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In this paper, the connections among one-loop Feynman integrands of a wide range of theories are
further investigated. The work includes two parts. First, we construct a new class of differential operators
which transmute the one-loop gravitational Feynman integrands to Einstein-Yang-Mills and Yang-Mills
Feynman integrands, thus linking these theories together. Second, by using one-loop level transmutation
relations, together with some general conditions such as gauge and Lorentz invariance, we derive the
expansions of Feynman integrands of certain theories to those of other theories. In particular, we find the
Feynman integrands of all theories under consideration can be expanded to integrands of bi-adjoint scalar
theory. The unified web for expansions is established, including gravity, Einstein-Yang-Mills theory,
Einstein-Maxwell theory, Born-Infeld theory, pure Yang-Mills theory, Yang-Mills-scalar theory, special
Yang-Mills-scalar theory, Dirac-Born-Infeld theory, extended Dirac-Born-Infeld theory, special Galileon
theory, and nonlinear sigma model. The systematic rules for evaluating coefficients in the expansions are
provided, and the duality between transmutation relations and expansions is shown.
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I. INTRODUCTION

Modern research on the S-matrix has exposed amazing
relations among amplitudes of different theories, such as
the Kawai-Lewellen-Tye relations [1], Bern-Carrasco-
Johansson (BCJ) color-kinematics duality [2–7],
Cachazo-He-Yuan (CHY) formulas [8–12], transmutation
relations proposed by Cheung, Shen and Wen [13], which
are invisible through the traditional Feynman rules. The
transmutation relations, which based on constructing some
Lorentz and gauge invariant differential operators, reveal
the marvelous unity for tree amplitudes. By acting these
transmutation operators on gravitational tree amplitudes,
one can generate the tree amplitudes of a variety of theories.
These unifying relations were verified and further studied
in [14–16], by acting transmutation operators on CHY
formulas of different theories.
At the level of tree amplitudes, another important

reflection of connections among different theories is the
amplitudes of certain theories can be expanded as the
combination of amplitudes of other theories. Such expan-
sions have been studied in various literatures, especially for
expanding the tree Einstein-Yang-Mills amplitudes to

Yang-Mills ones [17–26]. To evaluate the coefficients in
expansions, one of the methods is solving differential
equations indicated by transmutation operators [26]. This
approach manifests the underlying connection between
transmutation operators and expansions, allowing us to
understand the unified web for expansions as the dual
version of the web for transmutation relations [27,28].
It is natural to search the similar unities at the loop levels.

This interesting question was first considered in [15],
which exposed the strong evidence for the existence of
transmutation operators at one-loop level. Recently, we
studied this issue in [29]. In [29], the one-loop level
differential operators which link one-loop Feynman inte-
grands of different theories together were found, by
employing the tree level operators, as well as the forward
limit operation. Based on these one-loop level transmuta-
tion relations, the complete unified web for one-loop
Feynman integrands was established. On the other hand,
the expansions of one-loop Einstein-Yang-Mills and gravi-
tational Feynman integrands to Yang-Mills ones, and the
related one-loop BCJ numerators, were studied in [30,31].
In this paper, we further investigate the unifying relations

among one-loop Feynman integrands of different theories.
We first continue the study of the one-loop level trans-
mutation relations. We construct a new kind of trans-
mutation operators which link the Feynman integrands of
gravity, Einstein-Yang-Mills and Yang-Mills theories
together, in a manner different from those in [29]. The
basic idea is similar as in [29], which can be summarized as
follows. Suppose the tree amplitudes of theories A and B
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are linked by the operator O as AB ¼ OAA, we seek the
one-loop level operator O∘ satisfying O∘FAA ¼ FOAA,
where the operator F denotes taking the forward limit.
Since the one-loop Feynman integrands can be obtained by
taking the forward limit of tree amplitudes, one can
conclude that the operator O∘ transmutes the Feynman
integrands as IB ¼ O∘IA. In this paper, we make new
choices of tree level operators, which lead to new one-loop
level operators. These new operators play the crucial role
when solving the expansions of one-loop gravitational
Feynman integrands.
The expansions of one-loop Feynman integrands of

various theories are also investigated. We first solve the
expansions of Einstein-Yang-Mills and gravitational inte-
grands to Yang-Mills integrands, by employing the one-
loop level differential operators, together with some general
requirements such as Lorentz and gauge invariance. The
idea is, we regard the transmutation relation IB ¼ OIA as a
differential equation, which allows us to solve IA from it.
A general difficulty is that the full Feynman integrands
always contain terms which are annihilated by the
differential operators under consideration, thus cannot be
determined by solving differential equations. We fix these
terms by imposing some general principles/assumptions, in
particular the gauge invariance condition, and obtain the
expansion

IGR ¼
X
i

CiIYM;i; ð1Þ

where IGR stands for the gravitational Feynman integrands
while IYM;i are Yang-Mills integrands.
Then, by applying the one-loop level transmutation

relations further, we obtain expansions of Feynman inte-
grands of other theories, and find that all the integrands
under consideration can be double expanded to integrands
of bi-adjoint scalar (BAS) theory, and provide the rules for
constructing coefficients in the expansions. The resulting
unified web includes a wide range of theories, which are
gravitational (GR) theory, Einstein-Yang-Mills (EYM)
theory, Einstein-Maxwell (EM) theory, Born-Infeld (BI)
theory, pure Yang-Mills (YM) theory, Yang-Mills-
scalar (YMS) theory, special Yang-Mills-scalar (SYMS)
theory, Dirac-Born-Infeld (DBI) theory, extended Dirac-
Born-Infeld (EDBI) theory, special Galileon (SG) theory,
non-linear sigma model (NLSM). The whole process only
depends on the knowledge of transmutation relations, as
well as some general principles/assumptions, without
knowing any detail of Feynman integrands, and without
applying any tool for evaluating Feynman integrands such
as Feynman rules, CHY formulas, and so on. We also show
the tree level duality between transmutation relations and
expansions can be generalized to the one-loop level, and
give the map between differential operators and coefficients
in expansions.

The remainder of this paper is organized as follows. In
Sec. II, we give a brief introduction to the forward limit
approach, and the differential operators at tree and one-loop
levels, which are crucial for subsequent discussions. In
Sec. III, we construct the new operators which transmute
GR Feynman integrands to EYM ones. Then, in Sec. IV, we
solve the expansions of EYM and GR integrands to YM
ones, by using the one-loop level operators together with
some general principles/assumptions. Section V is devoted
to providing the full unified web for expansions, and
showing the duality between transmutation relations and
expansions. Finally, we end with a summary and discus-
sions in Sec. VI.

II. BACKGROUND

For the readers’ convenience, in this section we rapidly
review the background for later sections. In Sec. II A, we
give a brief introduction to the forward limit which
generates the one-loop Feynman integrands from the tree
amplitudes, as well as the color ordered Feynman inte-
grands which will be discussed frequently in this paper. In
Sec. II B, we review the tree level differential operators
which link the tree amplitudes of a wide range of theories
together, as well as the one-loop level generalization of
these tree level operators. Most of the notations and
conventions which will be used in later sections are also
introduced in this section.

A. Forward limit and one-loop Feynman integrand

As is well known, the one-loop Feynman integrands
can be generated from the tree amplitudes, via the so-
called forward limit procedure. For instance, the one-
loop CHY formulas can be obtained by applying
this method, as studied in [32–35]. In this subsection,
we review the general idea and characters of the forward
limit.
Diagrammatically, the forward limit can be understood

as gluing two external legs of the tree together to generate
the loop. Here we give the strict definition, especially the
manipulations L and E which will be used in later sections.
The forward limit is reached as follows:

(i) Consider an (nþ 2)-point tree amplitude
Anþ2ðkþ; k−Þ including n on-shell legs with
momenta in fk1;…; kng and two off-shell legs with
k2þ ¼ k2−.

(ii) Take the limit k� → �l. We denote this manipula-
tion as L.

(iii) Glue two external legs with l and −l together by
summing over all allowed internal states, such as
polarization vectors, colors, flavors, and so on. We
denote this manipulation as E.

Roughly speaking, the obtained object times the factor
1=l2,
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1

l2
FAnþ2ðkhþþ ; kh−− Þ; ð2Þ

contributes to the n-point one-loop Feynman integrand In.
Here we introduced the operator

F ≡ EL; ð3Þ

to denote the operation of taking the forward limit.
For the individual Feynman diagram, the manipulation in

(2) obviously turns the tree to the loop. However, it does not
mean the forward limit of tree amplitude gives rise to
the one-loop Feynman integrand directly, since the full
tree amplitude and full one-loop Feynman integrand are
obtained by summing over all appropriate diagrams, and
the map between tree diagrams and one-loop diagrams is
not one to one. For example, after gluing legs þ and −
together, three different tree diagrams at the rhs of Fig. 1 are
turned to the same one-loop diagram at the lhs. This
difficulty is solved by the decomposition based on the
so-called partial fraction identity [32,36]. Figure 1 is an
example of such decomposition. We will not discuss the
details of the partial fraction identity; the introduction of it
can be found in [32,36]. We only point out an important
feature related to such decomposition: when considering
the color ordered Feynman integrands, one needs to
distinguish the full ones and partial ones, as can be seen
in (6).
Let us give a rapid introduction to the color ordered

Feynman integrands. We start with the tree Yang-Mills
amplitudes. Consider a theory that external particles are in
the adjoint representation of the UðNÞ group; the full tree
amplitude can be expanded using the standard color
decomposition as a sum over ðnþ 1Þ! terms [37–39]

Anþ2 ¼
X

σ∈Snþ2=Znþ2

TrðTaσþTaσ1 � � �Taσn Taσ− Þ

×Aðσþ; σ1;…; σn; σ−Þ; ð4Þ

where σ denotes the permutations of external particles.
Each Aðσþ; σ1;…; σn; σ−Þ, which has the fixed ordering
among external legs, is called the color ordered amplitude.
The color ordered amplitudesAðσþ; σ1;…; σn; σ−Þ, as well
as the color ordered Feynman integrands which will be
introduced soon, are independent of the choices of gauge
groups, thus are unique for all Yang-Mills theories. Notice
that each color ordering is invariant under the cyclic
permutation of external legs, as can be observed from

the factor TrðTaσþTaσ1 � � �Taσn Taσ− Þ, thus the summation is
over σ ∈ Snþ2=Znþ2 rather than σ ∈ Snþ2.
Now we glue the external legs þ and − of

Aðσþ; σ1;…; σn; σ−Þ together. Taking the forward limit
requires summing over theUðNÞ degrees of freedom of two
internal particles. This gives rise to two kinds of terms. The
first comes from permutations such that legs þ and − are
adjacent, the corresponding color factors are given as

XN2

aþ¼a−¼1

δaþa−TrðTaþTaσ1 � � �Taσn Ta−Þ ¼ NTrðTaσ1 � � �Taσn Þ;

ð5Þ

thus contribute to the n-point color ordered Feynman
integrand I∘ðσ1;…; σnÞ. The second case that þ and −
are not adjacent gives rise to double-trace terms. In this
paper, we only consider the single-trace terms, since the
double-trace ones are determined by the single-trace ones
[40], as can be proved via the tree level Kleiss-Kuijf
relation together with the forward limit operation [41].
For the single trace case, the above discussion shows that
the partial integrand obtained from taking the forward
limit for Aðþ; σ1;…; σn;−Þ contributes to I∘ðσ1;…; σnÞ.
There are several original color orderings giving rise to
the same trace factor after summing over aþ and a−, due
to the cyclic symmetry of the trace factors. For instance,
the object obtained by taking the forward limit for
Aðþ; σ2;…; σn; σ1;−Þ also contributes to I∘ðσ1;…; σnÞ.
Collecting these equivalent color orderings together, one
finds that the full color ordered Feynman integrand can be
expanded as the following cyclic summation:

I∘ðσ1;…; σnÞ ¼
Xn−1
j¼0

Iðþ; σ1þj;…; σnþj;−Þ; ð6Þ

where the partial color ordered integrands Iðþ; σ1þj;…;
σnþj;−Þ are obtained from the color ordered tree ampli-
tudes via the standard forward limit procedure in (2),
namely,

Iðþ;σ1þj;…;σnþj;−Þ¼
1

l2
FAðþ;σ1þj;…;σnþj;−Þ: ð7Þ

This equality (6) is supported by the partial fraction
identity. Notice that throughout this paper we denote the
full color ordered Feynman integrands by I∘, and the partial
ones by I.
The forward limit is well defined for the N ¼ 4 SYM

theory. For other theories, a quite general feature is the
obtained Feynman integrand suffers from divergence in the
forward limit. Fortunately, the singular parts are found to be
physically irrelevant, at least for theories under consider-
ation in this paper. From the Feynman diagrams point of
view, the singular parts correspond to tadpoles, as well asFIG. 1. Decomposition of one-loop Feynman integrand.

TRANSMUTATION OPERATORS AND EXPANSIONS FOR ONE… PHYS. REV. D 106, 025014 (2022)

025014-3



babbles carried by external legs, which do not contribute to
the S matrix. From the CHY point of view, the singular
parts can be ignored due to the following observation [33]:
as long as the CHY integrand is homogeneous in lμ, the
singular solutions of scattering equations contribute to the
scaleless integrals which vanish under the dimensional
regularization. The homogeneity in lμ is satisfied by all
theories under consideration in this paper. Thus, we just
assume that the singular parts are excluded.

B. Transmutation operators at tree and one-loop levels

The differential operators at tree level, proposed by
Cheung, Shen and Wen, link a wide range of theories
together by transmuting tree amplitudes of one theory to
those of another theory [13–15]. Three kinds of basic
operators are defined as follows:

(i) Trace operator:

T ϵ
ij ≡ ∂ϵi·ϵj ; ð8Þ

where ϵi is the polarization vector of the ith external
leg. The up index ϵ means the operators are defined
through polarization vectors in fϵig. Since the
graviton carries the polarization tensor ϵμν ¼ ϵuϵ̃ν,
the operators can always be defined via fϵig
or fϵ̃ig.1

(ii) Insertion operator:

Iϵ
ikj ≡ ∂ϵk·ki − ∂ϵk·kj ; ð9Þ

where ki denotes the momentum carried by the ith
external leg. When applying to physical amplitudes,
the insertion operator Iϵ

ikðiþ1Þ inserts the external leg
k between external legs i and iþ 1, thus turns the
color ordering …; i; iþ 1;… to …; i; k; iþ 1;….
For general I ϵ

ikj with i < j, one can use definition
(9) to decompose Iϵ

ikj as

I ϵ
ikj ¼

Xj−1
a¼i

Iϵ
akðaþ1Þ: ð10Þ

Each I ϵ
akðaþ1Þ on the rhs can be interpreted as

inserting the leg k between a and (aþ 1). Thus,
the effect of applying Iϵ

ikj can be understood as
inserting k between i and j in the color ordering
…; i;…; j;…, and summing over all possible po-
sitions.

(iii) Longitudinal operator:

Lϵ
i ≡

X
j≠i

ðki ·kjÞ∂ϵi·kj ; Lϵ
ij≡−ðki ·kjÞ∂ϵi·ϵj : ð11Þ

With the basic operators given above, three combinatory
operators are defined as follows:

(i) For a length-m ordered set a⃗m ¼ ha1;…; ami of
external particles, the operator T ϵ

a⃗m
is defined as2

T ϵ
a⃗m

≡
�Ym−1

i¼2

I ϵ
a1aiaiþ1

�
T ϵ

a1am: ð12Þ

In this paper, we use am ¼ fa1;…; amg to denote an
unordered set with length m, and a⃗m ¼ ha1;…; ami
for an ordered set. For amplitudes/Feynman inte-
grands carry color orderings, sometimes we write
down the orderings explicitly if necessary, and
sometimes we use a⃗m to denote orderings. The
combinatory operator T ϵ

a⃗m
turns the spin of aith

external particle with ai ∈ am from sai to sai − 1 by
removing the polarization vector ϵai, and generates
the color ordering a1; a2;…; am as follows: fixes
two reference legs a1 and am at two ends in the color
ordering via the operator T ϵ

a1am, then inserts other
elements between them by using insertion operators
I ϵ
a1aiaiþ1

. The interpretation of insertion operators
indicates that T ϵ

a⃗m
has various equivalent choices, for

example

T ϵ
a⃗m

¼
� Y2

i¼m−1
I ϵ
ai−1aiam

�
T ϵ

a1am;

T ϵ
a⃗m

¼
�Ym−3

i¼3

Iϵ
a2aiaiþ1

�
Iϵ
a2am−2am−1

× I ϵ
a1a2am−1

I ϵ
am−1ama1T

ϵ
a1am−1

; ð13Þ

and so on. The second example shows that it is not
necessary to choose the first operator to be T ϵ

a1am . In
other words, two reference legs in the color ordering
can be chosen arbitrary.

(ii) For n-point amplitudes, the operator Lϵ is defined as

Lϵ ≡Y
i

Lϵ
i ; L̄ϵ ≡ X

ρ∈pair

Y
i;j∈ρ

Lϵ
ij: ð14Þ

1Here the gravity is understood as a generalized version, i.e.,
gravitons coupled to dilatons and B fields.

2In this paper, we adopt the convention that the operator at the
lhs acts after the operator at the rhs. From the mathematical point
of view, the order of operators is irrelevant, since all operators are
commutable with each other. We choose the order of operators in
the definition to emphasize the interpretation of each one.
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Two definitions Lϵ and L̄ϵ are not equivalent to
each other at the algebraic level. However, when
acting on proper on-shell physical amplitudes,
two combinations Lϵ · T ϵ

ab and L̄ϵ · T ϵ
ab, with sub-

scripts of Lϵ
i and Lϵ

ij run through all nodes in
f1; 2;…; ngnfa; bg, giving the same effect which
can be interpreted physically.

(iii) For a length-2m set, the operator T ϵ
X2m

is defined as

T ϵ
X2m

≡ X
ρ∈pair

Y
ik;jk∈ρ

δIik IjkT
ϵ
ikjk

; ð15Þ

where Ia denotes the flavor carried by the ath
particle. For the special case 2m particles do not
carry any flavor, the operator T ϵ

X2m
is defined by

removing δIik Ijk ,

T ϵ
X2m

≡ X
ρ∈pair

Y
ik;jk∈ρ

T ϵ
ikjk

: ð16Þ

Here is the explanation for the notation
P

ρ∈pair
Q

ik;jk∈ρ.
Let Γ be the set of all partitions of the set f1; 2;…; 2mg into
pairs without regard to the order. An element in Γ can be
written as

ρ ¼ fði1; j1Þ; ði2; j2Þ;…; ðim; jmÞg; ð17Þ

with conditions i1 < i2 < � � � < im and it < jt; ∀ t. Then,Q
ik;jk∈ρ stands for the product of T

ϵ
ikjk

for all pairs ðik; jkÞ
in ρ, and

P
ρ∈pair denotes the summation over all partitions.

The combinatory operators defined above link tree
amplitudes of a wide range of theories together, by trans-
muting the GR amplitudes to amplitudes of other theories,
formally expressed as

A ¼ OϵOϵ̃Aϵ;ϵ̃
GR: ð18Þ

Operators Oϵ and Oϵ̃ for different theories are listed in
Table I.
The EYM theory appearing in Table I is the single-trace

Einstein-Yang-Mills theory, denoted by sEYM.3 Let us
explain other notations in turn. The symbol I stands for the
identical operator. Up indexes h, p, g and s denote
gravitons, photons, gluons and scalars. For instance, ahn
is the unordered set of gravitons with length n, a⃗gm is the
ordered set of gluons with length m. The total number of
external legs is denoted by n, each set with length m is a
subset of external legs. We useAϵ̃

SYMSðas2m; agn−mka⃗AnÞ as the

example to explain notations ka⃗An and ;. For the amplitude
including more than one kind of particles, such as scalars
and gluons in the example, ka⃗An stands for the color ordering
among all external legs, without distinguishing the kinds of
them. Notation ; is used to separate different kinds of
external particles, with the convention that particles at the
lhs of ; carry lower spin. In our example, the lhs of ; are
scalars, while the rhs are gluons. The up index ofA denotes
the polarization vectors carried by external particles. When
the amplitude includes external gravitons, the rule is: the
previous polarization vectors are only carried by gravitons,
while the later ones are carried by all particles. For instance,
in the notation Aϵ;ϵ̃

EMfðap2m; ahn−2mÞ, polarization vectors in
fϵig are only carried by gravitons, while those in fϵ̃ig are
carried by both photons and gravitons. For the BAS
amplitude, we have used a⃗n and ⃗sn to distinguish two
color orderings among external legs. In later sections, when
considering more than one color orderings simultaneously,
we frequently use ⃗s in addition to a⃗, to avoid the ambiguity.
The above tree level unity can be generalized to one-loop

Feynman integrands via the following idea, as studied in
[29]. Suppose the tree amplitudes of theories A and B are
connected by the operator O as AB ¼ OAA; we seek the
one-loop level operator O∘ satisfying O∘FAA ¼ FOAA.
Since the one-loop Feynman integrands are obtained
through the forward limit as IA ¼ ð1=l2ÞFAA and
IB ¼ ð1=l2ÞFAB, one can conclude that the operator
O∘ transmutes the Feynman integrand as IB ¼ O∘IA.
Using the above idea, the one-loop generalization of the

tree level unifying relation (18) is found to be

I ¼ Oϵ∘Oϵ̃∘Iϵ;ϵ̃GR: ð19Þ

The one-loop level operators Oϵ∘ and Oϵ̃∘ for different
theories are listed in Table II.

TABLE I. Unifying relations for differential operators at tree
level.

Amplitude Oϵ Oϵ̃

Aϵ;ϵ̃
GRðahnÞ I I

Aϵ;ϵ̃
sEYMða⃗m; ahn−mÞ T ϵ

a⃗m
I

Aϵ;ϵ̃
EMfðap2m; ahn−2mÞ T ϵ

X2m
I

Aϵ;ϵ̃
EMðap2m; ahn−2mÞ T ϵ

X2m
I

Aϵ̃
BIðapn Þ LϵT ϵ

ab I
Aϵ̃

YMða⃗gnÞ T ϵ
a⃗n

I

Aϵ̃
sYMSða⃗sm; agn−mka⃗An Þ T ϵ

a⃗n
T ϵ̃

a⃗m
Aϵ̃

SYMSðas2m; agn−mka⃗An Þ T ϵ
a⃗n

T ϵ̃
X 2m

ANLSMða⃗snÞ T ϵ
a⃗n

Lϵ̃T ϵ̃
a0b0

ABASða⃗snk ⃗ssnÞ T ϵ
a⃗n

T ϵ̃
⃗sn

Aϵ̃
DBIðas2m; apn−2mÞ LϵT ϵ

ab T ϵ̃
X 2m

Aϵ̃
EDBIða⃗sm; apn−2mÞ LϵT ϵ

ab T ϵ̃
a⃗m

ASGðasnÞ LϵT ϵ
ab Lϵ̃T ϵ̃

a0b0

3In [13–15], the operators which generate the general multiple-
trace tree EYM amplitudes are also considered. These operators
are not included in Table I, since we will not consider them
throughout this paper.

TRANSMUTATION OPERATORS AND EXPANSIONS FOR ONE… PHYS. REV. D 106, 025014 (2022)

025014-5



In Table II, ssEYM denotes the special part of the sEYM
Feynman integrand that the virtual particle propagating in
the loop is only a gluon. Similarly, ssYMS denotes the
special sYMS integrand with a virtual scalar in the loop,
and ssEDBI is the special EDBI integrand with a virtual
scalar in the loop. Integrands I∘ with the subscript ∘ are full
one-loop Feynman integrands, while Iwithout ∘ are partial
Feynman integrands, as introduced in the previous sub-
section. We used þ; a⃗m;− and þ; a⃗n;− to denote the color
orderings of partial integrands, whereþ, − are external legs
carrying kþ and k− respectively before taking the forward
limit. After doing the cyclic summation over the one-loop
level equivalent color orderings, we use a⃗m or a⃗n instead of
þ; a⃗m;− or þ; a⃗n;−. For example,

IBASða⃗snkþs; s⃗sn;−sÞ¼
X
πc

IBASðþs;πcða⃗snÞ;−skþs; s⃗sn;−sÞ;

IBAS;∘ða⃗snks⃗snÞ¼
X
πc

IBASðπcða⃗snÞkþs;πcðs⃗snÞ;−sÞ;

ð20Þ

where πc denotes the cyclic permutation.
In Table II, the one-loop level differential operators are

defined as follows. The operator T ϵ
þa⃗m−

is given as

T ϵ
þa⃗m−

≡
�Ym−1

i¼1

I ϵþaiaiþ1

�
Iϵþam−D: ð21Þ

The operator D in (21) is defined in the following way. We
think the Lorentz vectors before taking the forward limit as,
the momenta in fk1;…; kn;lg and polarization vectors in
fϵ1;…; ϵng lie in the d dimensional space where d is
regarded as a constant, while the polarization vectors ϵþ

and ϵ− are in the D dimensional space where D is regarded
as a variable. We can set D ¼ d finally to obtain a
physically acceptable object. Then we define

D≡ ∂D: ð22Þ

For gravitons, we regard D ¼ P
r ϵ

rþ · ϵr− þ 2 and D̃ ¼P
r ϵ̃

rþ · ϵ̃r− þ 2 as two independent variables, namely,
∂DD̃ ¼ 0, ∂D̃D ¼ 0. The insertion operators are defined by

I ϵþai− ≡ ∂ϵi·l; I ϵþaiaiþ1
≡ ∂ϵai ·l

− ∂ϵai ·kaiþ1
: ð23Þ

Here l is understood as kþ, since one can always let
k− ¼ −l to be removed, due to the momentum conserva-
tion law. The operators T ϵ

X2m
, T ϵ

X2m
and Lϵ are the same as

the tree level ones. The number N in the combinatory
operator T ϵ̃

X2m
ðND̃þ 1Þ stands for the number of different

flavors. When applying Lϵ at the one-loop level, the
operator Lϵ

i should include ∂ϵi·kþ ¼ ∂ϵi·l.

III. NEW OPERATORS TRANSMUTE
GR TO YM AND YM TO BAS

In this section, we construct a new class of differential
operators which transmute the GR Feynman integrands to
EYM and YM integrands.
In [29], the differential operators transmuting the one-

loop GR Feynman integrand to the YM partial ones are
constructed as follows. At tree level, the transmutation
operator is chosen as

T ϵ
þa⃗m−

¼
�Ym

i¼2

I ϵ
ai−1ai−

�
Iϵþa1−T

ϵþ−: ð24Þ

The trace operator T ϵþ− turns the external gravitonsþh and
−h to gluons, and fixes legs þ and − at two ends in the
color ordering. Then, the insertion operators turn other
gravitons to gluons, and insert them between þ and −
to generate the full color ordering. The obtained color
ordered tree amplitude is Aϵ̃

YMðþg; a⃗gn;−gÞ. Based on the
above tree level manipulation, by seeking the operator Oϵ∘
satisfying Oϵ∘FAϵ;ϵ̃

GR ¼ FT ϵ
þa⃗m−

Aϵ;ϵ̃
GR, one can construct the

corresponding one-loop level operator Oϵ∘ which trans-
mutes the GR integrand Iϵ;ϵ̃GR;∘ðahnÞ to the partial YM one
Iϵ̃YMðþg; a⃗gn;−gÞ. However, to generate the tree color
ordered YM amplitude Aϵ̃

YMðþg; a⃗gn;−gÞ, the operator
(24) is not the only choice. Actually, one can turn arbitrary
two gravitons to gluons at the first step, and insert other legs
between them to get the desired result. Thus it is natural to
ask, if we make the different choices of operators at tree
level, what level operators can be constructed at one-loop
level? What physical effects will these new operators have
when acting on Iϵ;ϵ̃GR;∘ðahnÞ?

TABLE II. Oϵ∘ and Oϵ̃∘ for various theories.

Feynman integrand Oϵ∘ Oϵ̃∘
Iϵ;ϵ̃GR;∘ðahnÞ I I

Iϵ;ϵ̃ssEYMðþg; a⃗gm;−g; ahn−mÞ I T ϵ̃
þa⃗m−

Iϵ;ϵ̃EMf;∘ðap2m; ahn−2mÞ I T ϵ̃
X2m

ðND̃þ 1Þ
Iϵ;ϵ̃EM;∘ðap2m; ahn−2mÞ I T ϵ̃

X2m
ðD̃þ 1Þ

IϵBI;∘ðapnÞ I Lϵ̃D̃
IϵYMðþa⃗gn−Þ I T ϵ̃

þa⃗n−
Iϵ̃ssYMSðþs; a⃗sm;−s; agn−mkþA; a⃗An ;−AÞ T ϵ

þa⃗n−
T ϵ̃

þa⃗m−
Iϵ̃SYMSðas2m; agn−mkþA; a⃗An ;−AÞ T ϵ

þa⃗n− T ϵ̃
X2m

ðND̃þ 1Þ
INLSM;∘ða⃗snÞ T ϵ

þa⃗n− Lϵ̃D̃
IBASðþs; a⃗sn;−skþs; ⃗ssn;−sÞ T ϵ

þa⃗n−
T ϵ̃

þ ⃗sn−
Iϵ̃DBI;∘ðas2m; apn−2mÞ LϵD T ϵ̃

X2m
ðND̃þ 1Þ

Iϵ̃ssEDBIðþs; a⃗sm;−s; apn−2mÞ LϵD T ϵ̃
þa⃗m−

ISG;∘ðasnÞ LϵD Lϵ̃D̃
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In this section, we show that choosing two reference legs
as one in fþ;−g and another one in an leads to new
operators at the one-loop level which transmute Iϵ;ϵ̃GR;∘ðahnÞ
to ssEYM and YM integrands. These new operators also
link the YM, ssYMS and BAS integrands together, as
indicated by the tree level transmutation relations.

A. Construction of new operators

The goal of this subsection is to construct the operator
(35) which transmutes the GR Feynman integrands to
ssEYM ones as in (39). The YM integrands serve as
the special case of ssEYM, as can be reached by taking
am ¼ an in (39). As pointed out in Sec. II B, to transmute
the tree GR amplitude Aϵ;ϵ̃

GRðahn ∪ fþh;−hgÞ to tree single-
trace EYM (sEYM) amplitude Aϵ;ϵ̃

EYMðþ; a⃗gm;−; ahnnahmÞ,
the choices for transmutation operator T ϵ

a⃗m
are not

unique. Here we still restrict ourselves to the choices that
the color ordering is created by generating two reference
legs at two ends, and inserting other legs between
them. However, for ahm ≠ ∅, we use the cyclic symmetry
of color orderings to rewrite Aϵ;ϵ̃

EYMðþg; a⃗gm;−g; ahnnahmÞ as
Aϵ;ϵ̃

EYMða⃗gm;−g;þg; ahnnahmÞ. The new representation of color
ordering indicates the new choice of the tree level operator,

T ϵ
a⃗m−þ ¼ I ϵ

am−þ

�Ym
i¼2

I ϵ
ai−1aiþ

�
T ϵ

a1þ: ð25Þ

Then we seek the operator Oϵ∘ satisfying

Oϵ∘FAϵ;ϵ̃
GR ¼ FT ϵ

a⃗m−þA
ϵ;ϵ̃
GR: ð26Þ

The difference between the two choices (24) and (25) is
quite trivial at the tree level. However, since the forward
limit glues legsþ and − together to create the loop, the new
choice (25) leads to totally new operators at the one-loop
level. For tree sEYM amplitudes with at least four external
gluons, the above method leads to well defined and
physically meaningful operators. For tree sEYM ampli-
tudes containing only three external gluons, this method
does not make sense, as explained in Appendix B.
Thus we start with the four-gluon tree amplitude

Aϵ;ϵ̃
sEYMðþg; ag; bg;−g; ahnnfah; bhgÞ. Using the cyclic sym-

metry of color orderings, as well as the tree level differ-
ential operators, we have

Aϵ;ϵ̃
sEYMðag; bg;−g;þg; ahnnfah; bhgÞ

¼ I ϵ
b−þI

ϵ
abþT

ϵ
aþA

ϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ

¼ ð∂ϵ−·kb − ∂ϵ−·lÞð∂ϵb·ka − ∂ϵb·lÞ∂ϵa·ϵþAϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ:

ð27Þ

The above manipulation is understood as turning gravitons
ah and þh to gluons and regarding them as the reference

legs, then turning the graviton bh to a gluon and inserting it
between a and þ, and turning the graviton −h to a gluon
and inserting it between b and þ finally. The object ϵ− · l
vanishes under the action of L, since ϵ− · k− ¼ 0 and
k− ¼ −kþ ¼ −l, thus we focus on the ∂ϵ−·kb part in I ϵ

b−þ.
At the tree level, the combinatory operator ∂ϵ−·kb∂ϵa·ϵþ turns
ðϵ− · kbÞðϵa · ϵþÞ to 1, and annihilates all terms which do
not contain ðϵ− · kbÞðϵa · ϵþÞ. Under the action of E, the
object ðϵ− · kbÞðϵa · ϵþÞ behaves asX

r

ðϵa · ϵrþÞðϵr− · kbÞ ¼ ϵa · kb; ð28Þ

thus the effect of the operator ∂ϵ−·kb∂ϵa·ϵþ at the tree level is
equivalent to ∂ϵa ⊳ kb at the one-loop level. In other words,
we find

∂ϵa ⊳ kbFAϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ

¼ FIϵ
b−þT

ϵ
aþA

ϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ: ð29Þ

From now on, we use A⊳B to denote A · B arises fromP
rðA · ϵrþÞðϵr− · BÞ, and A ⊲ B to denote A · B fromP
rðA · ϵr−Þðϵrþ · BÞ. Notice that in general the summation

over ϵrþϵr− should be

X
r

ðϵrþÞμðϵr−Þν ¼ ημν −
lμqν þ lνqμ

l · q
; ð30Þ

where the null q satisfies ϵrþ · q ¼ ϵr− · q ¼ 0. Here we are
allowed to drop the q-dependent terms, since their con-
tributions vanish on the solution to the scattering equations,
see in [42]. When the contribution from summing over
ϵrþϵr− is included in ϵa ⊳ kb, the operator I ϵ

abþ cannot act on
ϵb⊳ ka, ϵb⊳ kl, or ϵb ⊲ ka, ϵb ⊲ kl, therefore is com-
mutable with F . Then we arrive at the relation

I ϵ
abþ∂ϵa ⊳ kbFAϵ;ϵ̃

GRðahn ∪ fþh;−hgÞ
¼ FIϵ

b−þI
ϵ
abþT

ϵ
aþA

ϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ; ð31Þ

which implies

Iϵ
abþ∂ϵa⊳kbI

ϵ;ϵ̃
GR;∘ðahnÞ¼Iϵ;ϵ̃ssEYMðþg;ag;bg;−g;ahnnfah;bhgÞ:

ð32Þ

Here Iϵ;ϵ̃ssEYM denotes the special single-trace EYM partial
Feynman integrand with a virtual gluon running in the loop.
The reason for interpreting the rhs of (32) as such a special
sEYM Feynman integrand is as follows. The EYM theory
includes three kinds of interaction vertices in Fig. 2, which
indicate that for the tree sEYM amplitude including
external gluons þg and −g, one can always start from
one of them, go along the gluon lines, and arrive at another
one. It means, after gluing legs þg and −g together, the
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obtained loop contains only gluon lines. This observation
fixes the virtual particle in the loop to be a gluon.
The operator I ϵ

abþ∂ϵa ⊳ kb can be simplified to
∂ϵb·ka∂ϵa ⊳ kb , since ∂ϵb·l∂ϵa ⊳ kb gives no contribution at
the one-loop level, as proved in Appendix B by using
the CHY formulas introduced in Appendix A. This
observation simplifies the relation (32) to

∂ϵb·ka∂ϵa⊳kbI
ϵ;ϵ̃
GR;∘ðahnÞ¼Iϵ;ϵ̃ssEYMðþg;ag;bg;−g;ahnnfah;bhgÞ:

ð33Þ

The generalization to the cases with more external gluons is
straightforward. Along the similar line, one arrives at the
relation

�Ym−1

i¼1

∂ϵaiþ1
·kai

�
∂ϵa1 ⊳ kam

Iϵ;ϵ̃GR;∘ðahnÞ

¼ Iϵ;ϵ̃ssEYMðþg; ag1;…; agm;−g; ahnnfah1;…; ahmgÞ; ð34Þ

with m ≥ 2.
However, in the one-loop integrand Iϵ;ϵ̃GR;∘ðahnÞ, the tree

level information associated to ϵrþ and ϵr− is lost, thus
ϵa⊳ kb or ϵa ⊲ kb cannot be distinguished from the
original ϵa · kb included in the tree amplitude. It means
the operator ∂ϵa ⊳ kb is not well defined at the one-loop level,
and we should replace it by ∂ϵa·kb. Motivated by the relation
(34), it is natural to act the operator Cϵa⃗m on Iϵ;ϵ̃GR;∘ðahnÞ, where
the cyclical operator Cϵa⃗m for the ordered set a⃗m ¼
ha1;…; ami with m ≥ 2 is defined as

Cϵa⃗m ≡Ym
i¼1

∂kai ·ϵaiþ1
¼ ∂Cϵ

a⃗m
; ð35Þ

where

Cϵ
a⃗m

¼
Ym
i¼1

kai · ϵaiþ1
: ð36Þ

The second equality in (35) holds as long as the Feynman
integrand is linear in each polarization vector. When
saying this is a cyclical operator, we mean Cϵa⃗m is invariant
under the arbitrary cyclic permutation of the ordered
set a⃗m.

Thus we need to figure out the effect of acting Cϵa⃗m
on Iϵ;ϵ̃GR;∘ðahnÞ. The operator ∂ϵa1 ·kam acts on both ϵa1 ⊳ kam
and ϵa1 ⊲ kam , as well as ordinary ϵa1 · kam in
Aϵ;ϵ̃

GRðahn ∪ fþh;−hgÞ. The effect of acting ∂ϵa1 ·kam
on

ϵa1 ⊲ kam in Iϵ;ϵ̃GR;∘ðahnÞ is equivalent to acting ∂ϵa1 ⊲ kam

on Iϵ;ϵ̃GR;∘ðahnÞ. Following the similar method for obtaining
(34), we find

�Ym−1

i¼1

∂ϵaiþ1
·kai

�
∂ϵa1 ⊲ kam

Iϵ;ϵ̃GR;∘ðahnÞ

¼ ð−ÞmIϵ;ϵ̃ssEYMðþg; agm;…; ag1;−g; ahnnahmÞ; ð37Þ
with m ≥ 2. The derivation can be seen in Appendix B. On
the other hand, the cyclical operator Cϵa⃗m annihilates

Aϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ, i.e.,

Cϵa⃗mA
ϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ ¼ 0; ð38Þ

which means one need not consider the case ∂ϵa1 ·kam acts on

ordinary ϵa1 · kam in Aϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ. The proof of the

equality (38) is also provided in Appendix B.
With the results (34), (37) and (38), now we

can determine the resulting object of acting Cϵa⃗m on
Iϵ;ϵ̃GR;∘ðahnÞ. Since there is only one ϵþ and one ϵ− at the
tree level, among m operators ∂ϵai ·kai−1 , at most one of them

can act on ϵai ⊳ kai−1 or ϵai ⊲ kai−1, the remaining operators
must act on the original ϵai · kai−1 in Aϵ;ϵ̃

GRðahn ∪ fþh;−hgÞ.
On the other hand, if none of them acts on ϵai ⊳ kai−1 or
ϵai ⊲ kai−1 , the equality (38) indicates the vanishing
of the result. Thus, the nonvanishing contributions
arise from acting ðQi−2

j¼i∂ϵajþ1
·kaj

Þ∂ϵai ⊳kai−1
, as well as

ðQi−2
j¼i∂ϵajþ1

·kaj
Þ∂ϵai ⊲kai−1

, for all i ∈ f1;…; mg. Applying
(34) and (37), we finally find

Cϵa⃗mI
ϵ;ϵ̃
GR;∘ðahnÞ¼Iϵ;ϵ̃ssEYM;∘ða⃗ g

m;ahnnahmÞ
þð−ÞmIϵ;ϵ̃ssEYM;∘ða⃖ g

m;ahnnahmÞ; with m≥2;

ð39Þ

where a⃖m is the reversed set of a⃗m, i.e., a⃖m ¼ ham;…; a1i,
and

Iϵ;ϵ̃ssEYM;∘ða⃗gm; ahnnahmÞ ¼
X
πc

Iϵ;ϵ̃ssEYMðþ; πcða⃗gmÞ;−; ahnnahmÞ;

Iϵ;ϵ̃ssEYM;∘ða⃖gm; ahnnahmÞ ¼
X
πc

Iϵ;ϵ̃ssEYMðþ; πcða⃖gmÞ;−; ahnnahmÞ;

ð40Þ

where πc are the cyclic permutations. Now we have found
the one-loop level operators Cϵa⃗m , which transmute the GR

FIG. 2. Three vertices of EYM theory, the single wavy lines
denote gluons while the double wavy lines denote gravitons.
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Feynman integrands to the ssEYM ones, formally
expressed in (39). The rhs of (39) is invariant under
the cyclic permutation of a⃗m, as indicated by the
cyclic symmetry of the operator Cϵa⃗m. We emphasize that

Iϵ;ϵ̃ssEYM;∘ða⃗gm; ahnnahmÞ and Iϵ;ϵ̃ssEYM;∘ða⃖gm; ahnnahmÞ appearing in
(39) are full one-loop color ordered ssEYM integrands,
rather than partial ones without the cyclic summation. The
transmutation relation (39) can be verified by using the
CHY formulas, as shown in Appendix C.
Some discussions are in order. First, the operators Cϵa⃗m do

not act on any Lorentz invariants that include the loop
momentum l, thus are commutable with the integration of
l. This observation implies that the relation (39) holds at
not only the integrand level, but also the integral level.
Second, the operator Cϵa⃗m preserves the gauge invariance.

To see this, we consider the following operator for the
external leg ai, defined based on the Ward’s identity:

Wϵ
ai ≡

X
V

kai · V∂ϵai ·V; ð41Þ

where V denotes either momenta or polarization vectors
contract with ϵai . Any gauge invariant object should be
annihilated by this operator. Suppose the object A is gauge
invariant for the leg ai, i.e., Wϵ

aiA ¼ 0, the commutator
½Wϵ

ai ; C
ϵ
a⃗m
� ¼ 0 indicates

Wϵ
aiC

ϵ
a⃗m
A ¼ 0: ð42Þ

Third, at the tree level, the operators, which transmute
the tree GR amplitudes to the tree sEYM amplitudes, also
transmute the color ordered YM ones to the sYMS ones, as
can be seen in Table I. Thus, replacingAϵ;ϵ̃

GR byAϵ
YM in (26),

we see the operators Cϵa⃗m also transmute the one-loop YM
partial Feynman integrands to the ssYMS ones,

Cϵa⃗mI
ϵ
YMðþg; a⃗gn;−gÞ¼IϵssYMSða⃗sm;agnnagmkþA; a⃗An ;−AÞ

þð−ÞmIϵssYMSða⃖sm;agnnagmkþA; a⃗An ;−AÞ:
ð43Þ

Doing the cyclic summation for the color orderings
þ; a⃗n;−, one obtains

Cϵa⃗mI
ϵ
YM;∘ða⃗gnÞ ¼ IϵssYMS;∘ða⃗sm; agnnagmka⃗AnÞ

þ ð−ÞmIϵssYMS;∘ða⃖sm; agnnagmka⃗AnÞ; ð44Þ

which links the full color ordered YM and ssYMS
integrands together.

IV. EXPANDING GR AND EYM TO YM

In this section, we demonstrate that the one-loop level
transmutation relations naturally lead to the expansions of

one-loop EYM and GR Feynman integrands to YM ones.
The main goal of this section is the expansions (75) and
(76), as well as the rules for evaluating coefficients Cϵ

1ðσÞ
and Cϵ

2ðσ; a⃗mÞ in them.
At the tree level, the unifying relations among different

theories can also be represented by expansions, i.e., the
amplitude of one theory can be expanded to amplitudes of
another theory [17–26,38]. In particular, all theories in
Table I can be expanded to BAS amplitudes, with double
copied coefficients [28]. The unified web for expansions
serves as the dual version of the web for transmutation
relations [28]. Inspired by the tree level story, an interesting
question is, can the unified web for expansions at one-loop
level be constructed from the one-loop transmutation
relations, together with other appropriate general principles
and assumptions? The answer is positive, as will be shown
in this and the next sections.
Here we list the principles and assumptions beside

differential operators, which will be used to solve
expansions:

(i) Lorentz invariance
(ii) Gauge invariance
(iii) Property of GR Feynman integrands: We assume

each external graviton ih carries the polarization
tensor ϵμνi ¼ ϵμi ϵ̃

ν
i , and the GR integrands carry no

color ordering.
(iv) Double-copy structure: We assume each polarization

vector in the set fϵig cannot contract with another
polarization vector in the set fϵ̃ig, and vice versa.

(v) On-shell condition: We assume ϵi · ki ¼ 0 for each
external leg i.

(vi) Linearity in ϵi: We assume the Feynman integrand is
linear in each polarization vector ϵi.

(vii) Forward limit: We assume the one-loop integrands
can be generated from the tree amplitudes via the
forward limit.

The first six principles/assumptions are also used for
deriving the expansions of tree amplitudes, while the last
one only makes sense at the one-loop level. Here we give a
brief discussion about the third assumption. It seems that
one should make similar assumptions for other theories, but
indeed it is not necessary, since the assumption for the GR
integrands, together with differential operators, uniquely
fix the information about polarization vectors and color
orderings for the Feynman integrands of other theories. For
example, the relation

T ϵ
þa⃗gn−

Iϵ;ϵ̃GRðahnÞ ¼ Iϵ̃YMðþg; a⃗gn;−gÞ ð45Þ

indicates each external gluon ig carries the polarization
vector ϵ̃i, and the YM partial integrand carries the color
ordering þ; a⃗n;−, as long as each graviton carries ϵiϵ̃i and
the GR integrand carries no color ordering. As will be seen
soon, the information carried by transmutation operators,
together with the seven general principles/assumptions
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mentioned above, fully determine the expansions of
ssEYM and GR integrands to YM ones, with polynomial
coefficients.
It is worth classifying the basis for expansions. At the

tree level, for YM amplitudes with nþ 2 external legs, one
can take the basis as n! color ordered YM amplitudes with
two legs fixed at two ends in the color orderings, and
expand the EYM and GR amplitudes to these YM
amplitudes, with polynomial coefficients. Such basis is
called the KK basis, since its completeness is ensured by
the Kleiss-Kuijf relation [41]. Suppose we fix legsþ and −
at two ends in the color orderings to obtain the tree level
KK basis; taking the forward limit naturally leads to the
one-loop KK basis including YM partial Feynman inte-
grands Iϵ̃YMðþg; σða⃗gnÞ;−gÞ, where σ denotes the permuta-
tions. This is the choice of basis in the current section. In
the next section, we will generalize the one-loop KK basis
to color ordered partial integrands of other theories.
The main idea in this section is as follows. Suppose a

one-loop level operator O∘ transmutes the Feynman inte-
grand of theory A to that of theory B, i.e.,

O∘IA ¼ IB: ð46Þ

We regard (46) as a differential equation, rather than a
transmutation relation. Then, one can solve this equation to
get IA. The general feature is IA contains terms which are
annihilated by the operator O∘; these terms cannot be fixed

by solving the differential equation. Terms vanishing under
the action of O∘ are called undetectable terms for the
operator O∘. The undetectable terms should be determined
via other conditions, such as imposing the gauge invariance
requirement, and so on. By applying the method described
above, in Sec. IVA, we solve the recursive expansions of
ssEYM and GR Feynman integrands to ssEYM partial
integrands with less external gravitons. In Sec. IV B, we
use the results in Sec. IVA to get the expansions of GR and
ssEYM integrands to YM ones, and give the rules for
constructing the coefficients.

A. Recursive expansions of EYM and GR

This subsection focuses on recursive expansions of
ssEYM and GR Feynman integrands implied by the
one-loop level differential operators. Since the technique
for treating ssEYM bears strong similarity with the
approach for solving the expansions of the tree sEYM
amplitudes in [26], we only give the resulting expanded
formula. For the readers’ convenience, the details are
provided in Appendix D. On the other hand, the expansions
of GR integrands to EYM ones will be discussed in detail,
since the process has no analog at tree level.
The recursive expansion, which decomposes the ssEYM

Feynman integrands to ssEYM ones with less external
gravitons, is found to be

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼
X

⃗s∶s⊆ahmnhm

X
⧢

Kϵ
⃗sI

ϵ;ϵ̃
ssEYMðþg; h⃗sg; hgmi ⧢ a⃗gn−m;−; ahmnfhhm; shgÞ: ð47Þ

The lhs is the partial ssEYM integrand with n −m external
gluons and m external gravitons. The color ordered set of
gluons is labeled as a⃗n−m ¼ h1;…; n −mi, while the set of
gravitons is labeled as ahm ¼ fh1;…; hmg. The first sum-
mation is over all ordered sets ⃗s with s ⊆ ahmnhm; here s is
allowed to be empty. The second summation over possible
shuffles ⧢ of two ordered sets a⃗ and ⃗s is the summation
over all permutations of a⃗ ∪ ⃗s those preserving the order-
ings of a⃗ and ⃗s. For example, h1; 2i⧢h3; 4i includes the
following ordered sets: h2; 3; 4; 5i, h2; 4; 3; 5i, h2; 4; 5; 3i,
h4; 2; 3; 5i, h4; 2; 5; 3i, h4; 5; 2; 3i. The kinematic factor Kϵ

⃗s
is defined as

Kϵ
⃗s ¼ ϵhm · fsjsj � � � fs1 · Ys1 ; ð48Þ

for any ⃗s ¼ hs1;…; sjsji, where the antisymmetric strength
tensors are defined as

fμνi ≡ kμi ϵ
ν
i − ϵμi k

ν
i ; f̃μνi ≡ kμi ϵ̃

ν
i − ϵ̃μi k

ν
i : ð49Þ

The combinatory momentum Yi is defined as the summa-
tion of momenta of gluons at the lhs of the leg ig in the color
ordering [22].
Using the expansion (47) recursively, one can expand

any ssEYM partial integrand to YM ones; the coefficients
of these YM partial integrands will be studied in Sec. IV B.
Now we turn to the expansions of the GR Feynman

integrands. The idea is to decompose the integrand into
some independent Lorentz invariants, and solve the coef-
ficients of such Lorentz invariants via differential operators.
To find the proper decomposition, we use the conclusion in
[43] that if one imposes the gauge invariance for all external
legs, then the tree GR amplitude Aϵ;ϵ̃

GRðahn ∪ fþh;−hgÞ can
always be decomposed into Lorentz invariants in the form

ωϵðþh; a⃗h;−hjsignsÞ≡ ϵþ · va1

�Yjaj
i¼2

v̄ai−1 · vai

�
v̄ajaj · ϵ−:

ð50Þ
Here a is a subset of ahn which is allowed to be empty,
vi denotes either ki or ϵi, with v̄i the other one, i.e.,
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ðvi; v̄iÞ ¼ ðki; ϵiÞ or ðϵi; kiÞ, and the first/second choice is
denoted by a þ or − sign. The proof of this formula is only
based on general considerations for tree amplitudes, which
are the first six of seven principles/assumptions mentioned
at the beginning of this section, as well as counting the
number of mass dimensions. We emphasize that the power
counting can be made without using Feynman rules, CHY
formulas, or other tools, since the transmutation relation

T ϵ
þ;a⃗n;−

Aϵ;ϵ̃
GRðahn∪fþh;−hgÞ¼Aϵ̃

YMða⃗gn ∪fþg;−ggÞ ð51Þ

is sufficient to determine

dimðAϵ;ϵ̃
GRðahn∪fþh;−hgÞÞ¼dimðAϵ̃

YMða⃗gn ∪fþg;−ggÞÞþn;

ð52Þ

and only the number n is necessary for constructing
ωϵðþh; a⃗h;−hjsignsÞ in (50). When taking the forward
limit, the Lorentz invariants ωϵðþh; a⃗h;−hÞ behave asX

r

ϵrþ · ϵr− ¼ d − 2; if a ¼ ∅; ð53Þ

and

X
r

ϵrþ ·va1

�Yjaj
i¼2

v̄ai−1 ·vai

�
v̄ajaj ·ϵ

r
−¼

Yjaj
i¼1

v̄ai−1 ·vai ; if a≠∅:

ð54Þ

Thus, the one-loop GR integrand can be decomposed as

Iϵ;ϵ̃GR;∘ðahnÞ ¼ ðd − 2ÞLϵ;ϵ̃
∅ þ

X
a⃗=πc

�Yjaj
i¼1

v̄ai−1 · vai

�
Lϵ;ϵ̃
a⃗ ðsignÞ

¼ ðd − 2ÞLϵ;ϵ̃
∅ þ

X
a⃗=πc

Cϵ
a⃗L

ϵ;ϵ̃
a⃗ ð−Þ þ R: ð55Þ

In the above formula, the summation is over all subsets
a ⊆ ahn satisfying a ≠ ∅, and all uncyclic permutations for
each a⃗. In the second line, we have collected together terms
contain Cϵ

a⃗, and denoted the remaining terms by R. The

factor Cϵ
a⃗ defined in (36) satisfies the form

Qjaj
i¼1 v̄ai−1 · vai ,

with the choice ðvi; v̄iÞ ¼ ðϵi; kiÞ for each i, i.e., the sign is
− for each i. This is the reason why we use the sign − in
Lϵ;ϵ̃
a⃗ ð−Þ. The reason for organizing Iϵ;ϵ̃GR;∘ðahnÞ as in the

second line is that the term containing (d − 2) is detectable
for the operatorD, while terms containingCϵ

a⃗ are detectable
for the operators Cϵa⃗m .

The coefficients Lϵ;ϵ̃
∅ and Lϵ;ϵ̃

a⃗ ð−Þ can be determined via
the transmutation relation (39), as well as the relation

DIϵ;ϵ̃GR;∘ðahnÞ ¼ Iϵ;ϵ̃ssEYM;∘ðahnÞ ð56Þ

which is the special case with am ¼ ∅ in the second line of
Table II. Here we have used the observation
Iϵ;ϵ̃ssEYM;∘ðahnÞ ¼ Iϵ;ϵ̃ssEYMðþg;−g; ahnÞ, since no summation
over cyclic permutations is required when am ¼ ∅.
Applying (56) fixes Lϵ;ϵ̃

∅ to be4

Lϵ;ϵ̃
∅ ¼ Iϵ;ϵ̃ssEYM;∘ðahnÞ: ð57Þ

The transmutation relation (39) indicates that

Cϵ
a⃗½Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ
þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ� ∈ Iϵ;ϵ̃GR;∘ðahnÞ: ð58Þ

This motivates us to identify Lϵ;ϵ̃
a⃗ ð−Þ as

Lϵ;ϵ̃
a⃗ ð−Þ ¼ Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ;

ð59Þ

and arrive at

Iϵ;ϵ̃GR;∘ðahnÞ¼ðd−2ÞIϵ;ϵ̃ssEYM;∘ðahnÞþ
X
a⃗=πc

Cϵ
a⃗½Iϵ;ϵ̃ssEYM;∘ða⃗g;ahnnahÞ

þð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g;ahnnahÞ�þR: ð60Þ

The above formula is the correct solution to Eqs. (56) and
(39) if DR ¼ 0 and Cϵa⃗mR ¼ 0, as verified in Appendix E.
The remaining part R can be determined by imposing the

gauge invariance. Here we employ the Ward’s identity
operator defined in (41). If an object P is gauge invariant,
i.e., Wϵ

iP ¼ 0, then we have

∂ϵq·kiðWϵ
iPÞ ¼ 0; for ∀ q; ð61Þ

therefore

0 ¼ ð∂ϵq·kiWϵ
i ÞPþWϵ

i ð∂ϵq·kiPÞ
¼ ∂ϵq·ϵiPþWϵ

i ð∂ϵq·kiPÞ: ð62Þ

If we restrict our attention to amplitudes and Feynman
integrands, we can require P to be linear in each polari-
zation vector. Under this condition, one can immediately
conclude that

−ðϵq · ϵiÞðWϵ
i ð∂ϵq·kiPÞÞ ∈ P: ð63Þ

Now we apply the gauge invariance condition (63) to
terms in (60). Manifestly,

4Here we used the observation that the parameter d only arises
from

P
r ϵ

rþ · ϵr−, since no other Lorentz invariant depends on the
number of dimensions of space-time explicitly.
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Wϵ
i ½ðd−2ÞIϵ;ϵ̃ssEYM;∘ðahnÞ�¼0;

Wϵ
i ½Cϵ

a⃗½Iϵ;ϵ̃ssEYM;∘ða⃗g;ahnnahÞþð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g;ahnnahÞ��¼0;

if i∈anna; ð64Þ

due to the gauge invariance of the Feynman integrands
Iϵ;ϵ̃ssEYM;∘ðahnÞ, Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ and Iϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ.
Thus, for the above parts, condition (63) is satisfied
automatically. Then we move to the case i ∈ a. Based
on the definition of the coefficients Cϵ

a⃗ in (36), we observe
the following reorganization:

X
a⃗=πc
i∈a

Cϵ
a⃗½Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ�

¼
X
j≠i

ðϵj · kiÞðϵi · BijÞ: ð65Þ

It is not necessary to provide the explicit formulas of the
vectors Bμ

ij here. The key point is

Wϵ
i∂ϵq·ki

�X
j≠i

ðϵj · kiÞðϵi · BijÞ
�

¼ ki · Biq; ð66Þ

thus from (63) we know that

−ðϵq · ϵiÞðki · BiqÞ ∈ Iϵ;ϵ̃GR;∘ðahnÞ: ð67Þ

In formula (60), the object −ðϵq · ϵiÞðki · BiqÞ belongs to
the unknown R. In other words, we have to detect a piece
of R.
To determine the full R, we first combine ðϵq · kiÞðϵi ·

BiqÞ in (65) and −ðϵq · ϵiÞðki · BiqÞ in (67) together as
ðϵq · fi · BiqÞ, where the tensor fμνi is defined in (49). Since
q is chosen arbitrary, all the tensors kμi ϵ

ν
i should be replaced

by fμνi at the rhs of (65). The leg i is also chosen arbitrary,
and each Cϵ

a⃗ is invariant under the cyclic permutations for a⃗.
Such symmetry requires us to replace all kμaiϵ

ν
ai in the

cyclical factor Cϵ
a⃗ by fμνai . Thus we find the replacement

Cϵ
a⃗ → Trϵa⃖ ¼ Trðfajaj � � � fa1Þ: ð68Þ

This replacement detects various new terms in R, and all
these new terms vanish under the action of D and Cϵ⃗sm . This
observation supports our assumptions DR ¼ 0 and
Cϵ⃗smR ¼ 0. After doing the replacement, the gauge invari-
ance for each external graviton is manifest, since the tensor
fμνi vanishes under the replacement ϵi → ki.
However, when doing the replacement (68), an over-

counting arises. The term

Trϵa⃖½Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ� ð69Þ

contains not only

Cϵ
a⃗½Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ�; ð70Þ

but also

Cϵ
a⃖½Iϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ�; ð71Þ

and summing over a⃗ counts both a⃗ and a⃖. To handle this, we
recognize the second term in (69) as the first term in

Trϵa⃗½Iϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ�; ð72Þ

and the first term in (69) as the second term in (72), since
Trϵa⃗ ¼ ð−ÞjajTrϵa⃖, due to the antisymmetry of the tensors fμνi .
Thus one can remove the overcounting and get the
expansion

Iϵ;ϵ̃GR;∘ðahnÞ¼ðd−2ÞIϵ;ϵ̃ssEYM;∘ðahnÞþ
X
a⃗=πc

Trϵa⃖I
ϵ;ϵ̃
ssEYM;∘ða⃗g;ahnnahÞ:

ð73Þ

In expansion (73), all coefficients Iϵ;ϵ̃∅ and Iϵ;ϵ̃a⃗ ðsignÞ in
the first line of (55) are fixed, thus (73) is indeed the correct
expanded formula for Iϵ;ϵ̃GR;∘ðahnÞ, which coincides with the
result found in [31]. The coefficients Trϵa⃖ vanish when the
length of a is 1; this feature supports the observation in
Sec. III A that the operator Cϵa⃗m does not make sense when
m ¼ 1. Notice that without the general formula (55), one
cannot conclude the solution (73) has detected all terms in
the full GR integrand. For example, suppose we turn the
factor d − 2 in (73) to d, or add the tree amplitude
Aϵ;ϵ̃

GRðahn ∪ fþh;−hgÞ to the rhs of (73); the obtained results
are still solutions to Eqs. (56) and (39), the Lorentz and
gauge invariance are also satisfied. Such modifications are
excluded by the general formula (55).
The expansion (73) is equivalent to

Iϵ;ϵ̃GR;∘ðahnÞ ¼ ðd − 2ÞIϵ;ϵ̃ssEYMðþg;−g; ahnÞ
þ
X
a⃗

Trϵa⃖I
ϵ;ϵ̃
ssEYMðþg; a⃗g;−g; ahnnahÞ; ð74Þ

which expands Iϵ;ϵ̃GR;∘ðahnÞ to ssEYM partial integrands
rather than full ones. For the work in the next subsection,
it is more convenient to use (74).
In expansions (73) and (74), all coefficients of partial

ssEYM integrands are independent of the loop momentum
l, thus will not be altered by the integration over loop
momentum. Thus, these expansions also hold at the level of
one-loop amplitudes.
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B. Coefficients of basis

From expansions (47) and (74), it is straightforward to
observe that the one-loop ssEYM partial Feynman inte-
grands and GR Feynman integrands can be expanded to
one-loop YM KK basis by applying (47) recursively,
formally expressed as

Iϵ;ϵ̃GR;∘ðahnÞ ¼
X
σ

Cϵ
1ðσÞIϵ̃YMðþg; σða⃗gnÞ;−gÞ; ð75Þ

and

Iϵ;ϵ̃ssEYMðþ; a⃗gm;−;ahn−mÞ¼
X
σ

Cϵ
2ðσ; a⃗mÞIϵ̃YMðþg;σðs⃗gnÞ;−gÞ;

ð76Þ
where σ stands for the permutations. It is hard to find the
general expressions for coefficients Cϵ

1ðσÞ and Cϵ
2ðσ; a⃗gmÞ.

Instead, the systematic algorithms for evaluating them can
be provided, as will be shown in this subsection.
We first consider the coefficients Cϵ̃

1ðσÞ, which serve as
the one-loop level BCJ numerators. To expand Iϵ;ϵ̃GR;∘ðahnÞ to
Iϵ̃YMðþg; σða⃗gnÞ;−gÞ, the expansion (74) requires us to
decompose the set of external legs an into subsects a
and anna, while applying the expansion (47) recursively
indicates further decompositions of anna. The successive
decompositions lead to the concept which is called ordered
splitting, defined for each fixed color ordering σða⃗nÞ ¼
hσ1;…; σni [22]. To illustrate it, we denote the color
ordering as þ _<σ1 _< � � � _<σn _<−, and chose a reference
ordering j1 ≺ � � � ≺ jn, with ji ∈ an. This reference order-
ing is denoted by R. The correct ordered splittings,
consistent with the given color ordering, are constructed
through the following procedure:

(i) At the first step, we construct all possible ordered
subsets a⃗0 ¼ ha01;…; a0j0ji, which satisfy two con-

ditions: (1) a0 ⊆ an; (2) a01 _<a
0
2
_< � � � _<a0j0j, respec-

tive to the color ordering of the YM amplitude. We
call each ordered subset a⃗0 a root.5 Here jij denotes
the length of the set ai.

(ii) For each root a⃗0, we eliminate its elements in an and
R, resulting in a reduced set anna0, and a reduced
reference ordering Rna0. Suppose R1 is the lowest
element in the reduce reference ordering Rna0, we
construct all possible ordered subsets a⃗1 as
a⃗1 ¼ ha11; a12;…; a1j1j−1; R1i, with a11 _<a

1
2
_< � � � _<

a1j1j−1 _<R1, respective to the color ordering.
(iii) By iterating the second step, one can construct

a⃗2; a⃗3; � � �, until a0 ∪ a1 ∪ � � � ∪ ar ¼ an.
Each ordered splitting is given as an ordered set
S⃗ ¼ ha⃗0; a⃗1;…; a⃗ri, where ordered sets a⃗i serve as elements.

For a given root a⃗0, an ordered set B⃗ ¼ ha⃗1; a⃗2;…; a⃗ri is
called a branch. Notice that a0 can be empty, while each ai

with i ≠ 0 contains at least one element Ri.
Now we give the corresponding kinematic factors for

each ordered set a⃗i, by using (47) and (74). For a given
ordered splitting, the root a⃗0 carries the factor

Tϵ
a⃗0
¼

(
Trϵ

a⃖0
¼ Trðfa0j0j ;…; fa0

1
Þ; if a0 ≠ ∅;

d − 2; if a0 ¼ ∅:
ð77Þ

Other ordered sets a⃗i with i ≠ 0 carry

Kϵ
a⃗i ¼ ϵRi

· faijij−1 � � � fai2 · fai1 · Zai
1
: ð78Þ

The combinatory momentum Zai
1
is the sum of momenta of

external legs satisfying two conditions: (1) legs at the lhs of
ai1 in the color ordering; (2) legs belong to a⃗

j at the lhs of a⃗i

in the ordered splitting, i.e., j < i. The coefficient of the
YM partial integrand Iϵ̃YMðþg; σða⃗gnÞ;−gÞ is the sum of
contributions from all proper ordered splittings.
For the ssEYM partial integrand Iϵ;ϵ̃ssEYMðþg; a⃗gm;−g;

ahn−mÞ, the coefficient of Iϵ̃YMðþg; σð⃗sgnÞ;−gÞ is obviously
the sum of contributions from all branches for the
root a⃗0 ¼ a⃗m.
Before ending this subsection, we point out that the

differential operators transmute the one-loop GR integrand
to one-loop YM partial integrands and also transmute the
YM partial integrand IϵYMðþg; a⃗gn;−gÞ to BAS double-
partial integrands IBASðþs; σð⃗ssnÞ;−skþs; a⃗sn;−sÞ, as can
be seen in Table II. Furthermore, all seven principles/
assumptions listed at the beginning of this section hold for
the later case. The third assumption makes sense in the
following way: this assumption together with the operator
T ϵ̃

þ;a⃗n;−
completely determine that each external gluon i

carries the polarization vector ϵi, and the YM partial
integrands carry the color ordering þ; a⃗n;−, as discussed
at the beginning of this section. Such characters of YM
partial integrands play the role of the original third
assumption. Thus one can follow the similar line for
obtaining (75) to get

IϵYMðþg; a⃗gn;−gÞ¼
X
σ

Cϵ
1ðσÞIBASðþs;σðs⃗snÞ;−skþs; a⃗sn;−sÞ:

ð79Þ

A similar argument for ssYMS partial Feynman integrands
yields

IϵssYMSðþs; a⃗sm;−s; agn−mkþA; a⃗An ;−AÞ
¼

X
σ

Cϵ
2ðσ; a⃗mÞIBASðþs; σð⃗ssnÞ;−skþs; a⃗sn;−sÞ: ð80Þ5Here we borrow the language from the framework of

increasing spanning trees.
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V. UNIFIED WEB FOR EXPANSIONS

The expansions found in the previous section are based
on the transmutation relations provided by differential
operators. Since the differential operators provide a unified
web including a wide range of theories, it is natural
to expect the expansions can also be extended to
other theories. In this section, we discuss how to reach
this goal, and establish the complete unified web for
expansions.
From the expansion of one-loop GR integrand (75), one

can generate various new expansions by applying differ-
ential operators. Suppose we act the operators defined via
polarization vectors in fϵ̃ig at two sides of (75) simulta-
neously, such operators transmute both Iϵ;ϵ̃GR;∘ðahnÞ and
Iϵ̃YMðþg; σða⃗gnÞ;−gÞ to integrands of other theories, while
keeping the coefficients Cϵ

1ðσÞ unmodified. For instance,
using

IϵBI;∘ðapnÞ ¼ Lϵ̃D̃Iϵ;ϵ̃GR;∘ðahnÞ;
INLSMðþs; σða⃗snÞ;−sÞ ¼ Lϵ̃D̃Iϵ̃YMðþg; σða⃗gnÞ;−gÞ; ð81Þ

we obtain

IϵBI;∘ðapnÞ ¼
X
σ

Cϵ
1ðσÞINLSMðþs; σða⃗snÞ;−sÞ: ð82Þ

The set of NLSM partial integrands INLSMðþs; σða⃗snÞ;−sÞ
is the generalized one-loop KK basis, due to the structure of
color orderings. A more interesting case is applying the
operators defined via fϵig rather than fϵ̃ig. These operators
also transmute Iϵ;ϵ̃GR;∘ðahnÞ at the lhs to the integrands of other
theories. When acting on the rhs, they modify the coef-
ficients Cϵ

1ðσÞ, while keeping the YM partial integrands
unaltered. The above manipulation allows us to generate
the following expansions:

Iϵ;ϵ̃ssEYMðþg; a⃗gm;−g; ahn−mÞ ¼
X
σ

Cϵ
2ðσ; a⃗mÞIϵ̃YMðþg; σða⃗gnÞ;−gÞ;

Iϵ̃BI;∘ðapnÞ ¼
X
σ

C3ðσÞIϵ̃YMðþg; σða⃗gnÞ;−gÞ;

Iϵ;ϵ̃EM;∘ðap2m; ahn−2mÞ ¼
X
σ

Cϵ
4ðσ; X2mÞIϵ̃YMðþg; σða⃗gnÞ;−gÞ;

Iϵ;ϵ̃EMf;∘ðap2m; ahn−2mÞ ¼
X
σ

Cϵ
5ðσ;X2mÞIϵ̃YMðþg; σða⃗gnÞ;−gÞ: ð83Þ

The rule for constructing Cϵ
2ðσ; a⃗mÞ is already provided in

the previous section. In Sec. VA we will discuss the rules
for constructing coefficients Cϵ

i ðσÞ with i ∈ f3; 4; 5g.
The full web for expansions can be established by

applying differential operators further. We will not do this
procedure. Instead, we use a more compact way to describe
the unified web for expansions. One can replace ϵ in the
expansion (79) by ϵ̃, and substitute it into (75), then get the
expansion of the GR integrand to BAS KK basis as

Iϵ;ϵ̃GR;∘ðahnÞ ¼
X
σ

X
σ0

Cϵ
1ðσÞIBASðþs; σða⃗snÞ;−sk

þs; σ0ð⃗ssnÞ;−sÞCϵ̃
1ðσ0Þ; ð84Þ

with two coefficients Cϵ
1ðσÞ and Cϵ̃

1ðσ0Þ. We call the
expansion (84) the double expansion. The differential
operators transmute the lhs of (84) to Feynman integrands
of other theories, and transmute Cϵ

1ðσÞ or Cϵ̃
1ðσ0Þ to other

Cϵ
i ðσÞ or Cϵ̃

jðσ0Þ at the rhs. Thus the double expansions for
all theories in Table II are obtained. The double-expanded
formulas also manifest the duality between transmutation
relations and expansions, as will be discussed in Sec. V B.
With the general ideas discussed above, now we begin to

study the corresponding details.

A. Expansions of BI, EM and EMf to YM

As discussed above, the one-loop BI, EM and EMf
Feynman integrands can also be expanded to the one-loop
YM KK basis. The purpose of this subsection is to give the
rules for evaluating corresponding coefficients C3ðσÞ,
Cϵ

4ðσ; X2mÞ and Cϵ
5ðσ;X 2mÞ.

We begin by considering the BI integrands, which can be
generated from the GR integrands via the operator LϵD.
Applying this operator to two sides of (75), the lhs gives
Iϵ̃BI;∘ðapnÞ. At the rhs, the coefficients Cϵ

1ðσÞ are transmuted
to C3ðσÞ, while the YM partial integrands are unmodified,
since the operator LϵD is defined via polarization vectors in
fϵig. Thus C3ðσÞ is generated from Cϵ

1ðσÞ, namely,

C3ðσÞ ¼ LϵDCϵ
1ðσÞ: ð85Þ

We first consider the effect of the operator D. This operator
annihilates terms which do not contain the factor d − 2,
thus transmutes Cϵ

1ðσÞ to Cϵ
2ðσ;∅Þ. It means we only need

to consider ordered splittings with the root a0 ¼ ∅.
To continue, we perform the operator Lϵ. There are

two definitions for the operator Lϵ, which are unequivalent
at the algebraic level, but lead to the same physical result
in the current case. We first consider the definition
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Lϵ ≡Q
i L

ϵ
i . The operator Lϵ turns ϵi · kj to ki · kj, there-

fore only terms with the form
Q

i ϵi · Ki can survive under
the action, where Ki are combinations of external and loop
momenta. In Cϵ

2ðσ;∅Þ, such part is found to be
Q

i ϵi · Xi,
where Xi is defined as the summation of kj with j _<i in the
color ordering. Thus the effect of C3ðσÞ is given as

C3ðσÞ ¼ LϵCϵ
2ðσ;∅Þ ¼

Y
i

ki · Xi; ð86Þ

which is a very compact result.
Now we consider another definition of the operator Lϵ:

Lϵ ¼
X
ρ∈pair

Y
fi;jg∈ρ

Lϵ
ij: ð87Þ

Applying this Lϵ to Cϵ
2ðσ;∅Þ, the survived terms are those

where each polarization vector ϵi is contracted with another
one ϵj. Using the definition of Cϵ

2ðσ;∅Þ, such part is found
to be

X
B⃗∶jijeven

�Yt
i¼1

ð−Þjij2Miðσ; B⃗Þ
�
; ð88Þ

where the summation is over all possible branches B⃗, those
where the length of each subset ai is even, and the number
of subsets included in each branch is denoted by t. The
monomial Miðσ; B⃗Þ for the subset a⃗i is given as

Miðσ; B⃗Þ ¼ ðϵaijij · ϵaijij−1Þðkaijij−1 · kaijij−2Þðϵaijij−2 · ϵaijij−3Þ
� � � ðkai

3
· kai

2
Þðϵai

2
· ϵai

1
Þðkai

1
· Zai

1
Þ: ð89Þ

Under the action of Lϵ, we find

C3ðσÞ ¼ LϵCϵ
2ðσ;∅Þ ¼

X
B⃗∶jijeven

�Yt
i¼1

ð−Þjij2Niðσ; B⃗Þ
�
; ð90Þ

where

Niðσ; B⃗Þ ¼
�Yjij−1

k¼1

kaik · kaikþ1

�
ðkai

1
· Zai

1
Þ: ð91Þ

The equivalence between (86) and (90) can be verified for
simple cases, and we have checked it for the three-point
integrand. The general proof is an interesting challenge,
which we leave as the feature work.
Then we turn to EM and EMf Feynman integrands. The

EM integrands can be generated from the GR ones via the
operator T ϵ

X2m
ðDþ 1Þ, thus the argument similar to the BI

case gives

Cϵ
4ðσ; X2mÞ ¼ T ϵ

X2m
ðDþ 1ÞCϵ

1ðσÞ: ð92Þ

The operator ðDþ 1Þ transmutes Cϵ
1ðσÞ as

ðDþ 1ÞCϵ
1ðσÞ ¼ Cϵ

2ðσ;∅Þ þ Cϵ
1ðσÞ: ð93Þ

Then we need to perform T ϵ
X2m

on Cϵ
2ðσ;∅Þ and Cϵ

1ðσÞ. Let
us consider T ϵ

X2m
Cϵ

1ðσÞ first. Recall that T ϵ
X2m

is defined as
summing over

Q
ik;jk∈ρ T

ϵ
ikjk

for different partitions, where
each partition groups the 2m external particles into m pairs
as fði1; j1Þ; ði2; j2Þ;…ðim; jmÞg, with i1 < i2 < � � � < im
and ik < jk for ∀ k. Thus we can consider the effect of
operator

Q
ik;jk∈ρ T

ϵ
ikjk

for a given partition. This operator
annihilates all terms which do not contain

Q
ik;jk∈ρðϵik · ϵjkÞ.

Henceforth, one can start with ordered splittings for Cϵ
1ðσÞ,

and select ordered splittings by the condition that each
pair in the partition appears in one subset as a single
element, i.e., two particles are adjacent. Then, for a selected
ordered splitting, we now consider the effect of applyingQ

ik;jk∈ρ T
ϵ
ikjk

to the corresponding kinematic factor
Tϵ
a⃗0
ðQt

i¼1 K
ϵ
a⃗iÞ. For Tϵ

a⃗0
, we turn all ðfik · fjkÞμν to

−kμikk
ν
jk
. For Kϵ

a⃗i, we turn all ðfik · fjkÞμν to −kμikk
ν
jk
when

ik ≠ Ri, jk ≠ Ri, and turn ðϵik · fjkÞμ to −kμjk when ik ¼ Ri,
or turn ðϵjk · fikÞμ to −kμik when jk ¼ Ri. The resulting
object of T ϵ

X2m
Cϵ

1ðσÞ is obtained by summing over con-
tributions from selected ordered splittings, then summing
over all proper partitions. Another part T ϵ

X2m
Cϵ

2ðσ;∅Þ can
be obtained by performing the above manipulation to
branches for the root a⃗0 ¼ ∅.
The EMf integrands are generated from the GR ones via

the operator T ϵ
X2m

ðNDþ 1Þ, where N stands for the
number of different flavors. Thus we have

Cϵ
5ðσ;X2mÞ ¼ T ϵ

X2m
ðNDþ 1ÞCϵ

1ðσÞ
¼ NT ϵ

X2m
Cϵ

2ðσ;∅Þ þ T ϵ
X2m

Cϵ
1ðσÞ: ð94Þ

The consideration for T ϵ
X2m

Cϵ
2ðσ;∅Þ and T ϵ

X2m
Cϵ

1ðσÞ is
analogous to T ϵ

X2m
Cϵ

2ðσ;∅Þ and T ϵ
X2m

Cϵ
1ðσÞ. The only

difference is that the appropriate partitions are reduced:
a partition is allowed if and only if δIik Ijk ≠ 0 for all

pairs ðik; jkÞ.

B. Double expansion and unified web

As discussed previously, the one-loop GR Feynman
integrands can be double expanded as in (84). The BAS
KK basis contributes the propagators, while coefficients
Cϵ

1ðσÞ and Cϵ̃
1ðσ0Þ serve as BCJ numerators. On the other

hand, we have
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T ϵ
þa⃗m−

Cϵ
1ðσÞ ¼ Cϵ

2ðσ; a⃗mÞ;
LϵDCϵ

1ðσÞ ¼ C3ðσÞ;
T ϵ

X2m
ðDþ 1ÞCϵ

1ðσÞ ¼ Cϵ
4ðσ; X2mÞ;

T ϵ
X2m

ðNDþ 1ÞCϵ
1ðσÞ ¼ Cϵ

5ðσ;X 2mÞ;
T ϵ

þ⃗sn−
Cϵ

1ðσÞ ¼ C6ðσ; ⃗snÞ: ð95Þ

In the first line, the length m of the set am is required to be
0 ≤ m < n. We have added C6ðσ; ⃗snÞ ¼ δ⃗snσða⃗nÞ to the list,
to represent

T ϵ
þ⃗sn−

Iϵ;ϵ̃GRðahnÞ ¼ Iϵ̃YMðþg; ⃗sgn;−gÞ
¼

X
σ

δ ⃗snσða⃗nÞI
ϵ̃
YMðþg; σða⃗gnÞ;−gÞ: ð96Þ

Here δ⃗snσða⃗nÞ is understood as 1 when ⃗sn ¼ σða⃗nÞ and 0
otherwise. The relations among Cϵ̃

i ðσ0Þ with i ∈
f1; 2; 3; 4; 5; 6g are completely analogous. Let us simplify
the notations as

Oϵ
iC

ϵ
1ðσÞ ¼ Cϵ

i ðσÞ; ð97Þ

where

Oϵ
1 ¼ I; Oϵ

2 ¼ T ϵ
þa⃗m−

;

Oϵ
3 ¼ LϵD; Oϵ

4 ¼ T ϵ
X2m

ðDþ 1Þ;
Oϵ

5 ¼ T ϵ
X2m

; Oϵ
6 ¼ T ϵ

þ⃗sn−
; ð98Þ

and introduce the analogous notations Oϵ̃
i for Cϵ̃

i ðσ0Þ.
Applying the above operators to the double-expanded
GR integrand in (84), we get

Iij¼
X
σ

X
σ0

Cϵ
i ðσÞIBASðþs;σða⃗snÞ;−skþs σ0ðs⃗snÞ;−sÞCϵ̃

jðσ0Þ;

ð99Þ

where

Iij ¼ Oϵ
iO

ϵ̃
jI

ϵ;ϵ̃
GRðahnÞ: ð100Þ

The physical interpretation for each Iij can be seen in
Table II by using (100). For the readers’ convenience, we
list Iij for different i and j in Table III. Thus (99) is indeed
the double-expanded formula for Feynman integrands for
theories in Table III.
The full unified web for expansions can be constructed

from the double-expansion (99) and Table III, by summing
over σ or σ0. To do this, we first sum over σ for C6ðσ; a⃗nÞ
to get

Iϵ̃YMðþg; a⃗gn;−gÞ ¼
X
σ0
Cϵ̃

1ðσ0ÞIBASðþs; a⃗sn;−skþs; σ0ð⃗ssnÞ;−sÞ;

Iϵ̃ssYMSðþs; a⃗sm;−s; agn−mkþA; a⃗An ;−AÞ ¼
X
σ0
Cϵ̃

2ðσ0; a⃗smÞIBASðþs; a⃗sn;−skþs; σ0ð⃗ssnÞ;−sÞ;

INLSMðþs; a⃗sn;−sÞ ¼
X
σ0
C3ðσ0ÞIBASðþs; a⃗sn;−skþs; σ0ð⃗ssnÞ;−sÞ;

Iϵ̃SYMSðas2m; agn−2mkþA; a⃗An ;−AÞ ¼
X
σ0
Cϵ̃
5ðσ0;X2mÞIBASðþ; a⃗sn;−kþs; σ0ð⃗ssnÞ;−sÞ: ð101Þ

Using the expansions in (101), one can obtain the expansions for other theories. For example, from Table III we see that

Iϵ̃DBIðas2m; apn−2mÞ ¼
X
σ

X
σ0

C3ðσÞIBASðþs; σða⃗snÞ;−sk þs σ0ð⃗ssnÞ;−sÞCϵ̃
5ðσ0;X2mÞ: ð102Þ

Substituting the equality in the third line of (101) into (102) gives

Iϵ̃DBIðas2m; apn−2mÞ ¼
X
σ

Cϵ̃
5ðσ;X2mÞINLSMðþs; σða⃗snÞ;−sÞ; ð103Þ

while substituting the equality in the fourth line of (101) into (102) provides

Iϵ̃DBIðas2m; apn−2mÞ ¼
X
σ

C3ðσÞIϵ̃SYMSðas2m; agn−2mkþA; σða⃗AnÞ;−AÞ: ð104Þ
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The unified web can be established via the above method,
and is represented diagrammatically in Fig. 3.
The double-expanded formula (99) is dual to the trans-

mutation formula (19), due to the following reasons. First,
the formula (99) is constructed from (19), together with
some very general principles/assumptions mentioned at the
beginning of Sec. IV. Second, they include the same
theories. Third, operators Oϵ

i and coefficients Cϵ
i ðσÞ are

linked by acting operators on BCJ numerators Cϵ
1ðσÞ as in

(97), and so do operators Oϵ̃
i and coefficients Cϵ̃

i ðσ0Þ. Thus
we have a one-to-one map between operators and coef-
ficients, as shown in Table IV. In this Table, the explicit
form of C6ðσ; ⃗snÞ is provided, since it is as special as the
operator I in the first column. Based on the duality
discussed above, one can claim that the expansions of
one-loop Feynman integrands are the dual version of
transmutations relations.

VI. SUMMARY AND DISCUSSIONS

In this paper, we investigated the connections among
one-loop Feynman integrands of a large variety of theories.
First, we constructed a new class of differential operators

Cϵa⃗m , which transmute the one-loop GR Feynman integrands
to one-loop ssEYM integrands.
Second, via the one-loop level transmutation relations, as

well as some general principles/assumptions such as gauge
invariance, we constructed the unified web for expansions
of one-loop Feynman integrands for a wide range of
theories including GR, ssEYM, EM, EMf, BI, YM,
ssYMS, SYMS, NLSM, DBI, EDBI, and SG. We showed
that the one-loop Feynman integrands of all of the above
theories can be double expanded to the BAS one-loop KK
basis, and provided the systematic rules for constructing the
coefficients in the expansions. Throughout the whole
process, we only used the knowledge of transmutation
relations among one-loop Feynman integrands of different
theories, as well as some very general requirements listed at
the beginning of Sec. IV, without knowing any details about
the Feynman integrands under consideration. Based on this
character, together with the one-to-one map between trans-
mutation operators and coefficients in expansions, we
claimed that the transmutation relations and expansions
are dual to each other.
In this paper and our previous work in [29], the

consideration for the EYM partial Feynman integrands is
not complete. We restricted ourselves to the special single-
trace case that the virtual particle propagating in the loop is
only a gluon. We have not considered the general case due
to some technical difficulty, and leave the complete
solution as the future work.

FIG. 3. Unified web for expansions of one-loop Feynman
integrands. The straight lines denote the coefficients Cϵ

1ðσÞ,
the dashed lines denote Cϵ

2ðσ; a⃗mÞ, the double straight lines
denote Cϵ

3ðσÞ, the thin dashed lines denote Cϵ
5ðσ;X 2mÞ, the

double thin dashed lines denote Cϵ
4ðσ; X2mÞ.

TABLE IV. Map between operators and coefficients.

Oϵ
i Cϵ

i ðσÞ
I Cϵ

1ðσÞ
T ϵ

þa⃗m−
Cϵ

2ðσ; a⃗mÞ
LϵD C3ðσÞ
T ϵ

X2m
ðDþ 1Þ Cϵ

4ðσ; X2mÞ
T ϵ

X2m
ðNDþ 1Þ Cϵ

5ðσ;X2mÞ
T ϵ

þ ⃗sn−
C6ðσ; ⃗snÞ ¼ δ ⃗snσða⃗nÞ

TABLE III. Iij for different i and j.

Iij i j

Iϵ;ϵ̃GRðahnÞ 1 1
Iϵ;ϵ̃ssEYMðþg; a⃗gm;−g; ahn−mÞ 2 1
Iϵ̃BIðapnÞ 3 1
Iϵ;ϵ̃EMðap2m; ahn−2mÞ 4 1
Iϵ;ϵ̃EMfðap2m; ahn−2mÞ 5 1
Iϵ̃YMðþg; a⃗gn;−gÞ 6 1
Iϵ̃ssYMSðþs; a⃗sm;−s; agn−mkþA; a⃗An ;−AÞ 6 2
INLSMðþs; a⃗sn;−sÞ 6 3
Iϵ̃SYMSðas2m; agn−2mkþA; a⃗An ;−AÞ 6 5
Iϵ̃ssEDBIða⃗sm; apn−mÞ 3 2
ISGðasnÞ 3 3
Iϵ̃DBIðas2m; apn−2mÞ 3 5
IBASðþs; a⃗sn;−skþs; ⃗ssn;−sÞ 6 6
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The expansions of one-loop Feynman integrands also
indicate a new method for calculating the one-loop
Feynman integrands of various theories. One can evaluate
the BAS integrands at the first step, then use the rules for
constructing coefficients to get the integrands of other
theories in the double-expanded formulas. In principle, one
can also calculate the GR integrands at the first step,
then use the differential operators to generate others.
However, in practice the GR integrands are the most
complicated ones in the unified web. On the other hand,
the BAS integrands are the easiest ones, since they only
contain propagators, without carrying any kinematic
numerator.
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APPENDIX A: CHY FORMULAS AT TREE
AND ONE-LOOP LEVELS

In the CHY framework, tree amplitudes for n massless
particles in arbitrary dimensions arise from a multidimen-
sional contour integral over the moduli space of genus
zero Riemann surfaces with n punctures, M0;n [8–12],
formulated as

An ¼
Z

dμnILðfki; ϵi; zigÞIRðfki; ϵ̃i; zigÞ; ðA1Þ

which possesses the Möbius SLð2;CÞ invariance. Here ki,
ϵi and zi are the momentum, polarization vector, and
puncture location for the ith external particle, respectively.
The measure part is defined as

dμn ≡ dnz
volSLð2;CÞ

Y
i

0
δðξiÞ: ðA2Þ

The δ functions impose the scattering equations

Ei ≡
X

j∈f1;2;…;ngnfig

ki · kj
zij

¼ 0; ðA3Þ

where zij ≡ zi − zj. The scattering equations define the
map from the punctures on the moduli space M0;n to
vectors on the light cone, and fully localize the integral on
their solutions. The measure part is universal ,while the
integrand in (A1) depends on the theory under consider-
ation. For any theory known to have a CHY representation,
the corresponding integrand factorizes into two parts IL

and IR, as can be seen in (A1). Either of them is weight-2
for each variable zi under the Möbius transformation. In

Table V, we list the tree level CHY integrands which will be
used in this paper [12].6

We now explain building blocks appearing in Table V in
turn. The 2n × 2n antisymmetric matrix Ψ is given by

Ψ ¼
� A C

−CT B

�
; ðA4Þ

where

Aij ¼
(

ki · kj
zij

i ≠ j;

0 i ¼ j;
Bij ¼

( ϵi · ϵj
zij

i ≠ j;

0 i ¼ j;

Cij ¼
8<
:

ki · ϵj
zij

i ≠ j;

−
Pn
l¼1;l ≠ j

kl · ϵj
zlj

i ¼ j:
ðA5Þ

The notation Pf stands for the polynomial called
Pfaffian. For a 2n × 2n skew symmetric matrix S, Pfaffian
is defined as

PfS ¼ 1

2nn!

X
σ∈S2n

sgnðσÞ
Yn
i¼1

aσð2i−1Þ;σð2iÞ; ðA6Þ

where S2n is the permutation group of 2n elements and
sgnðσÞ is the signature of σ. More explicitly, let Π be the
set of all partitions of f1; 2;…; 2ng into pairs without
regard to the order. An element α in Π can be written as

α ¼ fði1; j1Þ; ði2; j2Þ;…; ðin; jnÞg; ðA7Þ

with ik < jk and i1 < i2 < � � � < in. Now let

σα ¼
�

1 2 3 4 … 2n − 1 2n

i1 j1 i2 j2 … in jn

�
ðA8Þ

be the associated permutation of the partition α. If we
define

Sα ¼ sgnðσαÞai1j1ai2j2 � � � ainjn ; ðA9Þ

TABLE V. Form of the integrands.

Theory ILðki; ϵi; ziÞ IRðki; ϵ̃i; ziÞ
GR Pff0Ψ Pf0Ψ
YM PTðσ1;…; σnÞ Pf0Ψ
BAS PTðσ1;…; σnÞ PTðσ01;…; σ0nÞ

6For theories containing gauge or flavor groups, we only show
the integrands for color ordered partial amplitudes instead of full
ones.

KANG ZHOU PHYS. REV. D 106, 025014 (2022)

025014-18



then the Pfaffian of the matrix S is given as

PfS ¼
X
α∈Π

Sα: ðA10Þ

With the definition of Pfaffian provided above, the reduced
Pfaffian of the matrix Ψ is defined as

Pf0Ψ ¼ ð−Þiþj

zij
PfΨij

ij; ðA11Þ

where the notation Ψij
ij means the ith and jth rows and

columns of the matrix Ψ have been removed (with
1 ≤ i; j ≤ n). It can be proved that this definition is
independent of the choice of i and j.
The Parke-Taylor factor PTðσ1;…; σnÞ is given as

PTðσ1;…; σnÞ ¼
1

zσ1σ2zσ2σ3 � � � zσn−1σnzσnσ1
: ðA12Þ

It implies the color ordering σ1;…; σn for the color ordered
amplitude.
The one-loop CHY formulas can be obtained via either

the underlying ambitwistor string theory [31,44–50], or the
forward limit procedure [32–35]. Here we only introduce
the latter one. The one-loop level scattering equations are
found to be

Ei≡
X

j∈f1;2;…;ngnfig

ki · kj
zij

þ ki ·l
ziþ

−
ki ·l
zi−

¼ 0; i∈ f1;…;ng

Eþ≡Xn
j¼1

l · kj
zþj

¼ 0; E−≡
Xn
j¼1

−l · kj
z−j

¼ 0: ðA13Þ

These equations yield the massive propagators 1=ððlþ
KÞ2 − l2Þ in the loop, rather than the desired massless ones
1=ðlþ KÞ2. However, these massive propagators relate to
the massless ones through the well known partial fraction
identity

1

D1 � � �Dm
¼

Xm
i¼1

1

Di

�Y
j≠i

1

Dj −Di

�
; ðA14Þ

which implies

1

l2ðlþ K1Þ2ðlþ K1 þ K2Þ2 � � � ðlþ K1 þ � � � þ Km−1Þ2

≃
1

l2

Xm
i¼1

� Yiþm−2

j¼i

1

ðlþ Ki þ � � � þ KjÞ2 − l2

�
: ðA15Þ

For each individual term at the rhs of the above relation, we
have shifted the loop momentum without alternating the
result of the Feynman integral. Here ≃ means the lhs and

rhs are not equivalent to each other at the integrand level,
but are equivalent at the integration level. The lhs of (A15)
is the standard propagators in the loop for an individual
diagram, while each term at the rhs can be obtained via the
forward limit method.
Thus, to obtain the correct one-loop Feynman integrand

from the one-loop scattering equations in (A13), one needs
to cut each propagator in the loop once, and sum over all
resulting objects, as required by the partial fraction relation
(A15). For the amplitude without any color ordering, this
requirement is satisfied automatically when summing over
all possible Feynman diagrams. For the color ordered
amplitude, this requirement is satisfied by summing over
color orderings cyclically.
As an equivalent interpretation, the forward limit method

can also be understood from the dimensional reduction
point of view, as studied in [33].
Let us take a brief glance at the CHY integrand at the

one-loop level. In the CHY framework, the forward limit
operator F acts on the (nþ 2)-point tree amplitude as
follows:

FAnþ2 ¼ F
Z

dμnþ2ILðfk; ϵ; zgÞIRðfk; ϵ̃; zgÞ

¼
Z

dμ0nþ2ðFILðfk; ϵ; zgÞÞðFIRðfk; ϵ̃; zgÞÞ;

ðA16Þ

where the measure dμ0nþ2 is generated from dμnþ2 by
turning the scattering equations to those in (A13). Thus the
one-loop CHY integrand is determined by

IL∘ ðfk; ϵ; zgÞ ¼ FILðfk; ϵ; zgÞ;
IR∘ ðfk; ϵ; zgÞ ¼ FIRðfk; ϵ; zgÞ: ðA17Þ

Using this statement, the one-loop CHY integrands for GR,
YM and BAS are given in Table VI. Here Ψ is a 2ðnþ
2Þ × 2ðnþ 2Þ matrix constituted by fk1;…; kn; kþ; k−g
and fϵ1;…; ϵn; ϵþ; ϵ−g. For simplicity, we assume the
nodes þ and − are located at (nþ 1)th and (nþ 2)th
rows and columns, respectively, and the reduced Pfaffian

is evaluated by removing them, i.e., Pf0Ψ ¼ ð−Þ
zþ−

PfΨ0,
with Ψ0 ¼ Ψþ−

þ−. The one-loop Parke-Taylor factor
PT∘ðσ1;…; σnÞ is obtained by summing over tree Parke-
Taylor factors cyclically,

PT∘ðσ1;…; σnÞ ¼
X

i∈f1;…;ng
PTðþ; σi;…; σi−1;−Þ: ðA18Þ

Notice that since the Parke-Taylor factor only depends on
the coordinates of punctures, we have

FPTðþ; σi;…; σi−1;−Þ ¼ PTðþ; σi;…; σi−1;−Þ: ðA19Þ
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The tree Parke Taylor factor PTð� � �Þ at the rhs of (A18)
should be understood as FPTð� � �Þ. The integrands in
Table VI can be found in [31–33,49].
The one-loop CHY formulas in (A16) suffer from the

divergence in the forward limit. It was observed in [32] that
the solutions of one-loop scattering equations separate into
three sectors which are called regular, singular I and
singular II, according to the behavior of punctures z�
in the limit kþ þ k− → 0. In this paper, we will bypass this
subtle and crucial point by employing the conclusion in
[33], which can be summarized as follows: as long as the
CHY integrand is homogeneous in lμ, the singular sol-
utions contribute to the scaleless integrals which vanish
under the dimensional regularization. The homogeneity is
manifest for the Parke-Taylor factor. For FPf0Ψ, the only
place that can violate the homogeneity in lμ is the diagonal
elements in the matrix C, since the deleted rows and
columns are chosen to be kþ and k−. Singular solutions
correspond to zþ ¼ z−, then it is direct to observe that the
dependence on lμ exactly cancels away, left with a
homogeneous CHY integrand. This observation allows
us to ignore the problem of singular solutions.

APPENDIX B: SOME DETAILS IN SEC. III A

In this Appendix, we give some technical details omitted
in Sec. III A.
We first explain the reason why the above method cannot

make sense when tree sEYM amplitudes contain three
external gluons. Consider the single-trace tree sEYM
amplitude Aϵ;ϵ̃

sEYMðþg; ag;−g; ahnnahÞ, with external gluons
þg, −g and ag. We use the cyclic symmetry of color
orderings to rewrite it as Aϵ;ϵ̃

sEYMðag;−g;þg; ahnnahÞ. The
new representation indicates that such amplitude can be
generated from the tree GR amplitude via differential
operators as

Aϵ;ϵ̃
sEYMðag;−g;þg; ahnnahÞ

¼ Iϵ
a−þT ϵ

aþA
ϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ

¼ ð∂ϵ−·ka − ∂ϵ−·lÞ∂ϵa·ϵþAϵ;ϵ̃
GRðahn ∪ fþh;−hgÞ: ðB1Þ

The color ordering is generated by choosing a and þ
as two reference legs first, then inserting the leg − between
them. Here the operator ∂ϵ−·l is understood as ∂ϵ−·kþ .
Unfortunately, there is no one-loop level operator Oϵ∘
satisfying

Oϵ∘FAϵ;ϵ̃
GRðahn∪fþh;−hgÞ¼FIϵ

a−þT ϵ
aþA

ϵ;ϵ̃
GRðahn∪fþh;−hgÞ:

ðB2Þ

To see this, we first consider the piece ∂ϵ−·ka∂ϵa·ϵþ in the
operator Iϵ

a−þT ϵ
aþ. At the tree level, this piece of operator

turns ðϵ− · kaÞðϵa · ϵþÞ to 1, and annihilates all terms which
do not contain the Lorentz invariant ðϵ− · kaÞðϵa · ϵþÞ, due
to the observation that the amplitude is linear in each
polarization vector. Under the action of E, tree level object
ðϵ− · kaÞðϵa · ϵþÞ behaves asX

r

ðϵa · ϵrþÞðϵr− · kaÞ ¼ ϵa · ka; ðB3Þ

thus the on-shell condition ϵa · ka ¼ 0 indicates that the
first piece of the operator does not make sense at the one-
loop level. Then we turn to another piece ∂ϵ−·l∂ϵa·ϵþ . At tree
level, this piece turns ðϵ− · lÞðϵa · ϵþÞ to 1, and annihilates
all terms which do not contain ðϵ− · lÞðϵa · ϵþÞ. However,
ϵ− · l vanishes under the action of L, since ϵ− · k− ¼ 0 and
k− ¼ −kþ ¼ −l. Thus, the second piece of the operator
also makes no sense at the one-loop level.
Now we use CHY formulas to prove that the operator

∂ϵb·l∂ϵb ⊳ kb gives no contribution at the one-loop level.
This operator does not act on the measure of CHY
contour integration, thus can be applied to the CHY
integrands directly. As noted in Appendix A, in this
paper the convention for the reduced Pfaffian of Ψ is

Pf0Ψ ¼ ð−Þ
zþ−

PfΨ0, where Ψ0 ¼ Ψþ−
þ−. Because of the choice

Ψ0 ¼ Ψþ−
þ−, when acting ∂ϵb·l on FPf0Ψ, the nonvanishing

contribution only from acting ∂ϵb·l on the diagonal element
Cbb in the block C of the matrix Ψ. However, the operator
∂ϵa ⊳ kb turns ϵa ⊳ kb to 1 and annihilates all terms which do
not contain ϵa ⊳ kb, thus eliminates bth rows and columns
in Ψ0. Thus Cbb does not exist in ∂ϵa ⊳ kbFPf0Ψ, therefore
the operator ∂ϵb·l annihilates ∂ϵa ⊳ kbI

ϵ;ϵ̃
GR;∘ðahnÞ.

Then, we give the derivation of (37). Let us go back to
the four-gluon example, and use the cyclic symmetry of
color ordering, as well as the tree level transmutation
operators, to understand the four-gluon tree amplitude as

Aϵ;ϵ̃
sEYMð−g;þg;ag;bg;ahnnfah;bhgÞ

¼I ϵ
−þaI

ϵ
−abT

ϵ
−bA

ϵ;ϵ̃
GRðahn∪fþh;−hgÞ

¼ð−∂ϵþ·l−∂ϵþ·kaÞð−∂ϵa·l−∂ϵa·kbÞ∂ϵ−·ϵbAϵ;ϵ̃
GRðahn∪fþh;−hgÞ:

ðB4Þ

Here the color ordering is generated by choosing reference
legs − and b, inserting the leg a between − and b,
and inserting þ between − and a. The operators −∂ϵi·l
for i ¼ þ; a are understood as ∂ϵi·k− . In the expression (B4),
the operator ∂ϵþ·ka∂ϵ−·ϵb acts on ðϵþ · kaÞðϵ− · ϵbÞ, thus
yields the one-loop level operator which acts on

TABLE VI. One-Loop Chy Integrands.

Theory IL∘ ðki; ϵi; ziÞ IR∘ ðki; ϵ̃i; ziÞ
GR FPf0Ψ FPf0Ψ
YM PT∘ðσ1;…; σnÞ FPf0Ψ
BAS PT∘ðσ1;…; σnÞ PT∘ðσ01;…; σ0nÞ
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ϵb⊲ ka ≡P
rðϵb · ϵr−Þðϵrþ · kaÞ. Following the discussion

for the Aϵ;ϵ̃
sEYMðag; bg;−g;þg; ahnnfah; bhgÞ case, and using

the completely similar method, one obtains

ð−∂ϵa·kbÞð−∂ϵb ⊲ kaÞIϵ;ϵ̃GR;∘ðahnÞ
¼ Iϵ;ϵ̃ssEYMðþg; ag; bg;−g; ahnnfah; bhgÞ; ðB5Þ

and equivalently,

∂ϵb·ka∂ϵa ⊲ kbI
ϵ;ϵ̃
GR;∘ðahnÞ

¼ ð−Þ2Iϵ;ϵ̃ssEYMðþg; bg; ag;−g; ahnnfah; bhgÞ: ðB6Þ

It is straightforward to generalize the relation (B6) to (37)

�Ym−1

i¼1

∂ϵaiþ1
·kai

�
∂ϵa1 ⊲ kam

Iϵ;ϵ̃GR;∘ðahnÞ

¼ ð−ÞmIϵ;ϵ̃ssEYMðþg; agm;…; ag1;−g; ahnnahmÞ; ðB7Þ

with m ≥ 2.
Finally, we prove the equality (38) by using CHY

formulas. For our purpose, it is sufficient to show that
Cϵa⃗mPf

0Ψðϵi; ki; ziÞ ¼ 0. Let us consider the four-gluon
example, i.e., act ∂ϵb·ka∂ϵa·kb on PfΨ0. The operator ∂ϵa·kb
acts on both Caa and Cba in the block C. For the first case,
∂ϵa·kb transmutes PfΨ0 as

PfΨ0 →
−1
zba

PfðΨ0ÞaðnþaÞ
aðnþaÞ; ðB8Þ

up to a sign, while for the second case we have

PfΨ0 →
1

zba
PfðΨ0ÞbðnþaÞ

bðnþaÞ; ðB9Þ

again up to a sign. The relative sign will be considered later.

For ðΨ0ÞaðnþaÞ
aðnþaÞ, the operator ∂ϵb·ka only acts on Cbb, thus

provides

−1
zba

PfðΨ0ÞaðnþaÞ
aðnþaÞ →

1

zabzba
PfðΨ0ÞaðnþaÞbðnþbÞ

aðnþaÞbðnþbÞ; ðB10Þ

up to a sign. For ðΨ0ÞbðnþaÞ
bðnþaÞ, the operator ∂ϵb·ka only acts on

Cab, thus gives

1

zba
PfðΨ0ÞbðnþaÞ

bðnþaÞ →
1

zabzba
PfðΨ0ÞbðnþaÞaðnþbÞ

bðnþaÞaðnþbÞ

¼ 1

zabzba
PfðΨ0ÞaðnþaÞbðnþbÞ

aðnþaÞbðnþbÞ; ðB11Þ

up to a sign. It seems that after performing ∂ϵb·ka∂ϵa·kb , we
arrive at the Pfaffians of two equivalent matrices, with the
same coefficient. However, we have not considered the

relative sign until now. Notice that (B10) is obtained by
turning elements ðΨ0ÞaðnþaÞ and ðΨ0ÞbðnþbÞ to 1, and
eliminating all terms in PfΨ0 that do not contain both
two elements, while (B11) is obtained by turning ðΨ0ÞbðnþaÞ
and ðΨ0ÞaðnþbÞ to 1, and eliminating all terms that do not
contain both of them. Comparing ðΨ0ÞaðnþaÞðΨ0ÞbðnþbÞ with
ðΨ0ÞbðnþaÞðΨ0ÞaðnþbÞ, the permutation from the ordering
aðnþ aÞbðnþ bÞ to bðnþ aÞaðnþ bÞ is odd. Thus, when
considering ∂ϵb·ka∂ϵa·kbPfΨ

0, contributions from (B10) and
(B11) cancel each other, due to the definition of Pfaffian.
Consequently, Cϵa⃗2Pf

0Ψ ¼ 0 for a⃗2 ¼ ha; bi. The above
argument can be generalized to the general ordered set
a⃗m ¼ ha1;…; ami directly, thus we get the conclusion (38).

APPENDIX C: VERIFICATION OF (39)
VIA CHY FORMULAS

This Appendix is devoted to verifying the transmutation
relation (39) by using CHY formulas.
The operators under consideration are in the form ∂ϵa·V ,

thus are commutable with the CHY contour integration.
Thus we can act the operators on the CHY integrands
directly without altering the measure. Since the
operator Cϵa⃗m only depends on polarization vectors in
fϵig, it only acts on FPf0Ψðϵi; ki; ziÞ, without altering
the FPf0Ψðϵ̃i; ki; ziÞ part. Without lose of generality, let us
assume a⃗m ¼ h1;…; mi. The nonvanishing contributions
arise from acting Cϵa⃗m on terms containing ϵi⊳ ki−1, or
ϵi⊲ ki−1 with i ∈ f1;…; mg, as indicated by the equality
(38). Based on the discussion above, now we consider the
effect of acting Cϵa⃗m on terms containing ϵ1⊳ km, the
treatments for other terms are analogous.
The factor ϵ1⊳ km in FPfΨ0 arises from doing the

summation
P

rðϵrþÞμðϵr−Þν for ðϵ1 · ϵþÞðϵ− · kmÞ in
Pf0Ψðϵi; ki; ziÞ. Thus, acting the operator ∂ϵ1·km on
ϵ1⊳ km transmutes FPfΨ0 as

FPfΨ0 →
1

z1þzm−
FPfðΨ0Þ1mð2nþ1Þð2nþ2Þ

1mð2nþ1Þð2nþ2Þ; ðC1Þ

where the later matrix is obtained from Ψ0 by deleting 1th,
mth, (2nþ 1)th, (2nþ 2)th rows and columns. More
explicitly, using the definition of Pfaffian, one can expand
PfΨ0 as

PfΨ0 ¼
X
α∈Π

sgnðσαÞðΨ0Þa1b1ðΨ0Þa2b2 � � � ðΨ0Þanbn : ðC2Þ

We divided terms in the summation at the rhs of (C2) into
two classes, terms in the first class are those that do not
contain both ðΨ0Þ1ð2nþ1Þ and ðΨ0Þmð2nþ2Þ, while terms in the
second class do contain both ðΨ0Þ1ð2nþ1Þ and ðΨ0Þmð2nþ2Þ.
The operator ∂ϵ1·km annihilates all terms in the first class.
Notice that since the matrix Ψ0 is generated from the
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original Ψ by removing (nþ 1)th and (nþ 2)th rows and
columns, ∂ϵ1·ϵþ and ∂ϵ−·km cannot act on diagonal elements
Cðnþ1Þðnþ1Þ and Cðnþ2Þðnþ2Þ of the block C. While acting on
terms in the second class, the operator ∂ϵ1·km transmutes
F ½ðΨ0Þ1ð2nþ1ÞðΨ0Þmð2nþ2Þ� as

∂ϵ1·kmF ½ðΨ0Þ1ð2nþ1ÞðΨ0Þmð2nþ2Þ� ¼ ∂ϵ1·km

ϵ1⊳km
z1þzm−

¼ 1

z1þzm−
:

ðC3Þ

Now we collect terms in the second class together, and
remove ðΨ0Þ1ð2nþ1ÞðΨ0Þmð2nþ2Þ in them. By the definition of
Pfaffian, the resulting terms after performing the above

manipulation can be regrouped as PfðΨ0Þ1mð2nþ1Þð2nþ2Þ
1mð2nþ1Þð2nþ2Þ, up

to an irrelevant overall sign arises from changing sgnðσαÞ.
Thus we get the result (C1).
Then, we act the operator ∂k1·ϵ2 on

FPfðΨ0Þ1mð2nþ1Þð2nþ2Þ
1mð2nþ1Þð2nþ2Þ. Since the matrix ðΨ0Þ1mð2nþ1Þð2nþ2Þ

1mð2nþ1Þð2nþ2Þ
does not include 1th rows and columns, ∂k1·ϵ2 only
acts on the diagonal element C22, thus transmutes

FPfðΨ0Þ1mð2nþ1Þð2nþ2Þ
1mð2nþ1Þð2nþ2Þ as

FPfðΨ0Þ1mð2nþ1Þð2nþ2Þ
1mð2nþ1Þð2nþ2Þ→

1

z21
FPfðΨ0Þ12mð2nþ1Þð2nþ2Þ

12mð2nþ1Þð2nþ2Þ; ðC4Þ

up to an overall sign. Now the recursive pattern occurs, the
operator ∂k2·ϵ3 only acts on C33, due to the observation

ðΨ0Þ12mð2nþ1Þð2nþ2Þ
12mð2nþ1Þð2nþ2Þ does not include 2th rows and columns.

Thus, by iterating the above manipulation, one finally
arrives at

FPfΨ0 →
1

z1þzm−

Ym−1

i¼1

1

zðiþ1Þi
; ðC5Þ

therefore

FPf0Ψðϵi; ki; ziÞ → PTðþ; 1;…; m;−Þ; ðC6Þ

up to an irrelevant overall sign.
The resulting object PTðþ; 1;…; m;−Þ, together with

FPf0Ψðϵ̃i; ki; ziÞ, gives rise to the ssEYM one-loop CHY
integrand, which leads to the partial Feynman integrand
Iϵ;ϵ̃ssEYMðþg; 1g;…; mg;−g; ahnnahmÞ. Similar manipulation
shows that acting Cϵa⃗m on terms containing ϵ1 ⊲ km yields

ð−ÞmIϵ;ϵ̃ssEYMðþg; mg;…; 1g;−g; ahnnahmÞ. The relative sign
ð−Þm arises as follows. The terms containing ϵ1 ⊳ km are
those containing

F ½ðΨ0Þ1ð2nþ1ÞðΨ0Þmð2nþ2Þ� ¼
ϵ1⊳km
z1þzm−

; ðC7Þ

while terms containing ϵ1 ⊲ km are those containing

F ½ðΨ0Þ1ð2nþ2ÞðΨ0Þmð2nþ1Þ� ¼
ϵ1⊲km
z1−zmþ

; ðC8Þ

the difference between these two objects determines the
relative sign. First

1

z1þzm−

Ym−1

i¼1

1

zðiþ1Þi
¼ ð−ÞmPTðþ; 1;…; m;−Þ;

1

zmþz1−

Ym−1

i¼1

1

zðiþ1Þi
¼ ð−ÞPTðþ; m;…; 1;−Þ: ðC9Þ

Comparing them gives a relative sign ð−Þm−1. Second,
comparing elements ðΨ0Þ1ð2nþ1ÞðΨ0Þmð2nþ2Þ with elements
ðΨ0Þ1ð2nþ2ÞðΨ0Þmð2nþ1Þ, the permutation from the ordering
1ð2nþ 1Þmð2nþ 2Þ to 1ð2nþ 2Þmð2nþ 1Þ contributes a
relative (−), due to the definition of Pfaffian.
The above results can be generalized to ϵi⊳ ki−1 or

ϵi⊲ ki−1 for arbitrary i ∈ f1;…; mg via the replacement
1 → i, due to the cyclic symmetry. Collecting all pieces
together, we get the desired conclusion (39). Since our
method only transmutes FPf0Ψðϵi; ki; ziÞ, one can claim
that the relation (43) which links YM and ssYMS Feynman
integrands together has also been verified.

APPENDIX D: SOLVING RECURSIVE
EXPANSION OF EYM

For the readers’ convenience, in this Appendix we show
the details of solving the recursive expansions of ssEYM
Feynman integrands by employing the one-loop level
differential operators.
Consider the ssEYM partial Feynman integrand

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ with n −m gluons and m grav-
itons. Here we denote the ordered set of gluons a⃗gn−m as
a⃗n−m ¼ h1;…; n −mi, and label the gravitons in ahm as
am ¼ fh1;…; hmg. The Lorentz invariance, together
with the assumption that polarization vectors in fϵig and
fϵ̃ig cannot contract with each other, indicates the
polarization vector ϵhm can only appear in the following
combinations, which are ϵhm · kb, ϵhm · khg , and ϵhm · ϵhg ,

with g ∈ f1;…; m − 1g. Since Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ is
assumed to be linear in each polarization vector, the partial
integrand Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ can be expanded as

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ

¼ ðϵhm · lÞBþ þ
Xn−m
b¼1

ðϵhm · kbÞBb

þ
Xm−1

g¼1

ðϵhm · khgÞðϵhg · CgÞ þ
Xm−1

g¼1

ðϵhm · ϵhgÞDg: ðD1Þ
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At the tree level, one can regard one of kb or khg as the
unindependent one due to the momentum conservation, and
remove the corresponding ϵhm · kb or ϵhm · khg, as can be
seen in [26]. In the current one-loop case, we do not do this
procedure at the rhs of (D1), based on the following
reason. At the tree level, if one replaces any ϵi · kj by
−ϵi · ð

P
l≠j klÞ, the resulting objects after performing the

insertion operators will not be modified, as can be observed
from the definition of operators. At the one-loop level, a
similar statement does not hold for our one-loop level
insertion operators Iϵþaiaiþ1

, as well as the new operators
Cϵa⃗m . Thus, in this and the next subsections, we do not use
the momentum conservation to change the representations
of the Feynman integrands. It means we solve the special
expanded formulas with special representations of external
momenta. On the other hand, we think of the momentum
k− ¼ −l as being removed, via k− ¼ −kþ ¼ −l, and ϵhm ·
l in (D1) should be understood as ϵhm · kþ, since the effects
of acting I ϵþai−, I

ϵþaiaiþ1
and Cϵa⃗m will not be altered if

replacing k− in the Feynman integrands by −kþ.
Our aim is to use the differential equations provided by

transmutational relations, together with the gauge invari-
ance requirement, to solve coefficients Bþ, Bb, C

μ
g , Dg in

(D1). The desired solutions are formulas of these coef-
ficients consisted by Lorentz invariants such as ϵhm · kb,
ϵhm · khg , ϵhm · ϵhg , and physically meaningful objects such
as ssEYM Feynman integrands. We do not care about the
exact expressions of these physical objects appearing
in solutions. As will be seen, such solutions of Bþ, Bb,
Cμ
g , Dg naturally give the recursive expansion of

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ to partial ssEYM integrands with
less gravitons.
The first line on the rhs of (D1) can be detected by the

insertion operators. For convenience, we denote nodes þ
and − as 0 and n −mþ 1, respectively. Acting I ϵ

ihmðiþ1Þ
with i ∈ f0;…; n −mg on the lhs of (D1) gives

Iϵ
ihmðiþ1ÞI

ϵ;ϵ̃
ssEYMðþg; a⃗gn−m;−g;ahmÞ

¼Iϵ;ϵ̃ssEYMð0g;…;ig;hgm;ðiþ1Þg;…;ðn−mþ1Þg;ahmnhhmÞ:
ðD2Þ

While acting on the rhs, these operators annihilate the
second line, and transmute the first line as follows:

Iϵ
ihmðiþ1Þ

�Xn−m
b¼1

ðϵhm ·kbÞBb

�
¼
�
Bi−Biþ1; if i≤n−m−1;

Bi; if i¼n−m:

ðD3Þ

When applying Iϵ
ðn−mÞhmðn−mþ1Þ, we have used the

assumption that k− ¼ −l has been removed by using
momentum conservation thus the effective part of the
operator is ∂ϵhm ·kn−m

. Comparing the lhs result (D2) with
the rhs result (D3) provides

Bn−m¼Iϵ;ϵ̃ssEYMð0g;…;ðn−mÞg;hgm;ðn−mþ1Þg;ahmnhhmÞ;
ðD4Þ

and

Bi ¼ Biþ1 þ Iϵ;ϵ̃ssEYMð0g;…; ig; hgm; ðiþ 1Þg;…; ðn −mþ 1Þg; ahmnhhmÞ;
for i ∈ f0;…; n −m − 1g: ðD5Þ

Thus Bb with b ∈ f0;…; n −mg can be calculated recursively as

Bb ¼
Xn−m
i¼b

Iϵ;ϵ̃ssEYMðþg; 1g;…; ig; hgm; ðiþ 1Þg;…; ðn −mÞg;−g; ahmnhhmÞ: ðD6Þ

Substituting the above solution into (D1), the first line at the rhs is obtained as

Xn−m
b¼0

ðϵhm · kbÞBb ¼
X
⧢
ðϵhm · YhmÞIϵ;ϵ̃ssEYMðþg; hgm ⧢ a⃗gn−m;−g; ahmnhhmÞ: ðD7Þ

The combinatory momentum Yi is defined as the summation of momenta of gluons at the lhs of the leg ig in the color
ordering [22]. The summation over all possible shuffles ⧢ of two ordered sets a⃗ and ⃗s is the summation over all
permutations of a⃗ ∪ ⃗s, those preserving the orderings of a⃗ and ⃗s. For example, h1; 2i⧢h3; 4i includes the following ordered
sets: h2; 3; 4; 5i, h2; 4; 3; 5i, h2; 4; 5; 3i, h4; 2; 3; 5i, h4; 2; 5; 3i, h4; 5; 2; 3i.
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Now we arrive at

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ
¼

X
⧢
ðϵhm · YhmÞIϵ;ϵ̃ssEYMðþ; hgm ⧢ a⃗gn−m;−g; ahmnhhmÞ

þ
Xm−1

g¼1

ðϵhm · khgÞðϵhg · CgÞ þ
Xm−1

g¼1

ðϵhm · ϵhgÞDg: ðD8Þ

To continue, we study the relation between Cμ
g and Dg,

by imposing the gauge invariance of the graviton hg. Notice
that direct replacing ϵhg → khg makes the treatment com-
plicated, since each term includes ϵhg . To single out the Cμ

g

and Dg terms, a convenient way is to use the Ward’s
identity operator defined in (41). The key point is the gauge
invariance condition

Wϵ
hg
Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼ 0 ðD9Þ

indicates

I ϵ
hghm−W

ϵ
hg
Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼ 0; ðD10Þ

and the later one is equivalent to

Wϵ
hg
I ϵ
hghm−I

ϵ;ϵ̃
ssEYMðþg; a⃗gn−m;−g; ahmÞ

þ ðIϵ
hghm−W

ϵ
hg
ÞIϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼ 0; ðD11Þ

then we get the equation

Wϵ
hg
Ihghm−I

ϵ;ϵ̃
ssEYMðþg; a⃗gn−m;−g; ahmÞ

þ ∂ϵhm ·ϵhg
Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼ 0: ðD12Þ

The assumption that k− ¼ −l is removed via the momen-
tum conservation has been used again. Substituting the rhs
of (D8) into the above equation (D12), we obtain
Dg ¼ −ðkhg · CgÞ, thus

ðϵhm ·khgÞðϵhg ·CgÞþðϵhm ·ϵhgÞDg¼ ϵhm ·fhg ·Cg: ðD13Þ

and

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ
¼

X
⧢
ðϵhm · YhmÞIϵ;ϵ̃ssEYMðþg; hgm ⧢ a⃗gn−m;−g; ahmnhhmÞ

þ
Xm−1

g¼1

ðϵhm · fhg · CgÞ; ðD14Þ

where the antisymmetric strength tensors are defined as
fμνi ≡ kμi ϵ

ν
i − ϵμi k

ν
i , f̃

μν
i ≡ kμi ϵ̃

ν
i − ϵ̃μi k

ν
i .

Until now, one remaining class of coefficients Cμ
g has not

been fixed. To solve it, we first need to find the equations
satisfied by Cμ

g. This goal can be reached by applying two
insertion operators, one acts on ϵhm · khq at the rhs of (D14),
therefore selects the term ϵhq · Cq, and another one acts on
ϵhq · Cq to provide the equation for solving Cμ

q. We hope
two operators transmute the lhs of (D14) in an appropriate
way so that the obtained object is physically meaningful.
Based on the above discussion, the combinatory operators
Iϵ
jhqðjþ1ÞI

ϵ
jhmhq

with j ∈ f0;…; n −mg are nice candidates.
Again, we have denoted nodes þ and − as 0 and
n −mþ 1, respectively.
When applying Iϵ

jhqðjþ1ÞI
ϵ
jhmhq

to the lhs of (D14), we

use the observation ½Iϵ
jhqðjþ1Þ; I

ϵ
jhmhq

� ¼ 0 to get the physi-

cally meaningful result:

Iϵ
jhqðjþ1ÞI

ϵ
jhmhq

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; agmÞ ¼ Iϵ
jhmhq

Iϵ
jhqðjþ1ÞI

ϵ;ϵ̃
ssEYMð0g; a⃗gn−m; ðn −mþ 1Þg; ahmÞ

¼ Iϵ;ϵ̃EYMð0g;…; jg; hgm; h
g
q; ðjþ 1Þg;…; ðn −mþ 1Þg; ahmnfhhm; hhqgÞ: ðD15Þ

While acting on the rhs, the operator Iϵ
jhqðjþ1ÞI

ϵ
jhmhq

leads to

Iϵ
jhqðjþ1Þ

�Xn−m
i¼j

Iϵ;ϵ̃ssEYMð0g;…; ig; hgm; ðiþ 1Þg;…; ðn −mþ 1Þg; ahmnhhmÞ − ðϵhq · CqÞ
�

¼
X
⧢
Iϵ;ϵ̃ssEYMð0g;…; jg; hgq; h

g
m⧢hðjþ 1Þg;…; ðn −mÞgi; ðn −mþ 1Þg; ahmnfhhm; hhqgÞ

þ Iϵ;ϵ̃ssEYMð0g;…; jg; hgm; h
g
q; ðjþ 1Þg;…; ðn −mþ 1Þa; ahmnfhhm; hhqgÞ − Iϵ

jhqðjþ1Þðϵhq · CqÞ; ðD16Þ

where the splitting I ϵ
jhqðjþ1Þ ¼ Iϵ

jhqhm
þ Iϵ

hmhqðjþ1Þ due to the definition has been used when acting on

Iϵ;ϵ̃ssEYMð0g;…; jg; hgm; ðjþ 1Þg;…; ðn −mþ 1Þg; ahmnhhmÞ. Comparing two sides gives the desired equation:
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I ϵ
jhqðjþ1Þðϵhq · CqÞ ¼

X
⧢
Iϵ;ϵ̃ssEYMð0g;…; jg; hgq; h

g
m⧢fðjþ 1Þg;…; ðn − 1Þgg; ðn −mþ 1Þg; ahmnfhhm; hhqgÞ; ðD17Þ

which holds for arbitrary j ∈ f0;…; n −mg. Equation (D17) bears strong similarity with the insertion relation for (n − 1)-
point partial integrands,

Iϵ
jhqðjþ1ÞI

ϵ;ϵ̃
ssEYMð0g;…; ðn −mþ 1Þg; ahm−1Þ ¼ Iϵ;ϵ̃ssEYMð0g;…; jg; hgq; ðjþ 1Þg;…; ðn −mþ 1Þg; ahm−1nhhqÞ; ðD18Þ

therefore it is natural to expect the previous technique can be applied to the current case. The Lorentz invariant ðϵhq · CqÞ
contains polarization vectors ϵhp with p ≠ q, thus can be divided as

ϵhq · Cq ¼
Xn−m
b¼0

ðϵhq · kbÞB0
b þ

X
hp∈ahmnfhm;hqg

ððϵhq · khpÞðϵhp · C0
pÞ þ ðϵhq · ϵhpÞD0

pÞ: ðD19Þ

It is worth emphasizing that the above expansion does not include the ϵhq · khm term, due to the following reason.
Combining this term with the coefficient of ϵhq · Cq in (D14) gives the combination ðϵhm · khqÞðϵhq · khmÞ, which is forbidden
by observation (38), since the partial integrand Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ does not include any ϵi ⊳ kj or ϵi⊲ kj. The strict
proof can be seen in (E5) and the related discussions in the next Appendix, for the more general case. The coefficients B0

b
can be solved by using Iϵ

jhqðjþ1Þ, and is found to be

Xn−1
b¼0

ðϵhq · kbÞB0
b ¼

X
⧢
ðϵhq · YhqÞIϵ;ϵ̃ssEYMðþg; fhgq; hgmg⧢a⃗gn−m;−g; ahmnfhhm; hhqgÞ: ðD20Þ

This equality serves as the analog of (D7). The gauge invariance condition WhpI
ϵ;ϵ̃
ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼ 0 requires

ðϵhq · CqÞ to be gauge invariant for the leg hp, thus one can impose the gauge invariance to relate coefficients of ðϵhq · khpÞ
and ðϵhq · ϵhpÞ together as

ðϵhq · khpÞðϵhp · C0
pÞ þ ðϵhq · ϵhpÞD0

p ¼ ϵhq · fhp · C
0
p: ðD21Þ

This equality serves as the analog of (D13).
Substituting (D20) and (D21) into (D14) yields

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼
X
⧢
ðϵhm · YhmÞIϵ;ϵ̃ssEYMðþg; hgm⧢a⃗gn−m;−g; ahmnhhmÞ

þ
Xm−1

g¼1

X
⧢
ðϵhm · fhg · YhgÞIϵ;ϵ̃ssEYMðþg; hhgg; hgmi⧢a⃗gn−m;−;ahmnfhhm; hhggÞ

þ
Xm−1

g¼1

X
hp∈ahmnfhm;hgg

ϵhm · fhg · fhp · C
0
p: ðD22Þ

Solving the coefficients ðC0
pÞμ is completely analogous as solving Cμ

g . Now the recursive pattern is manifested. By iterating
the above manipulation, the full expansion of Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ can finally be obtained as

Iϵ;ϵ̃ssEYMðþg; a⃗gn−m;−g; ahmÞ ¼
X

⃗s∶s⊆ahmnhm

X
⧢

Kϵ
⃗sI

ϵ;ϵ̃
ssEYMðþg; h⃗sg; hgmi⧢a⃗gn−m;−; ahmnfhhm; shgÞ; ðD23Þ

where the summation is over all ordered sets ⃗s with s ⊆ ahmnhm, and Kϵ
⃗s is defined as

Kϵ
⃗s ¼ ϵhm · fsjsj � � � fs1 · Ys1 ; ðD24Þ

for any ⃗s ¼ hs1;…; sjsji.
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To derive the main result (47), all seven principles/
assumptions listed at the beginning of Sec. IVare used. The
using of the first six is manifest, while the last one is
necessary when excluding the ϵhq · khm term in (D19), via
the tree level equality (38). In the expansion (47), the gauge
invariance for each graviton in the set ahmnhm is manifest,
since the tensor fμνi vanishes under the replacement
ϵi → ki. However, the gauge invariance for the graviton
hm is hidden. Similar phenomenons happen at the tree level
when solving the expansions of sEYM and GR amplitudes.
This is a quite general feature if we start with the
expansions in the form of (D1).

APPENDIX E: VERIFICATION
OF SOLUTION (60)

The verification of solution (60) is based on the follow-
ing three equalities:

D½Cϵ
a⃗½Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ�� ¼ 0:

ðE1Þ

Cϵa⃗m ½ðd − 2ÞIϵ;ϵ̃ssEYM;∘ðahnÞ� ¼ 0; ðE2Þ

and

Cϵ⃗sm ½Cϵ
a⃗½Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; ahnnahÞ��

¼ δπ⃗sm;a⃗½I
ϵ;ϵ̃
ssEYM;∘ða⃗g; shnnahÞ þ ð−ÞjajIϵ;ϵ̃ssEYM;∘ða⃖g; shnnahÞ�:

ðE3Þ

Here δπ⃗sm;a⃗ is understood as 1 when ⃗sm ¼ a⃗ up to a
cyclic permutation, and 0 otherwise. The equality (E1)
holds obviously, and ensures that Iϵ;ϵ̃GR;∘ðahnÞ in (60)

satisfies Eq. (56) if DR ¼ 0. To see (E2) and (E3), we
first show that

Cϵ⃗smI
ϵ;ϵ̃
ssEYM;∘ða⃗g; ahnnahÞ ¼ 0; ðE4Þ

for arbitrary a⃗ (including the special case a ¼ ∅). If
sm ∩ a ≠ ∅, for each i ∈ sm ∩ a, the corresponding polari-
zation vector ϵi does not appear in Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ,
thus Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ is annihilated by ∂ϵi·kj in Cϵ⃗sm . If
sm ∩ a ¼ ∅, it means sm ⊆ anna. For this case, one
effective way to see (E4) is to use

Iϵ;ϵ̃ssEYM;∘ða⃗g; ahnnahÞ

¼
X
πc

�
1

l2
FAϵ;ϵ̃

sEYM;∘ðþg; πcða⃗gÞ;−g; ahnnahÞ
�

¼ 1

l2
F
X
πc

T ϵ
þa⃗−A

ϵ;ϵ̃
GR;∘ðahn ∪ fþh;−hgÞ: ðE5Þ

Since the operator T ϵ
þa⃗− removes the polarization vectors

ϵþ and ϵ− in Aϵ;ϵ̃
GR;∘ðahn ∪ fþh;−hgÞ, the manipulation F

will not create any ϵi ⊳ kj or ϵi⊲ kj; thus Cϵ⃗sm is com-
mutable with F . Since sm ∩ a ¼ ∅, Cϵ⃗sm is commutable

with T ϵ
þa⃗−. Then, the equality (E4) is ensured by (38). On

the other hand, it is straightforward to see

Cϵ⃗smC
ϵ
a⃗ ¼ δπ⃗sm;a⃗: ðE6Þ

Combining (E4) and (E6) together gives (E2) and (E3).
Using equalities (E1), (E2) and (E3), one sees that
formula (60) is the solution to Eqs. (56) and (39), if
DR ¼ 0 and Cϵa⃗mR ¼ 0 for each a⃗m.
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