modification of the Boltzmann weight of gauge-fixed
Euclidean Yang-Mills theories, and thereby novel contribu-
tions to correlation functions must be taken into account in
quantum calculations. Moreover, Gribov copies are not
dynamically important in the weakly correlated regime of
Yang-Mills theories, leaving the well-established ultraviolet
results untouched. Nevertheless, the existence of Gribov
copies in the path integral becomes relevant towards the
infrared and might be crucial for the determination of
the correct low-energy behavior of correlation functions in
Euclidean Yang-Mills theories. In particular, in the Landau
gauge the removal of infinitesimal Gribov copies together
with the effects of nonperturbative generation of dimension-
two condensates give rise to the refined Gribov-Zwanziger
(RGZ) action [20,21], which, aside from being local, is
renormalizable at all orders in perturbation theory and
renders gluon and Faddeev-Popov (FP) ghost propagators
at leading order in qualitative agreement with lattice simu-
lations [22–25]. The RGZ action is constructed upon the
so-called Gribov-Zwanziger (GZ) action which is local,
renormalizable, and implements the restriction of the path
integral of Euclidean Yang-Mills theories in the Landau
gauge to a region free of infinitesimal Gribov copies. This is
known as the Gribov region and it features important
geometric properties as described in [26]. The restriction
of the functional integral to theGribov regionwasworkedout
at leading order in [18] and at all orders using a different
prescription in [27]. The equivalence between those
approaches was established in [28]. Yet the Gribov region
is not free of all Gribov copies as pointed out in [29]. For a
review of the Gribov problem in the Landau gauge and of the
GZ framework, we refer the reader to [30,31]. Dynamical
infrared instabilities were accounted for in the refinement of
the GZ framework leading to the RGZ action in [20,21].
Besides the considerable progress achieved within the

RGZ scenario in the Landau gauge, two important con-
ceptual issues were left open until recently: The (R)GZ
construction relies on several particular properties of the
Landau gauge and in its original formulation, which can
be found in [21,27], the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry is explicitly broken. Being a direct outcome of the
standard FP quantization, BRST invariance is lost once the
path integral is restricted to the Gribov region, i.e., when a
modification to the FP gauge-fixing procedure is performed.
In the Landau gauge, such a breaking was not taken as an
inconsistency of the (R)GZ construction, and it passed by
thorough scrutiny [32–42]. However, BRST symmetry
plays an important role in controlling gauge-parameter
dependence of correlation functions. Consequently, dealing
with gauge conditions which involve a free gauge parameter
poses a challenging task in the removal of Gribov copies if
BRST symmetry is generically broken. In [43], it was

established how to restore BRST invariance within the
RGZ framework by the introduction of a dressed, gauge-
invariant field denoted by Ah

μ. By construction, this field
collapses to the gauge field itself when Landau gauge is
imposed, since the Ah

μ is essentially built as the gauge field
Aμ itself plus an infinite sum of nonlocal contributions
containing the divergenceAμ (which vanishes in the Landau
gauge). Hence, as pointed out in [44,45], correlation
functions of gauge-invariant operators computed within
the standard formulation of the RGZ action in the Landau
gauge, where BRST is broken, are equal to those computed
in the BRST-invariant formulation of the RGZ action in the
Landau gauge. Having a BRST-invariant formulation of the
RGZ action in the Landau gauge provides a natural toolbox
to extend the action to a generic class of covariant gauges as
discussed in [45,46]. In particular, this was largely used in
the context of linear covariant gauges, [43,44,47–49].
When dealing with finite temperature computations or in

the context of applications of functional methods, the use of
the background field method (BFM) can play a pivotal role.
See, e.g., [50–56]. From a broader perspective, the quan-
tization of other theories with gauge symmetries such as
gravity might be much better posed by the use of the BFM.
However, when thinking in terms of the incompleteness of
the FP procedure due to the existence of Gribov copies, the
BFM brings new conceptual challenges. A nondynamical
field configuration Āμ is introduced in the gauge-fixing
condition. Therefore, it is to be expected that the Gribov
copies will depend on the explicit choice of the background
field. Hence, eliminating such copies can, eventually, break
background independence, i.e., the fact that observables
shall not depend on the particular property of the back-
ground field. First steps in dealing with the BFM in the
presence of Gribov copies were given in [57]. An attempt
to follow the original strategy suggested by Gribov was
worked out at leading order in [58]. Making use of the
toolbox used in the BRST-invariant formulation of the
RGZ, a BRST- and background-invariant formulation of
the (R)GZ action was proposed in [59]. An alternative
proposal was made in [60]. In the present work, we follow
the strategy put forward in [59] and construct the BRST-
invariant formulation of the RGZ action in a generalized
Landau-DeWitt gauge. It corresponds to a gauge condition
supporting a background field as well as a gauge parameter.
Our main purpose is to establish a clear connection between
BRST invariance and background independence. Our
findings, although explicit to Yang-Mills theories, might
be of relevance to topological field theories, see, e.g., [61]
and continuum quantum-field theoretic formulations of
quantum gravity, as the so-called asymptotic safety sce-
nario, see [62,63]. Background independence is controlled
by a Ward identity which encodes the fact that the complete
gauge field is written as a sum of a (nondynamical)
background part and quantum fluctuations.
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This work is organized as follows: In Sec. II, we intro-
duce our conventions and notation. We define the linear
covariant background gauges (LCBG) and introduce
the functional identity, the shift Ward Identity (sWI)
which controls the background field (in)dependence of
the underlying one-particle irreducible generating func-
tional. In Sec. III, the existence of infinitesimal Gribov
copies in the LCBG is associated with the zero modes of
the Faddeev-Popov operator. Similarly to standard linear
covariant gauges, it is argued that the elimination of zero
modes of the Faddeev-Popov operator restricted to the
transverse component of the gauge field is sufficient to
eliminate the infinitesimal Gribov copies in the LCBG if
they admit a power series in the gauge parameter as well as
in the background field. Next, in Sec. IV, it is proposed the
action arising from the elimination of the zero modes of
the transverse projection of the Faddeev-Popov operator.
The resulting nonlocal action is expressed in local form by
the introduction of suitable auxiliary fields. The consistency
of such a proposal is tested against BRST and background
gauge transformations and it is realized that it would be at
odds with independence of physical correlation functions
from unphysical choices such as the gauge parameter as well
as background field. In Sec.Van actionwhich is local, BRST
symmetric, invariant under background gauge transforma-
tions, and that effectively restricts the path integral domain
to a region free of infinitesimal Gribov copies of a certain
class is proposed. It is argued that such an action is consistent
with background-field independence of physical correlation
functions. Finally, we collect our conclusions.

II. THE SETUP

A. The linear covariant background gauges

In this section we provide all relevant definitions and
conventions in the construction of Yang-Mills theory
within the BFM in linear covariant gauges. This work is
entirely developed in flat Euclidean spacetime, and the
corresponding Yang-Mills (YM) action describing the
dynamics of the gauge field Aμ ¼ Aa

μTa reads1

SYM ¼ 1

2
Tr

Z
x
FμνFμν; ð2Þ

where Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν� is the field strength
tensor; g stands for the coupling constant; and Ta accounts
for the ðN2 − 1Þ generators of the gauge group SUðNÞ. The
action (2) is invariant under gauge transformations with

SUðNÞ gauge group. In particular, infinitesimal transfor-
mations take the form

δAμ ¼ −∂μθ þ ig½Aμ; θ� ¼ −Dμθ; ð3Þ

with θ ¼ θaTa being the infinitesimal gauge parameter, and
with the covariant derivative defined as Dμ ¼ ∂μ − ig½Aμ; �.
We will extensively employ the matrix notation. However
explicit color index notation will be used whenever it helps
in bringing clarity.2

The BFM relies on the introduction of a nondynamical
gauge field Āμ in such a way that the full gauge field Aμ is
written as Aμ ¼ Āμ þ aμ, with aμ denoting dynamical
fluctuations about the background Āμ. The original YM
action (2) becomes SYM½Aμ� ¼ SYM½Āμ þ aμ�. Clearly,
choosing a trivial background (Āμ ¼ 0) it falls back to
the standard form of the YM action. The explicit form of
the YM action within the BFM reads [51]

SYM ¼ 1

2

Z
x
TrðF̄μν þ D̄μaν − D̄νaμ − ig½aμ; aν�Þ2; ð6Þ

where D̄μ¼∂μ− ig½Āμ; �, and F̄μν¼∂μĀν−∂νĀμ− ig½Āμ;Āν�.
As it is well known, the presence of Āμ does not spoil

gauge symmetry, [50–52]. In fact, the new action (6) is
invariant under the following infinitesimal gauge trans-
formations:

δĀμ ¼ 0; δaμ ¼ −Dμθ; ð7Þ

whereDμθ ¼ ∂μθ − ig½Āμ þ aμ; θ� is the “complete” covar-
iant derivative. Therefore, the Faddeev-Popov gauge-fixing
procedure can be applied, and we impose a linear covariant
extension of the Landau-DeWitt (LDW) gauge, see, e.g.,
[64]—hereby named as linear covariant background gauge
(LCBG),

D̄μaμ − αb ¼ 0; ð8Þ

with α being a non-negative gauge parameter. At this point
the LDW gauge condition is recovered by taking the limit
α → 0. Likewise, standard linear covariant gauges are

1In this work we employ the following notation for integrals:
Z

d4x≡
Z
x
: ð1Þ

The standard (explicit) notation will be used whenever ambiguity
or confusion is possible.

2The components in the adjoint representation of SUðNÞ can
be recovered by making explicit the matrix elements of fTag,

½AdðAa
μTaÞ�bc ¼ fabcAa

μ; ð4Þ

along side with the corresponding algebra and the trace relation,

½Ta; Tb� ¼ ifabcTc and TrðTaTbÞ ¼ 1

2
δab; ð5Þ

with fabc representing the real and totally antisymmetric structure
constants of SUðNÞ.
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obtained by taking Āμ ¼ 0, with Landau gauge being a
particular case with α → 0. By means of the Faddeev-
Popov gauge-fixing procedure one gets the following
partition function:

Z½Ā� ¼
Z

½da�½dc̄�½dc�½db�e−SFP ; ð9Þ

with ðc̄; cÞ denoting the Faddeev-Popov ghosts and b the
Lautrup-Nakanishi auxiliary field. The Faddeev-Popov
action reads

SFP ¼ SYM þ Sgf þ Sgh: ð10Þ

The Yang-Mills action SYM is given by (6); the sum of the
gauge-fixing and Faddeev-Popov ghost actions yields

Sgf þ Sgh ¼
Z
x

�
ba
�
D̄ab

μ abμ −
α

2
ba
�
þ c̄aMabcb

�
; ð11Þ

and the Faddeev-Popov operator is given by

Mabðaμ; ĀμÞ ¼ −D̄ad
μ Ddb

μ : ð12Þ

Here M is not Hermitian, unlike to the standard LDW
gauge since with the LCBG condition (8) the fluctua-
tion gauge field aμ gets a nonvanishing longitudinal
component. Moreover, the operator M falls back into
the usual Faddeev-Popov operator in linear covariant
gauges by turning off the background field, Mabðaμ; 0Þ ¼
MabðaμÞ ¼ −∂μDμ, which is not Hermitian as well.
Hermiticity plays an important role for the elimination
of Gribov copies since the infinitesimal ones are associated
with zero modes of the Faddeev-Popov operator. When the
operator is Hermitian, it is possible to define the set of
gauge field configurations for which the Faddeev-Popov
operator is positive due to the real nature of its spectrum.
As such, one is able to define a region free of infini-
tesimal copies where M assumes only positive definite
eigenvalues.

B. Shift symmetry

At this stage it is also worth mentioning what the effects
are of the gauge-fixing term on the background field
structure. In the pure Yang-Mills action, the background
gauge field Āμ is always accompanied by the fluctuation
field aμ in a sum, i.e., SYM½A� ¼ SYM½Āþ a�, reflecting that
the theory depends on a single field Aμ. We can then define
a shift transformation as

Ā0
μ ¼ Āμ − ϵμðxÞ; a0μ ¼ aμ þ ϵμðxÞ; ð13Þ

leading to the following symmetry:

SYM½Ā0 þ a0� ¼ SYM½Āþ a� ¼ SYM½A�: ð14Þ

This can be converted into a classical functional identity as

δSYM
δaμ

−
δSYM
δĀμ

¼ 0: ð15Þ

However, the introduction of the gauge-fixing action (11)
breaks the appearance of background and fluctuation fields
just as a sum. Hence, the shift-symmetry identity will, in
principle, be broken by contributions arising from the
gauge-fixing term.
Let us consider the partition function (9) in the presence

of an external source Jaμ coupled to the fluctuation aaμ as
follows:

Z½J; Ā� ¼
Z

½da�½dc̄�½dc�½db�e−SFPþ
R
x
Jaμaaμ : ð16Þ

Performing an infinitesimal shift transformation over Āμ,
i.e., Āμ → Ā0

μ ¼ Āμ − ϵμðxÞ, and renaming the dummy
variable aaμ to a0aμ in such a way that a0aμ ¼ aaμ þ ϵaμ, one
can derive the following identity:

Bðâ; ĀÞ ∘ Γ ¼ hBða; ĀÞ ∘ ðSgf þ SghÞiJ;Ā; ð17Þ

where Γ stands for the one-particle irreducible generating
functional and with

Bðφ; ϕ̄Þ ∘ F ¼ δF
δφðxÞ −

δF

δϕ̄ðxÞ : ð18Þ

Identity (17) is called shift or splitWard identity. Essentially,
it establishes a relation between derivatives with respect to
the background field and derivatives with respect to the
fluctuations. It is a consequence of the fact that the full
theory describes the dynamics of a single field, i.e., Aμ. The
field âaμ represents the expectation value of aaμ at non-
vanishing source. The derivation of (17) is standard and is
reported on Appendix A for completeness. It is also clear
fromEq. (17) that the quantum extension of (15) is “broken”
by the necessity of introducing the gauge-fixing and FP
ghost terms.Yet such a “breaking” is harmless due to the fact
that the gauge-fixing procedure leads to a BRST-exact
contribution. For instance, according to our particular gauge
choice (11), one is able to obtain

hBa
μða; ĀÞ ∘ ðSgf þ SghÞi ¼ −hsðDab

μ c̄bÞiĀ;J: ð19Þ

This establishes a clear relation between background field
independence (i.e., the shift symmetry) and BRST sym-
metry, meaning that an explicit breaking of BRST sym-
metry would put at risk the background field independence
of physical quantities. We shall return to those issues
in Sec. V.

JUSTO, PEREIRA, and SOBREIRO PHYS. REV. D 106, 025015 (2022)

025015-4



III. THE ZERO MODES OF THE
FADDEEV-POPOV OPERATOR

Substantial progress was made over the past decades in
removing infinitesimal Gribov copies from the gauge-fixed
functional integral of Yang-Mills theories. These copies
are generically connected to the existence of normalizable
zero modes of the Faddeev-Popov operator in the corre-
sponding chosen gauge. Hence, one can track these
infinitesimal Gribov copies by investigating the zero modes
of the Faddeev-Popov operator. This section is devoted to
this issue in the LCBG.
Let us start by defining the infinitesimal gauge equiv-

alent configurations (or gauge copies): a0μ and aμ are said to
be gauge equivalent configurations if both of them satisfy
the LCBG condition (8) and are linked to each other by an
infinitesimal gauge transformation,

D̄μa0μ ¼ D̄μaμ ¼ αb;

a0μ ¼ aμ −Dμθ: ð20Þ
Hence, infinitesimal gauge copies exist if the infinitesimal
gauge parameter θ is a zero mode of the Faddeev-Popov
operator, i.e.,

Mabðaμ; ĀμÞθb ≡ −D̄ad
μ Ddb

μ θb ¼ 0: ð21Þ

The existence of normalizable zero modes is the central
issue of the Gribov problem at the level of infinitesimal
copies. Actually, given their existence, the biggest chal-
lenge is to get rid of them from the path integral measure. In
the Landau(-DeWitt) gauge such a task is simplified due to
the Hermiticity of the Faddeev-Popov operator, which
allows us to define a region of configuration related to
positive definite eigenvalues of M. As mentioned before,
in linear covariant gauges (within or without the BFM) the
Faddeev-Popov operator is not Hermitian, which forbids us
from using the usual Gribov method in the Landau gauge.
An interesting strategy was developed in [65,66] for linear
covariant gauges.
In the present section we repeat the same strategy of [66]

adapted to the LCBG, which we expect to lead to a BRST
breaking, just as in [66]. The compatibility between BRST
symmetry and the restriction process will be developed in
Sec. V. After all, standard linear covariant gauges are a
particular case of LCBG with the background chosen as the
trivial one, i.e., Āμ ¼ 0. Yet repeating such an exercise is
helpful as an intermediate step for the construction of the
BRST-invariant formulation and we keep it for the benefit
of the reader.
The proposal is to decompose the total field Aμ into

longitudinal and transverse components,

Aμ ¼ AT
μ þ AL

μ ; ð22Þ

with

AT
μ ¼ aTμ þ Āμ ≡

�
δμν −

∂μ∂ν

∂
2

�
Aν; ð23Þ

and

AL
μ ¼ aLμ ≡ ∂μ∂ν

∂
2
Aν: ð24Þ

For the sake of simplicity and clarity of notation, from
now on the background and fluctuation configurations
ðĀμ þ aμÞ will be kept hidden into the total configuration
Aμ, whenever there is no ambiguity, otherwise they will be
made explicit. Furthermore, notice that we are assuming
only transverse configurations for the background field, so
that it only enters in the transverse component of Aμ.
From the gauge-fixing condition (8) one is able to

express AL
μ as

AL
μ ¼ ∂μ

∂
2
ðαbþ ig½Āν; Aν�Þ: ð25Þ

This is done in order to establish a result closely related to
the one in [65,66]: by imposing positivity to the Faddeev-
Popov-like operator restricted only to transverse configu-
rations3 AT

μ is enough to get rid of zero modes (expandable
in powers of α and of the background field) of the actual
Faddeev-Popov operator (12):
Statement.—If AT

μ is such that the operator

MTðaT; ĀÞ ¼ −∂μð∂μ − ig½AT
μ ; �Þ

≡ −∂μDT
μ ð26Þ

is positive definite, then the Faddeev-Popov operator (12)
does not develop zero modes for Aμ ¼ AT

μ þ AL
μ .

Proof.—First, notice that MT is Hermitian, hence the
positivity assumption makes sense. Now, let us consider the
zero mode equation for the Faddeev-Popov operator,

−D̄μDμθ ¼ 0: ð27Þ

By decomposing Aμ into AT
μ þ AL

μ we get

MTθ ¼ −igð½Āμ; Dμθ� þ ∂μ½AL
μ ; θ�Þ: ð28Þ

Since AT
μ (¼ aTμ þ Āμ) is such that MT is positive definite,

then the zero-mode equation can be rewritten as

θ ¼ −ig½MT �−1ð∂μ½AL
μ ; θ� þ ½Āμ; Dμθ�Þ: ð29Þ

From (25) we have

3When restricted to transverse configurations, the FP operator
is Hermitian.
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θ ¼ −ig½MT �−1
�
α∂μ

�
∂μ

∂
2
b; θ

�

þ ig∂μ

�
∂μ

∂
2
½Āν; Aν�; θ

�
þ ½Āμ; Dμθ�

�
: ð30Þ

At this point let us assume that θ is a smooth function of α
and Āμ, in the sense that it can be expanded as

θ ¼
X∞
l;n¼0

θl;nα
lðĀμĀμÞn; ð31Þ

so that the general coefficient θl;n corresponds to the term
of lth power of α and nth power of ĀμĀμ. Hence, by
replacing (31) into (30), one is able to verify, recursively,
that θl;n ¼ 0.
Consequently, it suffices to impose the restriction of the

path integral over aTμ to the region

ΩT ¼ fAT
μ ; D̄μAμ ¼ αb;MTðaT; ĀÞ > 0g; ð32Þ

in order to get the non-Hermitian Faddeev-Popov operator
M rid of infinitesimal zero modes. Notice that despite
the region ΩT is defined in terms of AT

μ ¼ aTμ þ Āμ, the
functional measure of the path integral is not affected, in the
sense that Āμ is a classical configuration and ½dAT � ¼ ½daT �.
The region ΩT plays a similar role to the Gribov region in
the Landau gauge. Clearly, in a trivial background Āμ ¼ 0

and with α ¼ 0, ΩT recovers the Gribov region Ω.

IV. IMPLEMENTING THE RESTRICTION
OF THE PATH INTEGRAL DOMAIN

Once the region free of infinitesimal Gribov copies
is determined, the functional integral of the gauge field
must be restricted to that domain for the elimination of
such spurious configurations. As we have seen in the last
section, in the LCBG it is enough to impose such a
restriction to the transverse component of Aμ.
Following the standard procedure to impose such a

restriction in scenarios without the BFM, either in the
Landau gauge, [31,38,67,68], or in linear covariant gauges,
[43,48,65,66], the restricted path integral to ΩT shall be
given by4Z

ΩT
½daT �½daL�e−SFP ¼

Z
½daT �½daL�e−S; ð33Þ

with

S ¼ SFP þ SHT − γ4dðN2 − 1Þ ð34Þ
and

SHT ¼ γ4g2
Z
x
fabcATa

μ½ðMTÞ−1�cefdbeATd
μ

¼ γ4HTðaT; ĀÞ; ð35Þ
where theHTðaT; ĀÞ stands for the Horizon function within
the BFM in the LCBG, and γ is the so-called Gribov
parameter. Perturbatively, since AT

μ ¼ aTμ þ Āμ, one must
expect contributions to the Horizon function that depends
only on the background Āμ and on linear terms of aTμ . In the
LDW gauge these terms were verified at leading order by
following the original Gribov no-pole condition [58].
Due to the presence of ðMTÞ−1 and to the definition of

AT
μ , given by (23), the Horizon function has two sources of

nonlocalities, which can be made local by means of the
procedure detailed in [66].
Let us first pay attention to the nonlocality of AT

μ , which
can be worked around by rewriting this component in terms
of aμ and of a new auxiliary field haμ,

AT
μ ¼ Aμ − hμ: ð36Þ

Notice that once we have replaced AT
μ by Aμ − hμ in (35),

two conditions must be satisfied,

hμ ¼ AL
μ and ∂μðAμ − hμÞ ¼ 0: ð37Þ

To impose both conditions (37), let us introduce two
contributions to the action (35):

SΛλ ¼
Z
x
λaμð∂2haμ − ∂μ∂νAa

νÞ −
Z
x
Λa
μð∂2ξaμ − ∂μ∂νDab

ν cbÞ;

ð38Þ
and

Sτv ¼
Z
x
va∂μðAa

μ − haμÞ þ
Z
x
τa∂μðDab

μ cb þ ξaμÞ; ð39Þ

where λμ and v play the role of Lagrange multipliers to
impose, respectively, the first and second conditions of
(37). The auxiliary fields ðhμ; ξμÞ, ðλμ;ΛμÞ, and ðv; τÞ were
conveniently introduced as BRST doublets [cf. Eq. (45)].
In the sequence, the nonlocality that stems from ½MT �−1

can be worked around by the introduction of a set of
auxiliary fields fω̄i;ωi; φ̄i;φig, such that once they are
integrated out the nonlocal version (35) is recovered. The i
index in these auxiliary fields stands for the multi-index
notation, which accounts for the pair of spacetime Lorentz
and color index: i ¼ fμ; bg.
The localized Horizon function reads

γ4HT
loc ¼

Z
x
fω̄a

i ðMTÞabωb
i − φ̄a

i ðMTÞabφb
i

− gfabc∂νω̄a
i D

Tcd
ν cdφb

i − gfabc∂νω̄a
i ξ

c
νφ

b
i g

þ γ2g
Z
x
fabcðAa

μ − haμÞðφ̄bc
μ þ φbc

μ Þ: ð40Þ
4In the following expression we have omitted the integration

over the Faddeev-Popov ghosts and the Lautrup-Nakanishi field
for simplicity.
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Finally, the local version of (34) is given by the sum of
the contributions (10), (38), (39), and (40):

SLoc ¼ SFP þ SΛλ þ Sτv þ γ4HT
loc − γ4dðN2 − 1Þ: ð41Þ

The BFM was developed as a valuable tool for keeping
track of an auxiliary symmetry which acts as a sort of gauge
transformation of the background field [50–52]. As it will
be reviewed here, such a background gauge (B gauge)
transformation still is a symmetry of the Faddeev-Popov
action (10) in the LCBG. However, the main point of this
work is to discuss the status of the BRST and B-gauge
symmetries after performing the Gribov restriction, i.e., of
the action (41) as just outlined.

A. The BRST symmetry

As it is well known, the Faddeev-Popov action (10) is
invariant under BRST transformations, see, e.g., [69]. The
fields that appear in SFP transform as

sĀμ ¼ 0; saμ ¼ −Dμc; ð42Þ

sc̄ ¼ b; sb ¼ 0; ð43Þ

sc ¼ −
1

2
ig½c; c�: ð44Þ

As mentioned before, the auxiliary fields were introduced
as BRST doublets, i.e.,

shμ ¼ ξμ; sξμ ¼ 0;

sΛμ ¼ λμ; sλμ ¼ 0;

sτ ¼ v; sv ¼ 0; ð45Þ

so that the contributions S̄Λλ and S̄τv can be rewritten as
BRST-exact terms:

SΛλ ¼ s
Z

Λa
μ½∂2haμ − ∂μ∂νAa

ν � ð46Þ

and

Sτv ¼ s
Z
x
τa∂μðAa

μ − haμÞ: ð47Þ

Hence, they belong to the trivial part of the cohomology of
the BRST operator.
The most interesting content of the action (41) comes

from γ4HT
loc. The auxiliary fields fω̄i;ωi; φ̄i;φig also

transform as doublets of the BRST operator,

sω̄i ¼ φ̄i; sφ̄i ¼ 0; ð48Þ

sφi ¼ ωi; ωi ¼ 0; ð49Þ

and as a consequence, the Horizon function (40) can be
written as

γ4HT
loc ¼ −s

Z
x
ω̄a
i ðMTÞabφb

i þ Δγ2 ; ð50Þ

with

Δγ2 ¼ γ2g
Z
x
fabcðAa

μ − haμÞðφ̄bc
μ þ φbc

μ Þ: ð51Þ

Notice that Δγ2 is not BRST invariant. Actually, the BRST
variation of Δγ2 reads

sΔγ2 ¼ −γ2gfabc
Z
x
f½Dμcþ ξμ�aðφ̄bc

μ þ φbc
μ Þ

− ðAa
μ − haμÞωbc

μ g ≠ 0; ð52Þ

which means that the BRST symmetry is (softly) broken
due to the restriction to ΩT , just as in the scenario without
Āμ, see [66]. Notice that if the Gribov parameter γ2 is set to
zero, then the BRST-breaking term vanishes. Since BRST
is not a symmetry of the proposed action that eliminates
infinitesimal Gribov copies, according to the discussion
about the sWI in Sec. II and in Appendix, it is to be
expected that background field independence will not hold.
In the sequence we will see that, besides the BRST, the
Gribov term Δγ2 does also break the B-gauge symmetry.

B. The B-gauge transformation

A well-known fact is that the Faddeev-Popov action is
invariant under a background gauge transformation where
the fields transform as [50–52]

δBĀμ ¼ −D̄μθ;

δBϕ ¼ −ig½ϕ; θ�;
δBc̄ ¼ −ig½c̄; θ�;
δBc ¼ −ig½c; θ�: ð53Þ

Under the δB variation the auxiliary fields fΛa
μ; λaμg, fτa; vag

and fω̄ab
μ ;ωab

μ ; φ̄ab
μ ;φab

μ g transform as

δBΛμ ¼ −ig½Λμ; θ�;
δBλμ ¼ −ig½λμ; θ�;
δBv ¼ −ig½v; θ�;
δBτ ¼ −ig½τ; θ�;

δBϕ
ab ¼ −igϕmb

μ Tb½Tm; θeTe� − igϕam
μ Ta½Tm; θeTe�; ð54Þ

withϕab collectively denoting the auxiliary fields fω̄ab
μ ;ωab

μ ;
φ̄ab
μ ;φab

μ g.
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Before taking the variation of (41) under δB, let us verify
that the B-gauge transformation commutes with BRST.
Let ϕ ¼ ϕaTa stand for every field carrying a color index

(a similar procedure can be developed for fields with two
color indices). Besides, assume that ϕ̃ ¼ sϕ. Thus, the
BRST transformation of δBϕa reads

sðδBϕÞ ¼ −igs½ϕ; θ�
¼ −ig½sϕ; θ�
¼ −ig½ϕ̃; θ�
¼ δBðsϕÞ: ð55Þ

Above we have used the fact that sθ ¼ 0.
Now let us proceed to the variation of the local action

(41) under δB. This is a rather easy task, since the
contributions from SΛλ and Sτv are BRST-exact terms,
and thus δBSΛλ and δBSτv can schematically be written as

δBs
Z
x
ϕa
1ϕ

a
2 ¼ sδB

Z
x
ϕa
1ϕ

a
2; ð56Þ

which is trivially B-gauge invariant.
The last and most interesting sector is the Horizon

function, γ4HT
loc. As written in Eq. (50), the Horizon

function can be written as the sum of two terms: one that
is trivially BRST invariant and the other one that (softly)
breaks the BRST symmetry. For the trivially BRST
invariant term we have

δB

Z
x
s½ω̄ad

μ ðMTÞabφbd
μ � ¼ s

Z
x
δBðϕad

1 ϕad
2 Þ ¼ 0: ð57Þ

For the Δγ2 term we have

δBΔγ2 ¼ γ2gfabc
Z
x
f½−Dad

μ θd−gfadeheθd�ðφ̄bc
μ þ φbc

μ Þ

≠ 0: ð58Þ

It is interesting to notice that the term that breaks BRST
is the same that breaks the B-gauge symmetry, and is the
only one that carries the Gribov parameter γ2.
It is clear that breaking BRST as well as B-gauge

symmetries will lead to worrisome consequences to the
underlying quantum theory. At a technical level, breaking
B-gauge invariance will lead to the proliferation of terms
containing the background field Āμ which are not gauge
covariant. This is not only a severe drawback in the use of
the BFM but also would require a very cautious treatment
of the possible counterterms that are generated in such a
theory since there would be no reason to forbid the
generation of several of them that do not respect B-gauge
invariance. Clearly, the breaking of B-gauge symmetry is
intimately related to the soft breaking of BRST symmetry,

cf. [59]. Breaking BRST symmetry also brings, at least, two
sources for spurious dependencies in correlation functions
of gauge-invariant operators, i.e., observables. It is BRST
symmetry that ensures the independence of observables
from the gauge parameter α. Moreover, as previously
discussed, BRST invariance also plays a key role in
ensuring background field independence, i.e., the choice
of the background field cannot change the value of
observables. Thus, the present formulation is not consistent
and a manifest B-gauge as well as BRST-invariant con-
struction of the action which eliminates infinitesimal
Gribov copies in LCBG is mandatory. We work this out
in the next section, following [59].

V. A NONPERTURBATIVE BRST AND B-GAUGE
SYMMETRIC CONSTRUCTION

In this section we propose to follow the steps of
[43,48,59] in order to construct a BRST-invariant action
such that its path integral is restricted to a region where the
Faddeev-Popov operator (12) is free of zero modes. This is
achieved by making use of the gauge-invariant field ahμ in
the construction of the Horizon function. The field ahμ is
constructed by the minimization of the functional

fA½u� ¼ Tr
Z
x
Au
μAu

μ ð59Þ

over the gauge orbit. In (59), Au
μ denotes the finite gauge

transformation of Aμ carried out by a group element
u ∈ SUðNÞ. That is, the proposal is to select gauge field
configurations that belong to a particular gauge orbit ofAμ ¼
aμ þ Āμ so that fA½u� is a localminimum. This can be carried
out by expanding the gauge transformed configuration Au

μ,

Au
μ ¼ u†ðaμ þ ĀμÞuþ i

g
u†∂μu; ð60Þ

in powers of θ, withu ¼ eigθ. Once again, in order to simplify
the notation, wewill only refer to the total gauge fieldAμ, but
making explicit the fluctuationþ background components
whenever they need to be emphasized.

A. Minimizing the dimension two operator

Working with the total gauge field Aμ allows us to
reproduce the results of [43,44,48] in the minimization of
(59). In the end, one should keep in mind that Aμ ¼
aμ þ Āμ in order to make connections with the BFM.
The functional (59) is gauge invariant for the field

configuration Ah
μ with h ¼ eigξ ¼ eigξ

aTa
that minimizes

fA½u� along the gauge orbit of Aμ. That is,

fA½h� ≔ min
u
Tr

Z
x
Au
μAu

μ ¼ Tr
Z
x
Ah
μAh

μ ð61Þ

is gauge invariant.
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The task of selecting Ah
μ for a gauge orbit so that fA½u� is

at its globalminimum has not yet been accomplished and it
is closely related to the existence of Gribov copies. The set
of gauge field configurations that globally minimize (59)
define the fundamental modular region, which is com-
pletely free of Gribov copies. Yet one can impose the
conditions to minimize fA½u� for a given gauge orbit
perturbatively, cf. [43,44,48] for details. It turns out that
the conditions that must be satisfied to search for local
minima of (59) are compatible with the conditions to
eliminate infinitesimal Gribov copies.
Let us consider a gauge transformation given by v¼heigθ,

which has to be understood as a power series of θ. Formally,
the gauge transformed field Av

μ reads

Av
μ ¼ v†Aμvþ

i
g
v†∂μv: ð62Þ

The explicit expression of Av
μ up to terms of order Oðθ2Þ

reads

Av
μ ¼ Ah

μ þ ig½θ; Ah
μ� þ ∂μθ −

1

2
g2½θ; ½θ; Ah

μ��

þ 1

2
ig½θ; ∂μθ� þOðθ3Þ: ð63Þ

Hence, the expression of fA½v� can be written as

fA½v� ¼ fA½h� − 2Tr
Z
x
θ∂μAh

μ

− Tr
Z
x
θ∂μDh

μθ þ igTr
Z
x
θ∂μAh

μθ þOðθ3Þ; ð64Þ

where ∂μDh
μθ ¼ ∂μð∂μθ − ig½Ah

μ; θ�Þ.
Now, the conditions for a local minimum of fA½v�, are

δfA½v�
δθ

����
θ¼0

¼ 0 and
δ2fA½v�
δθ2

jθ¼0 > 0; ð65Þ

which lead us to the well-known conditions

∂μAh
μ ¼ 0 and − ∂μDh

μ ¼ Mh > 0; ð66Þ

with Dh
μ ≡ ∂μ − ig½Ah

μ; �. That is, the total gauge configu-
ration Ah

μ ¼ ahμ þ Āh
μ must be transverse and the operator

Mh positive definite. It must be clear that Ah
μ is not the

same as AT
μ , although both of them are transverse. In

particular, AT
μ is not gauge invariant. However, they

coincide at zeroth order in the coupling constant g as
discussed in the next subsection.

B. The dressed gauge-invariant field

Here, the transversality condition in (66) is used to derive
the expression of Ah

μ as a nonlocal power series of Aμ, and

from now on the Ah
μ will be called the total dressed gauge

field. Starting from

Ah
μ ¼ h†Aμhþ i

g
h†∂μh; ð67Þ

and expanding (67) up to quadratic powers of ξ leads us to

Ah
μ ¼ Aμ − ∂μξþ ig½Aμ; ξ� þ

1

2
ig½ξ; ∂μξ� þ

1

2
g2½ξ; ½Aμ; ξ��

þOðξ3Þ: ð68Þ

Imposing ∂μAh
μ ¼ 0 we have

∂
2ξ ¼ ∂μAμ þ ig∂μ½Aμ; ξ� −

1

2
ig½∂2ξ; ξ�

−
1

2
g2∂μ½½Aμ; ξ�; ξ� þOðξ3Þ: ð69Þ

Assuming ξ is a smooth function of the coupling constant,
which means that ξ can be written as ξ ¼ P∞

n¼0 g
nξn, one is

able to solve (69) recursively in terms of Aμ. That is, order
by order in g we get

ξ0 ¼
∂ν

∂
2
Aν; ð70Þ

ξ1 ¼
∂ν

∂
2
i

�
Aν;

∂σ

∂
2
Aσ

�
; ð71Þ

ξ2 ¼ OðA3
μÞ;

..

. ð72Þ

For the sake of simplicity, we are keeping terms that are at
most quadratic in the total field Aμ. Thus, ξ can be written
as a power series of Aμ,

ξ ¼ ∂ν

∂
2

�
Aν þ ig

�
Aν;

∂σ

∂
2
Aσ

�
þ 1

2
ig

�
∂ρ

∂
2
Aρ;

∂ν∂σ

∂
2
Aσ

��

þOðA3
μÞ: ð73Þ

Finally, with (68) and (73) Ah
μ can by written as

Ah
μ ¼

�
δμν −

∂μ∂ν

∂
2

��
Aν þ ig

�
Aν;

∂σ

∂
2
aσ

�

þ 1

2
ig

�
∂σ

∂
2
aσ;

∂ν∂ρ

∂
2
aρ

�
þOða3μÞ

�
: ð74Þ

By construction, Ah
μ is gauge invariant and, as it will be seen

in the next section, it is also invariant under B-gauge
transformations. In other words, Ah

μ is invariant by shift
transformations.
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C. The nonperturbative BRST symmetric action

As we have just seen, by minimizing fA½v� along the
gauge orbit of a particular configuration Aμ, one gets that
Ah
μ is transverse, and thatMh > 0. The gauge invariance of

Ah
μ suggests that it is the ideal candidate to provide a BRST-

invariant construction of the horizon function. This was
pursued in [43,44,48] and requires the definition of a region
Ωh which plays the analog role of ΩT . It is defined by

Ωh ¼ fAμ; D̄μaμ ¼ αbj∂μAh
μ ¼ 0;Mh > 0g: ð75Þ

Besides, since Ah
μ is transverse by construction, the

Faddeev-Popov operator (12) is free of a large set of zero
modes once the path integral is restricted to Ωh, as was
verified in Sec. III for the region ΩT .
Thus, proceeding with the restriction of the path integral

to the region (75), one gets5

ZΩh ¼
Z

½da�e−Sh ; ð76Þ

with

Sh ¼ SFP þ SHh − γ4dðN2 − 1Þ: ð77Þ

The Faddeev-Popov action is the same as the one given in
Eq. (10), but here the action SHh is different from the one in
(35), with AT

μ being replaced by Ah
μ:

SHh ¼ γ4g2
Z
x
fabcAh;a

μ ½ðMhÞ−1�cefdbeAh;d
μ

¼ γ4HhðAÞ: ð78Þ

As in the case of SHT , the action (78) has two sources of
nonlocality: the operator ðMhÞ−1 and the gauge-invariant
field Ah

μ itself; see (74).
The localization of ðMhÞ−1 is achieved by introducing a

set of auxiliary fields fφ̄;φ; ω̄;ωg as discussed in Sec. IV,

γ4H̄h
loc ¼

Z
x
fω̄a

i ðMhÞabωb
i − φ̄a

i ðMhÞabφb
i g

þ γ2gfabc
Z
x
Ah;a
μ ðφ̄bc

μ þ φbc
μ Þ: ð79Þ

The second source of nonlocality stems from Ah
μ and it can

be made local by introducing a Stueckelberg-like field ξ
through h ¼ eigξ. The procedure is precisely the same
as the one used to get the expression (68), provided the
transversality condition ∂μAh

μ ¼ 0 is ensured by a Lagrange
multiplier,

Sτ ¼
Z
x
τa∂μðAhÞaμ; ð80Þ

with the local field ðAhÞaμ being expressed as

ðAhÞaμTa ¼ h†Aμhþ i
g
h†∂μh; ð81Þ

and h ¼ eigξ. Thus, albeit ðAhÞaμ is a local composite
operator, it is nonpolynomial on the local fields ξ.
At last, a pair of anticommuting fields fη̄a; ηbg must be

introduced in order to consistently ensure that ∂μAh
μ ¼ 0,6

Sη̄η ¼ −
Z
x
η̄aðMhÞabηb: ð82Þ

Thus, the localized action reads

Sh ¼ SFP þ γ4Hh
loc þ Sτ þ Sη̄η − γ4dðN2 − 1Þ; ð83Þ

where SHh is the local one given by Eq. (79). Note that the
transversality condition imposed by the Lagrange multi-
plier in Eq. (80) reflects a constraint on the Stueckelberg
field, in the sense that once the ξ field is eliminated by
imposing ∂μAh

μ ¼ 0, the nonlocal expression (74) will be
recovered. Further details about the localization procedure
outlined above can be found in [49].
Now that the path integral domain is properly restricted

to Ω̄h by a suitable local action, one is able to verify that
(83) is invariant under the following BRST transforma-
tions:

saμ ¼ −Dμc; sĀμ ¼ 0;

sc ¼ −
1

2
ig½c; c�;

sc̄ ¼ b; sb ¼ 0;

sω̄μ ¼ 0; sωμ ¼ 0;

sφ̄μ ¼ 0; sφμ ¼ 0;

sη̄ ¼ 0; sη ¼ 0;

sτ ¼ 0; ð84Þ

and with

sξ ¼ −c −
1

2
ig½c; ξ� þ g2

12
½½c; ξ�; ξ� þOðg3Þ: ð85Þ

Notice that the invariance of (83) under the BRST trans-
formations (84) and (85) stems, mainly, from the fact that

5We omit the functional measures for the Faddeev-Popov
ghosts and Lautrup-Nakanishi fields.

6This pair of anticommuting fields must be introduced in order
to account for the Jacobian in the functional integration measure
that appears to impose ∂μAh

μ ¼ 0, similar to the Faddeev-Popov
gauge-fixing process.
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Ah
μ is gauge invariant order by order in the coupling

constant g which leads to sðAhÞμ ¼ 0. It must be clear
that the gauge invariance of Ah

μ is also responsible for the
invariance of (83) under the B-gauge transformation.
Besides, the auxiliary fields fω̄;ω; φ̄;φ; η̄; ηg and τ, intro-
duced to localize γ4Hh, are BRST singlets (instead of
doublets, as in the BRST-broken procedure).

D. The B-gauge invariance of the action

Alongside the nonperturbative BRST transformation
(84), the action (83) is also invariant under a sort of
nonperturbative B-gauge transformation, which is slightly
different from the ones in (53) and (54). Namely,

δBaμ ¼ −ig½aμ; θ� and δBĀμ ¼ −D̄μθ;

δBc ¼ −ig½c; θ� and δBc̄ ¼ −ig½c̄; θ�;
δBb ¼ −ig½b; θ�;
δBφ̄μ ¼ −igφ̄mb

μ Tb½Tm; θeTe� − igφ̄am
μ Ta½Tm; θeTe�;

δBφμ ¼ −igφmb
μ Tb½Tm; θeTe� − igφam

μ Ta½Tm; θeTe�;
δBω̄μ ¼ −igω̄mb

μ Tb½Tm; θeTe� − igω̄am
μ Ta½Tm; θeTe�;

δBωμ ¼ −igωmb
μ Tb½Tm; θeTe� − igωam

μ Ta½Tm; θeTe�;
δBη̄ ¼ −ig½η̄; θ�;
δBη ¼ −ig½η; θ�;
δBτ ¼ 0; ð86Þ

and

δBξ ¼ −θ −
1

2
ig½θ; ξ� þ g2

12
½½θ; ξ�; ξ� þOðg3Þ; ð87Þ

which can be iteratively derived from the fact that
δBAh

μ ¼ 0. The invariance of Ah
μ under δB can be understood

from the fact that the δB variation of the total gauge field is
equivalent to a standard gauge transformation, while the
total dressed gauge field Ah

μ is gauge invariant, then δBAh
μ

must be null. Performing the δB variation of Eq. (74) is
equivalent, in fact, to performing a gauge transformation,
whose invariance of Ah

μ is verified at [43,44,48].
As can be seen, the transformation (86)–(87) differs from

(53)–(54) by the transformation of the auxiliary fields η, η̄,
and the highly nontrivial δBξ.
It must be emphasized that any attempt to construct a

Horizon function only in terms of the fluctuation gauge
field ahμ, instead of the total field Ah

μ, must lead to the
breaking of the shift symmetry.
Thus, the action (83) is local, BRST-, and B-gauge

invariant, and effectively implements the restriction of the
path integral to the region Ω̄h in the LCBG. With such
properties, we can turn back to the question related to
background-field independence. From Eq. (83), it is clear

that all terms but the gauge-gixing and Faddeev-Popov
ghost terms involve the fields Āμ and aμ under the com-
bination Aμ ≡ Āμ þ aμ. Thus, all those terms are automati-
cally invariant under the shift transformation (13). As
pointed out in Sec. II and Appendix, the gauge-fixing
together with the Faddeev-Popov ghost terms treat the
background and fluctuation fields on an unequal foot-
ing rendering a nontrivial transformation under (13).
However, as in the standard gauge-fixed Yang-Mills theory,
the resulting transformation is a BRST-exact term. Since
(83) enjoys BRST symmetry, this breaking is, again,
harmless. Thus, the action (83) provides background-
field-independent results for observables. Conversely,
one can see that if the Horizon function was not invariant
under (13), this would lead to a new source of shift-
symmetry breaking which is not BRST exact and thereby
this would spoil background-field independence. However,
it is important to mention that although the present proposal
ensures that shift symmetry is automatically preserved by
the terms that eliminate infinitesimal Gribov copies, it is
fundamental to understanding the renormalizability proper-
ties of the model. Such an analysis is beyond the scope of
the present paper but is essential in order to fully verify the
consistency of background-field independence.

VI. CONCLUSIONS

The present work is devoted to the study of the Gribov
problem in Yang-Mills theories within the background field
method in a linear covariant extension of the Landau-
DeWitt gauge. Our central point is the status of the BRST
and of the background gauge (B-gauge) symmetries of the
action, as well as background-field independence of physi-
cal quantities, once the Gribov restriction is imposed. In
principle we found out that both of these symmetries are
broken by the Gribov restriction framework, being in
agreement with the analysis in [59]. But then, we could
verify that it is possible to address the Gribov problem
consistently with a nonperturbative BRST and B-gauge
transformations together with background-field independ-
ence of observables thanks to the sWI. This analysis
complements the proposal in [59] and requires a careful
study of the renormalization properties of the model.
Our first proposal was to decompose the total gauge field

Aμ ¼ aμ þ Āμ into two components, Aμ ¼ AT
μ þ AL

μ being
transverse and longitudinal according to (23) and (24),
respectively, and to impose the positive definite condition to
the operator MT, (26). This operator is similar to the
Faddeev-Popov operator (12) but with the total gauge field
Aμ replaced by its transverse component AT

μ . In Sec. III, we
could verify that by restricting the path integral to the
region Ω̄T , (32) (where MT > 0), the actual Faddeev-
Popov operator is free of a large set of zero modes.
The restricted path integral to Ω̄T was presented in

Sec. IV. Such a restriction is achieved by the introduction of
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the nonlocal Horizon function γ4H̄TðaT; ĀÞ, (35), which
could be localized with the introduction of the auxiliary
fields fhaμ; ξaμg, fλaμ;Λa

μg, fva; τag, and fω̄a
i ;ω

a
i ; φ̄

a
i ;φ

a
i g,

whose BRST transformation is given by the set of equa-
tions (42)–(45),while theB-gauge transformation is givenby
(53) and (54). The consequence of restricting the path
integral to Ω̄T is that both the BRST and the B-gauge
symmetry are brokenby theΔγ2 term [seeEqs. (52) and (58)].
In Sec. V we proposed a BRST and B-gauge invariant

action restricted to the region where the Faddeev-Popov
operator is free of a large set of zero modes. The procedure
was inspired by the works [43,48], where a particular
configuration of the total gauge field that minimizes the
functional (59), called the dressed gauge field, was derived.
As a consequence of minimizing fA½u�, the dressed gauge
field Ah

μ must be transverse, and it was found to be a
nonlocal gauge invariant power series of Aμ. A second
consequence is that the operator Mh ¼ −∂μDh

μ must be
positive definite, so that it defines a region Ωh, where the
Faddeev-Popov operator is free of a class of zero modes. In
order to construct a BRST and B-gauge invariant action,
whose path integral is restricted to Ωh, the standard Gribov
restriction procedure must be imposed to the total dressed
gauge field Ah

μ, instead of only to the fluctuation configu-
ration ahμ. Since Ah

μ is gauge invariant by construction then
we could verify, from Eqs. (86) to (87), that the local action
Sh is, indeed, invariant under background gauge trans-
formation. This framework enabled us to address the issue
of background-field dependence in the context where
Gribov copies are taken into account. As discussed,
BRST invariance plays a key role in the preservation of
the shift symmetry, which serves as an inspecting tool of
background-field dependence.
The present work aimed at contributing to the very

interesting and not yet fully understood question about the
symmetry content of Yang-Mills theories within the BFM
when the Gribov problem is taken into account (at least at
the infinitesimal level). Thus, a detailed analysis of the
renormalizability properties of the present model is left for
a future work. Furthermore, it is also very interesting to
investigate the effects of considering particular configura-
tions of Āμ as for finite temperature investigations. Finally,
it is expected that the discussion presented in this work is
related in a broader context. In particular, quantum-field
theoretic formulations of quantum gravity, typically, have
to face the issue of introducing a background metric. In the
case of gravity, background independence is a founding
principle and the analysis elaborated in the present work
can be a stepping stone to tackle such an issue in quantum
gravity, where a Gribov problem is expected to exist.
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APPENDIX: DERIVATION OF THE SHIFT
WARD IDENTITY

In this appendix we explicitly derive the shift (or split)
Ward identity (17) which plays a central role in ensuring,
or better, controlling the background dependence in the
theory. Observables should be completely blind to a
particular choice of background. In the following, we
derive the sWI and, next to that, we use it to prove the
background independence of the free energy in pure Yang-
Mills theories as a example of explicit application.
Let us consider the partition function Z½J; Āμ� of Yang-

Mills theories in the presence of a background gauge field
Āμ and external sources J coupled to the elementary fields.
Under (13), it transforms as

Z½J; Ā0
μ� ¼ Z½J; Āμ� −

Z
x
ϵaμðxÞ

δZ½J; Āμ�
δĀa

μðxÞ

¼ Z½J; Āμ� −
Z
x
ϵaμðxÞZ½J; Ā� δW½J; Āμ�

δĀa
μðxÞ

¼ Z½J; Āμ� þ Z½J; Ā�
Z
x
ϵaμðxÞ

δΓ½Jφ; Āμ�
δĀa

μðxÞ
; ðA1Þ

where we have used that W½J; Ā� ¼ lnZ½J; Ā� and

Γ½φ; Ā� ¼ −W½Jφ; Ā� þ
X
φ

Z
x
Jφ · φ; ðA2Þ

which implies

δΓ½φ; Ā�
δĀa

μ
¼ −

�
δW½Jφ; Ā�

δĀa
μ

�
Jφ

: ðA3Þ

On the other hand, the partition function can be written as

Z½J; Ā0
μ� ¼

Z
½dμFP�½da0�e−SFP½Ā

0;a0;b;c̄;c�þ
R
x
Jaμa0aμ ; ðA4Þ

with ½dμFP� ¼ ½db�½dc̄�½dc�. Moreover,

SFP½Ā0; a0; b; c̄; c�
¼ SYM½Āþ a� þ Sgf ½Ā; a; b� þ Sgh½Ā; a; c̄; c�

þ
Z
x
ϵaμðxÞ

�
δðSgf þ SghÞ

δaaμ
−
δðSgf þ SghÞ

δĀa
μ

�
; ðA5Þ
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and

Z
x
Jaμa0aμ ¼

Z
x
Jaμaaμ þ

Z
x
Jaμϵaμ: ðA6Þ

Expanding (A4) up to first order in ϵaμ leads to

Z½J; Ā0
μ� ¼ Z½J; Āμ�

�
1 −

Z
x
ϵaμðxÞ

	
δðSgf þ SghÞ

δaaμ

−
δðSgf þ SghÞ

δĀa
μ



þ
Z
x
ϵaμðxÞ

δΓ
δâaμ

�
: ðA7Þ

Comparing (A1) with (A7) yields

δΓ
δâaμ

−
δΓ
δĀa

μ
¼

	
δðSgf þ SghÞ

δaaμ
−
δðSgf þ SghÞ

δĀa
μ



; ðA8Þ

which can be written in a compact form by the introduction
of the operator Ba

μða; ĀÞ as

Ba
μða; ĀÞ ∘≔ δ

δâaμ
−

δ

δĀa
μ
; ðA9Þ

where â stands for the expectation value of a in the
presence of the source J. Thus, Eq. (A8) is expressed as

Ba
μðâ; ĀÞ ∘ Γ ¼ hBa

μða; ĀÞ ∘ ðSgf þ SFPÞi: ðA10Þ
In this work, we have adopted the following gauge-fixing
action (together with its corresponding Faddeev-Popov
ghosts):

Sgf þ Sgh ¼ s
Z
x
c̄a
�
D̄ab

μ abμ −
α

2
ba
�

¼
Z
x

�
baD̄ab

μ abμ −
α

2
baba þ c̄aD̄ab

μ Dbc
μ cb

�
:

ðA11Þ
This leads to

hBa
μða; ĀÞ ∘ ðSgf þ SghÞi ¼ −hsðDab

μ c̄bÞiĀ;J: ðA12Þ
At vanishing source J, since the gauge-fixed Yang-Mills
action is BRST symmetric, the BRST-exact correlator in
(A12) vanishes. Together with (A8), this establishes the
background-field independence of the free energy.
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