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Transmutation operators and expansions for one-loop Feynman integrands
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In this paper, the connections among one-loop Feynman integrands of a wide range of theories are
further investigated. The work includes two parts. First, we construct a new class of differential operators
which transmute the one-loop gravitational Feynman integrands to Einstein-Yang-Mills and Yang-Mills
Feynman integrands, thus linking these theories together. Second, by using one-loop level transmutation
relations, together with some general conditions such as gauge and Lorentz invariance, we derive the
expansions of Feynman integrands of certain theories to those of other theories. In particular, we find the
Feynman integrands of all theories under consideration can be expanded to integrands of bi-adjoint scalar
theory. The unified web for expansions is established, including gravity, Einstein-Yang-Mills theory,
Einstein-Maxwell theory, Born-Infeld theory, pure Yang-Mills theory, Yang-Mills-scalar theory, special
Yang-Mills-scalar theory, Dirac-Born-Infeld theory, extended Dirac-Born-Infeld theory, special Galileon
theory, and nonlinear sigma model. The systematic rules for evaluating coefficients in the expansions are

provided, and the duality between transmutation relations and expansions is shown.
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I. INTRODUCTION

Modern research on the S-matrix has exposed amazing
relations among amplitudes of different theories, such as
the Kawai-Lewellen-Tye relations [1], Bern-Carrasco-
Johansson (BCJ) color-kinematics  duality [2-7],
Cachazo-He-Yuan (CHY) formulas [8-12], transmutation
relations proposed by Cheung, Shen and Wen [13], which
are invisible through the traditional Feynman rules. The
transmutation relations, which based on constructing some
Lorentz and gauge invariant differential operators, reveal
the marvelous unity for tree amplitudes. By acting these
transmutation operators on gravitational tree amplitudes,
one can generate the tree amplitudes of a variety of theories.
These unifying relations were verified and further studied
in [14-16], by acting transmutation operators on CHY
formulas of different theories.

At the level of tree amplitudes, another important
reflection of connections among different theories is the
amplitudes of certain theories can be expanded as the
combination of amplitudes of other theories. Such expan-
sions have been studied in various literatures, especially for
expanding the tree Einstein-Yang-Mills amplitudes to
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Yang-Mills ones [17-26]. To evaluate the coefficients in
expansions, one of the methods is solving differential
equations indicated by transmutation operators [26]. This
approach manifests the underlying connection between
transmutation operators and expansions, allowing us to
understand the unified web for expansions as the dual
version of the web for transmutation relations [27,28].

It is natural to search the similar unities at the loop levels.
This interesting question was first considered in [15],
which exposed the strong evidence for the existence of
transmutation operators at one-loop level. Recently, we
studied this issue in [29]. In [29], the one-loop level
differential operators which link one-loop Feynman inte-
grands of different theories together were found, by
employing the tree level operators, as well as the forward
limit operation. Based on these one-loop level transmuta-
tion relations, the complete unified web for one-loop
Feynman integrands was established. On the other hand,
the expansions of one-loop Einstein-Yang-Mills and gravi-
tational Feynman integrands to Yang-Mills ones, and the
related one-loop BCJ numerators, were studied in [30,31].

In this paper, we further investigate the unifying relations
among one-loop Feynman integrands of different theories.
We first continue the study of the one-loop level trans-
mutation relations. We construct a new kind of trans-
mutation operators which link the Feynman integrands of
gravity, Finstein-Yang-Mills and Yang-Mills theories
together, in a manner different from those in [29]. The
basic idea is similar as in [29], which can be summarized as
follows. Suppose the tree amplitudes of theories A and B
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are linked by the operator O as Az = OA,, we seek the
one-loop level operator O, satisfying O,F A, = FOA,,
where the operator F denotes taking the forward limit.
Since the one-loop Feynman integrands can be obtained by
taking the forward limit of tree amplitudes, one can
conclude that the operator O, transmutes the Feynman
integrands as Iz = O,I4. In this paper, we make new
choices of tree level operators, which lead to new one-loop
level operators. These new operators play the crucial role
when solving the expansions of one-loop gravitational
Feynman integrands.

The expansions of one-loop Feynman integrands of
various theories are also investigated. We first solve the
expansions of Einstein-Yang-Mills and gravitational inte-
grands to Yang-Mills integrands, by employing the one-
loop level differential operators, together with some general
requirements such as Lorentz and gauge invariance. The
idea is, we regard the transmutation relation I = OI 4 as a
differential equation, which allows us to solve I, from it.
A general difficulty is that the full Feynman integrands
always contain terms which are annihilated by the
differential operators under consideration, thus cannot be
determined by solving differential equations. We fix these
terms by imposing some general principles/assumptions, in
particular the gauge invariance condition, and obtain the
expansion

Icr = ZCiIYM;n (1)

where IR stands for the gravitational Feynman integrands
while Iy, are Yang-Mills integrands.

Then, by applying the one-loop level transmutation
relations further, we obtain expansions of Feynman inte-
grands of other theories, and find that all the integrands
under consideration can be double expanded to integrands
of bi-adjoint scalar (BAS) theory, and provide the rules for
constructing coefficients in the expansions. The resulting
unified web includes a wide range of theories, which are
gravitational (GR) theory, Einstein-Yang-Mills (EYM)
theory, Einstein-Maxwell (EM) theory, Born-Infeld (BI)
theory, pure Yang-Mills (YM) theory, Yang-Mills-
scalar (YMS) theory, special Yang-Mills-scalar (SYMS)
theory, Dirac-Born-Infeld (DBI) theory, extended Dirac-
Born-Infeld (EDBI) theory, special Galileon (SG) theory,
non-linear sigma model (NLSM). The whole process only
depends on the knowledge of transmutation relations, as
well as some general principles/assumptions, without
knowing any detail of Feynman integrands, and without
applying any tool for evaluating Feynman integrands such
as Feynman rules, CHY formulas, and so on. We also show
the tree level duality between transmutation relations and
expansions can be generalized to the one-loop level, and
give the map between differential operators and coefficients
in expansions.

The remainder of this paper is organized as follows. In
Sec. II, we give a brief introduction to the forward limit
approach, and the differential operators at tree and one-loop
levels, which are crucial for subsequent discussions. In
Sec. III, we construct the new operators which transmute
GR Feynman integrands to EYM ones. Then, in Sec. IV, we
solve the expansions of EYM and GR integrands to YM
ones, by using the one-loop level operators together with
some general principles/assumptions. Section V is devoted
to providing the full unified web for expansions, and
showing the duality between transmutation relations and
expansions. Finally, we end with a summary and discus-
sions in Sec. VL

II. BACKGROUND

For the readers’ convenience, in this section we rapidly
review the background for later sections. In Sec. IT A, we
give a brief introduction to the forward limit which
generates the one-loop Feynman integrands from the tree
amplitudes, as well as the color ordered Feynman inte-
grands which will be discussed frequently in this paper. In
Sec. II B, we review the tree level differential operators
which link the tree amplitudes of a wide range of theories
together, as well as the one-loop level generalization of
these tree level operators. Most of the notations and
conventions which will be used in later sections are also
introduced in this section.

A. Forward limit and one-loop Feynman integrand

As is well known, the one-loop Feynman integrands
can be generated from the tree amplitudes, via the so-
called forward limit procedure. For instance, the one-
loop CHY formulas can be obtained by applying
this method, as studied in [32-35]. In this subsection,
we review the general idea and characters of the forward
limit.

Diagrammatically, the forward limit can be understood
as gluing two external legs of the tree together to generate
the loop. Here we give the strict definition, especially the
manipulations £ and £ which will be used in later sections.
The forward limit is reached as follows:

(i) Consider an (n+4 2)-point tree amplitude
A, o(ky, k_) including n on-shell legs with
momenta in {k, ..., k, } and two off-shell legs with
R =R

(ii) Take the limit k. — £Z. We denote this manipula-
tion as L.

(iii) Glue two external legs with # and —¢ together by
summing over all allowed internal states, such as
polarization vectors, colors, flavors, and so on. We
denote this manipulation as £.

Roughly speaking, the obtained object times the factor
1/¢2,
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AT A (ke k), ()
contributes to the n-point one-loop Feynman integrand I,,.
Here we introduced the operator

F=EL, (3)

to denote the operation of taking the forward limit.

For the individual Feynman diagram, the manipulation in
(2) obviously turns the tree to the loop. However, it does not
mean the forward limit of tree amplitude gives rise to
the one-loop Feynman integrand directly, since the full
tree amplitude and full one-loop Feynman integrand are
obtained by summing over all appropriate diagrams, and
the map between tree diagrams and one-loop diagrams is
not one to one. For example, after gluing legs + and —
together, three different tree diagrams at the rhs of Fig. 1 are
turned to the same one-loop diagram at the lhs. This
difficulty is solved by the decomposition based on the
so-called partial fraction identity [32,36]. Figure 1 is an
example of such decomposition. We will not discuss the
details of the partial fraction identity; the introduction of it
can be found in [32,36]. We only point out an important
feature related to such decomposition: when considering
the color ordered Feynman integrands, one needs to
distinguish the full ones and partial ones, as can be seen
in (6).

Let us give a rapid introduction to the color ordered
Feynman integrands. We start with the tree Yang-Mills
amplitudes. Consider a theory that external particles are in
the adjoint representation of the U(N) group; the full tree
amplitude can be expanded using the standard color
decomposition as a sum over (n + 1)! terms [37-39]

'An+2 = z TI‘(T““+ T% ... T, Ta,,_)
0E€S,12/Zyis
x Alo,,04,...,0,,0_), )

where o denotes the permutations of external particles.
Each A(6,,0,...,0,,0_), which has the fixed ordering
among external legs, is called the color ordered amplitude.
The color ordered amplitudes A(o ., 61, ..., 6,,06_), as well
as the color ordered Feynman integrands which will be
introduced soon, are independent of the choices of gauge
groups, thus are unique for all Yang-Mills theories. Notice
that each color ordering is invariant under the cyclic
permutation of external legs, as can be observed from

2
+ - + - + -
1 2 3
= + +
1 3 1 2

FIG. 1. Decomposition of one-loop Feynman integrand.

the factor Tr(7“+ T - - T%: T%-), thus the summation is
over 6 € S,»/Z,, rather than ¢ € S,_,.

Now we glue the external legs + and — of
A(o,,01,...,0,,0_) together. Taking the forward limit
requires summing over the U(N) degrees of freedom of two
internal particles. This gives rise to two kinds of terms. The
first comes from permutations such that legs + and — are
adjacent, the corresponding color factors are given as

N2
Z 5a P Tr(Ta+ T%i ... T4, Ta,) — NTI‘(T“”I ... T, )7
La-

a,=a_=1
(5)

thus contribute to the n-point color ordered Feynman
integrand I.(oy,...,0,). The second case that + and —
are not adjacent gives rise to double-trace terms. In this
paper, we only consider the single-trace terms, since the
double-trace ones are determined by the single-trace ones
[40], as can be proved via the tree level Kleiss-Kuijf
relation together with the forward limit operation [41].
For the single trace case, the above discussion shows that
the partial integrand obtained from taking the forward
limit for A(+, 0, ...,0,,—) contributes to I.(cy,...,0,).
There are several original color orderings giving rise to
the same trace factor after summing over a, and a_, due
to the cyclic symmetry of the trace factors. For instance,
the object obtained by taking the forward limit for
A(+,0,,...,06,,061,—) also contributes to I.(cy,...,0,).
Collecting these equivalent color orderings together, one
finds that the full color ordered Feynman integrand can be
expanded as the following cyclic summation:

n—
’ Gn) =
J

IO(UI,... I(+aal+j"-'von+j1_)7 (6)

Il
o

where the partial color ordered integrands I(+,01+j,
0,.j,—) are obtained from the color ordered tree ampli-
tudes via the standard forward limit procedure in (2),
namely,

1

ZEFA<+,O-1+]',...,6"+]',_). (7)

I(+.61 400y —)

This equality (6) is supported by the partial fraction
identity. Notice that throughout this paper we denote the
full color ordered Feynman integrands by I., and the partial
ones by L.

The forward limit is well defined for the N' =4 SYM
theory. For other theories, a quite general feature is the
obtained Feynman integrand suffers from divergence in the
forward limit. Fortunately, the singular parts are found to be
physically irrelevant, at least for theories under consider-
ation in this paper. From the Feynman diagrams point of
view, the singular parts correspond to tadpoles, as well as
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babbles carried by external legs, which do not contribute to
the S matrix. From the CHY point of view, the singular
parts can be ignored due to the following observation [33]:
as long as the CHY integrand is homogeneous in ##, the
singular solutions of scattering equations contribute to the
scaleless integrals which vanish under the dimensional
regularization. The homogeneity in £* is satisfied by all
theories under consideration in this paper. Thus, we just
assume that the singular parts are excluded.

B. Transmutation operators at tree and one-loop levels

The differential operators at tree level, proposed by
Cheung, Shen and Wen, link a wide range of theories
together by transmuting tree amplitudes of one theory to
those of another theory [13-15]. Three kinds of basic
operators are defined as follows:

(i) Trace operator:

T = Ocre, (8)

J

where ¢; is the polarization vector of the ith external
leg. The up index € means the operators are defined
through polarization vectors in {e;}. Since the
graviton carries the polarization tensor e** = e"e?,

the operators can always be defined via {¢;}
or {&}.!

(ii) Insertion operator:

Ifkj = aek~k,- - aek~k_,v (9)

where k; denotes the momentum carried by the ith
external leg. When applying to physical amplitudes,
the insertion operator Z fk(l. ) inserts the external leg
k between external legs i and i + 1, thus turns the
color ordering ...,i,i+1,. Lk,

For general Ie Wlth i< j, one can use deﬁmtlon
9) to decompose T4 a

fkj Z Iak a+1)” ( 10)

Each Iak<a L1y on the rhs can be interpreted as

inserting the leg k between a and (a + 1). Thus,
the effect of applying Z7,; can be understood as
inserting k between i and j in the color ordering
vosly.oes j, ..., and summing over all possible po-
sitions.

'Here the gravity is understood as a generalized version, i.e.,
gravitons coupled to dilatons and B fields.

(iii) Longitudinal operator:

Le=Y (kik)oe;s  LG=—(ki-k;)0ee;. (1)
JEi

With the basic operators given above, three combinatory
operators are defined as follows:

(1) For a length-m ordered set Zim = (ay, ...,

external particles, the operator 7° %

am> Of
is defined as’

77 (H I+> (12)

In this paper, we use a,, = {ay, ..., a,, } to denote an
unordered set with length m, and a,, = (ay, ..., a,,)
for an ordered set. For amplitudes/Feynman inte-
grands carry color orderings, sometimes we write
down the orderings explicitly if necessary, and
sometimes we use @, to denote orderings. The
combinatory operator 7° 2 turns the spin of a;th

external particle with a; € a,, from s% to s% — 1 by
removing the polarization vector €, and generates
the color ordering a;, a,, ...,a,, as follows: fixes
two reference legs a; and a,, at two ends in the color
ordering via the operator 7 a1, then inserts other
elements between them by using insertion operators
I The interpretation of insertion operators

aya;a; g
indicates that 7 has various equivalent choices, for
example
2
. : :
Tﬁm - < H IZH aiam) Tzlam ’
i=m—1
m—3
€ J— € €
T[im - < Iazﬂiai+1 >Iazam—2am—1
i=3
€ € €
x Ialazam—ll—am—lamalTalam—] ’ (13)

and so on. The second example shows that it is not
necessary to choose the first operator to be 7 , . In
other words, two reference legs in the color ordering
can be chosen arbitrary.

(ii) For n-point amplitudes, the operator L€ is defined as

ce=1]cs. =) Hc (14)

pEpair i,jEp

’In this paper, we adopt the convention that the operator at the
lhs acts after the operator at the rhs. From the mathematical point
of view, the order of operators is irrelevant, since all operators are
commutable with each other. We choose the order of operators in
the definition to emphasize the interpretation of each one.
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Two definitions £¢ and L¢ are not equivalent to
each other at the algebraic level. However, when
acting on proper on-shell physical amplitudes,
two combinations £¢-7°¢, and Le-T¢ ¢y» With sub-
scripts of Lf and Lf; run through all nodes in
{1,2,...,n}\{a, b}, giving the same effect which
can be mterpreted physically.

(iii) For a length-2m set, the operator 7,

- is defined as
sz Z H IlkIIlel\Jk (15)

PEDAIr ir.jiEP

where I, denotes the flavor carried by the ath
particle. For the special case 2m particles do not
carry any flavor, the operator T;M is defined by

removing & L0,

X2m Z H le]k (16)

PEpAIr i, jrEP

Here is the explanation for the notation >, i [T, j.ep-
Let I be the set of all partitions of the set {1, 2, ..., 2m} into
pairs without regard to the order. An element in I" can be
written as

(s Jom) (17)

with conditions i} < iy < - wand i, < j,, V¢t Then,
[ 1, j.e, stands for the product of T ;. for all pairs (i, ji)
inp,and ) ,c.;, denotes the summatlon over all partitions.

The combinatory operators defined above link tree
amplitudes of a wide range of theories together, by trans-
muting the GR amplitudes to amplitudes of other theories,
formally expressed as

p =10, 1) (i2, j2), ...

A= OOF AL, (18)

Operators O¢ and (¢ for different theories are listed in
Table L.

The EYM theory appearing in Table I is the single-trace
Einstein-Yang-Mills theory, denoted by sEYM.” Let us
explain other notations in turn. The symbol I stands for the
identical operator. Up indexes %, p, g and s denote
gravitons, photons, gluons and scalars. For instance, a’
is the unordered set of gravitons with length n, @y, is the
ordered set of gluons with length m. The total number of
external legs is denoted by n, each set with length m is a

subset of external legs. We use ASy s (@5,,; @n—m || @ ) as the

*In [13-15], the operators which generate the general multiple-
trace tree EYM amplitudes are also considered. These operators
are not included in Table I, since we will not consider them
throughout this paper.

TABLE 1. Unifying relations for differential operators at tree
level.
Amplitude o OF
Gr (@) I I
AngYM (@) T{; I
Ainie (@530 5,,) vaz,,, I
EM(“zm’aﬁf m) 7%, I
Bi(an) LTS, I
Afm(@n) 7, I
ASyws (@ ai-m||@?) Tg." TE’,,,
Alyms (@3, @i @3) 73, T,
Axism (@) Tf?,, £e Ti’b’
Apas @355 T e
Abg;(@3,:a,_5,,) LTy, 5(2,,1
Abppi (@ a)_s,,) LT, Tf‘i
Asc (@) LTS, LTy

example to explain notations ||@} and ;. For the amplitude
including more than one kind of particles, such as scalars
and gluons in the example, ||@) stands for the color ordering
among all external legs, without distinguishing the kinds of
them. Notation ; is used to separate different kinds of
external particles, with the convention that particles at the
lhs of ; carry lower spin. In our example, the lhs of ; are
scalars, while the rhs are gluons. The up index of A denotes
the polarization vectors carried by external particles. When
the amplitude includes external gravitons, the rule is: the
previous polarization vectors are only carried by gravitons,
while the later ones are carried by all particles. For instance,
in the notation A%{.(a}, ;a"_, ), polarization vectors in
{€;} are only carried by gravitons, while those in {¢;} are
carried by both photons and gravitons. For the BAS
amplitude, we have used @, and §, to distinguish two
color orderings among external legs. In later sections, when
considering more than one color orderings simultaneously,
we frequently use s in addition to &, to avoid the ambiguity.

The above tree level unity can be generalized to one-loop
Feynman integrands via the following idea, as studied in
[29]. Suppose the tree amplitudes of theories A and B are
connected by the operator O as Az = O.A,; we seek the
one-loop level operator O, satisfying O, F Ay, = FOA,.
Since the one-loop Feynman integrands are obtained
through the forward limit as I, = (1/£%)FA, and
I; = (1/¢?)F Ag, one can conclude that the operator
O, transmutes the Feynman integrand as I = O.1,.

Using the above idea, the one-loop generalization of the
tree level unifying relation (18) is found to be

I =00 0g. (19)

The one-loop level operators O¢ and OF for different
theories are listed in Table II.
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TABLE II.  ©¢ and ¢ for various theories. and e_ are in the D dimensional space where D is regarded
- ‘ . as a variable. We can set D =d finally to obtain a

Feynman integrand o o physically acceptable object. Then we define

T5i (@) I I

U (+.@h, %54, I b=0p. (22)
€,€ . h € T

Ifyf"(a,zm’i"_zm) ! T, WD+ 1) For gravitons, we regard D =Y, ¢’ <" +2 and D =

IEM;o(aZm;an—Zm) I Tiz (D+ 1) =r . =r 2 t 5 d Ild rnt ri bl namel

I (al) I e Z,~€+ € +2 as two independent variables, namely,
Ble . dpD = 0, 05D = 0. The insertion operators are defined by

Igp (+an—) I T+an_

Lovms (55 @ ="snon|[+4 a0 1) TSz 0 Thg T4 =00 Toua, =00, ¢—0c 1, - (23)

Lyns (@55 @n-m||+4, dn, =) T T%, (ND+1) l L

Inpsm:o (@) Ti,;ﬂ_ LD Here ¢ is understood as k,, since one can always let

Igas(+5, a5, =[] +°,5%, =) T _ 15 k_ = —Z to be removed, due to the momentum conserva-

(@S, al_s,,) LED TE ( ND+1) tion law. The operators 7§ - T §‘(2m and L€ are the same as

Lppp (+. @, —1al_,,) LED T t iy the tree level ones. The number N in the combinatory

Is..(a3) LD LED operator 75, (ND + 1) stands for the number of different

In Table II, ssEYM denotes the special part of the SEYM
Feynman integrand that the virtual particle propagating in
the loop is only a gluon. Similarly, ssYMS denotes the
special sYMS integrand with a virtual scalar in the loop,
and ssEDBI is the special EDBI integrand with a virtual
scalar in the loop. Integrands I, with the subscript o are full
one-loop Feynman integrands, while I without o are partial
Feynman integrands, as introduced in the previous sub-
section. We used +,d,,, — and +,d,,, — to denote the color
orderings of partial integrands, where 4+, — are external legs
carrying k, and k_ respectively before taking the forward
limit. After doing the cyclic summation over the one-loop
level equivalent color orderings, we use @,, or d,, instead of
+.d,,,— or +,d,,—. For example,

:ZIBAS(+Sv”c(JZ>v
ZIBAS .(a

Igas(a@)]|+5.8),— =485, =),

IBASo n||s ||+S ”C( n) S>’

(20)

where 7. denotes the cyclic permutation.
In Table II, the one-loop level differential operators are
defined as follows. The operator 7° %4 _ 1s given as

+a,,,— <H +a iyl > +am_D. (21 )

The operator D in (21) is defined in the following way. We
think the Lorentz vectors before taking the forward limit as,
the momenta in {k, ..., k,,Z} and polarization vectors in
{€1.....,€,} lie in the d dimensional space where d is
regarded as a constant, while the polarization vectors €

flavors. When applying £¢ at the one-loop level, the
operator £$ should include Oc k. = Ocpr-

III. NEW OPERATORS TRANSMUTE
GR TO YM AND YM TO BAS

In this section, we construct a new class of differential
operators which transmute the GR Feynman integrands to
EYM and YM integrands.

In [29], the differential operators transmuting the one-
loop GR Feynman integrand to the YM partial ones are
constructed as follows. At tree level, the transmutation
operator is chosen as

T = (% )P0 8

The trace operator 7 _ turns the external gravitons +" and
—" to gluons, and fixes legs + and — at two ends in the
color ordering. Then, the insertion operators turn other
gravitons to gluons, and insert them between + and —
to generate the full color ordering. The obtained color
ordered tree amplitude is A%y, (+Y, a5, —7). Based on the
above tree level manipulation, by seeking the operator O¢
satisfying QS FASS = FT iﬁm—Aéli’ one can construct the
corresponding one-loop level operator O¢ which trans-
mutes the GR integrand Igﬁ;o(aﬁ) to the partial YM one
I\, (+9,a%, —9). However, to generate the tree color
ordered YM amplitude A%y, (+Y,a5, —9), the operator
(24) is not the only choice. Actually, one can turn arbitrary
two gravitons to gluons at the first step, and insert other legs
between them to get the desired result. Thus it is natural to
ask, if we make the different choices of operators at tree
level, what level operators can be constructed at one-loop
level? What physical effects will these new operators have
when acting on Ig.,(ak)?
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In this section, we show that choosing two reference legs
as one in {+,—} and another one in a, leads to new
operators at the one-loop level which transmute Igf{;o (alt)
to sSEYM and YM integrands. These new operators also
link the YM, ssYMS and BAS integrands together, as
indicated by the tree level transmutation relations.

A. Construction of new operators

The goal of this subsection is to construct the operator
(35) which transmutes the GR Feynman integrands to
sSEYM ones as in (39). The YM integrands serve as
the special case of ssEYM, as can be reached by taking
a, =a, in (39). As pointed out in Sec. II B, to transmute
the tree GR amplitude AGg (a? U {+", —"}) to tree single-
trace EYM (sEYM) amphtude e (@, —ah\al),
the choices for transmutation operator szm are not
unique. Here we still restrict ourselves to the choices that
the color ordering is created by generating two reference
legs at two ends, and inserting other legs between
them. However, for al, # @, we use the cyclic symmetry
of color orderings to rewrite ASS\(+9, @y, —%;al\a’,) as

E;M (@, —9,+9;al\a",). The new representation of color
ordering indicates the new choice of the tree level operator,

T;m_+ = Ifz —+ (Hz-a, 1a; +> arte (25)
Then we seek the operator (¢ satistying
OSF AGe = FT§ _, AGk- (26)

The difference between the two choices (24) and (25) is
quite trivial at the tree level. However, since the forward
limit glues legs + and — together to create the loop, the new
choice (25) leads to totally new operators at the one-loop
level. For tree SEYM amplitudes with at least four external
gluons, the above method leads to well defined and
physically meaningful operators. For tree SEYM ampli-
tudes containing only three external gluons, this method
does not make sense, as explained in Appendix B.

Thus we start with the four-gluon tree amplitude

Seom(+9,a%, b9, —9;al\{a", b"}). Using the cyclic sym-
metry of color orderings, as well as the tree level differ-
ential operators, we have

Gym(a?, b7, =9, 49 ai\{a", b})
_IZ + ah+Tfl+ ee( a U{+h h})
= (ae,~k,, - ae,‘f) (aeh-k“ - aeh‘f)aea-ar EE(“Z U {+h’ _h})'
(27)

The above manipulation is understood as turning gravitons
a" and +" to gluons and regarding them as the reference

legs, then turning the graviton b” to a gluon and inserting it
between a and +, and turning the graviton —" to a gluon
and inserting it between b and + finally. The object e_ - 7
vanishes under the action of L, since e_-k_ =0 and
k_ = —k, = =, thus we focus on the d._,, partin Zj_
At the tree level, the combinatory operator 0, _, 0, ., turns
(e_ - kp)(e, - €4) to 1, and annihilates all terms which do
not contain (e_ - k;)(e, - €,). Under the action of &, the
object (e_ - k) (e, - €,) behaves as

> (ca-el)(el

r

: kb) =€, kp, (28)

thus the effect of the operator d._, 0 .., at the tree level is
equivalent to 9, ., at the one-loop level. In other words,
we find

Oc, ki, F AGr (@ U {+".="})
= FI; T Agr(ar v {+". "), (29)

From now on, we use A > B to denote A - B arises from
>, (A-€)(e -B), and A < B to denote A-B from
> (A-€")(e. - B). Notice that in general the summation
over €’ e~ should be

fﬂq’/ + f”q."{

Z:(df)”(dy =n" - g (30)

where the null g satisfies €, - g = €_ - g = 0. Here we are
allowed to drop the g-dependent terms, since their con-
tributions vanish on the solution to the scattering equations,
see in [42]. When the contribution from summing over
€’ e’ isincluded in €, > k,,, the operator Z¢, , cannot act on
€,>k,, €,>k;, or €, <k, €, <k, therefore is com-
mutable with F. Then we arrive at the relation

Z¢, 0, 01, F AR (al U {+",-"})
= FI§_ . T¢,, TG Agqlal u {+",-"}), (31)

which implies

T4 0e, ik, o (@) = Lpyn (+.a%. b9, ~%ai\ {a" . b"}).

(32)

Here IE;EYM denotes the special single-trace EYM partial
Feynman integrand with a virtual gluon running in the loop.
The reason for interpreting the rhs of (32) as such a special
sEYM Feynman integrand is as follows. The EYM theory
includes three kinds of interaction vertices in Fig. 2, which
indicate that for the tree SEYM amplitude including
external gluons +Y and —Y, one can always start from
one of them, go along the gluon lines, and arrive at another
one. It means, after gluing legs +Y and —Y together, the
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FIG. 2. Three vertices of EYM theory, the single wavy lines
denote gluons while the double wavy lines denote gravitons.

obtained loop contains only gluon lines. This observation
fixes the virtual particle in the loop to be a gluon.

The operator 7, 0, i can be simplified to
Oc,k,0c, > k,» SINCE O, .»0. 1, gives no contribution at
the one-loop level, as proved in Appendix B by using
the CHY formulas introduced in Appendix A. This

observation simplifies the relation (32) to

Iy (+9.a%. b9, —9:ai\{a" . b"}).
(33)

€€ hy
ae,,~k,Z aea >kp IGR;O (a,,) =

The generalization to the cases with more external gluons is
straightforward. Along the similar line, one arrives at the
relation

m—1
€€ h
(H a€“i+1 'kai> aecq > kay, IGR;O (an)

i=1
(. al. N faldh)). (34)
with m > 2.

However, in the one-loop integrand IGRO( M), the tree
level information associated to €', and €’ is lost, thus
€, >k, or €, <k, cannot be distinguished from the
original ¢, - k;, included in the tree amplitude. It means
the operator d, . 4, is not well defined at the one-loop level,
and we should replace it by 9, . Motivated by the relation
(34), it is natural to act the operator C; on Igi;o (al), where

the cyclical operator Cgm for the ordered set a,, =

(ay,...,a,) with m > 2 is defined as

am

Cim - Hak”i.e"H»l - a P (35)
=1

where

= ﬁ Ky - €q, - (36)
i=1

The second equality in (35) holds as long as the Feynman
integrand is linear in each polarization vector. When
saying this is a cyclical operator, we mean C is invariant

under the arbitrary cyclic permutation of the ordered
set d,,.

Thus we need to figure out the effect of acting C;
on Igg., (al'). The operator O, k,, acts on both ¢, >k,
and ¢, <k, , as well as

Grlay U {+". =),

€q, < kg,

ordinary ¢, -k, in
The effect of acting agal,kn on
in I, (ah) is equivalent to acting Oc, <k

on Igi;o(aﬁ). Following the similar method for obtaining
(34), we find

m—1
e ¢ h
<H ag”iﬂ 'kai> ae“l am ( )

i—1
= (=)" ISy (H, @, ... ad, =% ai\ak), (37)

with m > 2. The derivation can be seen in Appendix B. On
the other hand, the cyclical operator C: annihilates

(@l U {1, -1, e,

Cs AGr(an v {+".-"}) =0, (38)

which means one need not consider the case d,,
1

ordinary €, -k, in Agg(al U {+",~"}). The proof of the
equality (38) is also prov1ded in Appendix B.

With the results (34), (37) and (38), now we
can determine the resulting object of acting Cf?m on

Iai;o(aﬁ). Since there is only one ¢, and one e_ at the
tree level, among m operators 9, » at most one of them

. actson

canactone, >k,  ore, <k, ,theremaining operators
must act on the original €, - k,_ in ASg(al U {+",="}).
On the other hand, if none of them acts on ¢, >k, _ or
€4, <k,_,, the equality (38) indicates the vanishing
of the result. Thus, the nonvanishing contributions

arise from acting ( ;21(36““ kaj)deakanH, as well as

(IT:=o., . #, )0, ar, - for all i € {1,....m}. Applying
(34) and (37), we finally find

G. LGk (@h) = Ly, (@insalh\al)
( )mIQQEYMO(am’ h\a ), with m>?2,
(39)
where a,, is the reversed set of @,,, i.e., a,, = {(a,,, ..., a;),

and
a\ay,) = ZI;%YM(—’—’EC(&%)’ —a;\ay),
ZISSEYM (++ 7c(@n), = an\ap,),

(40)

€, =9 .
IssEYM;o (@n;

Ii;%YM;o (Zig’l 5 aﬁ \a

where 7. are the cyclic permutations. Now we have found
the one-loop level operators C; , which transmute the GR
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Feynman integrands to the ssEYM ones, formally
expressed in (39). The rhs of (39) is invariant under
the cyclic permutation of @,, as indicated by the
cyclic symmetry of the operator Cgm. We emphasize that
I;E];ZYM;O (@h:a}\a},) and I;%YM;O (al;a"\al) appearing in
(39) are full one-loop color ordered sSEYM integrands,
rather than partial ones without the cyclic summation. The
transmutation relation (39) can be verified by using the
CHY formulas, as shown in Appendix C.

Some discussions are in order. First, the operators C; do

ap

not act on any Lorentz invariants that include the loop
momentum Z, thus are commutable with the integration of
¢. This observation implies that the relation (39) holds at
not only the integrand level, but also the integral level.
Second, the operator C; preserves the gauge invariance.
To see this, we consider” the following operator for the
external leg a;, defined based on the Ward’s identity:

W = k-
|4

where V denotes either momenta or polarization vectors
contract with €,. Any gauge invariant object should be
annihilated by this operator. Suppose the object A is gauge
invariant for the leg a;, i.e., W; A =0, the commutator
[We,.C; ] = 0 indicates

Vae,,.»V7 (41)

W, Cs A =0, (42)

Third, at the tree level, the operators, which transmute
the tree GR amplitudes to the tree SEYM amplitudes, also
transmute the color ordered YM ones to the SYMS ones, as
can be seen in Table I. Thus, replacing AGy by A$y, in (26),
we see the operators C; also transmute the one-loop YM

ap

partial Feynman integrands to the ssYMS ones,

05 T+, =) = 71—

L yms (@san\an ||+ .a
+ (=) "Ly (@ an\am ||+ .y, —*).
(43)

Doing the cyclic summation for the color orderings
+.d,, —, one obtains

Cgm I§M§° (@) = I%YMS o(arwan\amH )

+ <_)mI§sYMSo(am’a”\am|| ) (44)

which links the full color ordered YM and ssYMS
integrands together.

IV. EXPANDING GR AND EYM TO YM

In this section, we demonstrate that the one-loop level
transmutation relations naturally lead to the expansions of

one-loop EYM and GR Feynman integrands to YM ones.
The main goal of this section is the expansions (75) and
(76), as well as the rules for evaluating coefficients C{ (o)
and C(o,d,,) in them.

At the tree level, the unifying relations among different
theories can also be represented by expansions, i.e., the
amplitude of one theory can be expanded to amplitudes of
another theory [17-26,38]. In particular, all theories in
Table I can be expanded to BAS amplitudes, with double
copied coefficients [28]. The unified web for expansions
serves as the dual version of the web for transmutation
relations [28]. Inspired by the tree level story, an interesting
question is, can the unified web for expansions at one-loop
level be constructed from the one-loop transmutation
relations, together with other appropriate general principles
and assumptions? The answer is positive, as will be shown
in this and the next sections.

Here we list the principles and assumptions beside
differential operators, which will be used to solve
expansions:

(i) Lorentz invariance

(i) Gauge invariance

(iii) Property of GR Feynman integrands: We assume
each external graviton " carries the polarization
tensor ¢/ = /¢, and the GR integrands carry no
color ordering.

(iv) Double-copy structure: We assume each polarization
vector in the set {¢;} cannot contract with another
polarization vector in the set {¢;}, and vice versa.

(v) On-shell condition: We assume ¢; - k; = 0 for each
external leg i.

(vi) Linearity in €;: We assume the Feynman integrand is
linear in each polarization vector e;.

(vii) Forward limit: We assume the one-loop integrands
can be generated from the tree amplitudes via the
forward limit.

The first six principles/assumptions are also used for
deriving the expansions of tree amplitudes, while the last
one only makes sense at the one-loop level. Here we give a
brief discussion about the third assumption. It seems that
one should make similar assumptions for other theories, but
indeed it is not necessary, since the assumption for the GR
integrands, together with differential operators, uniquely
fix the information about polarization vectors and color
orderings for the Feynman integrands of other theories. For
example, the relation

T Tor(ah) = Iy (+9. @5, =) (45)
indicates each external gluon ¢ carries the polarization
vector €;, and the YM partial integrand carries the color
ordering +, d,, —, as long as each graviton carries ¢;¢; and
the GR integrand carries no color ordering. As will be seen
soon, the information carried by transmutation operators,
together with the seven general principles/assumptions
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mentioned above, fully determine the expansions of
sSEYM and GR integrands to YM ones, with polynomial
coefficients.

It is worth classifying the basis for expansions. At the
tree level, for YM amplitudes with n + 2 external legs, one
can take the basis as n! color ordered YM amplitudes with
two legs fixed at two ends in the color orderings, and
expand the EYM and GR amplitudes to these YM
amplitudes, with polynomial coefficients. Such basis is
called the KK basis, since its completeness is ensured by
the Kleiss-Kuijf relation [41]. Suppose we fix legs 4+ and —
at two ends in the color orderings to obtain the tree level
KK basis; taking the forward limit naturally leads to the
one-loop KK basis including YM partial Feynman inte-
grands I$,,(+9, o(a?), —7), where ¢ denotes the permuta-
tions. This is the choice of basis in the current section. In
the next section, we will generalize the one-loop KK basis
to color ordered partial integrands of other theories.

The main idea in this section is as follows. Suppose a
one-loop level operator O, transmutes the Feynman inte-
grand of theory A to that of theory B, i.e.,

OOIA :IB' (46)

We regard (46) as a differential equation, rather than a
transmutation relation. Then, one can solve this equation to
get I4. The general feature is I, contains terms which are
annihilated by the operator O.; these terms cannot be fixed

|

by solving the differential equation. Terms vanishing under
the action of O, are called undetectable terms for the
operator O,. The undetectable terms should be determined
via other conditions, such as imposing the gauge invariance
requirement, and so on. By applying the method described
above, in Sec. IVA, we solve the recursive expansions of
sSEYM and GR Feynman integrands to ssEYM partial
integrands with less external gravitons. In Sec. IV B, we
use the results in Sec. IV A to get the expansions of GR and
sSEYM integrands to YM ones, and give the rules for
constructing the coefficients.

A. Recursive expansions of EYM and GR

This subsection focuses on recursive expansions of
sSEYM and GR Feynman integrands implied by the
one-loop level differential operators. Since the technique
for treating ssEYM bears strong similarity with the
approach for solving the expansions of the tree SEYM
amplitudes in [26], we only give the resulting expanded
formula. For the readers’ convenience, the details are
provided in Appendix D. On the other hand, the expansions
of GR integrands to EYM ones will be discussed in detail,
since the process has no analog at tree level.

The recursive expansion, which decomposes the sSEYM
Feynman integrands to sSEYM ones with less external
gravitons, is found to be

Liym(H @ —%ah) = > > K Gy (+9 (59 k) w @i, —sal\{h],.s"}). (47)

§isCap\h, W

The lhs is the partial sSEYM integrand with n — m external
gluons and m external gravitons. The color ordered set of
gluons is labeled as a@,,_,, = (1, ...,n — m), while the set of
gravitons is labeled as al, = {h, ..., h,,}. The first sum-
mation is over all ordered sets § with s C a'\ h,,; here s is
allowed to be empty. The second summation over possible
shuffles w of two ordered sets @ and § is the summation
over all permutations of @ U § those preserving the order-
ings of @ and §. For example, (1,2)(3,4) includes the
following ordered sets: (2,3,4,5), (2,4,3,5), (2,4,5,3),
(4,2,3,5), (4,2,5,3), (4,5,2,3). The kinematic factor K¢
is defined as

K;’ = €p, 'fsM o ‘fs] : YA‘[’ (48)

for any § = (s, ..., s)5|), where the antisymmetric strength
tensors are defined as

HY . LM v H1v
fi = kel —€ki,

Pt =ke —dk. (49)

|

The combinatory momentum Y, is defined as the summa-
tion of momenta of gluons at the lhs of the leg i¥ in the color
ordering [22].

Using the expansion (47) recursively, one can expand
any ssEYM partial integrand to YM ones; the coefficients
of these YM partial integrands will be studied in Sec. IV B.

Now we turn to the expansions of the GR Feynman
integrands. The idea is to decompose the integrand into
some independent Lorentz invariants, and solve the coef-
ficients of such Lorentz invariants via differential operators.
To find the proper decomposition, we use the conclusion in
[43] that if one imposes the gauge invariance for all external
legs, then the tree GR amplitude AGg (a? U {+",~"}) can
always be decomposed into Lorentz invariants in the form

la|
h - h . _ _ _
of (+1.@", " |signs) =, - v,, (H B, ) Ty €

i=2
(50)

Here a is a subset of a/ which is allowed to be empty,
v; denotes either k; or ¢;, with ; the other one, i.e.,
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(v;, ;) = (k;, €;) or (€;,k;), and the first/second choice is
denoted by a + or — sign. The proof of this formula is only
based on general considerations for tree amplitudes, which
are the first six of seven principles/assumptions mentioned
at the beginning of this section, as well as counting the
number of mass dimensions. We emphasize that the power
counting can be made without using Feynman rules, CHY
formulas, or other tools, since the transmutation relation

Tz _AGr(@ u{+". ="} =A@ u{+.-7})  (51)

is sufficient to determine

dim(AGg (@ U {+".~"})) = dim( Ay (@ U {+7.~7})) +n.

(52)

and only the number n is necessary for constructing
of(+",a", —"|signs) in (50). When taking the forward
limit, the Lorentz invariants ¢(+",a", ") behave as

el =d-2, ifa=0, (53)
and
al al
r i=2 i=1
(54)

Thus, the one-loop GR integrand can be decomposed as

la|
Ik (ah) = (d—=2)L5 + Z(H Ty va.-)Lz’%sign)
a/n, Ni=1
= (d=2)L5" + ) CiLg (=) + R (55)

‘_i/n’-(‘

In the above formula, the summation is over all subsets
a C a" satisfying a # @, and all uncyclic permutations for
each a. In the second line, we have collected together terms
contain C;, and denoted the remaining terms by R. The
factor C%, defined in (36) satisfies the form H[‘il Vo, " Va,»
with the choice (v;, 7;) = (¢;, k;) for each i, i.e., the sign is
— for each i. This is the reason why we use the sign — in
L:*(=). The reason for organizing Igq.,(ak) as in the
second line is that the term containing (d — 2) is detectable
for the operator D, while terms containing C¢, are detectable

€
for the operators Ca,,,'

The coefficients Lg and Lgé(—) can be determined via
the transmutation relation (39), as well as the relation

Dlgléz;o (@) = I;%YM;O (a) (56)

which is the special case with a,, = @ in the second line of

Table II. Here we have used the observation

€€ hy _ Y€€ . h : .
IssEYM;O(a,,) = I Eym(+7 =% a;), since no summation

over cyclic permutations is required when a,, = @.
Applying (56) fixes L to be’*

Ly = IE;%YM;O(aZ’)- (57)
The transmutation relation (39) indicates that

Ce ey (@ a\a”)

+ (=) “ I Eym. @ ay\a")] € I (ah).  (58)
This motivates us to identify L5(—) as

L5 (=) = Ieya (@ ap\a”) + (=) Ly, (@7 af\a”),

(59)

and arrive at

Iai;o (aZ) = (d - 2) I;EI;LYM;O (ale) + ZCE[I;%YM,O (JgﬂZ \ah)

ajm,

+(=) I Eym (@af\a")] +R. (60)

The above formula is the correct solution to Egs. (56) and
(39) if DR =0 and Cng =0, as verified in Appendix E.

The remaining part R can be determined by imposing the
gauge invariance. Here we employ the Ward’s identity
operator defined in (41). If an object P is gauge invariant,
ie., WSP = 0, then we have

Oe, 1, WEP) =0, for Vg, (61)

therefore

0 = (9., 4, WV5)P + W5(9,, +,P)
=0, P+ W0, 4 P). (62)

If we restrict our attention to amplitudes and Feynman
integrands, we can require P to be linear in each polari-
zation vector. Under this condition, one can immediately
conclude that

—(eq - €)Wi(0e,4,P)) € P. (63)

Now we apply the gauge invariance condition (63) to
terms in (60). Manifestly,

*Here we used the observation that the parameter d only arises
from )", €', - €”, since no other Lorentz invariant depends on the
number of dimensions of space-time explicitly.
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We[(d=2)TgEym. (@h)] =0,
Wi [Ce Ty (@5ai\a") + (=) Ty, (@i \a")]] =0,
ifiea,\a, (64)

due to the gauge invariance of the Feynman integrands
IzseEYMo( ) IES%YMO( a’; h\a ) and I;%YM;o(d_g;az\ah)'
Thus, for the above parts, condition (63) is satisfied
automatically. Then we move to the case i € a. Based
on the definition of the coefficients C% in (36), we observe
the following reorganization:

ZCE I;;:YMO(“ ap\a") + (- )‘allgs%YMo( a’;ay\a")]

ajne
ica

= Z(ej ki) (e - BU)-

J#

(65)

It is not necessary to provide the explicit formulas of the
vectors B” here. The key point is

WO, 1, (Z(ej-k,-)(ei-B,-j)> =k B, (66)

J#i
thus from (63) we know that

—(eg - €;)(k; - B;,) € Iéf{;o(aﬁ)-

In formula (60), the object —(e, - €;)(k; - B;,) belongs to
the unknown R. In other words, we have to detect a piece
of R.

To determine the full R, we first combine (e, - k;)(e; -
B;,) in (65) and —(e, - €;)(k; - By;) in (67) together as
(e, - fi - Biy), where the tensor f* is defined in (49). Since
q is chosen arbitrary, all the tensors k%¢” should be replaced
by f% at the rhs of (65). The leg i is also chosen arbitrary,
and each C7 is invariant under the cyclic permutations for a.
Such symmetry requires us to replace all kZ,.e’;i in the
cyclical factor C¢ by f&'. Thus we find the replacement

(67)

Cs — Trg = Tr(fam o fa)

(68)
This replacement detects various new terms in R, and all
these new terms vanish under the action of D and C§ . This

observation supports our assumptions DR =0 and
C¢ R = 0. After doing the replacement, the gauge invari-

ance for each external graviton is manifest, since the tensor
/% vanishes under the replacement ¢; — k;.
However, when doing the replacement (68), an over-
counting arises. The term
- ah\ oh
(=) MGy (@ ag\a")]

Trg [Ieym. (@ a)\a") + (69)

contains not only

Cg[lifEYM;o(ang\ah) ()‘aII:EYMo(ang\ah)]’ (70)

but also

CZ—[I;%YM;O(‘WWQ\M) (= )‘allfséEYM o(agQafz'\ah)]’ (71)
and summing over d@ counts both @ and a. To handle this, we
recognize the second term in (69) as the first term in
Trg[lié%YM;o (@ ah\a") + (- )‘a‘I:s%YMo( s an\a")], (72)
and the first term in (69) as the second term in (72), since

— . U
Trs = (-) ‘“‘Trf;, due to the antisymmetry of the tensors f%".
Thus one can remove the overcounting and get the
expansion

DD Tl by (@al\a”).

ajm,

Iéi;o (aZ) = (d - 2) I;EI;LYM;O (a

(73)

In expansion (73), all coefficients IS and Iff(sign) in
the first line of (55) are fixed, thus (73) is indeed the correct
expanded formula for Iy, (%), which coincides with the
result found in [31]. The coefficients Tr; vanish when the
length of a is 1; this feature supports the observation in
Sec. IIT A that the operator Cgm does not make sense when
m = 1. Notice that without the general formula (55), one
cannot conclude the solution (73) has detected all terms in
the full GR integrand. For example, suppose we turn the
factor d —2 in (73) to d, or add the tree amplitude

&t (al u {+", ="1) to the rhs of (73); the obtained results
are still solutions to Eqs. (56) and (39), the Lorentz and
gauge invariance are also satisfied. Such modifications are
excluded by the general formula (55).

The expansion (73) is equivalent to

= (d = 2)XEyp (+9. —%:alh)
+ ZTrelgngM (+9.a9, -9 al\a"),

16k, (a))

(74)

which expands TG Ro(@n) to sSEYM partial integrands
rather than full ones "For the work in the next subsection,
it is more convenient to use (74).

In expansions (73) and (74), all coefficients of partial
ssEYM integrands are independent of the loop momentum
¢, thus will not be altered by the integration over loop
momentum. Thus, these expansions also hold at the level of
one-loop amplitudes.
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B. Coefficients of basis

From expansions (47) and (74), it is straightforward to
observe that the one-loop ssEYM partial Feynman inte-
grands and GR Feynman integrands can be expanded to
one-loop YM KK basis by applying (47) recursively,
formally expressed as

IGkeo(@h) = Y Ci(0) gy (+7.0(@3). =), (75)

o

and

ey (@, =@l ZC 0.,a,,) I (+7,0(87). =),

(76)

where o stands for the permutations. It is hard to find the
general expressions for coefficients C$ (o) and C5(o,ay,
Instead, the systematic algorithms for evaluating them can
be provided, as will be shown in this subsection.

We first consider the coefficients C¢ (o), which serve as
the one-loop level BCJ numerators. To expand IGR Jah) o

I$\(+9, 0(ay), —9), the expansion (74) requires us to
decompose the set of external legs a, into subsects a
and a,\a, while applying the expansion (47) recursively
indicates further decompositions of a,\a. The successive
decompositions lead to the concept which is called ordered
splitting, defined for each fixed color ordering &(a,) =
(61,...,0,) [22]. To illustrate it, we denote the color
ordering as +<o,<---<06,<—, and chose a reference
ordering j; < --- < j,, with j; € a,,. This reference order-
ing is denoted by R. The correct ordered splittings,
consistent with the given color ordering, are constructed
through the following procedure:

(1) At the first step, we construct all possible ordered
subsets @’ = (af, ...,a?o‘), which satisfy two con-
ditions: (1) a° Ca,; (2) af<ad< - &a?o‘, respec-

tive to the color ordering of the YM amplitude. We
call each ordered subset a° a root.” Here |i| denotes
the length of the set a'.

(ii) For each root @’, we eliminate its elements in a,, and
‘R, resulting in a reduced set a,\a’, and a reduced
reference ordering R\a’. Suppose R, is the lowest
element in the reduce reference ordering ’R,\ao, we
construct all possible ordered subsets a' as

a' = {(al,dl, ..., aﬂl‘_l,RQ, with al<al<... <

|1‘_1<R1, respective to the color ordering.

(iii) By iterating the second step, one can construct
a,a, -, utila®va'u---va =a,.

Each ordered splitting is given as an ordered set

S =(a’.a',...,a"), where ordered sets @' serve as elements.

*Here we borrow the language from the framework of
increasing spanning trees.

For a given root @°, an ordered set B = (a',a?, ...,a") is

called a branch. Notice that a° can be empty, while each a’
with i # 0 contains at least one element R;.

Now we give the corresponding kinematic factors for
each ordered set @', by using (47) and (74). For a given
ordered splitting, the root @’ carries the factor

_ : 0
5 o ...,farl)), if a’ # @, (77)
if a® = @.

Other ordered sets @’ with i # 0 carry
K = €R, faHl' fa’zfu‘lza’l (78)

The combinatory momentum Z; is the sum of momenta of

external legs satisfying two conditions: (1) legs at the lhs of
a} in the color ordering; (2) legs belong to @’ at the lhs of @’
in the ordered splitting, i.e., j < i. The coefficient of the
YM partial integrand I$,,(+9, (@), —9) is the sum of
contributions from all proper ordered splittings.

For the ssSEYM partial integrand ISGyp (49, @, =7
a'_,), the coefficient of I$,,(+, o(5%), —9) is obviously
the sum of contributions from all branches for the
roota’ =a,,.

Before ending this subsection, we point out that the
differential operators transmute the one-loop GR integrand
to one-loop YM partial integrands and also transmute the
YM partial integrand I$,,(+7 a5, —?) to BAS double-
partial integrands Igas(+°,0(s%), —*||4+°, a5, —*), as can
be seen in Table II. Furthermore, all seven principles/
assumptions listed at the beginning of this section hold for
the later case. The third assumption makes sense in the
following way: this assumption together with the operator
T iﬁn.— completely determine that each external gluon i

carries the polarization vector ¢;, and the YM partial
integrands carry the color ordering +.da,,—, as discussed
at the beginning of this section. Such characters of YM
partial integrands play the role of the original third
assumption. Thus one can follow the similar line for
obtaining (75) to get

oM (4.0~ ZC1(0 Igas(+°.0(53). = [+, ).

(79)

A similar argument for ssYMS partial Feynman integrands
yields

I;YMS("‘S a,, =" a;- m||+A a, _A)

= ZCE 0.a,)Igas(+°,0(5)). =[] +°. a5, =*).  (80)
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V. UNIFIED WEB FOR EXPANSIONS

The expansions found in the previous section are based
on the transmutation relations provided by differential
operators. Since the differential operators provide a unified
web including a wide range of theories, it is natural
to expect the expansions can also be extended to
other theories. In this section, we discuss how to reach
this goal, and establish the complete unified web for
expansions.

From the expansion of one-loop GR integrand (75), one
can generate various new expansions by applying differ-
ential operators. Suppose we act the operators defined via
polarization vectors in {&;} at two sides of (75) simulta-
neously, such operators transmute both IGRO( ") and

I\ (+9, 0(ah), —9) to integrands of other theories, while
keeping the coefficients C(s) unmodified. For instance,
using

|

€8 =g . h
I eym (9 am, =% a5,
€
IBIo an
€, P . h
Iemeo (@535 5,)

€,
IEMf o (a2m’ an 2m

The rule for constructing C5(s,d,,) is already provided in
the previous section. In Sec. VA we will discuss the rules
for constructing coefficients C¢(o) with i € {3,4,5}.
The full web for expansions can be established by
applying differential operators further. We will not do this
procedure. Instead, we use a more compact way to describe
the unified web for expansions. One can replace ¢ in the
expansion (79) by ¢, and substitute it into (75), then get the
expansion of the GR integrand to BAS KK basis as

= Z Cs(0)Ipas(+*. o(a@). —*||
—)Ci (o). (84)

+.0'(55).

with two coefficients C¢(s) and Ci(¢’). We call the
expansion (84) the double expansion. The differential
operators transmute the lhs of (84) to Feynman integrands
of other theories, and transmute C¢(s) or C{(o’) to other
C¢(0) or C5(d’) at the rhs. Thus the double expansions for
all theories in Table II are obtained. The double-expanded
formulas also manifest the duality between transmutation
relations and expansions, as will be discussed in Sec. V B.

With the general ideas discussed above, now we begin to
study the corresponding details.

16k, (a})

I, (ah) = L°DIGg. (al),
Incsm(+4.0(@5). =) = LEDIy (+9, 0(a@h). —9),  (81)
we obtain
Ig.(an) ZC Mnism(+, (@), =) (82)

The set of NLSM partial integrands Iy sy(+5, o(as), =)
is the generalized one-loop KK basis, due to the structure of
color orderings. A more interesting case is applying the
operators defined via {¢;} rather than {€;}. These operators
also transmute Igi;o (al') at the Ths to the integrands of other
theories. When acting on the rhs, they modify the coef-
ficients C{(o), while keeping the YM partial integrands
unaltered. The above manipulation allows us to generate
the following expansions:

) = ZC§<G’ﬁm)I§{M(+g’ o(dh), =),
=2_Cil0)
= ch 6, Xow) Im (+9, 0(@h), =),

ZC 0. X)) I (47, 0(@n). =) (83)

A. Expansions of BI, EM and EMf to YM

As discussed above, the one-loop BI, EM and EMf
Feynman integrands can also be expanded to the one-loop
YM KK basis. The purpose of this subsection is to give the
rules for evaluating corresponding coefficients C;(o),
CZ(O’, sz) and Cg(G, sz).

We begin by considering the BI integrands, which can be
generated from the GR integrands via the operator LD
Applying this operator to two sides of (75), the lhs gives
I§,..(ar). At the rhs, the coefficients C§ (o) are transmuted
to C5 (o), while the YM partial integrands are unmodified,
since the operator LD is defined via polarization vectors in
{€;}. Thus C5(o) is generated from C{(o), namely,

Cs(o)

We first consider the effect of the operator D. This operator
annihilates terms which do not contain the factor d — 2,
thus transmutes CS (o) to C5(o, @). It means we only need
to consider ordered splittings with the root a® = @.

To continue, we perform the operator £¢. There are
two definitions for the operator £¢, which are unequivalent
at the algebraic level, but lead to the same physical result
in the current case. We first consider the definition

= L°DC (o). (85)
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L =[], L{. The operator L° turns ¢; - k; to k; - k;, there-
fore only terms with the form [[; ¢; - K; can survive under
the action, where K; are combinations of external and loop
momenta. In C§(o, @), such part is found to be [[; €; - X;,
where X; is defined as the summation of k; with j<i in the
color ordering. Thus the effect of C3(o) is given as

Cs(o) = LCs(o.0) = [ [k Xio  (86)

which is a very compact result.
Now we consider another definition of the operator £¢:

co=> ] £ (87)

pepair {i.j}ep

Applying this £¢ to C§(o, @), the survived terms are those
where each polarization vector ¢; is contracted with another
one ¢;. Using the definition of C5(c, @), such part is found
to be

2 (ﬂ(—)éMi(Uﬁ))’ (88)

B:|ifoyen =1

where the summation is over all possible branches E, those
where the length of each subset a' is even, and the number
of subsets included in each branch is denoted by . The

monomial M;(c, B) for the subset @ is given as

Mi(G,B) = (ea‘i[‘ .

o (kag ' ka;)(ea; : ea’i)(ka‘i : Za’i)' (89)

ea‘i[‘il)(ku". ’ ka; )(ea?'”iz = )

[i|-1 il-2 li|-3

Under the action of £¢, we find

Cilo) = LCi(0.0) = 3 (H(—wv,-(a,é)), (90)

B: Meven

where

lil—1
witorB) = (T ko g, ) k-2 D)
k=1

The equivalence between (86) and (90) can be verified for
simple cases, and we have checked it for the three-point
integrand. The general proof is an interesting challenge,
which we leave as the feature work.

Then we turn to EM and EMf Feynman integrands. The
EM integrands can be generated from the GR ones via the
operator 7§ (D + 1), thus the argument similar to the BI
case gives

Cil0. Xon) = Tk, (D + 1)Ci(o0). (92)

m

The operator (D + 1) transmutes C¢ (o) as
(D +1)C(0) = C5(0,2) + Ci(0). (93)

Then we need to perform 7§, on C4(o, @) and C{(0). Let
us consider 7§ C{(o) first. Recall that 7§, is defined as
summing over [[; ; ¢, 77 ; for different partitions, where
each partition groups the 2m external particles into m pairs
as {(ir, 1), (12 j2)s oo (s ) by With iy <y <o+ <)y
and i, < j, for V k. Thus we can consider the effect of
operator Hik’ iep T i, for a given partition. This operator
annihilates all terms which do not contain [ [; ; ,(e;, - €;,)-
Henceforth, one can start with ordered splittings for C{ (o),
and select ordered splittings by the condition that each
pair in the partition appears in one subset as a single
element, i.e., two particles are adjacent. Then, for a selected
ordered splitting, we now consider the effect of applying
[ e 75 to the corresponding kinematic factor
TS ([T K5). For TS, we tumn all (f; - f; )" to
—k; k% . For K¢, we turn all (f; - f; )" to —kj k% when
i # R, jx # R;, and turn (e;, - f;, )" to =k when i, = R;,
or turn (e, - f;, ) to —k; when j, = R;. The resulting
object of 7%, C{(o) is obtained by summing over con-
tributions from selected ordered splittings, then summing
over all proper partitions. Another part 7%, C5(o, @) can
be obtained by performing the above manipulation to
branches for the root a° = @.

The EMf integrands are generated from the GR ones via
the operator 7% (ND+1), where N stands for the
number of different flavors. Thus we have

C5(0, X,,) = TS, (ND+ 1)C5(0)
=NT¢, C5(0.2) +T%, Ci(o). (94)

The consideration for 74, C5(c,@) and T4 Ci(o) is
analogous to 7% C5(c,@) and T§, C{(s). The only
difference is that the appropriate partitions are reduced:
a partition is allowed if and only if 51[A I, #0 for all

pairs (ix, ji)-

B. Double expansion and unified web

As discussed previously, the one-loop GR Feynman
integrands can be double expanded as in (84). The BAS
KK basis contributes the propagators, while coefficients
C¢(0) and C(o’) serve as BCJ numerators. On the other
hand, we have
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T, Ci(0) = Cs(0,d,),
LDC (o) = C5(0),
T%,,(D+1)Ci(0) = Ci(0. Xap),
T<, (ND +1)C(0) = C<(0, Xap),
5 -Ci(0) = C4(0.5,). (95)

In the first line, the length m of the set a,, is required to be
0 < m < n. We have added C¢(0.5,) = &5 4@, to the list,
to represent

T, T (@) = Topg(+4.5,—)
= 5,0, Eom(+7. (@), 9. (96)
Here &5 ,(,) is understood as 1 when §, = o(@,) and 0
otherwise. The relations among C&(¢’) with i€

{1,2,3,4,5,6} are completely analogous. Let us simplify
the notations as

and introduce the analogous notations O% for C¢(o’).
Applying the above operators to the double-expanded
GR integrand in (84), we get

L;i=> Y Ci(o)Ipas(+.0(@), ||+ &' (5}),—*)C5(o"),
(99)
where
I; = Of(’)ilgi(aﬁ). (100)

The physical interpretation for each I;; can be seen in
Table II by using (100). For the readers’ convenience, we

(e j— €
0iCi(o) = Ci(0). (97) list I;; for different i and j in Table III. Thus (99) is indeed
where the dpub}e expanded formula for Feynman integrands for
theories in Table III.
O =1 O — T¢€ The full unified web for expansions can be constructed
: ' : Han =’ from the double-expansion (99) and Table III, by summing
05 =LD 0y =T%, (D+1), over ¢ or ¢. To do this, we first sum over ¢ for C¢(0,a,)
05=T4,. O5=T¢ (98) to get
Ty (+9. a5, — ZC Npas(+5.@5, = ||+, 0 (55). =),
Loyms (- @ =3 @in || +4. @5 - ZCE o' @) Igas(+°. @5, =°[| 4. 0/ (5},). =),
Incsm(+. a5, — ZCS Mpas(+.d5, =+, 6'(53). =),
Lymis (@3, @5, |1+ a0, =) = ZC§ (0, Xom) Ipas(+. @y, —[|+*, 0 (57,), =*). (101)
o

Using the expansions in (101), one can obtain the expansions for other theories. For example, from Table III we see that

=22 Gl

IDBI(aZm’ n— 2m

Substituting the equality in the third line of (101) into (102) gives

| £ (@5, “Z—zm)

while substituting the equality in the fourth line of (101) into (102) provides

-y

IDBI (aZm’ a,_ 2m

Mpas(+,0(@3), =*|| +° 6/ (53), =*)C5(d’, X). (102)
= ZC?(O‘, X)) Innsm(+. (@), —*). (103)
SYMS a2m’ —2m || +A (_'A)’ _A)' (104)

025014-16



TRANSMUTATION OPERATORS AND EXPANSIONS FOR ONE...

PHYS. REV. D 106, 025014 (2022)

TABLE III.  T;; for different i and ;. TABLE IV. Map between operators and coefficients.

L i o Ci(0)

15k (@) I Ci(0)
Leym (7. an. =% a5 ,,) T, - Cs(o.a,,)

I (an) LD Cs(0)
Iiy(@h,: @, 5,) 75, (D+1) C5(0. X2)
Igf/lf (agm;az—2m) T.e):(zm (ND =+ l) Cg_gO', sz)

Ly (+9, 45, =) T Co(0.54) = 5,0,

Loynis (4. @ = an-nl| 4+, @5, =)
Inism (4. @5, =)

Lyns (@5,5 0,1+ dn, ")
IgsEDBI (@, an-m)

I§G(“Z)

Iopi(@3,5a)_s,)

Igas(+°. @), —*[| 45,55, =)

A WWWAAANAADN N AW~
(o NV, BNUS I SRR R U R N L T

The unified web can be established via the above method,
and is represented diagrammatically in Fig. 3.

The double-expanded formula (99) is dual to the trans-
mutation formula (19), due to the following reasons. First,
the formula (99) is constructed from (19), together with
some very general principles/assumptions mentioned at the
beginning of Sec. IV. Second, they include the same
theories. Third, operators O and coefficients C¢(o) are

GR ssEY M EMf BI EM
< .
~ \
\h\\ '{\ A
~N .“‘
X o
Y M
e A
- ¥
- ','
-
ssY MS SYMS NLSM
_ o - 24
ssEDBI DBI SG
FIG. 3. Unified web for expansions of one-loop Feynman

integrands. The straight lines denote the coefficients C{(o),
the dashed lines denote C(s,d,,), the double straight lines
denote C4(o), the thin dashed lines denote C¢(o,X>,), the
double thin dashed lines denote C§(o,X»,,).

linked by acting operators on BCJ numerators C5 (o) as in
(97), and so do operators O¢ and coefficients C¢(o”). Thus
we have a one-to-one map between operators and coef-
ficients, as shown in Table IV. In this Table, the explicit
form of C¢(o,s5,) is provided, since it is as special as the
operator I in the first column. Based on the duality
discussed above, one can claim that the expansions of
one-loop Feynman integrands are the dual version of
transmutations relations.

VI. SUMMARY AND DISCUSSIONS

In this paper, we investigated the connections among
one-loop Feynman integrands of a large variety of theories.
First, we constructed a new class of differential operators
Cf;m, which transmute the one-loop GR Feynman integrands

to one-loop ssEYM integrands.

Second, via the one-loop level transmutation relations, as
well as some general principles/assumptions such as gauge
invariance, we constructed the unified web for expansions
of one-loop Feynman integrands for a wide range of
theories including GR, ssEYM, EM, EMf, BI, YM,
ssYMS, SYMS, NLSM, DBI, EDBI, and SG. We showed
that the one-loop Feynman integrands of all of the above
theories can be double expanded to the BAS one-loop KK
basis, and provided the systematic rules for constructing the
coefficients in the expansions. Throughout the whole
process, we only used the knowledge of transmutation
relations among one-loop Feynman integrands of different
theories, as well as some very general requirements listed at
the beginning of Sec. IV, without knowing any details about
the Feynman integrands under consideration. Based on this
character, together with the one-to-one map between trans-
mutation operators and coefficients in expansions, we
claimed that the transmutation relations and expansions
are dual to each other.

In this paper and our previous work in [29], the
consideration for the EYM partial Feynman integrands is
not complete. We restricted ourselves to the special single-
trace case that the virtual particle propagating in the loop is
only a gluon. We have not considered the general case due
to some technical difficulty, and leave the complete
solution as the future work.

025014-17



KANG ZHOU

PHYS. REV. D 106, 025014 (2022)

The expansions of one-loop Feynman integrands also
indicate a new method for calculating the one-loop
Feynman integrands of various theories. One can evaluate
the BAS integrands at the first step, then use the rules for
constructing coefficients to get the integrands of other
theories in the double-expanded formulas. In principle, one
can also calculate the GR integrands at the first step,
then use the differential operators to generate others.
However, in practice the GR integrands are the most
complicated ones in the unified web. On the other hand,
the BAS integrands are the easiest ones, since they only
contain propagators, without carrying any kinematic
numerator.
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APPENDIX A: CHY FORMULAS AT TREE
AND ONE-LOOP LEVELS

In the CHY framework, tree amplitudes for n massless
particles in arbitrary dimensions arise from a multidimen-
sional contour integral over the moduli space of genus
zero Riemann surfaces with n punctures, M,, [8-12],
formulated as

A, = / T ({kver 2 ) TR (ki ez}, (A1)

which possesses the Mobius SL(2, C) invariance. Here k;,
€; and z; are the momentum, polarization vector, and
puncture location for the ith external particle, respectively.
The measure part is defined as

d'z !
du,=———11.6(&). A2
= OS2, ©) [1.5¢) (A2)
The ¢ functions impose the scattering equations
k. -k,
Ei = ! J = 0, (A3)
jell iy i

where z;; = z; — z;. The scattering equations define the
map from the punctures on the moduli space M,, to
vectors on the light cone, and fully localize the integral on
their solutions. The measure part is universal ,while the
integrand in (A1) depends on the theory under consider-
ation. For any theory known to have a CHY representation,
the corresponding integrand factorizes into two parts Z*
and Z®, as can be seen in (A1). Either of them is weight-2
for each variable z; under the Mobius transformation. In

TABLE V. Form of the integrands.

ThCOI'y IL(k,-,s,«,Z,») IR(k,*,g‘,‘,Z,')
GR Pff'¥Y Pf'Y
YM PT(oy,...,0,) Pt'yY
BAS PT(oy,...,0,) PT(o},...,0})

Table V, we list the tree level CHY integrands which will be
used in this paper [12].5

We now explain building blocks appearing in Table V in
turn. The 2n x 2n antisymmetric matrix ¥ is given by

A C
oo (2G w
where
ki - k; . . €€ . .
14 ) T l# 5
Ayj = v . ? ]. Bij=q . J.
0 i=], 0 i=],
e i # .
Co=1{ a we (AS)
Y -3 % i=j.
=10+

The notation Pf stands for the polynomial called
Pfaffian. For a 2n x 2n skew symmetric matrix S, Pfaffian
is defined as

n

1
21y Z sgn(o) H Ag(2i-1).0(2i)>

' 0€S,, i=1

PfS =

(A6)

where S,, is the permutation group of 2n elements and
sgn(o) is the signature of 6. More explicitly, let IT be the
set of all partitions of {1,2,...,2n} into pairs without
regard to the order. An element « in IT can be written as

a={(i1, 1), (i2, j2)s os (s Jin) }o (A7)

with i; < jpand i} < iy <--- <i,. Now let

(1 2 3 4 2n—1 2n
Oq = .

il jl i2 j2 ln Jn

) @

be the associated permutation of the partition a. If we
define

Sa = sgn(o-a)ailjl Qiyjp * " iy, (A9)

®For theories containing gauge or flavor groups, we only show
the integrands for color ordered partial amplitudes instead of full
ones.
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then the Pfaffian of the matrix S is given as

PfS = ZS,,.

aell

(A10)

With the definition of Pfaffian provided above, the reduced
Pfaffian of the matrix ¥ is defined as

_\i+j .
PIY = &Pm’g, (A11)
Zij

where the notation ';; means the ith and jth rows and
columns of the matrix W have been removed (with
1 <i,j<n). It can be proved that this definition is
independent of the choice of i and j.

The Parke-Taylor factor PT(cy,...,0,) is given as

1
PT(U],...

2Op) = (A12)

Zﬂlﬂzzl’zﬂs e Zo'n—lo'nzﬂno-]

It implies the color ordering o1, ..
amplitude.

The one-loop CHY formulas can be obtained via either
the underlying ambitwistor string theory [31,44-50], or the
forward limit procedure [32-35]. Here we only introduce
the latter one. The one-loop level scattering equations are
found to be

., 0, for the color ordered

k;-k;

k-t k-t
E = Z Iy R0, iefl,....n}
jell 2 iy Cii Ziv  Zi-
n fk n _fk
E+E J:O’ = ]:0 <A13)
jzzl: 4 ; 7

These equations yield the massive propagators 1/((¢ +
K)? — £?) in the loop, rather than the desired massless ones
1/(Z + K)*. However, these massive propagators relate to
the massless ones through the well known partial fraction
identity

which implies

C+K)(E+K +K) - (C+K + -+ Ky)?

1 m ri+m-2 1
=2 : Al5

=

For each individual term at the rhs of the above relation, we
have shifted the loop momentum without alternating the
result of the Feynman integral. Here ~ means the lhs and

rhs are not equivalent to each other at the integrand level,
but are equivalent at the integration level. The lhs of (A15)
is the standard propagators in the loop for an individual
diagram, while each term at the rhs can be obtained via the
forward limit method.

Thus, to obtain the correct one-loop Feynman integrand
from the one-loop scattering equations in (A13), one needs
to cut each propagator in the loop once, and sum over all
resulting objects, as required by the partial fraction relation
(A15). For the amplitude without any color ordering, this
requirement is satisfied automatically when summing over
all possible Feynman diagrams. For the color ordered
amplitude, this requirement is satisfied by summing over
color orderings cyclically.

As an equivalent interpretation, the forward limit method
can also be understood from the dimensional reduction
point of view, as studied in [33].

Let us take a brief glance at the CHY integrand at the
one-loop level. In the CHY framework, the forward limit
operator F acts on the (n -+ 2)-point tree amplitude as
follows:

Fhyn=F / ditn o TH (k.. TR (k2. 2))

- / Ao (FT ({k.e.2))) (FTR({k. 2. 2}).

(A16)

where the measure du),,, is generated from du, ., by
turning the scattering equations to those in (A13). Thus the
one-loop CHY integrand is determined by

TL({k,e,z}) = FIE({k, e, z}),

IR({k e, 2}) = FIR({k, e, 2}). (A17)
Using this statement, the one-loop CHY integrands for GR,
YM and BAS are given in Table VI. Here ¥ is a 2(n +
2) x2(n+2) matrix constituted by {ky,....k,, k., k_}
and {e;,...,e,,e,,e_}. For simplicity, we assume the
nodes + and — are located at (n + 1)th and (n + 2)th
rows and columns, respectively, and the reduced Pfaffian

is evaluated by removing them, i.e., Pf'¥ = (=) Py,

Z4o

with ¥ =WIiZ. The one-loop Parke-Taylor factor
PT.(64,...,0,) is obtained by summing over tree Parke-

Taylor factors cyclically,

PT.(01....o0) = > PT(+.0,....011.—). (AIB)

Notice that since the Parke-Taylor factor only depends on
the coordinates of punctures, we have
fPT(—’-,O'i, ey 01, —) = PT(+, Oi, ..

o1, —). (A19)
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TABLE VI. One-Loop Chy Integrands. OF 8;(‘12 u{+-") =FI¢_ T¢. 8%(“2 u{+-").
Theory ZoL(ki, €ir ;) If(kiv €, 2;) (BZ)
GR FPt'¥Y FPt'Y . . . .

YM PT.(o1,....,) FPEY To see this, we first consider the piece 0, i 0, .., in the
BAS PT.(cy.....0,) PT.(c),...,0)) operator Z¢,__ T¢, . At the tree level, this piece of operator

The tree Parke Taylor factor PT(---) at the rhs of (A18)
should be understood as FPT(---). The integrands in
Table VI can be found in [31-33,49].

The one-loop CHY formulas in (A16) suffer from the
divergence in the forward limit. It was observed in [32] that
the solutions of one-loop scattering equations separate into
three sectors which are called regular, singular I and
singular II, according to the behavior of punctures z,
in the limit k, + k_ — 0. In this paper, we will bypass this
subtle and crucial point by employing the conclusion in
[33], which can be summarized as follows: as long as the
CHY integrand is homogeneous in #¥, the singular sol-
utions contribute to the scaleless integrals which vanish
under the dimensional regularization. The homogeneity is
manifest for the Parke-Taylor factor. For FPf'¥, the only
place that can violate the homogeneity in £* is the diagonal
elements in the matrix C, since the deleted rows and
columns are chosen to be k, and k_. Singular solutions
correspond to z, = z_, then it is direct to observe that the
dependence on #* exactly cancels away, left with a
homogeneous CHY integrand. This observation allows
us to ignore the problem of singular solutions.

APPENDIX B: SOME DETAILS IN SEC. IIT A

In this Appendix, we give some technical details omitted
in Sec. IIT A.

We first explain the reason why the above method cannot
make sense when tree SEYM amplitudes contain three
external gluons. Consider the single-trace tree SEYM
amplitude A5y (+9, a9, —%;al\a"), with external gluons
+9, =9 and a¥9. We use the cyclic symmetry of color
orderings to rewrite it as A5y (a?, =9, +%al\a"). The
new representation indicates that such amplitude can be
generated from the tree GR amplitude via differential
operators as

EiEéYM(ag’ —9, 49 ap\a")
=T T5 AG (U [+, -))

= (ae,~ku - ae,vl)aed-ar E}]g{(az U {+h’ _h})' (Bl)

The color ordering is generated by choosing a and +
as two reference legs first, then inserting the leg — between
them. Here the operator o, ; is understood as 0. ..

Unfortunately, there is no one-loop level operator Of
satisfying

turns (e_ - k,)(€, - €,) to 1, and annihilates all terms which
do not contain the Lorentz invariant (e_ - k,) (e, - €, ), due
to the observation that the amplitude is linear in each
polarization vector. Under the action of &, tree level object
(e_ - k,)(e, - €.) behaves as

D (ear €€l ko) =€k

r

(B3)

thus the on-shell condition €, - k, = O indicates that the
first piece of the operator does not make sense at the one-
loop level. Then we turn to another piece 0,_;0, ., - At tree
level, this piece turns (e_ - [)(e, - €,) to 1, and annihilates
all terms which do not contain (e_ - I)(e, - €, ). However,
e_ - [ vanishes under the action of £, since e_ - k_ = 0 and
k_ = —k, = —¢. Thus, the second piece of the operator
also makes no sense at the one-loop level.

Now we use CHY formulas to prove that the operator
O¢,.40¢, >k, g1VEs NO contribution at the one-loop level.
This operator does not act on the measure of CHY
contour integration, thus can be applied to the CHY
integrands directly. As noted in Appendix A, in this
paper the convention for the reduced Pfaffian of V¥ is

P’V = S PRY, where W' = W1~ Because of the choice

Z4o

¥ = W71~ when acting 9,,., on FPf'¥, the nonvanishing
contribution only from acting d,,., on the diagonal element
C,,, in the block C of the matrix . However, the operator
Oc, > 1, turns €, > k;, to 1 and annihilates all terms which do
not contain €, > kj,, thus eliminates bth rows and columns
in . Thus C,;, does not exist in 0, . , 7 Pf"'¥, therefore
the operator d,,., annihilates 9, . kblgi;o(aﬁ,’).

Then, we give the derivation of (37). Let us go back to
the four-gluon example, and use the cyclic symmetry of
color ordering, as well as the tree level transmutation
operators, to understand the four-gluon tree amplitude as

cEm(=9+9,a%,b%al\ {a" ,b"Y})
=T T8 TS AGR (@ U {4+ =)
= (=0, r=0c 1) (=0, = 0c 1, )0, AR (@l U {+",="}).
(B4)

Here the color ordering is generated by choosing reference
legs — and b, inserting the leg a between — and b,
and inserting + between — and a. The operators —d,, .,
fori = +, a are understood as d,,.;_. In the expression (B4),
the operator 0, . 0. ., acts on (e, -k,)(e-€,), thus
yields the one-loop level operator which acts on
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€, <k, =>,(e,-€")(€, - k,). Following the discussion
for the A5y (af, b9, =9, +9;al\{a", b"}) case, and using
the completely similar method, one obtains

(_aea-kb ) (_aeb <k, ) Igf{;o (alhl)

= IgEym(+7, a%, b9, =% al\{a", b}), (B5)
and equivalently,
a€b~k,,a€a<1kb Igli (a£11>
= (=P Lgym(+7.0% a0 =% ai\{a" . 0"}).  (B6)

It is straightforward to generalize the relation (B6) to (37)

m—1
€€ h
<H aGa,H K, ) aeﬂl < kg, IGR;o (an)

i=1

= (=)"Iggym(H0 ah. . af. ~%ai\ay,).  (B7)
with m > 2.

Finally, we prove the equality (38) by using CHY
formulas. For our purpose, it is sufficient to show that
Ce Pf"¥(e;, k;,z;) = 0. Let us consider the four-gluon
example, i.e., act 0, ¢ O, «, on Pf¥'. The operator 9, .,
acts on both C,, and C,, in the block C. For the first case,
0, ., transmutes Pf¥’ as

PrY - L pr(w) anre, (BS)
Zba
up to a sign, while for the second case we have
1 n-ra
PIY — — PE(W), 00, (B9)

Zba

again up to a sign. The relative sign will be considered later.
For (¥ )ZEZIZ;, the operator d,, , only acts on Cp, thus
provides

Pf(‘P/) n+a (n+b)

_Pf(lP/)” e - a(n+a)b(n+b)’

a(n+a
Zba )

(B10)
ZabZba

)

up to a sign. For (¥/ )ZEZE) the operator 9, ., only acts on

C,,, thus gives

LPf(‘P/) (n+a) = 1 Pf(\P’) b(n+a)a(n+b)

Zba b(n+a) ZabZba b(nt+a)a(ntb)
— 1 na(n+a)b(n+b)
= 2 sy (BIL)

up to a sign. It seems that after performing 9, 4 J,,.x,» We
arrive at the Pfaffians of two equivalent matrices, with the
same coefficient. However, we have not considered the

relative sign until now. Notice that (B10) is obtained by
turning elements (¥'),(, ) and ('), to 1, and
eliminating all terms in Pf¥’ that do not contain both
two elements, while (B11) is obtained by turning (V') (.4

and (W), (1) to 1, and eliminating all terms that do not
contain both of them. Comparing (V') ;o) (¥') p(n+5) With
() p(nra) (¥ )a(nrp)» the permutation from the ordering
a(n+ a)b(n+ b) to b(n + a)a(n + b) is odd. Thus, when
considering 9, ¢, 0, .r, Pf¥', contributions from (B10) and
(B11) cancel each other, due to the definition of Pfaffian.
Consequently, C; Pf'¥ =0 for @, = (a,b). The above

argument can be generalized to the general ordered set
a, = {a,...,a,) directly, thus we get the conclusion (38).

APPENDIX C: VERIFICATION OF (39)
VIA CHY FORMULAS

This Appendix is devoted to verifying the transmutation
relation (39) by using CHY formulas.

The operators under consideration are in the form 9, .y,
thus are commutable with the CHY contour integration.
Thus we can act the operators on the CHY integrands
directly without altering the measure. Since the
operator C7 only depends on polarization vectors in
{€¢;}, it only acts on FPf'¥(e;, k;,z;), without altering
the FPf'W(¢;, k;, z;) part. Without lose of generality, let us
assume @,, = (1,...,m). The nonvanishing contributions
arise from acting C;m on terms containing €; > k;_;, or
€; <k,_; with i € {1, ...,m}, as indicated by the equality
(38). Based on the discussion above, now we consider the
effect of acting C; on terms containing € >k, the

m

treatments for other terms are analogous.
The factor €, > k,, in FPf¥ arises from doing the

summation Yy _.(€, ) (e”)¥ for (e;-€e,)(e_-k,) in
Pt'¥(e;, k;.z;). Thus, acting the operator d, ., on
€, > k,, transmutes FPf¥ as
FPIW — FREP) )0 (C)
Z1+3m—

where the later matrix is obtained from ¥ by deleting 1th,
mth, 2n + 1th, (2n 4+ 2)th rows and columns. More
explicitly, using the definition of Pfaffian, one can expand
PfY as
PfY =

> 5200 (¥)ayp, (¥, - (¥)ap,- (C2)

aell

We divided terms in the summation at the rhs of (C2) into
two classes, terms in the first class are those that do not
contain both (V') ;(,,41) and (V') ,,,(2,+2)» While terms in the

second class do contain both ('), 1) and (¥'),,2,42)-

m

The operator 0., ~annihilates all terms in the first class.
Notice that since the matrix ¥ is generated from the

025014-21



KANG ZHOU

PHYS. REV. D 106, 025014 (2022)

original ¥ by removing (n + 1)th and (n + 2)th rows and
columns, d,,... and d. ; cannot act on diagonal elements
Clng1)(n+1) and C12)(542) Of the block C. While acting on
terms in the second class, the operator 9, transmutes

FI) 12041 (F)mans)] as

€1|>km 1
0o p FI(W v —9,. - .
1k [( )1(2n+1)( )m(2n+2)} 1k 21 T 24 T
(C3)

Now we collect terms in the second class together, and
remove (¥'); 2,41) () n(2042) in them. By the definition of
Pfaffian, the resulting terms after performing the above

1m(2n+1)(2n+2)
Im(2n+1)(2n+2)°

to an irrelevant overall sign arises from changing sgn(o,,).
Thus we get the result (C1).
Then, we act the  operator O ., on

Im(2n+1)(2n+2) - . Im(2n+1)(2n+2)
FRECY) | yans1)ang2)- Since the matrix (¥)y,0, )5, )

does not include 1th rows and columns, d ., only
acts on the diagonal element C,,, thus transmutes

1m(2n+1)(2n+2)
F Pf(qﬂ)lm(2n+1)(2n+2) as

manipulation can be regrouped as Pf('¥)

fPf(lP,)lrn(Zn+l)(2n+2) _)prf(lp,)IZm(Zn+l)(2n+2)

Im(2n+1)(2n+2) 21 12m(2n+1)(2n+2)° (C4)

up to an overall sign. Now the recursive pattern occurs, the

operator 0y,.., only acts on Cs3, due to the observation

12m(2n+1)(2n+2)
(‘P/)IZm(Zn+l)(2n+2)

Thus, by iterating the above manipulation, one finally
arrives at

does not include 2th rows and columns.

1 =
FPIY — , C5
214-Zm— ,1:[1 Z(i+1)i ()
therefore
fPf/\P(€i, ki,Zi) - PT(+, 1, cee,m, —), (C6)

up to an irrelevant overall sign.

The resulting object PT(+,1,...,m,—), together with
FPE"Y(¢;, k;, z;), gives rise to the ssEYM one-loop CHY
integrand, which leads to the partial Feynman integrand

I;%YM(—FQ, 19,...,m9, —9;a"\al). Similar manipulation
shows that acting C; on terms containing €; <k, yields
()" ISy (F9,m9, ..., 19, —9;al\a",). The relative sign

(=)™ arises as follows. The terms containing €, I> k,, are
those containing

€1|>km

7[(‘P/)1(2n+1) (‘P/)m(2n+2)] = )

(€7)
Z14+Zm—

while terms containing €; <1k, are those containing

€<k,
'7:[<1P/)1(2n+2)(lpl)m(ZrH»l)] = )
21-Zm+

(C8)

the difference between these two objects determines the
relative sign. First

m—1
1
11 = (=)"PT(+.1,....m,—),
L4 Zm— 17 R(i+1)i
1 m—1 1
=(—-)PT(+.m,....1,—). (C9)
Tm+21- 327 Z(i+1)i

Comparing them gives a relative sign (—)"~!. Second,
comparing elements (V');(5,41)(¥'),(2042) With elements
() 12042) (¥')m(2n+1)> the permutation from the ordering
1(2n+ 1)m(2n + 2) to 1(2n + 2)m(2n + 1) contributes a
relative (—), due to the definition of Pfaffian.

The above results can be generalized to €;> k;_; or
€; <k,;_; for arbitrary i € {1,...,m} via the replacement
1 — i, due to the cyclic symmetry. Collecting all pieces
together, we get the desired conclusion (39). Since our
method only transmutes FPf'¥(¢;, k;, z;), one can claim
that the relation (43) which links YM and ssYMS Feynman
integrands together has also been verified.

APPENDIX D: SOLVING RECURSIVE
EXPANSION OF EYM

For the readers’ convenience, in this Appendix we show
the details of solving the recursive expansions of sSEYM
Feynman integrands by employing the one-loop level
differential operators.

Consider the ssEYM partial Feynman integrand
155 (H9, @, —9;a",,) with n — m gluons and m grav-
itons. Here we denote the ordered set of gluons @, as

a,_, = (1,...,n—m), and label the gravitons in a’, as
a, ={hy,....h,}. The Lorentz invariance, together

with the assumption that polarization vectors in {e;} and
{€;} cannot contract with each other, indicates the
polarization vector ¢, can only appear in the following
combinations, which are €, -k, €, ~khy, and ¢, “€n,»

with g € {1,...,m — 1}. Since 15y (+9, @i, =% al,) is
assumed to be linear in each polarization vector, the partial

integrand IS5y (49, @h—m, =% a’,) can be expanded as
€, —q . h
IssEYM(+g’a"—m’ _g’am)

n—m

= (€n, " €)B; + Z(ehm -ky)By,
b=1

m—1

— m—1
+ Z(%m k) (en, - Cy) + Z(ehm ~€,,)Dy. (D1)
g=1

g=1

o
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At the tree level, one can regard one of k, or khq as the

unindependent one due to the momentum conservation, and
remove the corresponding €, - k;, or €, -khq, as can be

seen in [26]. In the current one-loop case, we do not do this
procedure at the rhs of (D1), based on the following
reason. At the tree level, if one replaces any ¢; - k; by
—¢; * (D12 k1), the resulting objects after performing the
insertion operators will not be modified, as can be observed
from the definition of operators. At the one-loop level, a
similar statement does not hold for our one-loop level
insertion operators 2%, . as well as the new operators
Cg.m. Thus, in this and the next subsections, we do not use

the momentum conservation to change the representations
of the Feynman integrands. It means we solve the special
expanded formulas with special representations of external
momenta. On the other hand, we think of the momentum
k_ = —¢ as being removed, viak_ = —k, = —¢, and ¢}, -
¢ in (D1) should be understood as ¢;, - k., since the effects
of acting 79, _, 7%,,, , and C% will not be altered if
replacing k_ in the Feynman integrands by —k,.

Our aim is to use the differential equations provided by
transmutational relations, together with the gauge invari-
ance requirement, to solve coefficients B, By, Cy, D, in
(D1). The desired solutions are formulas of these coef-
ficients consisted by Lorentz invariants such as ¢, -k,
€n,, - kn,» €n, - €n,, and physically meaningful objects such

as sSEYM Feynman integrands. We do not care about the

m

ISy (+9, @, —%;al,) to partial sSEYM integrands with
less gravitons.

The first line on the rhs of (D1) can be detected by the
insertion operators. For convenience, we denote nodes +
and — as 0 and n —m + 1, respectively. Acting 7,

with i € {0, ...,n — m} on the lhs of (D1) gives

IW(I+1)

€ €€ g = _g. h
Iih,n(i+l)IssEYM(+ »@n—m, ,am)

=15 M (09, i By, (i 1)9, . (n—m4-1)9;al \ kL),
(D2)

While acting on the rhs, these operators annihilate the
second line, and transmute the first line as follows:

” Lamilly Bi_BH-l? 1fl§n—m—1,
L i) <Z(€hm 'k”)B”) - {B

p i ifi=n—m.

(D3)

When applying Ifn_m)hm(n_m +yy We have used the
assumption that k_ = —¢ has been removed by using
momentum conservation thus the effective part of the

operator is 0, , . Comparing the lhs result (D2) with
the rhs result (D3) provides

B, =I5ym(09,....(n=m)9, hiy,(n—m+1)%;al \ hl"),

exact expressions of these physical objects appearing (D4)
in solutions. As will be seen, such solutions of B, By,
Cj, D, naturally give the recursive expansion of  and
|
B; =By + ISy (09, o i B, (i 1)9, ., (n—m + 1)9;al\h),
forie{0,....n—m—1}. (D5)
Thus B, with b € {0, ...,n —m} can be calculated recursively as
By =) Xym (919, i By (i 4+ 1)9, . (n = m)?, =9 ali\ ). (D6)
i=b
Substituting the above solution into (D1), the first line at the rhs is obtained as
(en, - kp)By = Y (€1, - Y, ) Wifoyma (9, hi s @, =75l \ I (D7)

S
Il
=]

w

The combinatory momentum Y; is defined as the summation of momenta of gluons at the lhs of the leg ¥ in the color
ordering [22]. The summation over all possible shuffles w of two ordered sets @ and § is the summation over all
permutations of @ U §, those preserving the orderings of @ and §. For example, (1, 2)w (3, 4) includes the following ordered
sets: (2,3,4,5), (2,4,3,5), (2,4,5,3), (4,2,3,5), (4,2,5,3), (4,5,2,3).
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Now we arrive at

Ky (4. @~ )

O Yhm)I:;%YM(+’ hiy W @, —9; @l \ 1)

m—1
+ E €hm

-1

(en,, - kn,)
1

IEM

(D8)

g

o

To continue, we study the relation between Cj; and D,
by imposing the gauge invariance of the graviton /. Notice
that direct replacing €, — kj makes the treatment com-
plicated, since each term includes €p,- To single out the C};
and D, terms, a convenient way is to use the Ward’s

identity operator defined in (41). The key point is the gauge
invariance condition

WZ_,,I;%YM("i_g’&z—tn’ —%al) =0 (D9)
indicates
Ly, -Wi IijaYM("‘g,‘_ig—m, —%ay,) =0, (D10)
and the later one is equivalent to
Wi, T, g~ Yobym (. @i, =% )
+ (I;ghm—wzg)lié%YM(+g,t_f‘;]t—m, —%al) =0, (DI11)
then we get the equation
Wzgl—hghm—lié%YM(*‘gv -, —%al)
+ 00, 0, Loym (+9 @on, %aly) = 0. (D12)

The assumption that k_ = —¢ is removed via the momen-
tum conservation has been used again. Substituting the rhs
of (D8) into the above equation (D12), we obtain

D, = ~(k;, - C,), thus
(€n,, kn,)(€n,  Cy) + (en,, €1, )Dyg=¢n, f1, C (D13)
and
LGy (+9. @, =% alk)
= (e, Y, ) Xoym (49 b w @i, =95l \ 1)
+ m:(ehm I, Cy) (D14)
=

where the antisymmetric strength tensors are defined as
fi = Ke =€k, fI¥ = ke — &k,

Until now, one remaining class of coefficients CZ has not
been fixed. To solve it, we first need to find the equations
satisfied by Cj. This goal can be reached by applying two
insertion operators, one acts on ¢, - khq at the rhs of (D14),
therefore selects the term €n, Cq, and another one acts on
€n, C, to provide the equation for solving CY;. We hope
two operators transmute the lhs of (D14) in an appropriate
way so that the obtained object is physically meaningful.
Based on the above discussion, the combinatory operators

L o0y Lin,n, With j € {0, ...,n — m} are nice candidates.
Again, we have denoted nodes + and — as O and

n —m + 1, respectively.

When applylng Z}h (;+1)Ijhmhq to the lhs of (D14), we

use the observation | o (1) z5, hq] = 0 to get the physi-
cally meaningful result:

€ € €€ g 79 _ 9.9\ — Te€ € €€ g 29 _ g. gh
Ijlzq(j+l)Ijlz,,,hqIssEYM(+ p-m, =% @) = Ijhmhqzth(j-t,-])lssEYM(O Jn—m, (n—m+1)%ay,)

= 155,(09, ...

While acting on the rhs, the operator Ith Gy Lin,n, leads to

(X i,(], hgn» (i + 1)

jh,, (j+1) <Z IssEYM
= ZI;EYM (09, ..., j9, hg, hiww((j + 1)9,
+ TGy (09, o O h b (4 1)9.

where the splitting Ijﬁ

€€ g
IssEYM(O s

s e
hgG1) = Linghn T Ly (+1)

7‘]'9’ hz17 (] + 1>g7

O R (G4 1) (n = m 4 1)% el \{hh KE}). (D15)
(= m o 1)%ab V) <q~cq>)

(= m)), (= m 1Y% ab\ (. B

L= m e DA\ B T, (e -G (DI6)

due to the definition has been used when acting on

o (n—=m+1)9;al\hl). Comparing two sides gives the desired equation:
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Lin,(j+1) (€ ZIWEYM oo JO g Hpu{ (G4 19 (n = 1)) (n = m+ 1% ap \{h},. hg}).  (D17)

which holds for arbitrary j € {0, ...,n — m}. Equation (D17) bears strong similarity with the insertion relation for (n — 1)-
point partial integrands,

Ijh (H-l)IszYM(Og’ e (m=m A 1)9al ) = Ty (07, o j0 hG, (+ 19, (n=m + 1)%al, -1\ (D18)

therefore it is natural to expect the previous technique can be applied to the current case. The Lorentz invariant (ehq -Cy)
contains polarization vectors €n, with p # g, thus can be divided as

e, Cq = Z(th ~ky)B), + Z ((en, * kn,)(en, - C,) + (en, - €n,) D). (D19)
=0

hyp€ai\{h,.hg}

It is worth emphasizing that the above expansion does not include the € -k, term, due to the following reason.
Combining this term with the coefficient of €, - C, in (D14) gives the combination (€n, 'khq)(th - ky, ), which is forbidden

by observation (38), since the partial integrand ISfEYM(—I— ,dj_pm,—9;a) does not include any ¢; > k; or €; < k;. The strict
proof can be seen in (E5) and the related discussions in the next Appendix, for the more general case. The coefficients B,

can be solved by using Ieh (1) and is found to be

=
—_

(e, ko)By =3 (en, - Vi ) Mihoyng (+9, L By Y@~ al\ L 1) (D20)
0 L

S
Il

This equality serves as the analog of (D7). The gauge invariance condition WhpI;%YM(—l-g ,@y—m,—%;al) = 0 requires
(th - C,) to be gauge invariant for the leg /,,, thus one can impose the gauge invariance to relate coefficients of (ehq . khp)
and (e, - €, ) together as

(en, " kn,)(en, - Cp) + (€n, - €4,)D) = €n, - fu, - C)p (D21)

This equality serves as the analog of (D13).
Substituting (D20) and (D21) into (D14) yields

L fym(H0 @, =5al) = ey, - Vi ) Xeym (H7 i@, =% @l \ 1)

L

E

+ Z(ehm Fuy Ya ) Xeym (7. (h hin )i, =@ \{ B}, i })

E

+ > ew,fu, fu, - Ch (D22)

9=1 h,eal\{h,.h,}

Solving the coefficients (C),)* is completely analogous as solving C);. Now the recursive pattern is manifested. By iterating
the above manipulation, the full expansion of I Lyy(+Y, @h—m. =9 ;al) can finally be obtained as

Loy (H9 @, =% al) = > > KXy (49, (89, ki) waih— . —;aly\ {hly.s"}). (D23)

§:sCal\h, W

where the summation is over all ordered sets § with s C a/,\h,,, and K¢ is defined as

=€p, - fsM o 'fx] : Ys, s (D24)

for any § = (s, ..., Sis))-
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To derive the main result (47), all seven principles/
assumptions listed at the beginning of Sec. IV are used. The
using of the first six is manifest, while the last one is
necessary when excluding the €n, - kj, term in (D19), via
the tree level equality (38). In the expansmn (47), the gauge
invariance for each graviton in the set a,\,, is manifest,
since the tensor f* vanishes under the replacement
€; — k;. However, the gauge invariance for the graviton
h,, is hidden. Similar phenomenons happen at the tree level
when solving the expansions of SEYM and GR amplitudes.
This is a quite general feature if we start with the
expansions in the form of (D1).

APPENDIX E: VERIFICATION
OF SOLUTION (60)

The verification of solution (60) is based on the follow-
ing three equalities:

DIC[I5Eym (@5 ap\a") + (=) 5Ty (@

(E1
Cs [(d = 2) Ly (@)] = 0, (E2)
and
Ce [Collhymo (@ ai\a") + (=) ey (@ a)\a")]]

= 5§,l,a[lséEYM;o(ag§SZ\”h) + (= )la‘lis%YMo(agQSZ\ahﬂ-
(E3)
Here &7 . is understood as 1 when 5, =d up to a

cyclic permutation, and 0 otherwise. The equality (E1)
holds obviously, and ensures that Igg.,(ar) in (60)

a;\a")]] = 0.
)

satisfies Eq. (56) if DR = 0. To see (E2) and (E3), we
first show that

Csim I:ﬁiYM;o (@ ay\a") =0, (E4)

for arbitrary a (including the special case a = @). If
s, Na# @, foreachi €5, N a, the corresponding polari-
zation vector ¢; does not appear in ISy (@%al\a"),
thus IS5y (@% al\a") is annihilated by Ok, In C5 . If

S, Na =g, it means s, Ca,\a. For this case, one
effective way to see (E4) is to use

v (@ a;\a")

- ZL@ Sy (+9, 7.(@%), =9, al\a")
=5 fZT

Since the operator T
e, and e_ in AGp. (ah U {+",—"}), the manipulation F
will not create any €; > k; or €; <kj; thus Csﬁm is com-
mutable with F. Since s, Na = @, Cgm is commutable
with Ti&—' Then, the equality (E4) is ensured by (38). On

the other hand, it is straightforward to see

n U+ =), (ES)

removes the polarization vectors

G, Ca =%, a (E6)
Combining (E4) and (E6) together gives (E2) and (E3).
Using equalities (El), (E2) and (E3), one sees that
formula (60) is the solution to Egs. (56) and (39), if
DR =0 and C; R = 0 for each a,,.
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