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Standard lore ritualizes our quantum vacuum in the four-dimensional spacetime (4D) governed by one of
the candidate Standard Models (SMs), while lifting towards some grand unification-like structure (GUT) at
higher energy scales. In contrast, in our work, we introduce an alternative view that the SM is a low energy
quantum vacuum arising from various neighbor vacua competition in an immense quantum phase diagram.
In general, we can regard the SM arising near the gapless quantum criticality (either critical points or
critical regions) between the competing neighbor vacua. In particular detail, we demonstrate how the
suð3Þ × suð2Þ × uð1Þ SM with 16n Weyl fermions arises near the quantum criticality between the GUT
competition of Georgi-Glashow suð5Þ and Pati-Salam suð4Þ × suð2Þ × suð2Þ. We propose two enveloping
toy models. Model I is the conventional soð10Þ GUT with a Spin(10) gauge group plus GUT-Higgs
potential inducing various Higgs transitions. Model II modifies model I by adding a new 4D discrete
torsion class of Wess-Zumino-Witten-like term built from GUT-Higgs field [which matches a non-
perturbative global mixed gauge-gravity anomaly captured by a 5D invertible topological field theory
w2w3ðTMÞ ¼ w2w3ðVSOð10ÞÞ], which manifests a beyond-Landau-Ginzburg quantum criticality between
Georgi-Glashow and Pati-Salam models, with extra beyond the Standard Model excitations emerging near
a hypothetical quantum critical region. If the internal symmetries were treated as global symmetries (or
weakly coupled to probe background fields), we suggest a particular low-energy realization of model II as
an analogous gapless 4D deconfined quantum criticality with new beyond the SM fractionalized
fragmentary excitations of color-flavor separation, and gauge enhancement including a dark gauge force
sector, altogether requiring a double fermionic Spin structure named DSpin. If the internal symmetries are
dynamically gauged (as they are in our quantum vacuum), we suggest the model II’s 4D criticality as a
boundary criticality such that only appropriately gauge enhanced dynamical GUT gauge fields can
propagate into an extradimensional 5D bulk. The phenomena may be regarded as SM deformation or
“morphogenesis.”Although our derivation is based on kinematics and global anomaly matching constraints
between UV parent and various candidate IR field theories, the constraints are still highly subtle and
suggestive. Future verifications on the IR dynamics will be desirable.
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I. INTRODUCTION, MOTIVATION,
AND SUMMARY

It is a common ritual practice in high-energy physics
(HEP) to regards our quantum vacuum in the four-
dimensional spacetime [denoted as 4D or ð3þ 1ÞD]
governed by one of the candidate suð3Þ × suð2Þ × uð1Þ
Standard Models (SMs) [1–4] as a quantum field theory

(QFT) and an effective field theory (EFT) suitable below a
certain energy scale, while lifting towards one of some
grand unification-like structure (GUT) [5–7] or string
theory at higher energy scales,1 see Fig. 1(a). Although
many nonsupersymmetric GUT models had been ruled out
by experiments due to no evidence yet on the predicted
proton decay (proton lifetime >1034 years) [8], many
physicists still speculate that GUT plays a certain crucial
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1Throughout our article, we denote nd for n-dimensional
spacetime, or (n0 þ 1)D as an n0-dimensional space and one-
dimensional time. We also denote the Lie algebra in the lower
case such as soð10Þ, and denote the Lie group in the capital case
such as Spin(10). For example, we follow the convention to call
the model [7] as the soð10Þ GUT, but it requires the Spin(10)
gauge group.
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role in a higher energy unification [9]. How can we remedy
the conventional GUTs other than seeking for their super-
symmetry variants or string theory modifications at higher
energy?
To address the above question, we propose to seek for a

new viewpoint. In our present work, instead of viewing
GUTonly as some higher-energy theory of SM, we suggest
that various GUTs may be neighbor quantum vacua next to
SM in an immense quantum phase diagram2 shown
schematically in Fig. 1(b), with an underlying larger
quantum vacua tuning parameter space [i.e., the horizontal
axis in Figs. 1(b), 2, and 3]. We provide two explicit toy
models in Figs. 2 and 3: SM arises near the gapless
quantum critical point (for Fig. 2) or critical region (gray
area for Fig. 3) between the competing neighbor GUT
vacua. Readers may be puzzled: What precisely can be the
quantum vacua tuning parameters? What can we gain from
this viewpoint? What are the motivations? Let us address
these issues one by one.
(1) Quantum vacua tuning parameters can be as famil-

iarly simple as the tuning of the GUT-Higgs poten-
tial ½ðrRðΦRÞ2 þ λRðΦRÞ4Þ� of some GUT-Higgs
field ΦR that can induce a Higgs condensation3

phase transition via tuning from rR > 0 to
rR < 0. The quantum vacua tuning parameters
can be those triggering a scalar condensation
hΦRi ≠ 0 in the rR < 0 region. The possibility to
access the GUT vacua from the SM vacuum by
tuning certain model parameters has been largely

(a) (b)

FIG. 1. (a) Standard lore seeks for a single unified dynamically gauged internal symmetry at high energy. One probes the shorter
distance and higher energy scales to look for the GUT, supersymmetry, or string theory evidence. The vertical axis shows an energy
scale, while the horizontal axis plays no physical role. (b) We propose an alternative view: SM is just one of many possible low energy
phases of the quantum vacua of our universe. By introducing a horizontal axis that represent many possible quantum vacua tuning
parameters, we can show that SM phase can tune to other GUT phases, even at a fixed energy scale (without the necessity to go to higher
energy) and at zero temperature. SM arises near the gapless quantum critical region (shown as the gray area).

FIG. 2. Schematic phases for toy model I: The parent EFT is the
conventional soð10Þ GUT with a Spin(10) gauge group plus
GUT-Higgs potential inducing various Higgs transitions to
Georgi-Glashow (GG), Pati-Salam (PS), or SM.

FIG. 3. Schematic phases for toy model II: The parent EFT is a
modified soð10Þ GUTwith a Spin(10) gauge group, plus not only
a GUT-Higgs potential but also a new 4D discrete torsion class of
Wess-Zumino-Witten-like (WZW) term built from GUT-Higgs
fields that saturates a nonperturbative global mixed gauge-gravity
anomaly captured by a 5D invertible topological field theory
w2w3ðTMÞ ¼ w2w3ðVSOð10ÞÞ, which manifests a proposed hypo-
thetical beyond Landau-Ginzburg quantum critical region (shown
in a gray area) between GG and PS models, with extra beyond the
Standard Model (BSM) excitations emerging near the quantum
criticality. The SMþ BSM physics is denoted as SM�.

2Here quantum phases mean that we focus on the zero
temperature physics where the quantum effect is dominant, see
for example an overview [10]. The quantum phase diagram at
zero temperature behaves more quantum than the thermal phase
diagram at finite temperature. Of course, the two viewpoints are
complementary—we can include both the energy scale axis and
the zero-temperature vacuum-tuning axis as in Fig. 1(b).

3Throughout our work, whenever we mention Higgs field or
Higgs transition, we normally mean the GUT-Higgs instead of the
electroweak Higgs. Namely, we always focus on the SM gauge
group suð3Þ × suð2Þ × uð1Þ as above the electroweak scale
instead of suð3Þ × uð1ÞEM below the electroweak scale.
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overlooked in the existing literature, because some
of these tuning parameters appear to be perturba-
tively irrelevant at the SM fixed point. A key
proposal of this work is to investigate the non-
perturbative effect of these tuning parameters in
driving quantum phase transitions from the SM
phase to adjacent GUT phases.

(2) Deformation class of QFT: Given the importance of
symmetry and its associated ’t Hooft anomaly of
QFT, Seiberg [11] and others4 conjectured that
seemly different dD QFTs within the same sym-
metry G and same ’t Hooft anomaly Zdþ1 of
symmetry G [14] can indeed be deformed to each
other via adding degrees of freedom at short dis-
tances that preserve the same symmetry and that
maintain the same overall anomaly. Namely, the
whole system allows all symmetric interactions
between the original QFT and any new symmetric
QFTs brought down from high energy. This organi-
zation principle that connects a large class of QFTs
together within the same data ðG;Zdþ1Þ via any
symmetric deformation (possibly with discontinu-
ous or continuous quantum phase transitions [10]
between different phases) is called the deformation
class of QFTs in dD [11], which is indeed controlled
by the cobordism or deformation class of invertible
topological quantum field theory Zdþ1 in (dþ 1ÞD
[15]. One can further define the deformation class
for 4D SM [16,17].
As we will see, our viewpoint in Fig. 1(b) (also

in Figs. 2 and 3) is not only compatible with
this symmetric deformation class of QFT [11], but
we also allow symmetry-breaking deformations
along the quantum vacua tuning parameter space.
We may refer to all these deformations of the
SM to other neighbor vacua as “morphogenesis”
of the SM.

(3) Proton decay: The aforementioned issue of GUT
proton decay may be resolved in our framework by
twoways. First, the change of viewpoint—instead of
looking for GUT proton decay in our vacuum (or in
a higher energy GUT along the vertical axis, as in
Fig. 1), we may look for GUT proton decay by first
moving to the appropriate quantum vacuum along
the horizontal axis in Fig. 1(b) that already lives this

specific GUT.5 Second, a modified parent EFT that
controls all possible deformation of SM in the phase
diagrammaygive rise to a different protondecay rate.6

The experimental bound on proton decay rate only
rules out the possibility to access nonsupersymetric
GUT phases from the SM phases by thermal phase
transitions (i.e., by raising the energy or temperature
scales), but it does not say anything about accessing
these GUT phases by quantum phase transitions (by
tuning parameters near ground states at low energy).
This work exactly focuses on the later possibility of
quantum phase transitions among the SM and GUTs.

The above three arguments summarize the motivation and
philosophybehindourviewpoint.Namely, inourpresentwork,
we initiate and introduce an alternative complementary
perspective—we propose that the SM vacuum can be a low
energyquantumvacuumarisingfromthequantumcompetition
of various neighbor GUT vacua in a quantum phase diagram.
SM is just one possible phase allowedby the deformation class
of SM [16]. Let us list down some key results of our work:
(1) In general, we propose that the SM may arise as one

adjacent phase from the vicinity of gapless quantum
criticality (either a critical point for model I in Fig. 2,
or a critical region for model II in Fig. 3) between the
competing neighbor GUT vacua.

(2) Inparticular,wedemonstrate how the suð3Þ × suð2Þ ×
uð1Þ SM [1–4] with 16nWeyl fermions (Fig. 4) could
emerge near the quantum criticality between two
neighbor vacua of GG suð5Þ model [5] (Fig. 5) and
PS suð4Þ × suð2Þ × suð2Þ model [6] (Fig. 6), which
represents two distinct Higgs phases of the further
unified soð10Þ GUT [with a Spin(10) gauge group].

(3) We propose two explicit toy models. The two
models are differed by whether they can carry
a 4D nonperturbative global anomaly of mixed

4In fact the related concept has been used in arguing that the
fermion doubling problem (occurred in regularizing chiral
fermions nonperturbatively on the lattice with a chiral G
symmetry) can be resolved by gapping the mirror chiral fermion
if and only if the chiral fermion is anomaly free in G (tauto-
logically, the mirror fermion is also anomaly free in G), see
[12,13] and references therein. The argument follows directly
from the fact that the gapless anomaly-free G-symmetric chiral
fermion theory is in the same deformation class of the gapped
anomaly-free G-symmetric theory.

5Take Georgi-Glashow suð5Þ GUT [5] as an example. The
conventional viewpoint may be problematic because this specific
GUT may not be the correct higher energy theory of our vacuum
along the vertical axis, in Figs. 2 and 3. If we want to detect any
proton decay in suð5ÞGUT, then hypotheticallywemay imagine to
create a small bubble within the domain wall such that inside the
bubble resides anypossible deformationof theSM(e.g., anymodels
along the horizontal axis in Figs. 2 and 3). Although changing the
large-scale quantum vacuum structure of our SM universe is likely
energetically impossible, changing the quantum vacuum inside a
small-scale bubble is possibly feasible experimentally.

6For example, two different toy-model parent EFTs in Figs. 2
and 3, respectively, can give different proton decay rates. We do
not attempt to compute the explicit proton decay rate in this work,
because so far we only have two toy models that control a p ¼
f0; 1g ∈ Z2 deformation class labeled by a Z2 nonperturbative
global anomaly in 4D. The two toy models describe only a partial
deformation class of the SM. There is also a Z16 deformation
class for SM [16], etc. To compute a experimentally sensible
proton decay rate for our vacuum, it will be the best that we
(1) locate the specific point on the phase diagram that precisely
labels our vacuum, and (2) compute from the general enveloping
parent EFT that includes all physically relevant deformations.
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gauge-gravitational (i.e., gauge-diffeomorphism)
probes, captured by a 5D invertible topological
quantum field theory (TQFT)7:
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FIG. 4. SM. The 15n Weyl fermions of SM contain the
representation ð3̄; 1Þ2;L ⊕ ð1; 2Þ−3;L ⊕ ð3; 2Þ1;L ⊕ ð3̄; 1Þ−4;L ⊕
ð1; 1Þ6;L. The 16n Weyl fermions of SM add an extra ð1; 1Þ0;L.
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FIG. 5. Georgi-Glashow SU(5) model and the suð5Þ GUT.
The 15 Weyl fermions of SM are 5̄ ⊕ 10 of SU(5); namely,
ð3̄; 1Þ2;L ⊕ ð1; 2Þ−3;L ∼ 5̄ and ð3; 2Þ1;L ⊕ ð3̄; 1Þ−4;L ⊕ ð1; 1Þ6;L ∼
10 of SU(5). Also ð1; 1Þ0;L ∼ 1 of SU(5), so the 16 Weyl fermions
of SM are 5̄ ⊕ 10 ⊕ 1 of SU(5).

FIG. 6. PS model: GPSq0 ≡ SUð4Þ×SUð2ÞL×SUð2ÞR
Zq0

≡ Spinð6Þ×Spinð4Þ
Zq0

with q0 ¼ 1, 2. The 16 Weyl fermions of SM are ð4; 2; 1Þ ⊕
ð4̄; 1; 2Þ of suð4Þ × suð2ÞL × suð2ÞR, and the 16 of soð10Þ
[or Spin(10)]. These L and R are internal symmetry group
indices. They are different from (but correlated with) the
spacetime symmetry L and R. So ð3; 2Þ1;L ⊕ ð1; 2Þ−3;L∼
ð4; 2; 1ÞL, and ð3̄; 1Þ2;L ⊕ ð3̄; 1Þ−4;L ⊕ ð1; 1Þ6;L ⊕ ð1; 1Þ0;L ∼
ð4̄; 1; 2ÞL of PS model.
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FIG. 7. The soð10Þ GUT model: The 16 Weyl fermions of
Spin(10), form the 16-dimensional representation of Spin(10).

7Thewj is the jth Stiefel-Whitney (SW) characteristic class. The
wjðTMÞ is the SW class of spacetime tangent bundle TM of
manifoldM. ThewjðVGÞ is the SWclass of the principalG bundle.
This mod 2 class w2w3 global anomaly has been checked to
be absent in the soð10Þ GUT by [12,18]. This mixed gauge-
gravitational anomaly is tightly related to the new SU(2) anomaly
[18] due to the bundle constraint w2w3ðTMÞ ¼ w2w3ðVGÞ with G
can be substituted by SOð3Þ ⊂ SOð10Þ related to the embedding
SUð2Þ ¼ Spinð3Þ ⊂ Spinð10Þ.However, aswewill see, it is natural
to introduce a new 4DWZW term [appending to the soð10ÞGUT]
with thisw2w3 global anomaly in order to realize the SMvacuumas
the quantum criticality phenomenon between the neighbor SU(5)
GUT and Pati-Salam vacua.

The w2w3 global anomaly also occurs on a certain Z2 gauge
theory with fermionic strings [19] and all-fermion U(1) electro-
dynamics [20,21], which is a pure U(1) gauge theory whose
electric,magnetic, and dyonic objects are all fermions. For theseZ2

andU(1) gauge theories, they do have the spacetime tangent bundle
constraints on TM, but do not have the analogous gauge bundle
constraints onVG. So thisw2w3 ¼ w2w3ðTMÞ anomaly becomes a
pure gravitational anomaly for these Z2 and U(1) gauge theories.

We recommend the followingRefs. [22–25] or this seminar video
[26] for readers who wish to overview some modern perspectives
about the anomalies of SM and GUT relevant gauge theories. In
particular, we follow closely [25,26]. In summary, we may address
anomalies with different adjectives to characterize their properties:

(i) Invertible vs noninvertible: We only focus on the invertible
anomalies,which follow the standard definitionof anomalies
(also in high-energy physics) captured by one higher-dimen-
sional invertible TQFTas the low energy theory of invertible
topological phases. The dD invertible anomalies [also the
(dþ 1)D invertible TQFTs] are classified by the cobordism
group data Ωd

G ≡ TPdðGÞ defined in Freed and Hopkins
[27]. The partition functionZ of a (dþ 1)D invertible TQFT
satisfies ZðMdþ1Þ ¼ 1 on a closed Mdþ1 manifold.

In contrast, the noninvertible anomalies are nonstandard
(usually not named as anomalies in high-energy physics),
characterized by noninvertible topological phases with
intrinsic topological orders.

(ii) Perturbative local vs nonperturbative global anomalies:
Whether the anomalies are local (or global), is determined
by whether the gauge or diffeomorphism transformations
are infinitesimal (or large) transformations, continuously
deformable (or not deformable) to the identity element.
The classifications of local vs global anomalies are the
integer Z vs the finite torsion Zn classes, respectively.

(iii) Gauge anomaly vs mixed gauge-gravity anomaly vs
gravitational anomaly: The adjective, gauge or gravity,
refers to the types of couplings or probes that we require to
detect them—whether the probes depends on the internal
gauge bundle/connection or the spacetime geometry.

(iv) Background fields or dynamical fields: Anomalies of
global symmetries probed by nondynamical background
fields are known as ’t Hooft anomalies. Anomalies
coupled to dynamical fields must lead to anomaly
cancellations to zero for consistency.
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ð−1Þ
R

pw2w3ðTMÞ ¼ ð−1Þ
R

pw2w3ðVSOð10ÞÞ with

p ∈ f0; 1g ¼ Z2: ð1:1Þ

Toy model I as the p ¼ 0 class without w2w3

anomaly: Its parent EFT is the conventional soð10Þ
GUT with a Spin(10) gauge group [7] plus a GUT-
Higgs potential inducing various Higgs transitions to
GG, PS, or SM, schematically shown in Fig. 2. The
first model has no w2w3 or any other anomaly within
the Spin(10).
Toy model II as the p ¼ 1 class with w2w3

anomaly and WZW term: To introduce nontrivial
competitions between GG and PS phases, we con-
sider a new parent EFT of a modified soð10Þ GUT
with a Spin(10) gauge group, which includes not
only the familiar soð10Þ GUT plus a GUT-Higgs
potential, but also a new extra 4D discrete torsion
class of WZW term that saturates a mod-2 class
w2w3 anomaly within the Spin(10).

The WZW term introduces nonperturbative inter-
action effects between different GUT-Higgs fields,
which cause a substantial change of the deformation
class of QFT vacuum that cannot be smoothly
connected to the conventional soð10Þ GUT vacuum.
There are distinct p ∈ f0; 1g ¼ Z2 deformation
classes of QFT.
We propose a schematic quantum phase diagram,

shown in Fig. 8, interpolating between different
quantum vacua: the modified soð10Þ GUTþWZW
term, the suð5Þ GG GUT, the suð4Þ × suð2ÞL ×
suð2ÞR PS model, and the suð3Þ × suð2Þ × uð1Þ
SM. In fact, this w2w3 global anomaly [hereafter
w2w3 as a shorthand for the precise bundle constraint
w2w3ðTMÞ ¼ w2w3ðVSOð10ÞÞ] does not occur when
the internal symmetry is within suð5Þ [for the GG
suð5ÞGUT], nor does it occurwithin suð4Þ × suð2Þ ×
suð2Þ (for the PS model), nor does it occur within
suð3Þ × suð2Þ × uð1Þ (for the SM). Alternatively, we
can also regard this w2w3 anomaly is matched in the

FIG. 8. One of our research motif is proposing and investigating this schematic quantum phase diagram. The phase diagram
interpolates between different quantum EFT vacua: the soð10Þ GUT [Spin(10) group], the suð5Þ GUT [SU(5) group], the suð4Þ ×
suð2ÞL × suð2ÞR PS model, and the suð3Þ × suð2Þ × uð1Þ SM. We will explore the nature of phase transitions later in Sec. III. We
propose the whitened region as a possible quantum critical region, which we explored in Secs. III and IV. Here rR denotes the coefficient
of the effective quadratic potential of ΦR field in the representation R. The corresponding GUT-Higgs ΦR field will condense in the
representation R if rR < 0. Relatively speaking, the IR low energy is drawn with the red color (for SM), the intermediate neighbor
phases are drawn with the green or blue color [for PS or SU(5) models], while the UV higher energy is drawn with the violet purple color
[for Spin(10)]; although the readers should keep in mind that we really explore the nearground-state, zero-energy, and zero-temperature
quantum phase diagram. These colors are also designed to match the colors of partitions of representations in Figs. 4–7. For toy model I
without WZW term and without w2w3 anomaly, we should remove the whitened quantum critical region, but we are left with a quantum
critical point at the origin. For toy model II with WZW term and with w2w3 anomaly, we encounter the whitened quantum critical region
near the origin. The quantum critical region can have dynamical consequences such as emergent deconfined dark gauge force
½Uð1Þ0�emergent

gauge , see Sec. III D 2.
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GG, PS, and SM via the symmetry breaking. This
w2w3 global anomaly only occurs when the internal
symmetry is Spin(10) [for the modified soð10Þ
GUTþWZW term], but this anomaly still constrains
the full quantum phase diagram (Fig. 8).
For toy model I without WZW term and without

w2w3 anomaly, we should remove the whitened
quantum critical region in Fig. 8, but we are left with
a quantum critical point at the origin.
For toy model II with WZW term and with w2w3

anomaly, we encounter a hypothetical whitened quan-
tum critical region near the origin constrained by the
global anomaly matching in Fig. 8.

Case (1). If the internal symmetries were pretended to be
global symmetries (or weakly gauged by probe back-
ground fields), then we are dealing with the quantum
criticality between Landau-Ginzburg global symmetry
breaking phases in 4D. Conventionally, the global
symmetry breaking pattern can be triggered by the
GUT-Higgs fields. Surprisingly, for model II (Fig. 3),
we discover a possible gapless quantum phase with
fractional excitations and deconfined emergent
gauge structure in analogy to 4D deconfined quantum
criticality8 beyond the Landau-Ginzburg-Wilson-
Fisher critical phenomena. Specifically, we propose

a 4D mother effective field theory, where the GUT-
Higgs bosonic fields can be fractionalized to new
fragmentary fermionic excitations, with extra gauge
enhancement. An example of such gauge enhance-
ment introduces a new U(1) gauge sector called
½Uð1Þ0�emergent

gauge , different from the SM electrodynamics
Uð1ÞEM. We name such a new theory as a fragmentary
GUT-Higgs liquid model with emergent new fermions
and new gauge fields, emergent only near the quantum
criticality.
However, we should make our claim clear that our

derivation on the hypothetical gapless quantum critical
region for model II is primarily based on kinematics and
global anomaly matching constraints between a high-
energy ultraviolet (UV) parent theory [of a modified
soð10Þ GUT with WZW term] and its candidate
low-energy infrared (IR) field theory. The constraints
are highly subtle and suggestive. In addition, we
also propose various other IR candidate phases in
Sec. III D 1. But as it is widely known the limitation
of anykinematic andanomaly constraint of a givenQFT,
we do not yet know its definite IR dynamics. The IR
dynamic verifications by other analytic or numerical
methods will be desirable in the future.

Case (2). If the internal symmetries are dynamically
gauged (as they are not global symmetries but indeed
are gauged in our quantum vacuum), we show the
gauge-enhanced 4D criticality not merely has the
emergent ½Uð1Þ0�emergent

gauge , but also has the enhanced
Spin(10) gauge group. The Spin(10) gauge group and
½Uð1Þ0�emergent

gauge forms a gauge enhancement of the
smaller gauge groups of the SM, GG or PS models,
only near the quantum criticality, see Fig. 8.
Because the 5D invertible TQFT has the bundle

constraint w2w3ðTMÞ ¼ w2w3ðVSOð10ÞÞ, once the in-
ternal symmetries [such as the Spin(10)] are dynami-
cally gauged, the 5D bulk is no longer an invertible
TQFT. The Spin(10) gauge fields have also to be
dynamically gauged in the 5Dbulk. The Spin(10) gauge
fields contribute deconfined gapless modes in 5D9

(in contrast to the confined non-Abelian gauge fields
being gapped in 4D). Remarkably, the Spin(10) gauge
fields in 5D turns the previous TQFT w2w3ðTMÞ ¼
w2w3ðVSOð10ÞÞ into a 5D gapless bulk criticality!

8The concept of deconfined quantum criticality was first
developed in the condensed matter community [28], to describe
a class of direct continuous transition between two distinct
symmetry breaking phases with fractionalized excitations and
gauge structures emerging in the low-energy spectrum at and only
at the transition. It occurs when a quantum system with global
symmetryG has the tendency to spontaneously break the symmetry
to its distinct subgroups Gsub;1 and Gsub;2, while the low-energy
effective field theory has G anomaly but not Gsub;1 or Gsub;2
anomalies in terms of ’t Hooft anomalies. Then the two symmetry
breaking phases cannot share a trivial G-symmetric intermediate
phase, paving ways for gapless phase transition and fractionalized
excitations to emerge.

Several recent works explore the possible deconfined quantum
criticality in 4D spacetime (see [29–32] and references therein). A
hint toward our construction of 4D deconfined quantum criti-
cality between symmetry breaking phase is the fact that the Spin
(10) (treated as global symmetry) can have a ’t Hooft anomaly of
gauge-gravity anomaly type (due to the aforementioned w2w3

anomaly); while the smaller subgroups with Lie algebras suð5Þ of
GG, suð4Þ × suð2Þ × suð2Þ of PS, or suð3Þ × suð2Þ × uð1Þ of
SM, have no such w2w3 anomaly. So the anomalous spacetime-
internal Spin(10) symmetry hints a possible fractionalization of
the GUT-Higgs field as a deconfined quantum criticality.

A crucial idea of deconfined quantum criticality construction is
that “the GPS-symmetry-breaking defect of the GG GUT-Higgs
model traps the fractionalized quantum number of unbroken GG
internal symmetry group; while vice versa, the GGG-symmetry-
breaking defect of the PS GUT-Higgs model traps the fraction-
alized quantum number of unbroken PS internal symmetry group.”
Here GPS symmetry breaking and GGG symmetry breaking,
respectively, refer to the internal symmetry groups G (i.e., gauge
group) of PS and GG models that are partly broken.

The terminology “gauge enhanced quantum criticality” is
introduced in [32]. See also a recent review [33] on this topic.

9The reason that the non-Abelian gauge theory can become
gapless in 5D can be understood simply by analyzing the
renormalization group fixed point at the 5D Yang-Mills term,
the dimensional analysis says ½jFj2� ∼ ½F�½F� ∼ ½dA�½dA� þ
½dA�½A�2 þ ½A�4. The kinetic term ½dA�½dA� has the canonical
scaling dimension 5 in 5D (i.e., E5 in energy E). The [d] has a
dimension 1 and the [A] has a dimension 3=2. The ½dA�½A�2 has a
dimension 11=2, while the ½A�4 has a dimension 6, which means
that the ½dA�½A�2 and ½A�4 become irrelevant at low energy. Thus,
the 5D non-Abelian Yang-Mills term jFj2 behaves like the
gapless 5D Abelian Maxwell term jdAj2.
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In summary, when the internal symmetries are
dynamically gauged (as in our gauged quantum
vacuum),
(i) 4D gauge fields: The gauge fields of SM, GG,

and PS GUT [suð3Þ × suð2Þ × uð1Þ, suð5Þ, and
suð4Þ × suð2ÞL × suð2ÞR] are still restricted in
4D in their respective regions of quantum phase
diagram (Fig. 8). There is still some emergent
½Uð1Þ0�emergent

gauge gauge field, also restricted in 4D,
as a 4D boundary deconfined quantum criti-
cality [the same as the previous case (1) when
internal symmetry is not gauged).

(ii) 5D gauge fields: However, when and only when
the GUT gauge fields are appropriately gauge
enhanced [to the Spin(10) gauge fields in our
Fig. 8], then they can propagate into the extra-
dimensional 5D bulk, and they can induce a 5D
bulk criticality.

Indeed our proposal manifests additional
BSM excitations. After all, what are these
BSM excitations near the quantum criticality
in our theory?

(i) Dark gauge force sector: The emergent
½Uð1Þ0�emergent

gauge gauge fields correspond to analo-
gous dark photon. However, our ½Uð1Þ0�emergent

gauge ≡
½Uð1Þ0�darkgauge does not directly interact with the
SMgauge forces, nor interactwith theSMquarks
and leptons. This dark photon sector can be a
light darkmatter candidate. The ½Uð1Þ0�darkgauge only
interactswith the fractionalized new fragmentary
fermionic excitations that we name “colorons”
and “flavorons.”

(ii) Fragmentary fermionic colorons and flavorons:
These are fractionalized excitations as the
fermionic patrons. We implement the parton
construction, where two (or multiple) of patrons
(ξa; ξb;…) can combine with emergent gauge
fields to form the GUT-Higgs Φ:

Φab ∼ ξ†aξb; or more precisely

ΦabðxÞ ∼ ξ†aðxÞ exp
�
i
Z

x

x
adarkμ;gaugedxμ

�
ξbðxÞ:

ð1:2Þ

The GUT-Higgs Φ is also the basic degrees of
freedom for the 4D WZW term that saturates
the w2w3 anomaly. To rephrase what we had
said, the GUT-Higgs Φ is split into the frac-
tionalized fragmentary colorons and flavorons.
Just as the GUT-Higgs Φ can interact with the
SM particles and SM gauge forces, the frag-
mentary colorons and flavorons can also inter-
act with the SM particles and SM gauge forces.

The colorons carries the SM’s SUð3Þc strong
gauge charge, while the flavorons carries the
SM’s SUð2ÞL weak gauge charge. Just like the
GUT-Higgs are made to be very heavy, these
colorons and flavorons are also heavy and can
also be the heavy Dark Matter candidates. This
fractionalization accompanies the emergent
dark gauge field adarkμ;gauge.

(4) The number of generations/families Nf: So far we
have not yet specified the role of the number of
generations Nf of quarks and leptons in our theory.
If each generation of 16 SM Weyl fermions asso-
ciates with its own GUT-Higgs field and its WZW
term, then the generation number Nf times of 16 SM
Weyl fermions with Nf GUT-Higgs field requires a
constraint Nf ¼ 1 mod 2 to match the w2w3

anomaly, where Nf ¼ 3 generation indeed works.
However, regardless the Nf of SM, in general, we
can just introduce a single (or any odd number) of
GUT-Higgs field and WZW sector to match the
1 mod 2 class of w2w3 anomaly. In any case, it is
inspiring to confirm our proposal on the gauge
enhanced quantum criticality can really happen
between our Nf ¼ 3 SM quantum vacuum and
the neighbor GUT vacua. In this article, we focus
on Nf ¼ 1 for simplicity, but we can also triplicate
Nf ¼ 1 to Nf ¼ 3.

In the remaining part of Sec. I, we start from an overview
on the basic required ingredients of SM and GUT in
Sec. I A.

A. Various standard models and grand unifications
as effective field theories

Unification, as a central theme in the modern funda-
mental physics, is a theoretical framework aiming to
embody the “elementary” excitations and forces into a
common origin. Assuming without any significant dynami-
cal gravity effect at the subatomic scale (i.e., we are only
limited to probe the underlying quantum theory by placing
the quantum systems on any curved spacetime geometry,
but without significant gravity backreactions), the QFT
provides a suitable framework for such a unification.
Furthermore, assuming that we look at the QFT description
valid below a certain energy scale (thus we are ignorant
above that energy scale), we shall also implement the EFT
perspective.
In fact, from the EFT perspective, we should remind

ourselves the “elementary” excitations are only “elemen-
tary” in respect to a given EFT quantum vacuum. Moving
away from the EFT vacuum (by tuning appropriate physical
parameters) to a new quantum vacuum, we shall see that the
“elementary” excitations of the new vacuum may be
drastically different from the original “elementary” excita-
tions of the previous EFT. So the “elementary” excitations
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reveal the limitations of our EFT descriptions of quantum
vacua.10 Several examples of such ð3þ 1ÞD QFT and EFT
paradigms for HEP include SM and GUT [1–7]:
(1) SM: Glashow, Salam, and Weinberg (GSW) [1–4]

proposed the electroweak theory of the unified
electromagnetic and weak forces between elemen-
tary particles. The GSW theory together with the
strong force [34,35] becomes the SM, which is
essential to describe the subatomic particle physics.
The SM gauge group can be

GSMq
≡ SUð3Þc × SUð2ÞL × Uð1ÞỸ

Zq

with the mod q ¼ 1, 2, 3, 6 so far undetermined by
the current experiments (see an overview [36,37] on
this global structure of SM Lie group issue). The
subscript c is for color, the L is for the internal SU(2)
(L for internal symmetry and its spinor) locked with
the left-handed Weyl fermion (L for spacetime
symmetry and its spinor) in the standard HEP
convention, and Ỹ for electroweak hypercharge.
The “elementary” particle excitations of this SM
EFT, with 15n or 16nWeyl fermions, are constrained
by the representation of suð3Þ × suð2Þ × uð1Þ as
(see Fig. 4)11:

ð3̄; 1Þ2;L ⊕ ð1; 2Þ−3;L ⊕ ð3; 2Þ1;L ⊕ ð3̄; 1Þ−4;L
⊕ ð1; 1Þ6;L ⊕ ð1; 1Þ0;L: ð1:3Þ

The 16th Weyl fermion ð1; 1Þ0;L is an extra sterile
neutrino, sterile to the SM gauge force, also called
the right-handed neutrino. We will focus on the 16n
Weyl fermion model in this present work.12 In our
convention, we write Weyl fermions in the left-
handed (L) basis, which means that each is a

2-component 2L spinor of the spacetime symmetry
group Spin(1,3).

(2) The suð5Þ GUT: GG [5] hypothesized that at a
higher energy, the three SM gauge interactions
merged into a single electronuclear force under a
simple Lie algebra suð5Þ, or precisely a Lie group

GGG ≡ SUð5Þ

gauge theory. The su(5) GUT works for 15n Weyl
fermions, also for 16n Weyl fermions (i.e., 15 or 16
Weyl fermions per generation). The “elementary”
particle excitations of this SU(5) EFT, with 15n or
16n Weyl fermions, are constrained by the repre-
sentation of SU(5) as (see Fig. 5):

5̄ ⊕ 10 ⊕ 1; ð1:4Þ

again written all in the left-handed (L) Weyl basis.
The 16th Weyl fermion is an extra sterile neutrino,
sterile to the SU(5) gauge force, also called the right-
handed neutrino.

(3) The PS model: PS [6] hypothesized that the lepton
forms the fourth color, extending SU(3) to SU(4).
The PS model also puts the left SUð2ÞL and a
hypothetical right SUð2ÞR on equal footing. The PS
gauge Lie algebra is suð4Þ × suð2ÞL × suð2ÞR, and
the PS gauge Lie group is

GPSq0 ≡
SUð4Þc × ðSUð2ÞL × SUð2ÞRÞ

Zq0

¼ Spinð6Þ × Spinð4Þ
Zq0

with the mod q0 ¼ 1, 2 depending on the global
structure of Lie group. The “elementary” particle
excitations of this PS EFT, with 16n Weyl fermions,
are constrained by the representation of GPSq0 as (see

Fig. 6):

ð4; 2; 1Þ ⊕ ð4̄; 1; 2Þ; ð1:5Þ

written all in the left-handed (L) Weyl basis.13

10Prominent examples occur in various systems with the
duality descriptions and the order/disorder operators, such as
in the Ising model and Majorana fermion system in ð1þ 1ÞD.

11Here we use the integer quantized Uð1ÞỸ . If we use the
phenomenology hypercharge Uð1ÞY which is 1=6 of Uð1ÞỸ ,
namely qUð1ÞY ¼ 1

6
qUð1ÞỸ, to write (1.3), then we have instead

ð3̄;1Þ1
3
;L ⊕ ð1;2Þ−1

2
;L ⊕ ð3;2Þ1

6
;L ⊕ ð3̄;1Þ−2

3
;L ⊕ ð1;1Þ1;L ⊕ ð1;1Þ0;L:

12In our present work, we shall focus on the SM or GUT with
16n Weyl fermions.

In contrast, Refs. [38–40] consider the SM or GUT with 15n
Weyl fermions and with a discrete variant of baryon minus lepton
number B −L symmetry preserved. References [38–40] then
suggest that the missing 16th Weyl fermions can be substituted by
additional 4D or 5D gapped TQFTs, or by 4D gapless interacting
conformal field theories (CFTs) to saturate a certain Z16 global
anomaly. On the other hand, our present work does not introduce
these Z16-class anomalous sectors, because we already have
implemented the 16n Weyl fermion models that already make the
Z16 global anomaly fully canceled.

13To be clear, we have the Weyl spacetime spinor 2L of
Spin(1,3) for ð4; 2; 1Þ ⊕ ð4̄; 1; 2Þ of suð4Þ × suð2ÞL × suð2ÞR.
In contrast, we can also write

2L of Spinð1; 3Þ for ð4; 2; 1Þ of suð4Þ × suð2ÞL × suð2ÞR;
2R of Spinð1; 3Þ for ð4; 1; 2Þ of suð4Þ × suð2ÞL × suð2ÞR;
then the representations of spacetime spinor L (or R) would lock
exactly with the internal spinor L (or R). Here we use the L and R
to specify the left-/right-handed spacetime spinor of Spin(1,3).
We use the L and R to specify the left or right internal spinor
representation of suð2ÞL × suð2ÞR.
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(4) The soð10Þ GUT: Georgi and Fritzsch-Minkowski
[7] hypothesized that quarks and leptons become the
16-dimensional spinor representation

16þ of Gsoð10Þ ≡ Spinð10Þ gauge group ð1:6Þ

[with a local Lie algebra soð10Þ]. Thus, the 16n
Weyl fermions can interact via the Spin(10) gauge
fields at a higher energy. In this case, the 16th
Weyl fermion, previously a sterile neutrino to
the SU(5), is no longer sterile to the Spin(10)
gauge fields; it also carries a charge of 1, and is
thus not sterile, under the gauged center subgroup
ZðSpinð10ÞÞ ¼ Z4.

We relegate several tables of data relevant for SMs and
GUTs into Appendix A for readers’ convenience to check
the quantum numbers of various elementary particles or
field quanta of SMs and GUTs.

II. STANDARD MODELS FROM THE
COMPETING PHASES OF GRAND

UNIFICATIONS

In Sec. II, we start by enlisting and explaining some
group embedding structures from some of relevant GUTs to
SM in Sec. II A.

A. Spacetime-internal symmetry group embedding of
SMs and GUTs, and the w2w3 anomaly

Here we use the inclusion notation Glarge ↩ Gsmall to
imply that
(1) Glarge ⊃ Gsmall, namely the Glarge contains Gsmall as a

subgroup, or equivalently Gsmall can be embedded
in Glarge.

(2) Glarge can be broken to Gsmall via symmetry breaking
of Higgs condensation (which we will explore).

The internal symmetry group embedding structure has been
explored (for example summarized in [41]):

ð2:1Þ

We further include both the complete spacetime-internal
symmetry group embedding structure as follows:

Ḡ≡Gspacetime ×Nshared
Ginternal ≡

�
Gspacetime ×Ginternal

Nshared

�
:

ð2:2Þ

ð2:3Þ

Some comments about (2.3) follow:
(1) The Spin means the spacetime rotational symmetry

group Spin≡ Spinð1; 3Þ for 4D Lorentz signature
[or Spin≡ Spinð4Þ for 4D Euclidean signature]. The
Spin contains the fermionic parity ZF

2 at the center
subgroup thus Spin=ZF

2 ¼ SO where the SO is the
bosonic spacetime (special orthogonal) rotational
symmetry group [similarly, SO≡ SOð1; 3Þ for 4D
Lorentz signature, or SO≡ SOð4Þ for 4D Euclidean
signature]. The notation G1 ×Nshared

G2 ≡ G1×G2

Nshared

means modding out their common normal subgroup
Nshared. So Spin ×ZF

2
G≡ Spin×G

ZF
2

means modding out

their common normal subgroup ZF
2 .

(2) The Z4;X has the X-symmetry generator such that its
square ðXÞ2 ¼ ð−1ÞF is the fermion parity operator,
so Z4;X ⊃ ZF

2 . Wilczek-Zee [42] firstly noticed that

the X ≡ 5ðB −LÞ − 4Y, with the baryon minus
lepton number B −L and the electroweak hyper-
charge Y, is a good global symmetry respected
by SM and the suð5Þ GUT. All known quarks
and leptons carry a charge 1 of Z4;X, in the left-
handed Weyl spinor basis. The center of Spin(10)
can be chosen exactly as ZðSpinð10ÞÞ ¼ Z4;X.
We summarize how Z4;X can be obtained in
Tables III and IV. See more discussions on Z4;X

in [22,25,38–40].
(3) The ðXÞ2 ¼ ð−1ÞF relation is obeyed in the non-

supersymmetric SM and GUT models, so it is
natural to introduce the Spin ×ZF

2
Z4;X structure in

(2.3). However, it is possible to have new fermions,
such as in supersymmetric SMs or GUTs, which
does not necessarily obey ðXÞ2 ¼ ð−1ÞF relation.
In that case, we can introduce just Spin × Z4;X
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structure. See a footnote for the alternative symmetry
embedding with the Spin × Z4;X structure.14

(4) In this (2.3), we keep a structure of Spin ×ZF
2
Z4;X,

which is essential to produce a mixed gauge-gravity
nonperturbative global anomaly constraint of a Z16

class. As already mentioned in footnote 12, in this
article, we keep the 16nWeyl fermions in all our SM
and GUT models, thus the Z16 global anomaly is
already canceled by 16n chiral fermions.

(5) In this (2.3), we also keep a structure of
Spin ×ZF

2
Spinð10Þ—the cobordism group Ωd

G ≡
TPdðGÞ shows [12,23]

TP5ðSpin ×ZF
2
Spinð10ÞÞ ¼ Z2;

but TP5ðSpin × Spinð10ÞÞ ¼ 0: ð2:5Þ

This implies only the Spin ×ZF
2
Spinð10Þ structure

offers a possible Z2 class global anomaly in 4D that
is captured by a 5D invertible TQFTwith a partition
function on a 5D manifold M515:

ZðM5Þ ¼ ð−1Þ
R
M5 w2ðTMÞw3ðTMÞ

¼ ð−1Þ
R
M5 w2ðVSOð10ÞÞw3ðVSOð10ÞÞ: ð2:8Þ

But this mod 2 anomaly is absent and not allowed
on the Spin × Spinð10Þ structure. The difference
between Spin ×ZF

2
Spinð10Þ and Spin × Spinð10Þ is

the following: the fermion charge under ð−1ÞF thus
odd under ZF

2 must be in the Z2 normal subgroup of
the center subgroup ZðSpinð10ÞÞ ¼ Z4;X so ðXÞ2 ¼
ð−1ÞF in order to impose the spacetime-internal
Spin ×ZF

2
Spinð10Þ structure. However, in contrast,

the Spin × Spinð10Þ allows other fermions to not
obey the ðXÞ2 ¼ ð−1ÞF relation.
As mentioned in [12,18] and footnote 7, as

Spinð10Þ ⊃ Spinð3Þ ¼ SUð2Þ, so

Spin ×ZF
2
Spinð10Þ ⊃ Spin ×ZF

2
Spinð3Þ

¼ Spin ×ZF
2
SUð2Þ: ð2:9Þ

The Spin ×ZF
2
Spinð10Þ structure is tightly related to

the Spin ×ZF
2
SUð2Þ also known as the Spinh struc-

ture. We can project the Spin ×ZF
2
Spinð10Þ structure

to the Spinh structure. Then, in the Spinh structure,
because the fermionic wave function gains a (−1)
statistical sign under a 2π self-rotation on a Spin
manifold is identified with the ð−1ÞF as the center
ZðSUð2ÞÞ ¼ ZF

2 , we can read that imposing the
Spinh structure [12,18]:
(i) The fermions must be in the half-integer isospin

representation 1=2, 3=2, …, etc., of SU(2)
[namely, the even-dimensional representations
2; 4;…, etc., of SU(2)].

15The invertible TQFT means that the TQFT path integral or partition function ZðMÞ on any closed manifoldM has its absolute value
jZðMÞj ¼ 1. Thus the dimension of its Hilbert space is always 1 also any closed spatial manifold, there is no topological ground state

degeneracy. Here ZðM5Þ ¼ ð−1Þ
R

w2w3 ¼ �1 on any closed M5 thus it is an invertible TQFT, such that when M5 is a Dold manifold
CP2 ⋊ S1 or a Wu manifold SUð3Þ=SOð3Þ generating a ZðM5Þ ¼ −1 [18,23]. Here the Spin ×ZF

2
Spinð10Þ structure imposes the

spacetime and gauge bundle constraint

w2ðTMÞ ¼ w2ðVGÞ; ð2:6Þ
with G ¼ Spinð10Þ=ZF

2 ¼ SOð10Þ. Moreover, the Steenrod square Sq1 is an operation sending the second cohomology to the third
cohomology class: H2 to H3, which we can regard Sq1 ¼ 1

2
δ with δ as a coboundary operator (see for example [23]). Then, in the case

G ¼ SOð10Þ, we can deduce another bundle constraint:

w3ðTMÞ þ w1ðTMÞw2ðTMÞ ¼ Sq1w2ðTMÞ ¼ Sq1w2ðVGÞ ¼ w3ðVGÞ: ð2:7Þ
On the orientable spacetime, the first Stiefel-Whitney class w1ðTMÞ ¼ 0, so

w3ðTMÞ ¼ w3ðVGÞ:
Thus, combining the above formulas, on the orientable Spin ×ZF

2
Spinð10Þ structure, we derive that w2ðTMÞw3ðTMÞ ¼ w2ðVGÞw3ðVGÞ

in (2.8), shorthand as w2w3 ¼ w2w3ðTMÞ ¼ w2w3ðVGÞ. This derivation also works for other G ¼ SpinðnÞ=ZF
2 ¼ SOðnÞ for n ≥ 3.

14Another version of the spacetime-internal symmetry group embedding (that is more suitable for supersymmetric SMs or GUTs) is

ð2:4Þ
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(ii) The bosons must be in the integer isospin
representation 0, 1, 2, …, etc., of SU(2)
[namely, the odd-dimensional representations
0; 1; 3;…, etc., of SU(2)].

(6) The last but the most important comment above all,
is that in order to realize a possible continuous
deconfined quantum phase transition, we do require
to use the w2w3 anomaly in (2.8), such that this
anomaly occurs in the phase transition between the
GG and PS models in Fig. 8. So we do aim to impose
the Spin ×ZF

2
Spinð10Þ structure as in (2.3) in order

to implement the w2w3 anomaly. In short, the readers
can ask: Why do we need the w2w3 anomaly near the
criticality for establishing a possible continuous
quantum phase transition between the GG and PS
models? The answer is the following:
(i) The GG and PS models are Landau-Ginzburg

symmetry breaking type of phases (when we
treat the internal symmetry as global symmetry)
or the gauge-symmetry breaking type of phases
(when we treat the internal symmetry group as
gauge group). The w2w3 anomaly is matched on
two sides of phases by GG and PS models via
symmetry breaking. (In fact, no w2w3 anomaly
is allowed in GG and PS models.)

(ii) But the w2w3 anomaly can protect a gapless
quantum phase transition (or a gapless inter-
mediate quantum critical region) between the
GG and PS models when the Spin(10) sym-
metry is restored at their phase transition. Their
phase transition can be protected to be Spin(10)
symmetry preserving gapless due to the w2w3

anomaly exists only in the enlarged Spin(10)
internal symmetry group.

Because the conventional soð10Þ GUT is free from the
w2w3 anomaly [12,18], we will need to explicitly introduce
a new WZW-like term built out of GUT-Higgs field in the
mother EFT, which allows the GUT-Higgs sector (beyond
the SM sector) to saturate the w2w3 anomaly. To this end,
we will start from writing down a GUT-Higgs model in the
context of soð10Þ GUT, and then trying to modifying the
GUT-Higgs model to saturate the w2w3 anomaly. (That
mother EFTwill be the main achievement later in Sec. III.)

B. Branching rule of SMs and GUTs,
and a GUT-Higgs model

In the following, we motivate the GUT model with the
GUT-Higgs model as the gauge symmetry breaking pattern
to go to the lower energy EFT (such as SM). Most of these
breaking patterns are well-established and overviewed in
[43]. The additional new input is that we try to unify
several models into a GUT-Higgs model with as minimum
amount of GUT-Higgs fields as possible. In Appendix B,
we try to go through the logic again, and carefully examine
the consequences and possibilities of the types of required

GUT-Higgs models. Later we will motivate the possible
Lagrangian of the GUT-Higgs potential.
Here we summarize what we need from the analysis done

in Appendix B:
(1) We can use a Lorentz scalar boson with a

45-dimensional real representation of soð10Þ or
Spin(10):

Φsoð10Þ;45 ≡Φ45 ∈ R ð2:10Þ

to break the Spinð10Þ of soð10Þ GUT to the SUð5Þ
of GG model, also we can use this sameΦ45 to break

GPS2 ≡ Spinð6Þ×Spinð4Þ
Z2

of PS model to the GSM6
≡

SUð3Þc×SUð2ÞL×Uð1ÞY
Z6

of the SM.
(2) We can use a Lorentz scalar boson with a

54-dimensional real representation of soð10Þ or
Spin(10):

Φsoð10Þ;54 ≡Φ54 ∈ R; ð2:11Þ

to break the Spinð10Þ of soð10Þ GUT to the GPS2 ≡
Spinð6Þ×Spinð4Þ

Z2
of PS model, also we can use this same

Φ54 to break SUð5Þ of GG model to the GSM6
≡

SUð3Þc×SUð2ÞL×Uð1ÞY
Z6

of the SM.
(3) The combinations of the two facts above is sum-

marized in Fig. 9, where we can use the Φ45 and Φ54
to write the GUT-Higgs model, that can induce the
qualitative phase diagram similar to Fig. 8.

Given the soð10Þ GUT, to induce the three other models in
Fig. 9, we can add the GUT-Higgs potential UðΦRÞ with
ΦR of some representation R. The UðΦRÞ is chosen to
have positive Φ4 coefficients (thus λ45; λ54 > 0), while the
r45 and r54 are real-number tunable parameters shown in
Figs. 8 and 10:

UðΦRÞ ¼ ðr45ðΦ45Þ2 þ λ45ðΦ45Þ4Þ
þ ðr54ðΦ54Þ2 þ λ54ðΦ54Þ4Þ: ð2:12Þ

A slice of Fig. 10 becomes Fig. 8. (Temporarily now we get
rid of the GUT-Higgs Φ1, and thus get rid of r1 axis in
Fig. 10. More on this Φ1 later.) We can use this UðΦRÞ
potential in (2.12) to induce these interior parts of four
phases [the soð10ÞGUT, the suð5ÞGUT, the PS model, and
the SM].
(1) If hΦ45i condenses, namely if r45 < 0 so hΦ45i ≠ 0,

then the soð10Þ GUT becomes Higgs down to the
suð5Þ GUT.

(2) If hΦ54i condenses, namely if r54 < 0 so hΦ54i ≠ 0,
then the soð10Þ GUT becomes Higgs down to the
PS model.
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(3) If hΦ45i and hΦ54i both condense, namely if r45 < 0
and r54 < 0 so that hΦ45i ≠ 0 and hΦ54i ≠ 0. The
theory becomes Higgs down to the SM.

All these above Higgs condensations induce continuous
phase transitions.

The purpose of the next Sec. III is to design various EFT
and to explore the possible phase structures and phase
transitions (of Figs. 8 and 10). In particular, we will write
down a mother EFT such that it saturates the w2w3 global
anomaly and it realizes an exotic quantum phase transition
between the GG suð5Þ GUT and the PS model.

III. MOTHER EFFECTIVE FIELD THEORY
WITH COMPETING GUT-HIGGS FIELDS

A. Elementary GUT-Higgs model induces the SM

In Sec. II (especially Sec. II B), we write down a GUT-
Higgs potential UðΦRÞ in (2.12) appending to the soð10Þ
GUT with 16n complex Weyl fermions ψL. Let us write
down the full path integral ZGUT of such soð10Þ GUT plus
UðΦRÞ, in a Lorentzian signature, evaluated on a four
manifold M4:

ZGUT ≡
Z

½DψL�½Dψ†
L�½DA�½DΦR�…

expðiSGUT½ψL;ψ
†
L; A;ΦR;…�jM4Þ: ð3:1Þ

The action SGUT is

SGUT ¼
Z
M4

�
TrðF∧⋆FÞ− θ

8π2
g2TrðF∧FÞ

�

þ
Z
M4

ðψ†
Lðiσ̄μDμ;AÞψLþjDμ;AΦRj2−UðΦRÞ

− ððΦRÞðψ†
L � � �ÞðψL � � �ÞþH:c:Þþ…Þd4x: ð3:2Þ

The SYM ¼ R
TrðF ∧ ⋆FÞ part is the Yang-Mills gauge

theory, with Lie algebra valued field strength curvature
2-form F ¼ dA − igA ∧ A. Here ðψ†

L � � �Þ and ðψL � � �Þ
imply indefinite multiple numbers of Weyl fermion fields,
so as to properly match the representation R of the Higgs
field ΦR. For the soð10Þ GUT, we have to sum over the
Spin(10) gauge bundle, whose 1-form connection is the
spin-1 Lorentz vector and Spin(10) gauge field, written as

FIG. 9. Beware that the direction of the group symmetry breaking “→” is the opposite direction to the group inclusion “↩.” (These
colors are also designed to match the colors in Figs. 4–7, 8.).

FIG. 10. Schematic quantum phase diagram interpolating be-
tween the soð10Þ GUT [Spin(10) group], the Georgi-Glashow
suð5Þ GUT [SU(5) group], the suð4Þ × suð2ÞL × suð2ÞR PS
model, and the suð3Þ × suð2Þ × uð1Þ SM, and the symmetric mass
generation (SMG). Here the real parameter rR ∈ R denotes the
coefficient of the effective quadratic potential of Φ field in the
representation R. The corresponding GUT-Higgs Φ field will
condense in the representation R if rR < 0. Relatively speaking,
the IR low energy is drawn with the red color (for SM), the
intermediate neighbor phases are drawnwith the green or blue color
[for PSor SU(5)models],while theUVhigher energy is drawnwith
the violet purple color [for Spin(10)]. These colors are also designed
to match the colors of partitions of representations in Figs. 4–7.
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A ¼
�X45

a¼1

TaAa
Spinð10Þ;μ

�
dxμ: ð3:3Þ

There are 45 such Lie algebra generators, Ta, with
(i) rank-16 matrix representations that act on the

quark-and-lepton matter representation 16þ of
Spin(10),

(ii) rank-45 matrix representations that act on the Φ45 as
the 45 of Spin(10),

(iii) rank-54 matrix representations that act on the Φ54 as
the 54 of Spin(10).

Locally the Spin(10) Lie algebra is the same as the soð10Þ
Lie algebra, but globally we really need to define the
principal Spin(10) gauge bundle PA to sum over. So more
precisely the path integral over the gauge field measure
really means

R ½DA�…≡P
gauge bundlePA

R ½DÃ�…, where Ã
are gauge connections over each specific gauge bundle
choice PA. The θ term, θTrðF ∧ FÞ can be added or
removed depending on the model. In this work, we shall
set θ ¼ 0 or close to zero.
The ψL is a 2-component spin-1=2 Weyl fermion 2L

of Spin(1,3). The † is the standard complex conjugate
transpose. The σ̄μ ¼ ðσ0;−σ1;−σ2;−σ3Þ and σμ ¼
ðσ0; σ1; σ2; σ3Þ are the standard spacetime spinor rotational
suð2Þ Lie algebra generators for L and RWeyl spinors. The
action SGUT also includes the Weyl spinor kinetic term and
GUT-Higgs kinetic term, coupling to gauge fields via the
covariant derivative operator Dμ;A ≡∇μ − igAμ. The ∇μ

can contain the curve-spacetime covariant derivative data
such as Christoffel symbols or the spinor’s spin-connection
if needed. The… are possible extra deformation terms to be
added later.
This subsection mostly treats the spin-0 Lorentz scalar

Higgs field ΦR with some representation R as the
elementary Higgs field. We will however fractionalize this
elementary Higgs field ΦR to other further elementary
fermionic fields in the later Secs. III C and III D.

1. Model I: Without the Wess-Zumino-Witten term
and symmetric mass generation

Following the choice in Sec. II B and in (2.12), we can
further adjust it to

UðΦRÞ ¼ ðr45ðΦ45Þ2 þ λ45ðΦ45Þ4Þ
þ ðr54ðΦ54Þ2 þ λ54ðΦ54Þ4Þ
þ ðr1ðΦ1Þ2 þ λ1ðΦ1Þ4Þ: ð3:4Þ

The property (whether hΦ45i ≠ 0 or hΦ54i ≠ 0 condenses,
or both condense, namely whether r54 < 0 or r54 < 0) still
follows Sec. II B. The theory becomes Higgs down to the
suð5ÞGUT, or the PS model, or the SM, see Fig. 9. Here are
some extra comments for adding Φ1 or other ΦR terms
to Fig. 10:
(1) We can introduce a Lorentz scalar boson with a one-

dimensional trivial but real representation of soð10Þ
or Spin(10):

Φsoð10Þ;1 ≡Φ1 ∈ R: ð3:5Þ

(i) If hΦ1i ¼ 0 does not condense, namely if r1 > 0,
then the theory remains in the soð10Þ GUT.

(ii) If hΦ1i ≠ 0 condenses, namely if r1 < 0, for a
small hΦ1i < Φ1;c, then the theory still remains
in the soð10Þ GUT (as hΦ1i is an irrelevant
perturbation).

(iii) However, not only hΦ1i ≠ 0 condenses, but
when hΦ1i > Φ1;c exceeds a critical value, then
it can drive to the SMG phase and gap out all
fermionswhile preserving theG symmetry (if the
theory is free from all ’t Hooft anomalies inG).16

How do we associate hΦ1i > Φ1;c with the
SMG effect? First notice that the four of the
spinor representations 16þ of Spin(10) can
produce the tensor product decomposition [58]

16⊗ 16⊗ 16⊗ 16¼ ð10⊕ 120⊕ 126Þ⊗ ð10⊕ 120⊕ 126Þ
¼ ð10⊗ 10Þ⊕ ð120⊗ 120Þ⊕ ð126⊗ 126Þ⊕ 2ð10⊗ 120Þ⊕ 2ð10⊗ 126Þ⊕ 2ð120⊗ 126Þ
¼ ð1⊕ 45⊕ 54Þ⊕ ð1⊕ 45⊕ 54⊕ 2ð210Þ⊕ 770⊕ 945⊕ 1050⊕ 1050⊕ 4125⊕ 5940Þ
⊕ ð54⊕ 945⊕ 1050⊕ 2772⊕ 4125⊕ 6930Þ⊕ 2ð45⊕ 210⊕ 945Þ⊕ 2ð210⊕ 1050Þ
⊕ 2ð45⊕ 210⊕ 945⊕ 1050⊕ 5940⊕ 6930Þ ð3:6Þ

16The SMG mechanism is explored in various references, for some selective examples, by Fidkowski and Kitaev [44] in ð0þ 1ÞD, by
Wang and Wen [45,46] for gapping chiral fermions in ð1þ 1ÞD, You et al. [47,48] in ð2þ 1ÞD, and notable examples in ð3þ 1ÞD by
Eichten and Preskill [49], Wen [50], You, BenTov, and Xu [51,52], BenTov and Zee [53], Kikukawa [54], Wang and Wen [12], Catterall
et al. [55,56], Razamat and Tong [13,57], etc.
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More systematically, with the symmetric (S) or
antisymmetric (A) matrix representation sub-
script indicated on the right-hand side:

16 ⊗ 16 ¼ 10S ⊕ 120A ⊕ 126S:

10 ⊗ 10 ¼ 1S ⊕ 45A ⊕ 54S:

120 ⊗ 120 ¼ 1S ⊕ 45A ⊕ 54S ⊕ 210S

⊕ 210A ⊕ 770S ⊕ 945A

⊕ 1050S ⊕ 1050S ⊕ 4125S

⊕ 5940A:

126 ⊗ 126 ¼ 54S ⊕ 945A ⊕ 1050S ⊕ 2772S

⊕ 4125S ⊕ 6930A:

10 ⊗ 120 ¼ 45 ⊕ 210 ⊕ 945:

10 ⊗ 126 ¼ 210 ⊕ 1050:

120 ⊗ 126 ¼ 45 ⊕ 210 ⊕ 945 ⊕ 1050

⊕ 5940 ⊕ 6930: ð3:7Þ

From (3.6), we learn that four of 16 can produce
two trivial representations 1 of soð10Þ or Spin
(10), one from 10 ⊗ 10 and one from
120 ⊗ 120. Therefore, on the mean field level,
we can deduce the expectation of theGUT-Higgs
Φ1 from some schematic effective four-fermion
interactions of ψ in 16 of Spin(10)17:

hΦ1i ≃ hψψψψi ≠ 0: ð3:8Þ

But we do not wish to impose the ordinary
Anderson-Higgs quadratic mass term induced
by hψψi ≠ 0, otherwise this hψψi ≠ 0 will lead
to Spin(10) symmetry breaking, instead of the
Spin(10) symmetry preserving SMG. This
means that we have to impose hψψi ¼ 0, so

hψψiψψ ¼ 0;

no conventional mass due to hψψi ¼ 0: ð3:9Þ

Thus the above argument implies that above a
critical condensation value hΦ1i > Φ1;c as the
interaction strength goes above a critical value,
we do obtain the SMG effect in Fig. 10.

To implement the SMG to gap out the 16Weyl
fermions in 16, a necessary check is that the

fermions are free from all ’t Hooft anomalies in
the Spin(10), or more precisely free from all ’t
Hooft anomalies in the spacetime-internal
Spin ×ZF

2
Spinð10Þ structure. This is true based

on (2.5), because there is only amod2 classw2w3

global anomaly, which the 16 Weyl fermions in
16 do not carry anyw2w3 global anomaly. Sowe
are able to gap out the 16 Weyl fermions while
preserving Spin ×ZF

2
Spinð10Þ symmetry.

To strengthen and improve Ref. [50]’s argu-
ment, we may regard our Φ as a bivector of
two 10-dimensional vector ϕsoð10Þ;10 ≡ ϕ10

in 10 (or regard Φ as a bivector of two 120-
dimensional vector ϕsoð10Þ;120 ≡ ϕ120 in 120).
Thus, schematically

hΦ1i ≃ hϕ10ϕ10i þ hϕ120ϕ120i þ…

≃ hψψψψi þ… ≠ 0: ð3:10Þ

This hΦ1i > Φ1;c ≠ 0 implies that the bilinear of
vectors (bivector) condense: hϕ10ϕ10i ≠ 0 and/
or hϕ120ϕ120i ≠ 0, but the hϕ10i ¼ hϕ120i ¼ 0.
So no ordinary quadratic fermion mass term is
induced, but only the SMG is induced. The SMG
causes the symmetry-preserving disordered
mass.

But one of themother EFTs (model II) that we
will propose later in Sec. III A 2, indeed have an
extra newbosonic sector carrying themod2 class
w2w3 global anomaly. This bosonic sector in-
cludes the WZW term built out of GUT-Higgs
fields. To reiterate, there is no conflict about
gapping the 16 Weyl fermions, but having the
extra bosonic sector carry another anomaly. This
simply implies that if we demand to preserve
Spin ×ZF

2
Spinð10Þ symmetry, although we can

gap out the Weyl fermions in 16, the extra GUT-
Higgs WZW bosonic sectors will still induce
additional symmetry-preserving gapless modes.

(2) In the standard Anderson-Higgs electroweak
symmetry breaking mechanism, Higgs coupling
ðψ†

LΦRðiσ2ψ 0
L
�Þ þ H:c:Þ is introduced in order to

give quadratic masses toWeyl fermions. In this work,
we may need to introduce more general GUT-Higgs
fields ΦR with various representations R. For a
generic representationR, the Higgs field may couple
to a product of even number (not limited to two) of
fermion operators (e.g.,ψ†ψ†ψψ orψψψψ), such that
the fermion representation can combine to match the
corresponding Higgs field representation. (We shall
not get distracted to handle the Anderson-Higgs
electroweak symmetry breaking masses of Weyl
fermions in this article, as this effect is well studied.
But we make some comments in Appendix B.)

17Here fermions are anticommuting Grassman variables, so
this expression hψψψψi is only schematic. The precise expres-
sion of hψψψψi includes additional spacetime-internal repre-
sentation indices and also includes possible additional spacetime
derivatives (for point splitting the fermions to neighbor sites if
writing them on a regularized lattice).
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(3) Scaling dimensions of tuning parameters. rR.
Because the GUT-Higgs field Φ45, Φ54, and Φ1

all couple to four fermion operators (e.g., ψ†ψ†ψψ
or ψψψψ þ H:c:), the term rRΦ2

R that tunes the
Higgs transition will correspond to a eight-fermion
interaction. At the SM fixed point, the matter
fermion ψ has a scaling dimension 3=2. So the
eight-fermion interaction that drives the Higgs tran-
sition will have a scaling dimension 3=2 × 8 ¼ 12,
which is much higher than the spacetime dimension
of 4. For this reason, such interaction is often
ignored in the existing study of the SM. Although
such an interaction is perturbatively irrelevant at the
SM fixed point, a strong enough interaction will lead

to a nonperturbative effect that modifies the tuning
parameters rR and eventually drives the Higgs
transitions between the SM phase and its adjacent
GUT phases (such as the PS and GG phases).

So taking into account the GUT-Higgs condensation or
noncondensation, we obtain a qualitative phase diagram
in Fig. 10.

2. Model II: With the Wess-Zumino-Witten term and
deconfined quantum criticality

Now we propose a new mother EFT path integral by
modifying the action SGUT to SWZW

GUT via adding the WZW
term and other terms, in a Lorentzian signature path integral:

ZWZW
GUT ≡

Z
½DψL�½Dψ†

L�½DA�½DΦR�½DΦbi�½Dϕ�… expðiSWZW
GUT ½ψL;ψ

†
L; A;ΦR;Φbi;ϕ;…�jM4Þ; ð3:11Þ

SWZW
GUT ≡

Z
M4

TrðF ∧ ⋆FÞ þ
Z
M4

�
ψ†
Lðiσ̄μDμ;AÞψL þ jDμ;AΦRj2 − UðΦRÞ

þ 1

2
ϕ⊺Φbiϕþ 1

2

X5
a¼1

ðψ⊺
Liσ

2ðϕ2a−1Γ2a−1 − iϕ2aΓ2aÞψL þ H:c:Þ
�
d4xþ SWZW½Φbi�: ð3:12Þ

The purpose of the new discrete torsion class 4DWZW-like
term (written on a 5D manifold with 4D boundary), which
we will introduce in details later, is to saturate the w2w3

global anomaly. The mother EFT contains the following
detailed ingredients:
(1) There are 16n complex Weyl fermions, each ψL is

the 16 of Spin(10) minimally coupled to Spin(10)
gauge field in the covariant derivative. Properties
of the Spin(10) gauge field A and other familiar
terms in SGUT had been explained in the earlier
Sec. III A.

(2) An SOð10Þ real vector field ϕ ∈ R is in 10 of soð10Þ
also of Spin(10). To be explicit, ϕ contains one
vector index, ϕa with a ∈ f1; 2;…; 10g.

(3) An SOð10Þ real bivector field Φbi ∈ R is obtained
from the tensor product of the two ϕ, in the 10 ⊗
10 ¼ 1S ⊕ 45A ⊕ 54S of soð10Þ also of Spin(10).
To be explicit, Φbi contains two vector indices, Φbi

ab
with a; b ∈ f1; 2;…; 10g. We can arrange Φbi

ab into
three different representations R of ΦR as the three
GUT-Higgs fields Φ1, Φ45 and Φ54 (which appeared
in Sec. III A 1):

Φbi
ab ¼ϕaϕb includes

8>><
>>:
TrΦbi¼P

a
Φbi

aagivesΦR¼Φ1 in 1S

Φ̂bi≡Φbi
½a;b� ¼ 1

2
ðΦbi

ab−Φbi
baÞ¼ 1

2
ðϕaϕb−ϕbϕaÞ¼ 1

2
½ϕa;ϕb�givesΦR ¼Φ45 in 45A

Φ̃bi≡Φbi
fa;bg ¼ 1

2
ðΦbi

abþΦbi
baÞ¼ 1

2
ðϕaϕbþϕbϕaÞ¼ 1

2
fϕa;ϕbggivesΦR ¼Φ54 in 54S

: ð3:13Þ

For brevity, we also denote the antisymmetric
bivector Φbi

½a;b� or Φ45 as Φ̂bi, and denote the

symmetric bivector Φbi
fa;bg or Φ54 as Φ̃bi.

(4) GUT-Higgs field kinetic term and covariant deriva-
tive: The kinetic term for the GUT-Higgs fields
is written as jDμ;AΦRj2 ≡ ðDμ

AΦRÞ†ðDμ;AΦRÞ,
with the complex conjugate transpose written as
dagger †.

Moreover, we can also combine the kinetic terms
forΦ1,Φ45, andΦ54 in terms of thekinetic term for the
bivectorΦbi. This kinetic term becomes TrððDμ

AΦbiÞ⊺
ðDμ;AΦbiÞÞ, with the matrix transpose written as ⊺,
where the trace (Tr) is over the 10-dimensional
Lie algebra representation of soð10Þ. We can write
down the explicit form ðDμ;AΦbiÞab ≡ ∇μΦbi

ab −
ig½Aμ; Φbi�ab ¼ ∇μΦbi

ab − igðAμ;abΦbi
bc − Φbi

abAμ;bcÞ
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with a; b; c ∈ f1; 2;…; 10g,18 where Aμ;ab ¼P
α A

α
μT0α

ab with another 45 pieces of the rank-10
matrix representation T0α.
In general, the Lie algebra generator Tα is Hermi-

tian. In the case of the real representation 10, the T0α is
not only Hermitian but also an imaginary and anti-
symmetric matrix.
In summary, for our purpose, the two expres-

sions of GUT-Higgs kinetic terms are both
correct:

P
R¼1;45;54 jDμ;AΦRj2≡ðDμ

AΦ1Þ†ðDμ;AΦ1Þ þ
ðDμ

AΦ45Þ†ðDμ;AΦ45ÞþðDμ
AΦ54Þ†ðDμ;AΦ54Þ, and the

bivector field expression: TrððDμ
AΦbiÞ⊺ðDμ;AΦbiÞÞ.

All these above GUT-Higgs fields (in the vector or
bivector representations) also coupled to the soð10Þ
gauge fields in the standard way.

(5) Yukawa-like coupling terms: We also have several
Yukawa-like coupling terms:
(i) between the GUT-Higgs bivectors Φbi and the

vectors ϕ, explicitly, ϕ⊺Φbiϕ≡P
a;b ϕ

⊺
aΦbi

abϕb.
(ii) between the GUT-Higgs vectors ϕ and the

Weyl spinor ψL, the ðψ⊺
Liσ

2ðϕ2a−1Γ2a−1 −
iϕ2aΓ2aÞψL þ H:c:Þ is apparently a Hermitian
scalar. The σ2 matrix acts on the 2-component
spacetime Weyl spinor ψL. Γa (with a ∈
f1; 2;…; 10g) are ten rank-16 matrices satisfy-
ing fΓ2a−1;Γ2b−1g ¼ 2δab; fΓ2a;Γ2bg ¼ 2δab;
½Γ2a−1;Γ2b� ¼ 0 (for a; b ¼ 1; 2;…; 5).

(6) Mean-field approximation: If for a moment, we
neglect the gauge field A coupling in the covariant
derivative, neglect the GUT-Higgs potential UðΦRÞ,
and neglect the possible WZW term SWZW½Φbi�, then
we only have the quadratic Lagrangian in between
GUT-Higgs bivectors Φbi, vectors ϕ, and the Weyl
spinor ψL. Then this quadratic Lagrangian,
1
2
ϕ⊺Φbiϕ þ 1

2

P
5
a¼1ðψ⊺

Liσ
2ðϕ2a−1Γ2a−1 − iϕ2aΓ2aÞ

ψL þ H:c:Þ, at the mean-field level, can be inte-
grated out to impose constraints and relations
between the bivectors Φbi, vectors ϕ, and the Weyl
spinor ψL. In some sense, what is integrated out
becomes a Lagrange multiplier to impose a con-
straint on the remained fields. In this limit, we only
need to regard the Weyl spinor ψL as the elementary
fields, the vectors ϕ is the 10 from the tensor product
of two ψL since 16 ⊗ 16 ¼ ð10 ⊕ 120 ⊕ 126Þ.
Then the bivector Φbi is from the tensor product

of two ϕ as the 10 ⊗ 10, out of the quartic
ψLs 16 ⊗ 16 ⊗ 16 ⊗ 16.

(7) Wess-Zumino-Witten-like discrete torsion term:
For now, we directly provide our endgame answer
to the WZW term, later we will backup and
derive this WZW term in details from scratch in
Sec. III B.
The schematic WZW action that we propose to

match the mod 2 class w2w3 global anomaly is

SWZW½Φ� ¼ π

Z
M5

BðΦÞ ∧ dB0ðΦÞ; ð3:14Þ

in terms of differential form with mod 2 valued
forms of B and B0 fields, in the de Rham cohomol-
ogy. The theory is defined on the 5D manifold M5

whose boundary is the 4D space time M4 ¼ ∂M5.19

The B and B0 are constructed out of some GUT-
Higgs field Φ [such as the bivector Φ̃bi or Φ̂bi, for
Φbi

fa;bg or Φbi
½a;b�, respectively, organized in (3.13)].

More precisely, the WZW term is written in the
singular cohomology class of B and B0 cochain
fields:

SWZW½Φ� ¼ π

Z
M5

BðΦ̃biÞ ⌣ δB0ðΦ̂biÞ

¼ 2π

Z
M5

BðΦ̃biÞ ⌣ δ

2
B0ðΦ̂biÞ

¼ 2π

Z
M5

BðΦ̃biÞ ⌣ Sq1B0ðΦ̂biÞ: ð3:15Þ

Here the 2-cochain fields are Z2 valued, they
can be chosen as cohomology classes thus B ∈
H2ðM;Z2Þ and B0 ∈ H2ðM;Z2Þ. The δ is the
coboundary operator, and the Steenrod square
Sq1 ≡ δ

2
mod 2 here maps the singular cohomology

18The reason that ðDμ;AΦbiÞab ≡∇μΦbi
ab − ig½Aμ;Φbi�ab has a

matrix commutator ½Aμ;Φbi� in contrast with the familiar form
Dμ;Aϕ≡∇μϕ − igAμϕ, is due to the following fact: The Lie
groupG transformation for someU ∈ G acts on the gauge field A
as A ↦ UðAþ i

g dÞU† [or A ↦ UðAþ i
g dÞU⊺ when U is real

valued]. However, the Lie group transformation acts on the vector
field ϕ as ϕ ↦ Uϕ, while acts on the rank-10 matrix bivector
field Φbi as Φbi

ab ↦ UΦbi
abU

⊺.

19Here we normalize the usual differential form BðΦ̃biÞ=π ↦
BðΦ̃biÞ and B0ðΦ̂biÞ=π ↦ B0ðΦ̂biÞ, so the usual differential
form partition function expði 2

2π

R
M5 BðΦ̃biÞ ∧ dB0ðΦ̂biÞÞ maps

to expðiπ RM5 BðΦ̃biÞ ∧ dB0ðΦ̂biÞÞ. See a related discussion on
the 5D BdB0 theory in [21]. The quantization conditions on
the closed cycles, also map from ∯ BðΦ̃biÞ or ∯B0ðΦ̂biÞ ¼
nπ mod 2π ↦ ∯ BðΦ̃biÞ or ∯ B0ðΦ̂biÞ ¼ n mod 2. It can be veri-

fied that this WZW has two properties: (1) The invertible
jZðM5Þj ¼ 1 on a closed five manifold, but a specific mani-
fold ZðM5Þ ¼ −1 can possibly sign the underlying bulk 5D
invertible TQFT w2w3. (2) This WZW term really is a 4D
theory, having physical impacts only on the 4D M4—it is
a 4D boundary theory of the 5D bulk invertible TQFT on the
extended M5.
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H2ðM;Z2Þ ↦ H3ðM;Z2Þ, on some triangulable
manifold M.20 The wedge product ∧ of differential
form in (3.14) becomes the cup product ⌣ of
cochains or cohomology classes in (3.15). Note that
the triangulable manifold M is always a smooth
differentiable manifold, thus we can downgrade the
singular cohomology result (3.15) to reproduce the
de Rham cohomology expression (3.14).

(8) GUT-Higgs potential UðΦRÞ, and a relation to the
nonlinear sigma model (NLSM): Mostly we shall
simply choose the GUT-Higgs potential written
in (3.4),

UðΦRÞ ¼ ðr45ðΦ45Þ2 þ λ45ðΦ45Þ4Þ
þ ðr54ðΦ54Þ2 þ λ54ðΦ54Þ4Þ
þ ðr1ðΦ1Þ2 þ λ1ðΦ1Þ4Þ;

which is sufficient for a continuum QFT description.
Some lattice or condensed matter based theorists
may wonder whether there is a NLSM description at
a deeper UV. One approach is to write down a
potential with a NLSM constraint ðTrðΦ⊺ΦÞ − R2Þ
with the norm of GUT-Higgs centered around a
radius R, and introduce a Lagrange multiplier λ, such
that integrating out

R ½Dλ�… gives the fixed radius
constraint at UV. With appropriate deformations, we
anticipate a renormalization group flow from UV to
IR gives the GUT-Higgs potential. One reason to
introduce a NLSM is that it is natural to adding the
WZW term to NLSM. However, an NLSM descrip-
tion turns out to be not necessary for writing our
WZW term.

(9) Deconfined quantum criticality (DQC): The moti-
vation to add this 4D SWZW½Φ� into our 4D mother
EFT is to induce the analogous phenomenon called

the deconfined quantum criticality [28]. The original
deconfined quantum criticality [28] is proposed as a
continuous quantum phase transition between two
kinds of Landau symmetry breaking orders: Néel
antiferromagnet order and valence-bond solid (VBS)
order in 3D [namely, ð2þ 1ÞD].
Here in out gauge theory context in 4D [namely,

ð3þ 1ÞD], between the GG suð5Þ GUT and the PS
suð4Þ × suð2Þ × suð2Þ model, we do not really have
the conventional Landau symmetry breaking orders
as both the suð5Þ and suð4Þ × suð2Þ × suð2Þ are
dynamically gauged as gauge theories. But if we
regard the suð5Þ and suð4Þ × suð2Þ × suð2Þ are
internal global symmetries that are not yet gauged,
then we are able to seek for a deconfined quantum
criticality construction between the GG and PS
models, as we will verify in the next Sec. III B.

B. Homotopy and cohomology group arguments
to induce a WZW term

We review the 3D WZW term construction in the
familiar DQC in 3D [namely, ð2þ 1ÞD] [28], in
Appendix C, based on more nonperturbative arguments
from homotopy and cohomology groups, and anomaly
classifications from cobordism. Here we proceed with the
same logic, to construct the 4DWZW term in the new DQC
in 4D [namely, ð3þ 1ÞD] to justify what we claimed
in (3.15).
Below we write G as the original larger symmetry group,

while Gsub is the remained preserved unbroken symmetry
in the corresponding order (i.e., Néel or VBS orders for 3D
DQC; the GG or PS for the 4D DQC we will propose).
Then we have the following fibration structure:

Gsub ↪ G →
G

Gsub
; ð3:16Þ

where the quotient space G
Gsub

is the base manifold (i.e., the
orbit) as the symmetry-breaking order parameter space. The
G is the total space obtained from the fibration of the Gsub

fiber (i.e., the stabilizer) over the base G
Gsub

.
Now we follow the similar logic for the 3D DQC

summarized in Appendix C, generalizing the idea to deal
with our 4D DQC.

1. Induce a 4D WZW term between Georgi-Glashow
suð5Þ and Pati-Salam suð4Þ × suð2Þ × suð2Þ models

on a 5D bulk w2ðVSOð10ÞÞw3ðVSOð10ÞÞ
Following the principle in Appendix C, we aim to induce

a 4D WZW term between Georgi-Glashow suð5Þ and
Pati-Salam suð4Þ × suð2Þ × suð2Þ models on a 5D bulk
w2ðVSOð10ÞÞw3ðVSOð10ÞÞ. Firstwe look at theorder-parameter
target manifold via the fibration structure (3.16), formed by
the bosonic GUT-Higgs fields. For the bosonic GUT-Higgs

20Generally, given a chain complex C• and a short exact
sequence of Abelian groups:

0 → A0 → A → A00 → 0;

we have a short exact sequence of cochain complexes:

0 → HomðC•;A0Þ → HomðC•;AÞ → HomðC•;A00Þ → 0:

Hence we can obtain a long exact sequence of cohomology
groups:

� � � → HnðC•;A0Þ → HnðC•;AÞ → HnðC•;A00Þ⟶∂

Hnþ1ðC•;A0Þ
→ � � � ;

the connecting homomorphism ∂ is called Bockstein homomor-
phism. For instance, βðn;mÞ∶H�ð−;ZmÞ → H�þ1ð−;ZnÞ is the
Bockstein homomorphism associated with the extension
Zn !·m Znm → Zm where ·m is the group homomorphism given
by multiplication by m. Specifically, βð2;2nÞ ¼ 1

2n
δ mod 2, thus

the Steenrod square obeys Sq1 ≡ βð2;2Þ ≡ δ
2
mod 2.
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fields, we only have the internal SO(10) symmetry not the
Spin(10) symmetry, but we can include the orientation
reversal which gives an Oð10Þ ¼ SOð10Þ ⋊ Z2 symmetry.
Then the fibration (3.16) becomes

GGsuð5ÞGUT∶ ðGsub¼Uð5ÞÞ↪ ðG¼Oð10ÞÞ

→

�
G

Gsub
¼Oð10Þ

Uð5Þ
�
: ð3:17Þ

Here we can keep the larger U(5) instead of SU(5) as the
preserved internal symmetry of the suð5Þ GUT.
PS suð4Þ × suð2Þ × suð2Þ∶ðGsub ¼ Oð6Þ × Oð4ÞÞ

↪ ðG ¼ Oð10ÞÞ →
�

G
Gsub

¼ Oð10Þ
Oð6Þ × Oð4Þ

�
: ð3:18Þ

Recall that suð4Þ × suð2Þ × suð2Þ has the same Lie algebra
as soð6Þ × soð4Þ. Here we also keep the larger Oð6Þ × Oð4Þ
instead of SOð6Þ × SOð4Þ as the preserved internal sym-
metry of the PS model. Homotopy groups for these target
manifolds of GUT-Higgs fields are in the table:

π0 π1 π2 π3 π4 π5
GG Oð10Þ

Uð5Þ Z2 0 Z 0 0 0

PS Oð10Þ
Oð6Þ×Oð4Þ

0 Z2 Z2 0 Z2 Z2
2

Oð10Þ Z2 Z2 0 Z 0 0

Oð4Þ Z2 Z2 0 Z2 Z2
2 Z2

2

Oð6Þ Z2 Z2 0 Z 0 0

Uð5Þ 0 Z 0 Z 0 Z
SOð10Þ 0 Z2 0 Z 0 0

SOð4Þ 0 Z2 0 Z2 Z2
2 Z2

2

SOð6Þ 0 Z2 0 Z 0 0

SUð5Þ 0 0 0 Z 0 Z

: ð3:19Þ

Let us comment about the construction of 4DWZWand its
4D ’t Hooft anomaly, step by step:
(1) Start with the hint from homotopy groups, we

need to find defects trapped in the order-parameter
target manifold of bosonic GUT-Higgs fields in the
GG and PS models,21 classified by πnGGðOð10ÞUð5Þ Þ
and πnPSð Oð10Þ

Oð6Þ×Oð4ÞÞ such that the dimensionality

nGG þ nPS ¼ d where the d is the total spacetime
dimension thus d ¼ 4 (or one lower dimension
compared with the 5D where the WZW is extended
to put on). This suggests that we take

π2

�
Oð10Þ
Uð5Þ

�
¼ Z; π2

�
Oð10Þ

Oð6Þ × Oð4Þ
�

¼ Z2;

nGG þ nPS ¼ 2þ 2 ¼ 4: ð3:20Þ
Note that ð OðmþnÞ

OðmÞ×OðnÞÞ≡ Grðm;mþ nÞ is a Grass-
mannian manifold. Here we need Grð6; 10Þ ¼
Grð4; 10Þ. Equation (3.20) indeed corresponds to
the homotopy classes of ’t Hooft-Polyakov monop-
oles of the GG model and the PS model respectively,
broken down from the soð10Þ GUT.

(2) We will use the cohomology construction of the
WZW term, furnished by the hints of homotopy
groups. Then we need a relation between homotopy
group and cohomology group.
In algebraic topology, an Eilenberg-MacLane

space KðG; nÞ is a topological space with a single
nontrivial homotopy group, such that πnðKðG; nÞÞ ≅
G and πmðKðG; nÞÞ ¼ 0 ifm ≠ n. It can be regarded
as a building block for homotopy theory, also it
provides a bridge between homotopy and cohomol-
ogy. Let X be a topological space or a manifold. The
set ½X;KðG; nÞ� of based homotopy classes of based
maps from X to KðG; nÞ is a natural bijection with
the nth singular cohomology group HnðX;GÞ. In
particular, when πnðXÞ ≅ G,

HnðX;GÞ¼HomðπnðXÞ;GÞ¼HomðG;GÞ: ð3:21Þ
There is a distinguished element ω ∈ HnðX;GÞ,
as the generator of the cohomology group
HnðX;GÞ, corresponding to the identity morphism
in HomðG;GÞ. The morphism is realized as

ω∶πnðXÞ→G; f ∈ πnðXÞ↦
Z
x∈Sn

ωðfðxÞÞ∈G:

ð3:22Þ
(3) With the above homotopy group (3.19) in mind, we

can use the Serre spectral sequence to derive the
following22:

21Caveat: We emphasize again that here we are considering
defects in the order-parameter target manifold of bosonic
GUT-Higgs fields. We are not talking about the objects of
fermionic sectors (quarks/leptons) or gauge theory sectors in
SMs. For example, there are magnetic monopoles from
π1ðGSM6

Þ ¼ π2ðGGG=GSM6
Þ ¼ π2ðGPS2=GSM6

Þ ¼ Z, also from
π1ðGSM3

Þ ¼ π2ðGPS1=GSM3
Þ ¼ Z or from any π1ðGSMq

Þ ¼ Z
with q ¼ 1; 2; 3; 6. But we are talking about different objects
in the order-parameter target manifold of bosonic GUT-Higgs
fields—they are however related to the ’t Hooft-Polyakov
monopoles of the GG model and the PS model respectively,
broken down from the soð10Þ GUT.

22We can answer in more general case Oð2nÞ=UðnÞ. We will
need the universal coefficient theorem, so that H2ðX;AÞ ¼
HomðH2ðXÞ;AÞ ⊕ ExtðH1ðXÞ;AÞ, for some topological space
X and any Abelian group coefficient A.

The space Oð2nÞ=UðnÞ has two connected components, each of
which isdiffeomorphic toSOð2nÞ=UðnÞ, soHkðOð2nÞ=UðnÞ;AÞ ¼
HkðSOð2nÞ=UðnÞ;AÞ ⊕ HkðSOð2nÞ=UðnÞ;AÞ.

For n > 1, the space SOð2nÞ=UðnÞ is simply connected
with π2ðSOð2nÞ=UðnÞÞ ¼ Z, so by the Hurewicz theorem we
have H1ðSOð2nÞ=UðnÞ;ZÞ ¼ 0 and H2ðSOð2nÞ=UðnÞ;ZÞ ¼ Z.
Therefore by the universal coefficient theorem, so we
have H2ðSOð2nÞ=UðnÞ;AÞ¼HomðZ;AÞ⊕Extð0;AÞ¼A. Thus,
H2ðOð2nÞ=UðnÞ;AÞ ¼ A2.
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H2ðOð10Þ=Uð5Þ;ZÞ ¼ Z2:

H2ðOð10Þ=Uð5Þ;Z2Þ ¼ Z2
2: ð3:23Þ

In fact, we just need one of the two components from
SOð10Þ=Uð5Þ, whose cohomology group:

H2ðSOð10Þ=Uð5Þ;ZÞ ¼ Z;

H2ðSOð10Þ=Uð5Þ;Z2Þ ¼ Z2: ð3:24Þ

(4) We can also derive

H2ðOð10Þ=ðOð6Þ × Oð4ÞÞ;ZÞ ¼ Z2;

H2ðOð10Þ=ðOð6Þ × Oð4ÞÞ;Z2Þ ¼ Z2
2: ð3:25Þ

The mod 2 cohomology of real Grassmannian
manifold is well known from the theory of Stiefel-
Whitney characteristic classes. The integral coho-
mology is trickier but it can be worked out.

(5) We now take a Z2 cohomology class called BðΦ̃biÞ
out of

BðΦ̃biÞ ∈ H2ðOð10Þ=ðOð6Þ × Oð4ÞÞ;Z2Þ; ð3:26Þ

and another Z2 cohomology class called B0ðΦ̂biÞ
out of

B0ðΦ̂biÞ ∈ H2ðOð10Þ=Uð5Þ;Z2Þ: ð3:27Þ

(a) The BðΦ̃biÞ field as a second cohomology class,
can be constructed out of the GUT-Higgs field
Φ54 in the 54 representation of soð10Þ. In
particular, we can also write Φ54 as a bivector
GUT-Higgs field symmetric representation, 54S
out of 10 ⊗ 10, called Φ̃bi that we detail in
Sec. III C.

(b) The B0ðΦ̂biÞ field as a second cohomology class,
can be constructed out of the GUT-Higgs field
Φ45 in the 45 representation of soð10Þ. In
particular, we can also write Φ45 as a bivector
GUT-Higgs field antisymmetric representation,
45A out of 10 ⊗ 10, called Φ̂bi that we detail in
Sec. III C.
Similar to the familiar 3D DQC in Appen-

dix C, we can also provide the physical intu-
itions on the link invariants between various
defects: between the charged objects and the
charge operators constructed from homotopy
groups and cohomology groups. For example:

(i) Georgi-Glashow GUT-Higgs target manifold
and defects: The B0ðΦ̂biÞ ∈ H2ðOð10Þ=
Uð5Þ;Z2Þ can be placed on a 2-surface called

ϱ̂2, as a charge operator expðiπ∯ ϱ̂2B
0ðΦ̂biÞÞ¼

expðiπ∯ ϱ̂2c1ðVUð5ÞÞÞ (i.e., symmetry generator
as a topological operator) measures the charge
of a preserved U(5) symmetry in the defect
trapped in the target manifold Oð10Þ=Uð5Þ. The
first Chern class c1ðVUð5ÞÞ of the associated
vector bundle of U(5) evaluates a magnetic flux
mod 2 on this 2-surface ϱ̂2. There is a defect
line along a 1D loop called ς1GG, paired up with
a one connection called v̂ gives a 1D line
operator expðiπ Hς1GG v̂Þ as a charged object.

The charge operator two-surface ϱ̂2 can be
linked with a charged 1D loop ς1GG in the 4D
spacetime. Follow the generalized higher global
symmetry language [59], this nontrivial linking
number Lk implies a measurement of U(5)
symmetry on the defect. Precisely, the linking
number Lk, manifested as a statistical Berry
phase, is evaluated via the expectation value of
path integral:�
exp

�
iπ∯

ϱ̂2
B0ðΦ̂biÞ

�
· exp

�
iπ
I
ς1GG

v̂

��

¼ ð−1ÞLkðϱ̂2;ς1GGÞjM4 · hexpðiπ
I
ς1GG

v̂Þi: ð3:28Þ

Related descriptions of link invariants of
QFTs can be found in [60,61] and references
therein.

(ii) Pati-Salam GUT-Higgs target manifold
and defects: The BðΦ̃biÞ ∈ H2ðOð10Þ=
ðOð6Þ × Oð4ÞÞ;Z2Þ can be placed on
a two surface called ϱ̃2, as a charge
operator expðiπ∯ ϱ̃2BðΦ̃biÞÞ¼expðiπ∯ ϱ̃2w2

ðVðOð6Þ×Oð4ÞÞÞÞ23 (i.e., symmetry generator as
a topological operator) measures the charge of a
preserved ðOð6Þ × Oð4ÞÞ symmetry in the de-
fect trapped in the target manifold
Oð10Þ=ðOð6Þ × Oð4ÞÞ. There is a defect line
along a 1D loop called ς1PS, paired up with a one
connection called ṽ gives a 1D line operator
expðiπ Hς1PS ṽÞ as a charged object. The charge

operator two-surface ϱ̃2 can be linked with a
charged 1D loop ς1PS in the 4D spacetime.
Follow the generalized higher global symmetry
language [59], this nontrivial linking number
Lk implies a measurement of ðOð6Þ × Oð4ÞÞ
symmetry on the defect. Precisely, the linking
number Lk, manifested as a statistical Berry

23Note that the second Stiefel-Whitney class of associated
vector bundle of the product of orthogonal groups satisfies
w2ðVðOðnÞ×OðmÞÞÞ¼w2ðVOðnÞÞþw2ðVOðmÞÞþw1ðVOðnÞÞw1ðVOðmÞÞ.
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phase, is evaluated via the expectation value of
path integral:�
exp

�
iπ∯

ϱ̃2
BðΦ̃biÞ

�
· exp

�
iπ
I
ς1PS

ṽ

��

¼ ð−1ÞLkðϱ̃2;ς1PSÞjM3 · hexpðiπ
I
ς1PS

ṽÞi: ð3:29Þ

(iii) If we extend the 4D spacetime t, x, y, z to an
extra fifth dimension ϖ, the previous 1D loop
ς1GG trajectory can be a 2D pseudo–world sheet
ς02GG in the 5D M5. Similarly, the previous 1D
loop ς1PS trajectory can be a 2D pseudo–world
sheet ς02PS in the 5D M5. Such two 2D configu-
rations can be linked in 5D, with a linking
number

Lkðς02GG; ς02PSÞjM5 :

This describes the link in the extended 5D
spacetime of two charged objects, charged
under U(5) and ðOð6Þ × Oð4ÞÞ, respectively.

(iv) In a parallel story, the charge operators (of the
above charged objects) are the 2D B0ðΦ̂biÞ
operator on ϱ̂2, and 2D BðΦ̃biÞ surface operator
on ϱ̃2. Such two configurations can be linked in
5D, with a linking number:

LkðB0ðΦ̂biÞ on ϱ̂2; BðΦ̃biÞ on ϱ̃2ÞjM5 :

This describes the link in the extended 5D
spacetime of two charge operators:

If we open up the closed ∯ ϱ̃2BðΦ̃biÞ on ϱ̃2 with an open
end on the 4D boundary M4 of the bulk M5, then this
open end carries a closed 1D loop

H
ς1GG

v̂. Their link

configuration in 4D corresponds to the earlier (3.28):

Lkðϱ̂2; ς1GGÞjM4 :

If we open up the closed ∯ ϱ̂2B
0ðΦ̂biÞ on ϱ̂2 with an open

end on the 4D boundary M4 of the bulk M5, then this
open end carries a closed 1D loop

H
ς1PS

ṽ. Their link

configuration in 4D corresponds to the earlier (3.29):

Lkðϱ̃2; ς1PSÞjM4 :

We leave more of these picturesque discussions and
imaginative figures, in a companion work.

(6) Based on the above observations about the link
invariants, follow Appendix C’s logic, our 4D
DQC construction is valid if we introduce
a mod 2 class 4D WZW term, defined on a
4D boundary M4 of a 5D manifold M5, sche-
matically in a differential form or de Rham
cohomology,

expðiSWZW½Φ�Þ

¼ exp

�
iπ
Z
M5

BðΦ̃biÞ ∧ dB0ðΦ̂biÞ
�����

M4¼∂M5

:

ð3:30Þ
Recall footnote 19 about our normalizations of
differential forms and cohomology classes.
More precisely, we can improve this to construct
WZW in the singular cohomology class:

expðiSWZW½Φ�Þ

¼ exp

�
iπ
Z
M5

BðΦ̃biÞ⌣δB0ðΦ̂biÞ
�����

M4¼∂M5

¼ exp

�
i2π

Z
M5

BðΦ̃biÞ⌣Sq1B0ðΦ̂biÞ
�����

M4¼∂M5

:

ð3:31Þ
We thus succeed to verify our claims in (3.14)
and (3.15), while all notations here follow there
in Sec. III A 2.

(7) Our 4D DQC construction will be supported by
a 4D ’t Hooft anomaly in the spacetime-internal
global symmetry ðSpin ×ZF

2
Spinð10ÞÞ on a four

manifold M4, captured by a 5D bulk invertible
TQFT [12,18] living on a five manifoldM5 with
∂M5 ¼ M4:

exp

�
iπ
Z
M5

w2ðTMÞw3ðTMÞ
�

¼ exp

�
iπ
Z
M5

w2ðVSOð10ÞÞw3ðVSOð10ÞÞ
�
:

ð3:32Þ
This 4D ’t Hooft anomaly is a mod 2 class global
anomaly, mentioned already in (2.5) and (2.8).
We comment more about the cobordism group
data on perturbative local and nonperturbative
global anomalies in various SMs and GUTs in
Appendix D.

These conclude our derivation of 4D WZW and ’t Hooft
anomaly for a candidate 4DDQC for GG-PSGUT transition.

C. Composite GUT-Higgs model within the SM

Before analyzing the effect of the 4D WZW term, we
will first review how soð10Þ GUT, GG, PS, and SM can be
unified in the same quantum phase diagram by the different
condensation pattern of the SOð10Þ bivector GUT-Higgs
field. Following Sec. II B, for this discussion, we will first
turn off the WZW term, assuming that the theory has no
additional w2w3 anomaly. Starting from the soð10Þ GUT
phase, which has the largest internal symmetry group
Spin(10), the GUT-Higgs field can be unified as an
SOð10Þ bivector field
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Φbi
ab ∼ ϕaϕb ðfor a; b ¼ 1; 2;…; 10Þ; ð3:33Þ

which can be considered as a composition of two SOð10Þ
vector fields ϕa, where the SOð10Þ vector ϕa can be further
considered as a composition of two Weyl fermions ψ

ϕ2a−1∼
1

2
ðψ⊺iσ2Γ2a−1ψþH:c:Þ;

ϕ2a∼
1

2i
ðψ⊺iσ2Γ2aψ−H:c:Þ; ðfora¼1;2;…;5Þ: ð3:34Þ

Here when two quantum fields ΦA and ΦB are linearly
coupled with each other in the field theory (as source and
original fields), we denote them in this notation ΦA ∼ΦB,
such that they are “dual” to each other and share exactly the
same symmetry properties. There are 16 × 16 real sym-
metric matrices Γa acting in the fermion flavor space,
which are determined by the following algebraic relations
(for a; b ¼ 1; 2;…; 5):

fΓ2a−1;Γ2b−1g ¼ 2δab; fΓ2a;Γ2bg ¼ 2δab;

½Γ2a−1;Γ2b� ¼ 0: ð3:35Þ
In view of the above composite construction, we refer to the
bivector representation Φbi as the composite GUT-Higgs
field.
The composite Higgs field contains elementary Higgs

components of both Φ45 and Φ54, since 10 ⊗ 10 ¼
1 ⊕ 45A ⊕ 54S. Follow (3.13), we introduce the following
notations to denote different irreducible representations of
the composite GUT-Higgs field [in terms of SOð10Þ vector
bilinears]:

(i) TrΦbi ∼
P

a ϕaϕa is equivalent to Φ1 as the 1S
of SOð10Þ.

(ii) Φ̂bi∶Φbi
½a;b� ∼

1
2
½ϕa;ϕb� is equivalent to Φ45 as the

45A, antisymmetric (A) part of 10 ⊗ 10, of SOð10Þ.
(iii) Φ̃bi∶Φbi

fa;bg−
1
10
TrΦbiδab∼1

2
fϕa;ϕbg− 1

10

P
cϕcϕcδab

is equivalent toΦ54 as the 54S, symmetric (S) part of
10 ⊗ 10, of SOð10Þ.

The competition between Φ̃bi and Φ̂bi condensation leads
to different GUT or SM phases in the phase diagram. We
enumerate all the symmetry breaking patterns (below “→”
means “breaking to”) as follows:
(1) Spinð10Þ → Spinð6Þ×Spinð4Þ

Z2
¼ SUð4Þ×SUð2ÞL×SUð2ÞR

Z2
by

condensing Φ̃bi (the 54S symmetric representation)
to the following specific configuration in the sym-
metric rank-10 bivector matrix form:

hΦ̃bii ¼
�
−3

X4
a¼1

þ2
X10
a¼5

�
Φbi

fa;ag

¼ ϕ⊺
�−3 · 12×2

2 · 13×3

�
⊗ σ0ϕ

∈
Oð10Þ

Oð6Þ × Oð4Þ : ð3:36Þ

The GUT-Higgs field Φ̃ discriminates the SOð4Þ
vector ðϕ1;ϕ2;ϕ3;ϕ4Þ from the SOð6Þ vector
ðϕ5;ϕ6;ϕ7;ϕ8;ϕ9;ϕ10Þ, which breaks Spin(10)
down to Spinð6Þ×Spinð4Þ

Z2
realizing the Pati-Salam sym-

metry GPS2. The 16 Weyl fermions split as 16 ∼
ð4; 2; 1ÞL ⊕ ð4̄; 1; 2ÞR under SUð4Þ×SUð2ÞL×SUð2ÞR

Z2
.24

The L=R sectors are distinguished by the operator

χ ¼ ψ†
�Y10

a¼1

Γa

�
ψ ¼ �1: ð3:37Þ

Let ρ½a;b� ¼ 1
2i ½ϕa;ϕb� be the SUð4Þ generators (for

a; b ¼ 5; 6;…; 10). Using algebraic relations, we can
check that in the L sector, SUð4Þ acts as
ψL ↦ eiρ½a;b�ψLe

−iρ½a;b� , matching the 4 representation;
and in the R sector, SUð4Þ acts as ψR ↦
e−iρ

�
½a;b�ψRe

iρ�½a;b� , matching the 4̄ representation.
(2) Spinð10Þ → SUð5Þ × Z4;X by condensing Φ̂bi (the

45A antisymmetric representation) to the following
specific configuration in the antisymmetric rank-10
bivector matrix form:

hΦ̂bii ¼
X5
a¼1

Φbi
½2a−1;2a� ¼−

1

2
ϕ⊺15×5 ⊗ iσ2ϕ∈

Oð10Þ
Uð5Þ :

ð3:38Þ
If we combine the SOð10Þ vector ϕb (for b ¼
1; 2;…; 10) into a five-component complex vector
φa ¼ ðϕ2a−1 þ iϕ2aÞ=

ffiffiffi
2

p
(for a ¼ 1; 2;…; 5), φ

would transform as the 51 under Uð5Þ ¼
SUð5Þ×Uð1Þ

Z5

25 in SOð10Þ. The GUT-Higgs field

24Recall in footnote 13 about the left or right spinors, the L=R
notations here are for the internal-symmetry’s spinors, while the
L=R notations are for the spacetime-symmetry’s Weyl spinors.

25References [62,63] point out the subtle differences between
different nonisomorphic versions of U(5) Lie groups (and their
corresponding gauge theories) that we should refine and redefine
them as several Uð5Þq̂ with q̂ ∈ Z:

Uð5Þq̂ ≡
SUð5Þ×Uð1Þq̂

Z5

≡ fðg; eiθÞ ∈ SUð5Þ×Uð1Þjðei2πn5 I; 1Þ∼ ðI; ei2πnq̂5 Þ; n ∈ Z5g;
ð3:39Þ

where we use two data ðg; eiθÞ to label the SUð5Þ × Uð1Þ group
elements, respectively, while we identify ðei2πn5 I; 1Þ ∼ ðI; ei2πnq̂5 Þ for
n ∈ Z5, with a rank-5 identity matrix I. They have the group
isomorphisms between different q̂ as

Uð5Þq̂ ≅ Uð5Þ−q̂ ≅ Uð5Þ5m�q̂:

See further discussions in footnote 37. Whenever we mention
Uð5Þ ⊂ SOð10Þ, we really require Uð5Þq̂¼1;4 ⊂ SOð10Þ. In con-
trast, whenever we mention Uð5Þ ⊂ Spinð10Þ, we really require
Uð5Þq̂¼2;3 ⊂ Spinð10Þ.
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Φ̂bi ¼ P
5
a¼1 φ

†
aφa itself defines the generator of the

Uð1ÞX group, whose Z4 subgroup defines Z4;X. The
16Weyl fermions split as 16 ∼ 5̄1 ⊕ 101 ⊕ 11 under
SUð5Þ × Z4;X. The Z4;X generator in the Spinð10Þ
spinor representation is given by

qX ¼
X5
a¼1

ψ†iΓ2a−1Γ2aψ : ð3:40Þ

By diagonalizing qX operator, we indeed found five-
fold eigenvalues of −3, tenfold eigenvalues of 1 and
a onefold eigenvalue of 5. After mod 4, they all
correspond to charge 1 under Z4;X. Further inves-
tigate the representation of SUð5Þ generators in each
qX-charge sectors, we can confirm that the qX ¼ −3
sector is indeed in the antifundamental representa-
tion 5̄ and so on to form 16 ∼ 5̄−3 ⊕ 101 ⊕ 15.

(3) Spinð10Þ → SUð3Þ×SUð2Þ×Uð1ÞỸ
Z6

× Z4;X by simultane-

ously condensing Φ̃bi and Φ̂bi (both 54S and 45A
representations) to configurations specified in
Eqs. (3.36) and (3.38). The unbroken symmetry
group is generated by the subalgebra of soð10Þ that
commute with both GUT-Higgs condensates hΦ̃bii
and hΦ̂bii, which must take the form of

ϕ⊺
�
iA2×2

iA3×3

�
⊗ σ0ϕ or

ϕ⊺
�
S2×2

S3×3

�
⊗ σ2ϕ; ð3:41Þ

where An×n ¼ −A⊺
n×n ∈ Rn×n are real antisymmet-

ric matrices and Sn×n ¼ S⊺n×n ∈ Rn×n are real sym-
metric matrices. They can be combined in the
complex representation as

φ†
�
S2×2 þ iA2×2

S3×3 þ iA3×3

�
φ

¼ φ†
�
H2×2

H3×3

�
φ; ð3:42Þ

such that Hn×n ¼ H†
n×n ∈ Cn×n are complex Hermi-

tian matrices. There is no traceless condition im-
posed on H3×3 and H2×2 and they act independently
in each subspace, so they generate the Uð3Þ × Uð2Þ
subgroup of U(5), which is further a subgroup of
SOð10Þ. The two U(1) subgroups of U(3) and U(2)
are generated by

P
5
a¼3 φ

†
aφa and

P
2
a¼1 φ

†
aφa, re-

spectively. Since the Uð1ÞX (or Z4;X) generator has
already been identified as

P
5
a¼1 φ

†
aφa, so the Uð1ÞỸ

generator must be given by the remaining U(1)
generator 1

2
ð−3P2

a¼1 þ2
P

5
a¼3Þφ†

aφa, which is rep-
resented in the Spinð10Þ spinor representation as

qỸ ¼ 1

2

�
−3

X2
a¼1

þ2
X5
a¼3

�
ψ†iΓ2a−1Γ2aψ : ð3:43Þ

By diagonalizing χ, qỸ , and qX operators jointly
[defined in Eqs. (3.37), (3.43), (3.40)], we can
classify the 16 Weyl fermions ψ (actually they are
all in the left-handed spacetime Weyl spinor ψL
basis) by the quantum numbers as follows:

Uð1ÞỸ Uð1ÞX internalL=R SUð2ÞzL SUð2ÞzR ψ

2 −3 R 0 1 d̄R
−3 −3 L 1 0 νL
−3 −3 L −1 0 eL
1 1 L 1 0 uL
1 1 L −1 0 dL
−4 1 R 0 −1 ūR
6 1 R 0 1 ēR
0 5 R 0 −1 ν̄R

;

ð3:44Þ

matching all the fermion contents in the SM (see
Table III).

No bilinear mass generation by bivector GUT-Higgs.—
Unlike the SM-Higgs that generates a bilinear mass for SM
Weyl fermions, the GUT-Higgs in 45 and 54 do not
generate a bilinear mass for SM Weyl fermions. Because
the SOð10Þ bivector GUT-Higgs field Φbi corresponds to
four-fermion operators, which is supposed to be perturba-
tively irrelevant. Even if it condenses, it is not expected to
gap out the Weyl fermions if its vacuum expectation value
is small (but it will Higgs down the gauge group), so the
theory remains gapless in the fermion sector in all phases.
However, sufficiently strong Higgs condensation of TrΦbi

(or Φ1 equivalently) can lead to SMG [13,44–57] as
discussed previously.

D. Fragmentary GUT-Higgs liquid model
beyond the SM

1. Candidate low-energy dynamics of the WZW theory

The WZW term and its associated w2w3 global anomaly
can significantly modify the dynamics in the GUT-Higgs
sector. There are several possibilities for the low-energy IR
dynamical fate of the WZW theory. We shall enumerate the
IR candidate phases as much as we could (logically this is
similar to the Lieb-Schultz-Mattis theorem constraint now
applied to the SM physics):
(1) Spontaneous symmetry breaking: The SOð10Þ in-

ternal symmetry of WZW term [or Spin(10) for the
full modified soð10Þ GUT] is spontaneously broken
by GUT-Higgs condensation. Within this scenario,
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there are a few different symmetry breaking patterns
relevant to our discussion (recall Sec. II B):
(a) hΦ45i ≠ 0, the soð10ÞGUT is Higgs down to the

suð5Þ GUT.
(b) hΦ54i ≠ 0, the soð10ÞGUT is Higgs down to the

PS model.
(c) hΦ45i ≠ 0 and hΦ54i ≠ 0, the soð10Þ GUT is

Higgs down to the SM.
In all three cases, the w2w3ðVSOð10ÞÞ anomaly is matched by
symmetry breaking the Spin(10) down to the GG, PS, and
SM groups.26 The resulting vacua is in the same quantum
phase as the corresponding vacua in the absence of the
WZW term.
(2) The SOð10Þ symmetry remains unbroken, and the

w2w3 anomaly persists to low energy. The low-
energy effective theory must saturate the anomaly
requirement, which further leads to several different
possibilities:
(a) WZW CFT: The WZW theory flows to a non-

trivial CFT fixed point, where the GUT-Higgs
field Φ remains gapless and disordered (not
condensing), and also does not deconfine into
fragmented excitations.

(b) DQC: The GUT-Higgs field Φ deconfines into
fragmented excitations: partons and emergent
gauge fields, which are new particles beyond the
SM. The low-energy physics will be described
by new quantum electrodynamics (QED0) or
quantum chromodynamics (QCD0) sectors. In
any case, the total gauge group must be enlarged
to include the emergent gauge structure of
partons, which is a phenomenon called gauge
enhanced quantum criticality (GEQC) [32]. This
can be viewed as the generalization of the DQC
[28,64–66] to gauge-Higgs models. Possible
field theory descriptions of the DQC can be
classified by the parton statistics as:

(i) Fermionic parton theory, where the fractional-
ized particles in the emergent matter sector are
fermions, which is the focus of our follow-
ing work.

(ii) Bosonic parton theory, where the fractionalized
particles in the emergent matter sector are
bosons.

It is possible that two seemly different descriptions (e.g.,
fermionic vs bosonic parton theories) may be related by
dualities, as discussed in [66,67]. In this scenario, the w2w3

anomaly should be matched either by the anomalous
fermionic matter or by a nontrivial θ term of the emergent
gauge field.

(c) Topological order with low-energy noninvertible
TQFT: The w2w3 anomaly could also be
matched by a certain 4D topological order. A
simplest possibility is the Z2-gauge theory
topological order (more precisely, generated
by dynamical Spin structures), which can be
considered as a descendent of the DQC when the
emergent gauge group is reduced to Z2 by some
further Higgsing.

Among the above possibilities are the following: (1) The
spontaneous symmetry breaking scenario in the WZW
theory has no substantial difference with our previous
discussions without the WZW term, which will not be
repeated here. (2a) The WZW CFT is a nontrivial pos-
sibility, which the authors are not aware of suitable
theoretical tools to study it, and which will thus be left
for future exploration. (2b) The DQC scenario will be the
focus of the following discussion. In particular, we will
consider a QED0

4 theory with fermionic partons as the
effective field theory description. The WZW theory
could potentially admits dual bosonic parton descriptions
as well, but we will also leave this possibility for future
study. (2c) The topological order scenario could be derived
from the DQC scenario, which will also be left for
future study.

2. Dirac fermionic parton theory and a double-Spin
structures DSpin within a modified soð10Þ GUT

Here we propose a fermionic parton construction for
the WZW term in Sec. III B. We propose that WZW
term Eq. (3.14) can also be viewed as a low-energy
description of this Dirac fermionic parton theory with an
action:

SQED0
4
½ξ; ξ̄; a;Φ� ¼

Z
M4

ξ̄ðiγμDμ − Φ̃bi − iγFIVEΦ̂biÞξd4x:

ð3:45Þ

We will soon argue that importantly the fermion parity ZF0
2

of this Dirac fermionic parton ξ is required to be different
from the original fermion parity ZF

2 of the standard model
or GUT fermions ψ . Namely, we will soon introduce a new
kind of Spin structure with two distinct fermion parities,
which we name it formally a double Spin structure:

DSpin≡ ðZF
2 × ZF0

2 Þ ⋊ SO: ð3:46Þ

The theory contains the following ingredients:

26However, the Z2 class w2w3ðVSOð10ÞÞ anomaly of
SO(10) bundle is split to different kinds of w2w3 anomalies of
SO(6) and SO(4) bundles in the PS symmetry group: More
precisely, see Appendix D in detail, w2ðVSOð10ÞÞw3ðVSOð10ÞÞ ¼
w2ðVSOð6ÞÞw3ðVSOð6ÞÞ þ w2ðVSOð4ÞÞw3ðVSOð4ÞÞ þ w2ðVSOð6ÞÞ×
w3ðVSOð4ÞÞ þ w2ðVSOð4ÞÞw3ðVSOð6ÞÞ mod 2, where the crossing
term w2ðVSOð6ÞÞw3ðVSOð4ÞÞ þ w2ðVSOð4ÞÞw3ðVSOð6ÞÞ may or
may not survive depending on whether we include additional
time-reversal T or CP type of discrete symmetries protection
or not.
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(1) There are 10 Dirac fermions ξ forming the 10 (vector
representation) of SOð10Þ. Here γμ are the standard
rank-4γ matrices of four-component Dirac fermions
with γFIVE ¼ iγ0γ1γ2γ3 and ξ̄ ¼ ξ†γ0.

(2) The covariant derivative Dμ ¼ ∇μ − iaμ − igAμ

contains the minimal coupling of the fermionic
parton ξ to a new emergent dynamical Uð1Þ0 gauge
field aμ, as well as the minimal coupling to the
SOð10Þ gauge field Aμ [which is part of the Spin(10)
gauge field in the conventional soð10Þ GUT in
Sec. II B]. We may treat the SOð10Þ gauge field
Aμ as a background field for now, and discuss how it
can be gauged later.

(3) The GUT-Higgs field Φ is written as its 10 × 10

matrix representation Φbi of the SOð10Þ bivector
form. It couples to the fermionic partons by taking
its traceless symmetric component Φ̃bi [the 54 of
SOð10Þ] as the vector mass of ξ and its antisym-
metric component Φ̂bi [the 45 of SOð10Þ] as the
axial mass of ξ. In this way, the SOð10Þ bivector
GUT-Higgs boson effectively deconfines into two
SOð10Þ vector fermions: Φbi

ab ∼ ξ†aξb.
27

(4) In the QED0
4 theory SQED0

4
, the GUT-Higgs field

fractionalizes into gapless fermionic partons with
emergent Uð1Þ0 gauge interactions. The situation is
similar to the U(1) Dirac spin liquid [68,69]
discussed in the condensed matter physics
context. Therefore we may also call this QED0

4

theory as the fragmentary GUT-Higgs liquid
model.28

(5) The name of “fragmentary” GUT-Higgs liquid
(Sec. III D 2) is meant to distinguish and emphasize

the fractionalization of bivector field as Φab ∼ ξ†aξb
of fermionic partons in (3.45), instead of
Φbi

ab ∼ ϕaϕb of the bosonic partons in (3.13) and
(3.33) for the “composite” GUT-Higgs model
(Sec. III C).

We first argue that the QED0
4 theory (without a θ term) in

Eq. (3.45) saturates the same w2w3 anomaly as the WZW
term in Sec. III B. The starting point is to identify that the
spacetime-internal symmetry [here Spin0 ×ZF0

2

Uð1Þ0] and

the gauge group [here SOð10Þ] of the fermionic parton
theory is

GQED0
4
≡ Spin0 ×½ZF0

2
� ½Uð1Þ0�× SOð10Þ≡ Spinc

0
× SOð10Þ;

ð3:47Þ

with fermions in the 101 representation of SOð10Þ and
Uð1Þ0. Notice that we use the prime notation to indicate
that those groups contain the new fermion parity ZF0

2 .
Such that Uð1Þ0 ⊃ ZF0

2 , Spin0 ⊃ ZF0
2 , and Spinc

0 ⊃ ZF0
2 .

Here we use the bracket notation around ½Uð1Þ0� to indicate
that this Uð1Þ0 is dynamically gauged eventually in terms of
the emergent gauge fields near the quantum criticality. In
other words, the new fermion parity ZF0

2 must also be
dynamically gauged because ½Uð1Þ0� ⊃ ½ZF0

2 �.
How do we reconcile the Spin structure (of the familiar

SM and GUT in Sec. III) and the Spin0 structure [of this
new fermion parton theory (3.45)] in the full theory?
After all, we have to place a full theory on some curved
spacetime with a single unified geometric structure.
The full spacetime-internal structure of this modified
soð10Þ GUT, that we require to include Spin ×ZF

2

Spinð10Þ of (2.3) and Spinc
0
× SOð10Þ of (3.47) as

subgroups, turns out to be29

Gmodified
soð10Þ-GUT≡ ðDSpin×ZF

2
Spinð10ÞÞ×½ZF0

2
� ½Uð1Þ0�; ð3:48Þ

where we implement the early advertised double Spin
structure DSpin≡ ðZF

2 × ZF0
2 Þ ⋊ SO structure. We leave

the detail construction of this full spacetime-internal

27If this theory has ’t Hooft anomaly in G, it cannot be trivially
gapped by preserving the G symmetry. Since we like to construct
fermion parton theory QED0

4 (3.45) to saturate the w2w3 anomaly
of SOð10Þ symmetry [or Spin ×ZF

2
Spinð10Þ symmetry], we

should forbid the (3.45) to get any quadratic mass term that
preserves the SOð10Þ. It turns out that the QED0

4 have Uð1Þ0, CP0,
and T0 symmetries that can forbid any SOð10Þ symmetric
quadratic mass term:

(i) The Uð1Þ0 symmetry: ξ → eiθξ forbids any Majorana
mass of the form ξTL=Riσ

2ξL=R that potentially gaps out

the Dirac fermion (written as two Weyl fermions:
ξ ¼ ξL þ ξR).

(ii) The CP0 symmetry ZCP0
2 : ξðt; x⃗Þ → γ0γFIVEξ�ðt;−x⃗Þ

forbids the vector ξ̄ξ mass: ξ̄ξ → −ξ̄ξ.
(iii) The T0 symmetry ZT0

2 : ξðt; x⃗Þ → Kγ0γFIVEξð−t; x⃗Þ forbids
the axial iξ̄γFIVEξ mass: iξ̄γFIVEξ → −iξ̄γFIVEξ.

28Because the order-parameter target manifold in our con-
struction involves a Grassmannian manifold ð OðmþnÞ

OðmÞ×OðnÞÞ≡
Grðm;mþ nÞ, the corresponding GUT-Higgs liquid may also
be called Grassmannian liquid by some condensed matter
people.

29Again we use the bracket notation around ½Uð1Þ0� and ½ZF0
2 �

to indicate that they must be dynamically gauged. Although the
Spin(10) is also dynamically gauged in the GUT, the Spin(10)
may still be treated as a global symmetry in the context of
quantum criticality of the internal flavor symmetry of fermions
in the condensed matter system. However, the ½Uð1Þ0� and
½ZF0

2 � must be dynamically gauged due to their roles at quantum
criticality, regardless whether the Spin(10) is gauged or not.
In summary, there is a hierarchy of gauging: the brackets [::]
imply those degrees of freedom have a higher priority to be
gauged.
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Gmodified
soð10Þ-GUT symmetry based on the group extension in the

footnote remark30 and Appendix E.
The Uð1Þ0 group is free of anomaly, which is consistent

with the fact that this emergent Uð1Þ0 structure can be
gauged. Gauging Uð1Þ0 out of Spinc

0
× SOð10Þ removes

the spin structure of the fermion theory, allowing the gauge
theory to be placed on nonspin manifolds. So the resulting
theory is a bosonic theory with an SO × SOð10Þ symmetry.
It is expected that the spacetime SO group should carry the
w2w3 anomaly, and the anomaly could only originate from
the fermionic partons in the QED0

4 theory.
To check the anomaly in the fermion sector, we first

turn off the Higgs coupling (as it does not affect the
anomaly analysis), such that the theory becomes as simple
as

R
M4 ξ̄γμDμξd4x. Without coupling to the GUT-Higgs

field, the theory has an enlarged SUð2Þ0 gauge group,
generated by ξ†ξ, Reξ⊺γ5ξ, Imξ⊺γ5ξ, among which ξ†ξ

generates the Uð1Þ0 gauge group as a subgroup of SUð2Þ0.
With the enlarged SUð2Þ0 gauge group, the fermionic
parton theory is promoted from a QED0

4 theory to a
QCD0

4 theory (without enlarging the fermion content),
whose group structure is31

GQCD0
4
¼ Spin0 ×½ZF0

2
� ½SUð2Þ0� × SOð10Þ

≡ Spinh
0
× SOð10Þ; ð3:51Þ

the original Dirac fermion ξ is in 2L ⊕ 2R of Spin(1, 3)
and (1, 10) of Uð1Þ0 × SOð10Þ, while now the fermion ξ
becomes in 2L of Spin(1,3) and in the (2; 10) representation
of SUð2Þ0 × SOð10Þ. Again we use the bracket notation
around ½SUð2Þ0� and ½ZF0

2 � to indicate that they must be
dynamically gauged near the criticality. This QED0

4

to QED0
4 promotion does not change the anomaly struc-

ture, because the SUð2Þ0 group is still anomaly free.

30Here are some comments about our construction of spacetime-internal symmetry. More details are in Appendix E. First, the ψ
fermion in the 16 of Spinð10Þ requires a fermion parity ZF

2 , while the ξ fermion in the 10 of SOð10Þ requires another new fermion parity
ZF0

2 . Next, both ψ and ξ fermions require the common SO × SOð10Þ structure (as the quotient group of the total symmetry group),
because they share the same bosonic part of spacetime rotational special orthogonal symmetry group SO, and their SO(10) gauge fields
are the same. However, the ψ fermion requires a total structure Spin ×ZF

2
Spinð10Þ under the short exact sequence:

1 → ZF
2 → Spin ×ZF

2
Spinð10Þ → SO × SOð10Þ → 1; the ξ fermion requires a different total structure Spin0 × SOð10Þ under the short

exact sequence: 1 → ZF0
2 → Spin0 × SOð10Þ → SO × SOð10Þ → 1. Their structures cannot be compatible under the same fermion

parity, thus we require to introduce two fermion parities with the DSpin≡ ðZF
2 × ZF0

2 Þ ⋊ SO structure under 1 → ZF
2 × ZF0

2 →
DSpin → SO → 1 such that DSpin ⊃ Spin ¼ ZF

2 ⋊ SO and DSpin ⊃ Spin0 ¼ ZF0
2 ⋊ SO. The above short exact sequences can be

combined into the following group extensions:

ð3:49Þ

This total extended spacetime-internal ðDSpin ×ZF
2
Spinð10ÞÞ group is compatible with both fermionic spectrum

restrictions for ψ and ξ. By modifying the ZF0
2 into Uð1Þ0 in the web of (3.49), we thus obtain the Gmodified

soð10Þ-GUT ≡
ðDSpin ×ZF

2
Spinð10ÞÞ ×ZF0

2

Uð1Þ0 in (3.48).
Related to the DSpin structure, by including an extra discrete symmetry such as a time-reversal symmetry, the literatures also discover

the structures known as DPin [70] and EPin [37] structures, see also an interpretation via the regularized quantum many-body model
[71]. See more elaborations in Appendix E.

31Similar to (3.49), by modifying the ZF0
2 into SUð2Þ0 in the web, we thus obtain a modification on (3.48) into

Gmodified
soð10Þ-GUT ≡ ðDSpin ×ZF

2
Spinð10ÞÞ ×½ZF0

2
� ½SUð2Þ0�; ð3:50Þ

which has a quotient group GQCD0
4
≡ Spinh

0
× SOð10Þ in (3.51). See more elaborations in Appendix E.
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Namely, there are only two possible combinations of
nonperturbative global anomalies out of the cobordism
classification for Spin0 ×ZF0

2

SUð2Þ0 symmetry given by

TP5ðSpin0×ZF0
2

SUð2Þ0Þ¼Z2
2 [12,18,23]:

(1) NoWitten SUð2Þ0 anomaly [72]: Given that there are
even number (ten) of fundamental fermions 2 of
SUð2Þ0, so 10 mod 2 ¼ 0.

(2) No new SUð2Þ0 anomaly [12]: Given that there is no
4 of SUð2Þ0 fermions, so 0 mod 2 ¼ 0.

So the anomaly is still contained in the SOð10Þ group out of
GQCD0

4
¼ Spinh

0
× SOð10Þ. Tomatch thew2w3 anomaly, we

make a connection to the recently discovered new SUð2Þ
anomaly [18] by the following trick on the SO × SOð10Þ
sector:We first embed SUð2Þ0 × SOð10Þ in Spð10Þ and use a
sequence of maximal special (S) or regular (R) Lie sub-
algebra [58] decomposition Spð10Þ ↩ Spð2Þ × Spð8Þ ↩
SUð2Þ00 × Spð8Þ to show that a different SUð2Þ00 subgroup
carries the w2w3 anomaly. Under the embedding, the
representation of the fermionic parton ξ splits as32

Uð1Þ0 × SOð10Þ ↪ SUð2Þ0 × SOð10Þ ↪ Spð10Þ ↩ Spð2Þ × Spð8Þ ↩ SUð2Þ00 × Spð8Þ
101 ð2; 10Þ ∼S 20 ∼R ð4; 1Þ ⊕ ð1; 16Þ ∼S ð4; 1Þ ⊕ ð1; 16Þ:

ð3:52Þ

Some comments on (3.52):
(1) The (1; 16) is free from both the old Witten’s SUð2Þ0

and the new SUð2Þ0 anomaly, but the (4; 1) has the
new SUð2Þ00 anomaly w2w3ðVSOð3Þ00 Þ [18].

(2) Since we have argued that (2; 10) in SUð2Þ0 ×
SOð10Þ has no Witten or the new SUð2Þ0 anomalies
in the SUð2Þ0 sector, so the new-SUð2Þ00 anomaly

must come from the remained SOð10Þ, or more
precisely the remained SO × SOð10Þ out of the full
Spinh

0
× SOð10Þ in (3.51). According to [23,25], the

classification of ’t Hooft anomaly of SO × SOð10Þ
symmetry is generated respectively by the cobord-
ism group:

TP5ðSO × SOð10ÞÞ ¼ Z2
2;

(
ð−1Þ

R
w2w3ðTMÞ out of the tangent bundleTM of SO;

ð−1Þ
R

w2w3ðVSOð10ÞÞ out of the associated vector bundle of SOð10Þ:
ð3:53Þ

Therefore, we claim that the new-SUð2Þ00 anomaly
can be identified by w2w3ðVSOð10ÞÞ, come from the
remained SOð10Þ out of the Spinh

0
× SOð10Þ.

(3) We can further extend the Spinh
0
× SOð10Þ structure

of the fermionic parton theory QCD0
4 to the full

ðDSpin ×ZF
2
Spinð10ÞÞ ×½ZF0

2
� ½SUð2Þ0� structure of

the modified soð10Þ GUT, under the pullback:

1 → ZF
2 → ðDSpin ×ZF

2
Spinð10ÞÞ ×½ZF0

2
� ½SUð2Þ0�

→ Spinh
0
× SOð10Þ → 1: ð3:54Þ

In terms of the interpretation of the anomaly [we can
gauge the anomaly-free SUð2Þ0], we are left with

1 → ZF
2 → Spin ×ZF

2
Spinð10Þ

→ SO × SOð10Þ → 1: ð3:55Þ

The two w2w3ðTMÞ and w2w3ðVSOð10ÞÞ anomalies in
the TP5ðSO × SOð10ÞÞ ¼ Z2

2 becomes identified as
the same anomaly in the TP5ðSpin ×ZF

2
Spinð10ÞÞ ¼

Z2 of (2.5). Thus, of course, now we can also
interpret as the gauge anomaly w2w3ðVSOð10ÞÞ as the
gravitational anomaly w2w3ðTMÞ due to the relation
ð−1Þ

R
w2w3ðTMÞ ¼ ð−1Þ

R
w2w3ðVSOð10ÞÞ as mentioned

before. The analysis establishes that the proposed
QED0

4 or QCD
0
4 theory in Eq. (3.45) at least has the

same 4D nonperturbative global mixed gauge-gravi-
tational w2w3 anomaly as the proposed 4D WZW
term in (3.15).

To reproduce the WZW term more explicitly, we extend the
QED0

4 theory to the 5D bulk

SQED0
5
½ξ; ξ̄; a;Φ� ¼

Z
M5

ξ̄ðiγμDμ −m− γ5Φ̃bi − γ6iΦ̂biÞξd5x;

ð3:56Þ
where ξ still forms the 101 under Uð1Þ0 × SOð10Þ. Note that,
in 5D, each Dirac fermion already defines five gamma
matrices γ0, γ1, γ2, γ3, γ4, which are rank-4 matrices. By
doubling the fermion content (which means we need two

32Here we apply the symplectic group notation under
SpðnÞ ¼ USpð2nÞ ¼ Spð2n;CÞ ∪ Uð2nÞ, such that Spð1Þ ¼
USpð2Þ ¼ SUð2Þ ¼ Spinð3Þ and Spð2Þ ¼ USpð4Þ ¼ Spinð5Þ.
The G1 ↪ G2 means that the inclusion G1 ⊂ G2 as a subgroup.
The representations on two sides of “∼” shows their decom-
position relation.
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sets of 5D Dirac fermions in 10, thus there are 2 × 10 Dirac
fermions in 5D), we are able to introduce two more gamma
matrices, denoted γ5 and γ6, such that all seven gamma
matrices γ0;…; γ6 are rank-8matrices satisfying theClifford
algebra relation fγμ; γνg ¼ 2δμν. The bulk fermions are
gapped by the mass term m. The boundary QED0

4 theory
(with massless fermions) is reduced from the bulk QED0

5

theory (with massive fermions) as the effective domain wall
theory, which lives on the 4D domain wall separating the
m > 0 and m < 0 phases in 5D.33

To show that the QED0
4 theory is equivalent to the

WZW theory, we only need to show that the bulk QED0
5

theory can reproduce the WZW term (3.15). For this
purpose, we introduce two 2-form R gauge fields B ¼
Bμνdxμ ∧ dxν and B0 ¼ B0

μνdxμ ∧ dxν that couple to the
fermionic parton as

SQED0
5
½ξ; ξ̄; a;Φ;B;B0� ¼

Z
M5

ξ̄ðiγμDμ −m − γ5Φ̃bi

− γ6iΦ̂bi − iγ5γμγνBμν

− iγ6γμγνB0
μνÞξd5x: ð3:57Þ

Integrating out the massive fermion ξ, we obtain the BF
5-form term with 2-form B and B0 fields:

SBF5 ½B;B0� ¼ 1

π

Z
M5

B ∧ dB0; ð3:58Þ

with the constraint that the 2-form gauge fields B and B0 are
locked to the cohomology classes that measure the defects
in Φ̃bi and Φ̂bi, respectively,

BðΦ̃biÞ ¼ B
π
¼ BðΦ̃biÞ

π
∈ H2ðOð10Þ=ðOð6Þ × Oð4ÞÞ;Z2Þ;

B0ðΦ̂biÞ ¼ B0

π
¼ B0ðΦ̂biÞ

π
∈ H2ðOð10Þ=Uð5Þ;Z2Þ: ð3:59Þ

The emergent Uð1Þ0 gauge field a decouples from
the GUT-Higgs field Φ and the 2-form gauge fields
B;B0, which can be integrated out independently. Further
integrate out the 2-form gauge fields B;B0, we obtain an
action for Φ (simply by substituting the constraint),
SWZW½Φ� ¼ 1

π

R
M5 BðΦ̃biÞ ∧ dB0ðΦ̂biÞ. Recall the footnote

about our normalizations of differential forms and coho-
mology classes. This leads to the proposed WZW term in
Eq. (3.15)

SWZW½Φ� ¼ π

Z
M5

BðΦ̃biÞ ⌣ δB0ðΦ̂biÞ; ð3:60Þ

which is expected to be placed on the 5D manifold M5

whose boundary is the 4D spacetime M4 ¼ ∂M5.

3. Color-flavor separation and dark gauge sector:
4D deconfined quantum criticality

The QED0
4 theory describes the DQC scenario of the 4D

WZW-term like theory at low energy. In this scenario, the
GUT-Higgs field deconfines into fragmentary excitations,
which are new 0D particles beyond the SM:

(i) 10 new fermions ξ in the 101 of Uð1Þ0 × SOð10Þ,
as fermionic partons that fractionalize the GUT-
Higgs field;

(ii) a new Uð1Þ0 photon aμ in the 10 of Uð1Þ0 × SOð10Þ,
which mediates a new gauge force that exists
between and only between fermionic partons. It
does not couple to any particle in the SM sector,
hence appears dark to us. Therefore, we will call it
the “dark photon.”

The GUT-Higgs boson can be considered as the bound state
of two fermionic partons [of opposite emergent Uð1Þ0
gauge charges] bind together by the emergent Uð1Þ0 gauge
force mediated by dark photons:

(i) From particle physic perspective, the fermionic
partons and dark photons are more fundamental
constituents of the GUT-Higgs bosons.

(ii) From condensed matter physics perspective, these
fragmentary excitations are emergent collective
modes of the GUT-Higgs field instead. The two
complementary viewpoints are a matter of culture.
The readers can take whichever interpretation that is
more favorable to their mindset.

Because the QED0
4 theory is deconfined in 4D, the

fragmentary GUT-Higgs liquid is expected to be a stable
phase in the phase diagram Fig. 8. It covers the quantum
critical region (critical in the sense that excitations are
gapless), and may possibly extend into the modified soð10Þ
GUT phase (as long as fermionic partons remain decon-
fined). Starting from the fragmentary GUT-Higgs liquid
phase, we can access the adjacent phases by GUT-Higgs
condensation:

(i) hΦ̃bii ≠ 0, the system enters the PS GUT phase,
where fermionic partons are fully gapped by the
vector mass.

(ii) hΦ̂bii ≠ 0, the system enters the suð5Þ GUT phase,
where fermionic partons are fully gapped by the
axial mass.

(iii) hΦ̃bii ≠ 0 and hΦ̂bii ≠ 0, the system enters the SM
phase, where fermionic partons are fully gapped by
both vector and axial masses.

In all phases, the dark photon will remain gapless and
decoupled from all the other particles, which provides a
new candidate for the light dark matter.
A substantial difference of fermionic partons ξ in the

fragmentary GUT-Higgs liquid from quarks and leptons ψ
in the SM, lies in their distinct assignment of quantum

33The 5D theory has the 2 × 10Dirac fermions of four complex
components (alternatively, 10 of 8 complex components), while
the domain wall theory in 4D has 10 Dirac fermions of 4 complex
components, in one lower dimension. The 4D domain wall
fermion has only half of degrees of freedom of the 5D bulk.
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numbers. For the spacetime symmetry representation, the
Dirac fermion partons ξ is in the complex 2L ⊕ 2R of
Spinð1; 3Þ; the SM’s Weyl fermion is in the complex 2L
of Spinð1; 3Þ.
For the internal symmetry representation, consider enter-

ing the SM phase from the fragmentary GUT-Higgs liquid,
the Dirac fermionic partons, apart from the gap opening,
also has its representation split from 101 under Uð1Þ0 ×
SOð10Þ to34

ð1; 2Þ1;3;−2 ⊕ ð3; 1Þ1;−2;−2 ⊕ ð1; 2Þ1;−3;2
⊕ ð3̄; 1Þ1;2;2 under SUð3Þc × SUð2ÞL × Uð1Þ0darkgauge

× Uð1ÞỸ × Uð1ÞX

of the SM. The weak SUð2Þ flavor and the strong
SUð3Þ color quantum numbers separate to different fer-
mions, called flavoron and coloron, denoted by the f and c
Dirac fermions as Grassmann numbers respectively, as
summarized in Table I. We shall name this phenomenon
as color-flavor separation, as it is analogous to the spin-
charge separation [73–75] in condensed matter physics.
The flavoron can participate SU(2) weak interaction

but not SU(3) strong interaction. On the contrary, the
coloron can participate SU(3) strong interaction but not
SU(2) electroweak interaction. Many of them also carry
electromagnetic charge, such that they can also participate
electromagnetic interaction. Beyond the SM interactions,
the flavoron and coloron also interact among themselves by
the emergent Uð1Þ0 gauge force mediated by the dark
photon. Note that there exists a flavoron (in the fL sector)
which does not participate in SU(3) strong and electro-
magnetic interactions. It only participate SU(2) weak
interaction (like left-handed neutrinos) and dark gauge
interaction (unlike neutrinos), which makes it especially a
potential better candidate for heavy dark matter.

IV. CONCLUSION: MOTHER EFFECTIVE FIELD
THEORY FOR BSM GAUGE ENHANCED

QUANTUM CRITICALITY

A. Summary of main results: EFT for internal Spin(10)
global symmetry or dynamical gauge theory

To conclude, here in Table II, we summarize the
quantum field content of the mother effective field theory
of the 4D soð10Þ GUTþ GUT-Higgs potentialþ with or
without WZW term. We summarize our physical findings
on the various quantum vacua of mother effective field
theory. Although there are various possible IR fates of
the UV modified soð10Þ GUTþWZW theory listed in
Sec. III D 1, we will focus on the deconfined quantum
criticality scenario here.
Based on three binary conditions:
(i) Without or with the GUT-Higgs potential UðΦRÞ

and GUT-Higgs condensation hΦRi ≠ 0 of
Eq. (3.4): (i) Whether we stays in the Spin(10)
group of soð10Þ GUT, or (ii) add the GUT-Higgs
potential to Higgs down the Spin(10) deforming it to
GGG, GPS, and GSM.

(2) Without or with the WZW term SWZW½Φ� ¼
π
R
M5 BðΦ̃biÞ ⌣ δB0ðΦ̂biÞ of Eq. (3.15): Namely

(i) whether we stay in model I—an soð10Þ GUT
without the w2w3 anomaly—or (ii) model II—a
modified so(10) GUTþWZW matches the w2w3

anomaly.
(3) Without or with the dynamically gauged internal

symmetry group G ¼ Ginternal: (i) whether we
keep the ½Ginternal� symmetry as a global symmetry,
or (ii) we gauge the ½Ginternal�,35 namely gauging
½Spinð10Þ�; ½GGG�, ½GPS�, and ½GSM�.

The three binary conditions enumerate totally eight pos-
sibilities (where below we can use 3-bits, “???”, each bit
“?” labels a “x” or “o” to specify without or with that binary
condition holds), which we enlist their physics interpreta-
tions, one by one:
(1) xxx—Without UðΦRÞ, without WZW, without

gauged ½Ginternal�: We stay in the Landau-Ginzburg
phase of the Spin(10) global symmetry.

(2) oxx—With UðΦRÞ, without WZW, without gauged
½Ginternal�: We stay in the Landau-Ginzburg phases,
but the UðΦRÞ potentially breaks the Spin(10) global
symmetry to other continuous Lie group global
symmetries GGG, GPS, and GSM, via spontaneous
global symmetry breaking. There are 45, 24, 21,
and 12 Lie algebra generators for each of these
groups. So there are corresponding numbers of the
low energy Nambu-Goldstone modes, matching
the number of the broken Lie algebra generators
based on the Goldstone’s theorem. In principle,

TABLE I. The Dirac fermionic parton ξ contains flavorons f
and colorons c as Grassmann numbers. Please beware that the
Uð1Þ0darkgauge is for the dark gauge (dark photon) sector, which is
totally distinct from the Uð1ÞEM. The Uð1ÞEM is from the
electroweak Higgs symmetry breaking of the SUð2ÞL;flavor ×
Uð1ÞỸ down to a subgroup Uð1ÞEM.

Uð1Þ0darkgauge SUð3Þc;color SUð2ÞL;flavor Uð1ÞỸ Uð1ÞX Uð1ÞEM
f 1 1 2 3 −2 1 or 0
c 1 3 1 −2 −2 −1=3
f0 1 1 2 −3 2 0 or −1
c0 1 3̄ 1 2 2 1=3

34Here we use the branching rule of the Lie algebra repre-
sentations for the following inclusion: soð10Þ ↩ suð5Þ × uð1ÞX
(R regular subalgebra), so that 10 ∼ 5−2 ⊕ 5̄2; and also the
suð5Þ ↩ suð3Þ × suð2Þ × uð1ÞỸ (R regular subalgebra) so that
5 ∼ ð1; 2Þ3 ⊕ ð3; 1Þ−2 and 5̄ ∼ ð1; 2Þ−3 ⊕ ð3̄; 1Þ2.

35We may use the bracket notation on a group ½Ginternal� to
emphasize that group is dynamically gauged.
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because there is no ’t Hooft anomaly for the 16n
chiral fermions with these Ginternal internal global
symmetries, we can gap out all chiral fermions while
preserving Ginternal via a symmetric mass generation
through appropriate interactions [12,13].

(3) xxo—Without UðΦRÞ, without WZW, with gauged
½Ginternal�: We obtain the familiar soð10Þ GUT with
the ½Spinð10Þ� gauged. At a deep UV higher energy,
there shows the asymptotic freedom of 16n Weyl
fermions (quarks and leptons are liberated with a
weaker coupling at a shorter distance for such a non-
Abelian Lie group gauge force [34,35]). At an IR
lower energy, the Spin(10) gauge fields confine the
16n Weyl fermions, which is a strongly coupled
gauge theory with all fermions can gain an energy
gap (i.e., “mass” due to the confinement).

(4) oxo—With UðΦRÞ, without WZW, with gauged
½Ginternal�: Then we are in the dynamical gauge
theory phases but with gauge symmetry breaking.
The UðΦRÞ potentially breaks the Spin(10) gauge
group to other continuous Lie gauge group GGG,
GPS, and GSM, via Anderson-Higgs mechanism of
spontaneous gauge symmetry breaking. There are
45, 24, 21, and 12 Lie algebra generators for each of
these groups. Recall in the global symmetry story,
there are corresponding numbers of the low energy
Nambu-Goldstone modes, matching the number of
the broken Lie algebra generators based on the
Goldstone’s theorem. But now some massless gauge
fields can “eat” the degrees of freedom of Goldstone
bosons, so to become the massive gauge field with
extra degrees of freedom.
Note that again, at a deep UV higher energy, there

shows the asymptotic freedom of Weyl fermions;

while at an IR lower energy, the non-Abelian Lie
gauge forces of GGG, GPS, and GSM) can confine
some of the Weyl fermions. In this strongly coupled
gauge theory, some fermions can gain an energy gap
(i.e., “mass”) due to the confinement. But we do still
have the electroweak-Higgs causing spontaneous
gauge symmetry breaking suð2ÞL × uð1ÞY →
uð1ÞEM. The uð1ÞEM stays deconfined and propagate
the gapless electromagnetic waves in our vacuum.
Here the fermion mass can come from a combi-

nation of mechanism from the confinement mass,
the Anderson-Higgs (gauge-) symmetry-breaking
mass, or the gauge theory analog of the symmetric
mass generation.

(5) xox—Without UðΦRÞ, with WZW, without gauged
½Ginternal�: We stay in the Landau-Ginzburg phase of
the Spin(10) global symmetry, but the 4D WZW
term causes the 4D DQC with fractionalized frag-
mentary excitations.
This DQC is also a GEQC because we have a new

gauge force [which we call dark gauge force with
Uð1Þ0darkgauge dark photons] emergent near the critical-
ity. The fractionalized fragmentary excitations carry
the Uð1Þ0darkgauge gauge charge. If the Uð1Þ0darkgauge dark
photons stay gapless dynamically at deep IR, then it
is due to the protection of w2w3 anomaly.

(6) oox—With UðΦRÞ, with WZW, without gauged
½Ginternal�: We stay in the Landau-Ginzburg phases,
but the UðΦRÞ potentially breaks the Spin(10) global
symmetry to other continuous Lie group global
symmetries GGG, GPS, and GSM, via spontaneous
global symmetry breaking. Other than the low
energy Nambu-Goldstone modes matching the num-
ber of the broken Lie algebra generators in the

TABLE II. Quantum field representations (reps) for two toy models. Model I contains the Weyl spacetime-spinor
ψ , the Spin(10) gauge field A (45 Lie algebra generators denoted as 45adj., but not the 45 rep), the SO(10)-bivector
spacetime-scalar Φbi, and the SO(10)-vector spacetime-scalar ϕ as an auxiliary field (Lagrange multiplier with no
dynamics). Model II contains all the field contents of model I, in addition, model II contains extra fields: the 4D
WZW term π

R
M5 BðΦ̃biÞ ⌣ δB0ðΦ̂biÞ lives on the boundary of a 5D bulk can induce a candidate low energy QED0

4

theory with a Dirac spacetime-spinor ξ (as a fermionic parton) and a Uð1Þ0 emergent dark gauge field a [1 Lie
algebra generator denoted as 1adj:, which carries no Uð1Þ0 charge]. The rep of fermionic parton ξ in suð3Þ ×
suð2Þ × uð1ÞỸ × uð1ÞX is given in Table I. There are two types of fermion parities in a double spin structure
DSpin≡ ðZF

2 × ZF0
2 Þ ⋊ SO.

Field content Spin≡ Spinð1; 3Þ Spinð10Þ ZF
2 ZF0

2 Uð1Þ0darkgauge

Model I
ψ 2L 16 1 0 0
A 4 45adj. 0 0 0
Φbi ¼ Φ1 ⊕ Φ̂bi ⊕ Φ̃bi 1 10 ⊗ 10 ¼ 100 ¼ 1 ⊕ 45 ⊕ 54 0 0 0
ϕ 1 10 0 0 0

Model II (include model I’s aboveþ extra below)
ξ 2L ⊕ 2R 10 0 1 1
a 4 1 0 0 1adj.
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neighbor phases, we still have the fractionalized
fragmentary excitations that also carries Uð1Þ0darkgauge

gauge charge, with Uð1Þ0darkgauge dark photons.
(7) xoo—Without UðΦRÞ, with WZW, with gauged

½Ginternal�: We obtain the modified soð10Þ GUTþ
WZW with the ½Spinð10Þ� gauged. At a deep UV
higher energy, the GUT-Higgs potentialþWZW
term may affect the renormalizability of EFT; how-
ever, what we concern is the EFT that works below
certain energy cutoff scale such asGUTscaleMGUT or
the 5Dbulk invertibleTQFTenergygapΔiTQFT.Other
than the DQC and GEQC phenomena described
above in scenario xox, the theory shows the following:
(a) The Spin(10) gauge bosons can propagate or

leak to the 5D bulk.
(b) The 16n Weyl fermions are gappable (because

there is no anomaly protection for these 16n
fermions).

(c) We have again the 10 fractionalized fragmentary
fermions, gauge charged under Uð1Þ0darkgauge dark
photon. Furthermore, the 10 fractionalized frag-
mentary fermions carry also the strong SUð3Þc
gauge charge, and the weak SUð2ÞL gauge
charge, recall from Table I.

(d) Here we are doing the fragmentary GUT-Higgs
liquid model beyond the SM (with 10 fraction-
alized fragmentary fermions coupled to
Uð1Þ0darkgauge dark photon) of Sec. III D that can
match the w2w3 anomaly. In contrast, we are not
thinking of the 10 gauge neutral bosons from
composite GUT-Higgs model within the SM of
Sec. III C that does not have the w2w3 anomaly.

(8) ooo—With UðΦRÞ, with WZW, with gauged
½Ginternal�: This scenario follows directly from the
scenario xoo, but with a GUT-Higgs potential
triggering (gauge) symmetry breaking. All state-
ments in scenario xoo follow also here. Moreover,
(a) There is a sequence of various possibilities at

various energy scales from the UV to the IR
dynamical fates of this QFT. We do not know the
definite answer of quantum dynamics. Here we
only enlist the possibilities of quantum dynami-
cal fates of the modified soð10Þ GUTþ 4D
WZW term (with 16n Weyl fermions) based
on the w2w3 anomaly matching constraints:

(i) Spin(10) gauge group can be broken down to
contain an SU(2) gauge subgroup such that there
is a new SU(2) anomaly of mixed gauge-gravity
type w2w3ðTMÞ ¼ w2w3ðVSOð3ÞÞ within the
Spin ×ZF

2
SUð2Þ≡ Spinh symmetry [18], again

dynamically gauging SU(2) makes the SU(2)
gauge bosons can propagate to the 5D bulk.

(ii) The gauge group can be broken down to contain
a U(1) gauge subgroup, which can also have a

pure gravitational w2w3ðTMÞ anomaly if the
theory is all-fermion U(1) gauge theory [20,21].
The Spin ×ZF

2
Uð1Þ≡ Spinc structure trivial-

izes the w2w3ðTMÞ anomaly.
(iii) The gauge group can be broken down to contain

a Z2 gauge subgroup which can also have a
pure gravitational w2w3ðTMÞ anomaly if the
theory has fermionic strings [19,76–78]. The
Spin structure trivializes the w2w3ðTMÞ
anomaly.

(b) However, the WZW dynamics in the quantum
critical region that we propose in Sec. III D 2
shows none of the above. Instead, we suggest a
different IR low energy fate of WZW theory:
The Spin(10) symmetry can be fully preserved,
while the mixed gauge-gravity anomaly
w2w3ðTMÞ ¼ w2w3ðVSOð10ÞÞ is matched by a
Dirac fermionic parton theory QED0

4 with emer-
gent Uð1Þ0 dark gauge force and with a DSpin
structure. Figure 11 shows a schematic phase
diagram. For model I, without a WZW term,
there is no deconfined QED0

4 within the dashed
circle region. For model II, with a WZW term,
there is a deconfined QED0

4 within the dashed
circle region.

4D boundary criticality and a 5D bulk bo-
sonic invertible TQFT.—Notice that we can
interpret the above 4D criticality as a boundary

FIG. 11. Follow Fig. 8, here we show the same phase diagram
in the presence of the WZW term if its low energy consequence is
the fermionic parton theory QED0

4 (Sec. III D 2). The dashed
circle denotes the confine-deconfine phase transition of the
emergent Uð1Þ0 gauge field. The solid-line phase boundaries
between two neighbor phases all are described by GUT-Higgs
condensation continuous phase transitions. The SM� phase
means a modification of SM plus additional BSM fields due
to QED0

4, within the Uð1Þ0 deconfined region inside the dashed
circle. Similar situations for GG� and PS�.
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criticality with the w2w3 anomaly on the 5D bulk
of a mod 2 class invertible TQFT. The 4DWZW,
that can be built from the GUT-Higgs fields,
can saturate 4D w2w3ðTMÞ ¼ w2w3ðVSOð10ÞÞ
anomaly. So we only require the 5D bulk as
some 5D invertible topological order or sym-
metry-protected topological states if we require
an on site Spin(10) symmetry on the 4D boun-
dary and on the 5D bulk; see an overview of
modern quantum matter terminology and defi-
nitions in [79,80].
Bosonic UV completion.—For this 16n Weyl

fermion models, once the ½Spinð10Þ� ⊃ ½ZF
2 � is

dynamically gauged, the whole UV completion
of the full 4D and 5D system requires only the
bosons, as the local on site Hilbert space with
gauge-invariant bosonic operators.
Although above we focus on the 16n-Weyl-

fermion SMs or GUTs, we can consider the 15n-
Weyl-fermion models, especially for the suð5Þ
GUTand theSMþ 4DWZWterm, seeSec. IV B.

B. 16n vs 15n Weyl fermions: Give “mass” to
“right-handed sterile” neutrinos, canceling

mod 2 and mod 16 anomalies, and topological
quantum criticality

Although we mostly focus on the 16n-Weyl-fermion
SMs or GUTs in this work, here we comment about
several ways to obtain the low-energy 15n-Weyl-fermion
models (since the real-world experiments only observed
the 15n-Weyl-fermion so far) by giving a large mass to
the 16th Weyl fermions, the so-called “right-handed
sterile” neutrinos (in any of the three generations of
leptons).36

What are examples of conventional ways [43] to give a
large (Anderson-Higgs type quadratic) mass to the 16th
Weyl fermions? We can pair Weyl fermion to itself (i.e.,

Majorana mass) or to another Weyl fermion (e.g., Dirac
mass):
(1) Introduce a Higgs Φsoð10Þ;126 which can be paired

with 126 out of two Weyl fermions in 16 ⊗ 16 ¼
10 ⊕ 120 ⊕ 126.

(2) Introduce a Higgs Φsoð10Þ;16 and add an extra Weyl
fermion (17th Weyl fermion) singlet 1 under Spin
(10). This works only if some of the following holds:
(i) The 17th Weyl fermion is not charged under the

Z4;X symmetry, so we have the Z16 anomaly
canceled already by 16n Weyl fermions. This is
likely to be true because this 17th Weyl fermion
is singlet 1 under Spin(10), thus is also not
acted by the center ZðSpinð10ÞÞ ¼ Z4;X.

(ii) If the 17th Weyl fermion is also charged under
the Z4;X symmetry, then we require the Z4;X
symmetry is broken (thus the Z16 anomaly is
removed), or the Z4;X symmetry is preserved
but 17 mod 16 anomaly is canceled again
by additional new sectors with −1 mod 16
anomaly.

What are other new ways to leave only the observed 15n
Weyl fermions at low energy, but the Z16 global anomaly
can still be canceled in the full quantum system? To begin
with, to characterize the full 4D anomaly of this 15n SMs or
GUTs, we should combine the two types of anomalies:
First, a potential global Z2 anomaly, the w2w3 for our 4D
WZW term, such as in the fragmentary GUT-Higgs liquid
model in Sec. III D. Second, the Z16 global anomaly
captured by a 5D version of Atiyah-Patodi-Singer (APS)
eta invariant for the Spin ×ZF

2
Z4;X structure from

TP5ðSpin ×ZF
2
Z4;XÞ ¼ Z16. We can write that 5D APS

invariant in terms of the 4D APS invariant of Pinþ structure
from TP4ðPinþÞ ¼ Z16. The two combined invertible
TQFT, labeled by p ∈ Z2 and ν ∈ Z16, has a partition
function Z on M5, which together labels a deformation
class of SM [16]:

Zðp;νÞ
5d-iTQFT ≡ exp

�
iπ · p ·

Z
M5

w2w3

�
· exp

�
2πi
16

· ν · ηðPDðAZ2
ÞÞ
����
M5

�
;

with p ∈ Z2; a 4DAtiyah-Patodi-Singer η invariant≡ ηPinþ ∈ Z16; ν ∈ Z16: ð4:1Þ

The cohomology classes of background gauge field AZ2
∈

H1ðM; Z4;X

ZF
2

Þ is defined on a Spin ×ZF
2
Z4;X-manifold M

obeys a constraint: w2ðTMÞ ¼ A2
Z2
.

Inspired by highly entangled interacting quantum matter
recent developments (see reviews in [79,80]), Refs. [38–40]
proposed additional new sectors to cancel the anomalies,
for example,
(3) Symmetry-preserving anomalous gapped 4D

TQFT.
(4) Symmetric-preserving 5D invertible TQFT in the

extra dimension.
(5) Symmetry-breaking gapped phase of Landau-

Ginzburg kinds.

36Note that the “right-handed sterile νR” neutrino is just the
conventional name used in the HEP phenomenology. We would
mostly write this νR in the left-handed Weyl fermion basis. Also
the νR although is sterile to the GSM and SU(5), the νR is not
sterile to Spin(10) and Z4;X.

GAUGE ENHANCED QUANTUM CRITICALITY BEYOND THE … PHYS. REV. D 106, 025013 (2022)

025013-31



(6) Symmetry-preserving (or breaking) 5D topological
gravity theory.

(7) Symmetry-preserving or symmetry-breaking gap-
less phase, e.g., extra massless theories, free or
interacting CFTs. The interacting CFT can also be
related to unparticle physics [81] in the high-energy
phenomenology community.

The heavy gapped new sectors above can be heavy dark
matter candidates. The interesting constraints from mod 2
and mod 16 global anomalies on our 4D DQC model are as
follows:
(1) Z16 anomaly constraints on the GG and SM of 15n

Weyl fermions: On the Georgi-Glashow suð5Þ GUT
and the Standard Model SMq¼6 side, we can have
15n Weyl fermions, plus additional new sectors
enlisted (above and in [38–40]) to match the Z16

anomaly.
(2) Z2 w2w3 anomaly constraints on the soð10Þ GUT

and PS of 16n Weyl fermions: On the soð10Þ GUT
and the Pati-Salam model sides, there are various
types of Z2 class w2w3 anomalies, of the SOð10Þ,
SOð6Þ, or SOð4Þ bundles. The Z2 w2w3 anomaly is
meant to be canceled by our 4D WZW term.

(3) At the vicinity of the 4D DQC we have proposed,
there can be another interplay between the 15n Weyl
fermions (GG and SM) to 16n Weyl fermions [the
soð10Þ GUT and PS], such that the DQC becomes a
topological quantum phase transition or topological
quantum criticality.

4D boundary criticality to a 5D bulk criticality.—
Compare with the phase diagram in Fig. 8. Notice that we
can interpret the above 4Dcriticality as a boundary criticality:
(1) On the modified soð10Þ GUT and the PS modelþ

WZW term side with 16n Weyl fermions in Fig. 8:
with the w2w3 Z2-class anomaly on the 5D bulk of a
mod 2 class invertible TQFT.

(2) On the modified suð5Þ GUT and the SMþWZW
term side with 15n Weyl fermions in Fig. 8: with the
ηðPDðAZ2

ÞÞZ16-class anomaly on the 5D bulk of a
mod 2 class invertible TQFT.

Once the ½Spinð10Þ� is dynamically gauged,
(1) The 5D bulk on the modified soð10Þ GUT and the

PS model side (16n Weyl fermions): The ½Spinð10Þ�
dynamical gauge fields can propagate and leak to the
5D bulk are deconfined and gapless.

(2) The 5D bulk on the modified suð5ÞGUTand the SM
side (15n Weyl fermions): Only the ½Z4;X� subgroup
(ZðSpinð10ÞÞ ¼ Z4;X) are dynamically gauged in the
5D bulk of the original fermionic invertible TQFT
ηðPDðAZ2

ÞÞ. Gauging ½Z4;X� turns the 5D fermionic
bulk to a 5D bosonic bulk TQFT (with long-range
entanglement, gapped topological order, and de-
scribed by gauged cohomology, gauged cobordism,
or higher category theory). The 5D bulk can remain
to be gapped.

Thus there is a phase transition between the deconfined and
gapless 5D bulk to another side of gapped 5D bulk. This
phase transition can be interpreted as a 5D bulk topological
quantum criticality.
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APPENDIX A: QUANTUM NUMBERS
AND REPRESENTATIONS OF SMS

AND GUTS IN TABLES

Here we summarize the representations of “elementary”
chiral fermionic particles of quarks and leptons of SMs and
GUTs in the following tables.
Spacetime symmetry representation: Here Weyl fer-

mions are spacetime Weyl spinors, which we prefer to
write all Weyl fermions as

2L of Spinð1; 3Þ ¼ SLð2;CÞ ðA1Þ

with a complex representation in the 4D Lorentz signature.
On the other hand, the Weyl spinor is

2L of Spinð4Þ ¼ SUð2ÞL × SUð2ÞR ðA2Þ

with a pseudoreal representation in the 4D Euclidean
signature.
Internal symmetry representation: Below we provide

Tables III and IV to organize the internal symmetry
representations of particle contents of the SM, the suð5Þ
GUT, the Pati-Salam model, and the soð10Þ GUT.

1. Embed the SM into the suð5Þ GUT,
then into the soð10Þ GUT

There is a QFT embedding, the soð10Þ GUT ⊃ the suð5Þ
GUT ⊃ the SM6 only for GSMq¼6

via an internal symmetry
group embedding:

Spinð10Þ ⊃ GGG ≡ SUð5Þ

⊃ GSM6
≡ SUð3Þc × SUð2ÞL × Uð1ÞỸ

Z6

: ðA3Þ

The representations of quarks and leptons for these mod-
els are organized in Table III. There are two versions of
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electroweak hypercharge normalization listed in Table III,
such that the charge of Uð1ÞY is 1

6
of the charge of Uð1ÞỸ .

2. Embed the SM into the left-right and Pati-Salam
models and into the soð10Þ GUT

There are two version of internal symmetry groups for
PS model [6]:

GPSq0 ≡
SUð4Þ × SUð2ÞL × SUð2ÞR

Zq0
≡ Spinð6Þ × Spinð4Þ

Zq0
;

with q0 ¼ 1, 2. There are two version of internal sym-
metry groups for Senjanovic-Mohapatra’s left-right (LR)
model [82],

GLRq0 ≡
SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−L

2

Z3q0

with q0 ¼ 1; 2. In general, there is a QFT embedding, the
PS model ⊃ the LR model ⊃ the SM for both q0 ¼ 1, 2 via
the internal symmetry group embedding:

GPSq0 ⊃ GLRq0 ⊃ GSMq¼3q0 ≡
SUð3Þc × SUð2ÞL × Uð1ÞỸ

Zq¼3q0
:

ðA4Þ

Namely, when q0 ¼ 1, we have

GPS1 ⊃ GLR1
⊃ GSM3

: ðA5Þ

Furthermore, only when q0 ¼ 2, we can have the whole
embedded into the Spin(10) for the soð10Þ GUT:

Spinð10Þ ⊃ GPS2 ⊃ GLR2
⊃ GSM6

: ðA6Þ

TABLE III. Embed the suð3Þ × suð2Þ × uð1Þ SM into the Georgi-Glashow suð5Þ GUT, then into the soð10Þ GUT. We show the
quantum numbers of 15þ 1 ¼ 16 left-handed Weyl fermion [spacetime spinors 2L in Spinð1; 3Þ] in each of three generations of matter
fields in SM. The 15 of 16 Weyl fermion are 5̄ ⊕ 10 of SU(5); namely, ð3̄; 1; 1=3ÞL ⊕ ð1; 2;−1=2ÞL ∼ 5̄ and ð3; 2; 1=6ÞL ⊕
ð3̄; 1;−2=3ÞL ⊕ ð1; 1; 1ÞL ∼ 10 of SU(5). The 1 of 16 is presented neither in the standard GSW SM nor in the suð5ÞGUT, but it is within
16 of the soð10Þ GUT. The numbers in the table entries indicate the quantum numbers associated with the representation of the groups
given in the top row. We show a generation of SM fermion matter fields in Table III. There are three generations, triplicating Table III, in
SM. All fermions have the fermion parity ZF

2 representation charge of 1. In the suð5Þ GUT, by including the Uð1ÞX, we have the
ðSUð5Þ × Uð1ÞXÞ=Z5 ¼ Uð5Þq̂¼2 structure described in [62,63]. Here Uð1ÞX ⊃ Z4;X ⊃ ZF

2 and SUð5Þ ⊃ Uð1ÞY . Both Uð1ÞX and
Uð1ÞB−L are outside the SUð5Þ.
SM fermion
spinor field SUð3Þ SUð2Þ Uð1ÞY Uð1ÞỸ Uð1ÞEM Uð1ÞB−L Uð1ÞX Z5;X Z4;X ZF

2 SU(5) Spin(10)

d̄R 3̄ 1 1=3 2 1=3 −1=3 −3 −3 1 1
5̄

16

lL 1 2 −1=2 −3 0 or −1 −1 −3 −3 1 1
qL 3 2 1=6 1 2=3 or −1=3 1=3 1 1 1 1

10ūR 3̄ 1 −2=3 −4 −2=3 −1=3 1 1 1 1
ēR ¼ eþL 1 1 1 6 1 1 1 1 1 1
ν̄R ¼ νL 1 1 0 0 0 1 5 0 1 1 1

TABLE IV. Embed the suð3Þ × suð2Þ × uð1Þ SM into the Pati-Salam model suð4Þ × suð2Þ × suð2Þ, then into the soð10Þ GUT. We
have T3;L þ Y ¼ QEM, the Lie algebra linear combination SUð2ÞL (the third generator) and Uð1ÞY gives the Uð1ÞEM charge. We have
T3;R þ Y ¼ B−L

2
, the Lie algebra linear combination of SUð2ÞR (the third generator) and Uð1ÞY gives the Uð1ÞB−L. We choose the right-

handed antiparticle to be in 2 of SUð2ÞR [so its right-handed particle to be in 2̄ of SUð2ÞR] that makes a specific assignment on the� sign
of its T3;R charge. So we have the formula, T3;L − T3;R ¼ QEM − B−L

2
.

SM fermion
spinor field SUð3Þ SUð2ÞL SUð2ÞR Uð1ÞB−L

2
Uð1ÞY Uð1ÞYR

Uð1ÞEM Uð1ÞX Z4;X ZF
2 Spin(10)

uL 3 qL∶2 1 1=6 1=6 2=3 2=3 1 1 1

16

dL 3 1 1=6 1=6 −1=3 −1=3 1 1 1
νL 1 lL∶2 1 −1=2 −1=2 0 0 −3 1 1
eL 1 1 −1=2 −1=2 −1 −1 −3 1 1
ūR 3̄ 1 qR∶2 −1=6 −2=3 −1=6 −2=3 1 1 1
d̄R 3̄ 1 −1=6 1=3 −1=6 1=3 −3 1 1
ν̄R ¼ νL 1 1 lR∶2 1=2 0 1=2 0 5 1 1
ēR ¼ eþL 1 1 1=2 1 1=2 1 1 1 1
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The representations of quarks and leptons for these models
are organized in Table IV.

APPENDIX B: REPRESENTATION AND
BRANCHING RULE FOR GUT-HIGGS

SYMMETRY BREAKING

Here are we organize the set of branching rules of
representations following the symmetry breaking pattern of
various GUTs to SM (these rules are used in Sec. II A):

(1) Spinð10Þ↩SUð5Þ↩ SUð3Þc×SUð2ÞL×Uð1ÞY
Z6

branching
rules:
(a) For Spinð10Þ ↩ SUð5Þ, also for SOð10Þ ↩

Uð5Þq̂¼1 ¼ SUð5Þ×Uð1Þq̂¼1

Z5
or Spinð10Þ ↩

Uð5Þq̂¼2 ¼ SUð5Þ×Uð1Þq̂¼2

Z5
(or in terms of Lie alge-

bra soð10Þ ↩ suð5Þ × uð1Þ with a regular
Lie subalgebra in [58]),37 the branching
rule says

8>>>>>>>>><
>>>>>>>>>:

10 ∼ 5 ⊕ 5̄ or 10 ∼ 52 ⊕ 5̄−2
16 ∼ 1 ⊕ 5̄ ⊕ 10 or 16 ∼ 1−5 ⊕ 5̄3 ⊕ 10−1
45 ∼ 1 ⊕ 10 ⊕ 10 ⊕ 24 or 45 ∼ 10 ⊕ 104 ⊕ 10−4 ⊕ 240
54 ∼ 15 ⊕ 15 ⊕ 24 or 54 ∼ 154 ⊕ 15−4 ⊕ 240
120 ∼ 5 ⊕ 5̄ ⊕ 10 ⊕ 10 ⊕ 45 ⊕ 45 or 52 ⊕ 5̄−2 ⊕ 10−6 ⊕ 106 ⊕ 452 ⊕ 45−2
126 ∼ 1 ⊕ 5 ⊕ 10 ⊕ 15 ⊕ 45 ⊕ 50 or 110 ⊕ 52 ⊕ 106 ⊕ 15−6 ⊕ 45−2 ⊕ 502

: ðB1Þ

(b) For SUð5Þ ↩ SUð3Þc×SUð2ÞL×Uð1ÞY
Z6

[or in terms of Lie algebra suð5Þ ↩ suð3Þ × suð2Þ × uð1Þ with a regular Lie
subalgebra in [58] ], the branching rule says

8>>>>>>>>>>><
>>>>>>>>>>>:

5 ∼ ð1; 2Þ−3 ⊕ ð3; 1Þ2
10 ∼ ð1; 1Þ−6 ⊕ ð3̄; 1Þ4 ⊕ ð3; 2Þ−1
15 ∼ ð1; 3Þ−6 ⊕ ð3; 2Þ−1 ⊕ ð6; 1Þ4
24 ∼ ð1; 1Þ0 ⊕ ð1; 3Þ0 ⊕ ð3; 2Þ5 ⊕ ð3̄; 2Þ−5 ⊕ ð8; 1Þ0
…

45 ∼ ð1; 2Þ−3 ⊕ ð3; 1Þ2 ⊕ ð3̄; 1Þ−8 ⊕ ð3̄; 2Þ7 ⊕ ð3; 3Þ2 ⊕ ð6̄; 1Þ2 ⊕ ð8; 2Þ−3
50 ∼ ð1; 1Þ12 ⊕ ð3; 1Þ2 ⊕ ð3̄; 2Þ7 ⊕ ð6; 1Þ−8 ⊕ ð6̄; 3Þ2 ⊕ ð8; 2Þ−3

: ðB2Þ

(i) First, in order to break the Spin(10) or SO(10)
down to SU(5), we take the representation

whose branching rule in (B1) contains the 1
of SU(5) or 10 of U(5) on the right-handed side
so that SU(5) or U(5) is left unbroken. This
means that we may take a GUT-Higgs 45 that
we name it as (2.10):

Φsoð10Þ;45 ≡Φ45: ðB3Þ

(ii) Second, in order to break SU(5) further down to

GSM6
≡ SUð3Þc×SUð2ÞL×Uð1ÞY

Z6
, we take the repre-

sentation whose branching rule in (B2) contains
the ð1; 1Þ0 ofGSM6

. This means that we can take
the 24 of SU(5) as the second GUT-Higgs
called Φsuð5Þ;24. But if we want to obtain this
second GUT-Higgs from a higher-energy
soð10Þ GUT, it turns out that we can find
Φsuð5Þ;24 within (2.11):

37Follow footnote 25 for different nonisomorphic versions of

U(5) Lie groups defined as Uð5Þq̂ ≡ SUð5Þ×Uð1Þq̂
Z5

≡ fðg; eiθÞ ∈
SUð5Þ × Uð1Þjðei2πn5 I; 1Þ ∼ ðI; ei2πnq̂5 Þ; n ∈ Z5g, the Lie group em-
bedding shows (the proof is given in [62,63])

Spinð10Þ ⊃ SUð5Þ and Spinð10Þ ⊃ Uð5Þq̂¼2;3;

but Spinð10Þ ⊅ Uð5Þq̂¼1;4;

while

SOð10Þ ⊃ SUð5Þ and SOð10Þ ⊃ Uð5Þq̂¼1;4;

but SOð10Þ ⊅ Uð5Þq̂¼2;3:

The embedding SOð10Þ ⊃ Uð5Þq̂¼1;4 cannot be lifted to Spin(10)
thus Spinð10Þ ⊅ Uð5Þq̂¼1;4; but Spinð10Þ ⊃ Uð5Þq̂¼2;3.
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Φsoð10Þ;54 ≡Φ54; ðB4Þ

from (B1) more naturally, as we will soon see.38

(2) Spinð10Þ ↩ Spinð6Þ×Spinð4Þ
Z2

↩ SUð3Þc×SUð2ÞL×Uð1ÞY
Z6

branching rules:

(a) For Spinð10Þ↩ Spinð6Þ×Spinð4Þ
Z2

¼ SUð4Þ×SUð2Þ×SUð2Þ
Z2

,
also for SOð10Þ ↩ SOð6Þ × SOð4Þ [or in terms
of Lie algebra soð10Þ ↩ soð6Þ × soð4Þ or
suð4Þ × suð2Þ × suð2Þ with a regular Lie sub-
algebra in [58] ], we find that

8>>>>>>>>><
>>>>>>>>>:

10 ∼ ð1; 2; 2Þ ⊕ ð6; 1; 1Þ
16 ∼ ð4; 2; 1Þ ⊕ ð4̄; 1; 2Þ
45 ∼ ð1; 3; 1Þ ⊕ ð1; 1; 3Þ ⊕ ð6; 2; 2Þ ⊕ ð15; 1; 1Þ
54 ∼ ð1; 1; 1Þ ⊕ ð1; 3; 3Þ ⊕ ð6; 2; 2Þ ⊕ ð200; 1; 1Þ
120 ∼ ð1; 2; 2Þ ⊕ ð6; 3; 1Þ ⊕ ð6; 1; 3Þ ⊕ ð10; 1; 1Þ ⊕ ð10; 1; 1Þ ⊕ ð15; 2; 2Þ
126 ∼ ð6; 1; 1Þ ⊕ ð10; 3; 1Þ ⊕ ð10; 1; 3Þ ⊕ ð15; 2; 2Þ

: ðB5Þ

(b) For Spinð6Þ×Spinð4Þ
Z2

¼ SUð4Þ×SUð2Þ×SUð2Þ
Z2

↩
SUð3Þc×SUð2ÞL×Uð1ÞY

Z6
[or in terms of Lie algebra

soð6Þ × soð4Þ or suð4Þ × suð2Þ × suð2Þ ↩
suð3Þ × suð2Þ × uð1Þ], we find that the
suð4Þ ↩ suð3Þ × uð1Þ (with a regular Lie sub-
algebra in [58]) branching rule says

8>>><
>>>:

4 ∼ 1−3 ⊕ 31
6 ∼ 3−2 ⊕ 3̄2
10 ∼ 1−6 ⊕ 3−2 ⊕ 62
15 ∼ 10 ⊕ 34 ⊕ 3̄−4 ⊕ 80

: ðB6Þ

(i) First, in order to break the Spin(10) down to
GPS2 ≡ Spinð6Þ×Spinð4Þ

Z2
¼ SUð4Þ×SUð2Þ×SUð2Þ

Z2
, we

take the representation whose branching rule
in (B5) contains the (1; 1; 1) on the right-handed
side so that GPS2 is left unbroken. This means
that we may take a GUT-Higgs 54 that we had
named it in (2.11) as

Φsoð10Þ;54 ≡Φ54:

(ii) Second, in order to break GPS2 further down

to GSM6
≡ SUð3Þc×SUð2ÞL×Uð1ÞY

Z6
, we take the

representation whose branching rule in (B2)
contains the ð1; 1Þ0 of GSM6

. This means that
we can take the 15 of SU(4) as the second GUT-
Higgs called Φsuð4Þ;15. But if we want to obtain
this second GUT-Higgs from a higher-energy
soð10Þ GUT, it turns out that we can find
Φsuð4Þ;15 from what we had named in (2.10)
called

Φsoð10Þ;45 ≡Φ45;

from (B5) more naturally, as we will soon see.39

(3) SUð3Þc×SUð2ÞL×Uð1ÞY
Z6

↩ SUð3Þc×Uð1ÞEM
Z3

branching rules:
The SM electroweak Higgs in the representation

ΦSMinð1; 2ÞY¼1
2
¼ ð1; 2ÞYW¼1

¼ ð1; 2ÞỸ¼3 of suð3Þ × suð2Þ × uð1Þ
ðB7Þ

does the job to break GSM6
≡ SUð3Þc×SUð2ÞL×Uð1ÞY

Z6
to

SUð3Þc×Uð1ÞEM
Z3

. Then next, we can ask how to
find ΦSM from the representation of suð5Þ, or
suð4Þ × suð2Þ × suð2Þ, or soð10Þ:
(a) ΦSM from suð5Þ: From the branching rule in

(B2), one can try to take theΦsuð5Þ;5 andΦsuð5Þ;45
which contains ð1; 2Þ−3 of suð3Þ × suð2Þ × uð1Þ38It may be also possible to introduce the second GUT-Higgs

model of Φ0
soð10Þ;45 ≡Φ0

45 (different from Φ45), which also
contains the Φsuð5Þ;24 that can break SU(5) down to GSM6

.
Another possible choice proposed in Georgi’s textbook [43] is

that in addition to the first GUT-Higgs Φsoð10Þ;45 ≡Φ45, one may
also introduce a scalar Higgs of a 16 or a 126 of Spin(10) in order
to Higgs down to GSM.

However, these choices are not ideal for us, due to the reason of
quantum criticality that we pursue later. The quantum criticality
that we pursue only require Φsoð10Þ;45≡Φ45 and Φsoð10Þ;54 ≡ Φ54,
from (2.10) and (2.11).

39Another possible choice proposed in Georgi’s textbook [43]
is that in addition to the first GUT-Higgs model,Φsoð10Þ;54 ≡Φ54,
one may also introduce a scalar Higgs of a 16 or a 126 of Spin(10)
in order to Higgs down to GSM.

However, these choices are not ideal for us, due to the reason of
quantum criticality that we pursue later. The quantum criticality
that we pursue only require Φsoð10Þ;45 ≡Φ45 and Φsoð10Þ;54≡Φ54,
from (2.10) and (2.11).
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which is the complex conjugation of ΦSM’s
ð1; 2ÞỸ¼3.

(b) ΦSM from suð4Þ × suð2Þ × suð2Þ: From the
branching rule in (B6), one can try to take the
Φsuð4Þ×suð2Þ×suð2Þ;ð4;2;1Þ that contains ð1; 2Þ−3 of
suð3Þ × suð2Þ × uð1Þ, which is also the complex
conjugation of ΦSM’s ð1; 2ÞỸ¼3. We may also
need Φsuð4Þ×suð2Þ×suð2Þ;ð4̄;1;2Þ if we wish to break
the SUð2ÞR completely.

(c) ΦSM from soð10Þ: From the branching rule in
(B1), we can get the Φsuð5Þ;5 and Φsuð5Þ;45 out of
10, 120, or 126 of soð10Þ, which we can call
Φsoð10Þ;10, Φsoð10Þ;120, and Φsoð10Þ;126. These 10,

120, or 126 are particular sensible according to
[43], because these Higgs can be paired up with
the fermion bilinear operators ψ iψ j whose rep-
resentations are also in the tensor product
16 ⊗ 16 ¼ 10 ⊕ 120 ⊕ 126.
From the branching rule in (B5), we can get the

Φsuð4Þ×suð2Þ×suð2Þ;ð4;2;1Þ andΦsuð4Þ×suð2Þ×suð2Þ;ð4̄;1;2Þ
out of16 of Spin(10),whichwe can callΦsoð10Þ;16.

APPENDIX C: INDUCE A 3D WZW TERM
BETWEEN NÉEL soð2Þ AND VBS soð3Þ
ON A 4D BULK w2ðVSOð3ÞÞw2ðVSOð2ÞÞ

This appendix provides a logical pedagogical account on
the familiar 3D DQC [28] proposed as a continuous
quantum phase transition, on a ð2þ 1ÞD bosonic lattice
model with an internal nonrelativistic (iso)spin-1=2
bosons,40 between two kinds of Landau-Ginzburg sym-
metry breaking orders on each lattice site:
(1) One side has the Néel antiferromagnet order: This

order breaks the Z2-spatial lattice translation to
ðZ2Þ2 on a lattice. It also breaks the SOð3Þ internal
(iso)spin rotational symmetry [actually, breaking SO
(3) faithfully, not SU(2)41]. But it respects the spatial
rotational symmetry, which is Z4 spatial rotational
symmetry on a square lattice, but it preserves an

enhanced SOð2Þ spatial rotational symmetry in the
continuum.

(2) Another side has the VBS order, which preserves a
faithful SOð3Þ (iso)spin rotational symmetry (again,
see footnote 41), because the VBS order pairs the
two neighbor-site (iso)spin-1=2 bosons to an (iso)
spin-0 state 1ffiffi

2
p ðj ↑ij↓i − j↓ij ↑iÞ. But the pattern of

VBS breaks the Z4 spatial rotational symmetry on a
square lattice, so the VBS breaks an SOð2Þ spatial
rotational symmetry in the continuum.

If we take into account the discrete Z2 symmetry (a time
reversal or a spatial reflection symmetry), the above SOð2Þ
symmetry becomes an Oð2Þ ¼ SOð2Þ ⋊ Z2 symmetry,
while the above SOð3Þ symmetry becomes an Oð3Þ ¼
SOð3Þ × Z2 symmetry.
Below we write G as the original symmetry group [such

as SOð3Þ × SOð2Þ valid to the UV lattice scale], while Gsub
is the remained preserved unbroken symmetry in the
corresponding order (Néel or VBS orders). Then we have
the following fibration structure:

Gsub ↪ G →
G

Gsub
; ðC1Þ

where the quotient space G
Gsub

is the base manifold (i.e., the
orbit) as the symmetry-breaking order parameter space. The
G is the total space obtained from the fibration of the Gsub

fiber (i.e., the stabilizer) over the base G
Gsub

. Here is a
systematic table computation on the homotopy group πk of
ð G
Gsub

Þ for Néel or VBS orders,

π0 π1 π2 π3 π4 π5

NéelS2 ¼ Oð3Þ×Oð2Þ
Oð2Þ×Oð2Þ ¼ Oð3Þ

Oð2Þ 0 0 Z Z Z2 Z2

¼ SOð3Þ×SOð2Þ
SOð2Þ×SOð2Þ ¼ SOð3Þ

SOð2Þ

VBSS1 ¼ Oð3Þ×Oð2Þ
Oð3Þ×Oð1Þ ¼ Oð2Þ

Oð1Þ
0 Z 0 0 0 0

¼ SOð3Þ×SOð2Þ
SOð3Þ×SOð1Þ ¼ SOð2Þ

SOð1Þ
Oð5Þ Z2 Z2 0 Z Z2 Z2

SOð5Þ 0 Z2 0 Z Z2 Z2

:

ðC2Þ
To our knowledge, the most systematic, physically

intuitive, and mathematically transparent construction of
the 3D DQC and its 3D WZW term can be based on the
following arguments:
(1) The Néel order breaks an SOð3Þ (iso)spin rotational

symmetry down to an Uð1Þ ¼ SOð2Þ (iso)spin rota-
tional symmetry such as along the z axis, such that
(3.16) in the Néel order becomes

ðGsub ¼ SOð2Þ × SOð2ÞÞ ↪ ðG ¼ SOð3Þ × SOð2ÞÞ

→

�
G

Gsub
¼ S2

�
: ðC3Þ

40What condensed matter people call the spin-1=2 bosons on
site is actually the isospin-1=2 boson, which is in the represen-
tation 2 of the internal symmetry SU(2), as the internal SU(2)
doublet, or namely the qubit. The spin up j↑i and down j↓i are
mapped to j1i and j0i of qubit. To emphasize again, the internal
SU(2) here is not the spacetime SU(2) from the spacetime Spin
group.

41There is an internal SU(2) spin rotational symmetry, but the
center ZðSUð2ÞÞ ¼ Z2 does not act on the Hilbert space in a
physical faithful or meaningful way. What faithful representation
means physically here is that whether we can find states as that
representation, being acted by any physical operator such that
these states can be distinguished from each other. The answer is
that we cannot distinguish the two states charged under
ZðSUð2ÞÞ ¼ Z2 physically in this bosonic system.
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(i) Hedgehog core, instanton, andmagnetic monop-
ole: The SOð3Þ symmetry breaking hedgehog
core has a 0D singularity in the spacetime. This
0D singularity of this hedgehog core in the 3D
spacetime can be also regarded an instanton in
the 3D spacetime. We can couple this whole
configuration to SO(3) background gauge field;
this means that we can use the w2ðVSOð3ÞÞ to
measure the magnetic charge of SO(3). We
evaluate the w2ðVSOð3ÞÞ over the Néel’s SO(3)
symmetry-breaking target space S2, and it turns
out that there is a 2π flux over S2. Therefore, the
hedgehog core is not only an instanton event but
also anSO(3)magneticmonopole, living on a 0D
open end of some nondynamical 1d ’t Hooft line
defect of SO(3) background gauge field.

(ii) This SOð3Þ symmetry-breaking hedgehog
core traps a “fractionalized charge-1=2 object
charged under the preserved SO(2) symmetry
(or Z4 symmetry on a lattice scale),” namely in
the projective representation of Z4, which is in
the unit integer representation Z8. Namely, the
SOð3Þ-symmetry-breaking defect, hedgehog
core in the Néel phase, traps the 1

2
fractionali-

zation of the unbroken SOð2Þ, or Z4, charged
object of VBS order.

(iii) The winding number of such Néel hedgehog
configuration can be classified by

π2

�
SOð3Þ × SOð2Þ
SOð2Þ × SOð2Þ

�
¼ π2

�
SOð3Þ
SOð2Þ

�
¼ π2ðS2Þ ¼ Z: ðC4Þ

This says the S2 as a 2D surface in 3D spacetime
wrapping around the target S2 of the Néel’s
SO(3) symmetry-breaking target space [the base
manifold and stabilizer in (C3)]. The spatial S2

circle as a homology class [in H2ðM;ZÞ, called
this 2D sphere ϱ2] can be paired up with a
cohomology class B ∈ H2ðM;ZÞ. To make
sense the unit generator of the winding Z class,
the B evaluated on ϱ2 (bounding a three disk Σ3

by ϱ2 so ∂Σ3 ¼ ϱ2) must have the following:

∯
ϱ2¼∂Σ3

B¼∯
ϱ2
w2ðVSOð3ÞÞ¼1 mod2: ðC5Þ

(iv) Now imagine in a 3D spacetime picture, we can
regard:
(a) the 0D hedgehog core ς0Néel hedgehog as the

charged object, fractionalized charged
under the preserved SO(2) (a projective
representation in Z4, precisely a linear
representation in Z8).

(b) the 2D S2 called ϱ2 with B ∈ H2ðM;ZÞ on
the ϱ2, as the charge operator, or the
symmetry generator of the SO(2).

Then, follow the higher symmetry or generalized global
symmetry language [59], the measurement of the symmetry
is exactly performed by evaluating the linking between the
ς0Néel hedgehog and ϱ2 in a 3D spacetime M3. Precisely, the
linking number Lk, manifested as a statistical Berry phase,
is evaluated via the expectation value of path integral:�
exp

�
iπ∯

ϱ2¼∂Σ3

B
�
·expðiπφjς0Néel hedgehogÞ

�

¼ð−1ÞLkðϱ2;ς0Néel hedgehogÞ
���
M3

·hexpðiπφjς0Néel hedgehog Þi. ðC6Þ

Here φjς0Néel hedgehog is the 0D vertex operator evaluated around

the 0D hedgehog core, which is again the 0D magnetic
monopole at the open end of the SO(3) background-gauged
1D ’t Hooft line. Related descriptions of link invariants of
QFTs can be found in [60,61] and references therein.
(2) The VBS order breaks an SOð2Þ spatial rotational

symmetry in the continuum (or breaks Z4 rotational
symmetry on a lattice), such that (3.16) in the VBS
order becomes

ðGsub ¼ SOð3Þ × SOð1ÞÞ ↪ ðG ¼ SOð3Þ × SOð2ÞÞ

→

�
G

Gsub
¼ S1

�
: ðC7Þ

(i) The SOð2Þ symmetry-breaking VBS vortex
core has a 0D singularity trapping an (iso)
spin-1=2 object called the (iso)spinon in the
space (famously popularized by Levin-Senthil
[83]), which indeed is a 1D vortex loop (called
this 1D loop ς1VBS vortex) in the spacetime.

(ii) The (iso)spinon with (iso)spin-1=2 trapped at the
VBS order parameter vortex core is a “fraction-
alized charge-1=2 object charged under the pre-
served symmetrySO(3),”namely in theprojective
representation of SO(3), which is in the funda-
mental representation 2 of SU(2). Namely, the
SOð2Þ-symmetry-breaking defect, the vortex in
the VBS phase, traps the 1

2
fractionalization of

SOð3Þ charged object of Néel order.
(iii) The winding number of such VBS vortex

configuration can be classified by

π1

�
SOð3Þ × SOð2Þ
SOð3Þ × SOð1Þ

�
¼ π1

�
SOð2Þ
SOð1Þ

�
¼ π1ðS1Þ ¼ Z: ðC8Þ

This says the spatial S1 wrapping around the tar-
get S1 of the VBS’s SO(2) symmetry-breaking
target space [the base manifold and stabilizer in
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(C7)]. The spatial S1 circle as a homology class
[in H1ðM;ZÞ, called this 1D circle ϱ1] can be
paired up with a cohomology class
A ∈ H1ðM;ZÞ. To make sense the unit gener-
ator of thewindingZ class, the dA evaluated on a
two-disk Σ2 (bounded by ϱ1 so ∂Σ2 ¼ ϱ1) must
have the following Stoke theorem:I
ϱ1¼∂Σ2

A ¼
Z
Σ2

dA ¼
Z
Σ2

w2ðVSOð2ÞÞ

¼ 1 mod 2: ðC9Þ
(iv) Now imagine in a 3D spacetime picture, we can

regard the following:
(a) the 1D vortex loop ς1VBS vortex as the charged

object, fractionalized charged under the
preserved SO(3) [a projective representation
in SO(3), precisely a linear representation in
SU(2)].

(b) the 1D S1 circle ϱ1 with A ∈ H1ðM;ZÞ on
the loop, as the charge operator, or the
symmetry generator of the SO(3).

Then, the measurement of the symmetry is exactly per-
formed by evaluating the linking between the ς1VBS vortex and
ϱ1 in 3D spacetime. Precisely, the linking number Lk,
manifested as a statistical Berry phase, is evaluated via the
expectation value of path integral:�
exp

�
iπ
I
ϱ1¼∂Σ2

A
�
· exp

�
iπ
I
ς1VBS vortex

a

��

¼ ð−1ÞLkðϱ1;ς1VBS vortexÞ
���
M3

· hexpðiπ
I
ς1VBS vortex

aÞi: ðC10Þ

Here a is a 1D background-gauged SOð2Þ connection
evaluated around the 1D vortex loop. Related descriptions
of link invariants of QFTs can be found in [60,61] and
references therein.
(3) Overall, combined with the above data, we have

learned that the 3DDQC construction can be induced
by the linking number Lkðϱ2; ς0Néel hedgehogÞ ¼ 1 and
Lkðϱ1; ς1VBS vortexÞ ¼ 1 in the 3D spacetime. To fur-
nish more physical intuitions, we can deduce the
following:
(i) If we extend the 3D spacetime t, x, y to an extra

fourth dimension z, the previous 0D hedgehog
core ς0Néel hedgehog trajectory can be a 1D pseu-
doworldline ς01Néel hedgehog in the 4D spacetime
M4. Similarly, the previous 1D vortex loop
ς1VBS vortex trajectory can be a 2D pseudo–world
sheet ς02VBS vortex in the 4D spacetime M4. Such
two configurations can be linked in 4D, with a
linking number:

Lkðς01Néel hedgehog; ς02VBS vortexÞjM4 : ðC11Þ

This describes the link in the extended 4D
spacetime of two charged objects, charged
under SO(2) and SO(3), respectively.

(ii) In a parallel story, the charge operators (of
the above charged objects) are the 1D SO(2)-
background gauged A line operator on ϱ1, and
2D SO(3)-background gauged B surface oper-
ator on ϱ2. Such two configurations can be
linked in 4D with a linking number:

LkðA on ϱ1;B on ϱ2ÞjM4 : ðC12Þ

This describes the link in the extended 4D
spacetime of two charge operators, of SO(2)
and SO(3) respectively.
(a) If we open up the closed

H
ϱ1 A on ϱ1 with

two open ends on the 3D boundary M3 of
the bulk M4, then one open end carries a
φjς0Néel hedgehog . Their link configuration in 3D

corresponds to the earlier (C6):

Lkðς0Néel hedgehog; ϱ2ÞjM3 :

(ii) If we open up the closed ∯ ϱ2B on ϱ2 with an
open end on the 3D boundaryM3 of the bulk
M4, then this open end carries a closed 1d
vortex loop

H
ς1VBS vortex

a. Their link configu-

ration in 3D corresponds to the earlier (C10):

Lkðς1VBS vortex; ϱ
1ÞjM3 :

These above facts together imply that:
(i) The 3D DQC construction [28] is valid if we

introduce a mod 2 class 3D WZW term defined
on a 3D boundary M3 of a 4D manifold M4.
Based on the homotopy data π1ðS1Þ ¼ Z and
π2ðS2Þ ¼ Z, schematically the WZW in a
differential form or de Rham cohomology is.42

expðiSWZWÞ ¼ exp
�
iπ
Z
M4

A ∧ dB
�
:

����
M3¼∂M4

:

ðC13Þ
More precisely, we can improve this to
construct the cohomology class relying on
A ∈ H1ðS1;ZÞ ¼ Z and B ∈ H2ðS2;ZÞ ¼ Z

42Here our differential form normalization follows the footnote
19 So we send A=π ↦ A and B=π ↦ B. It can again be easily
verified that this WZW has two properties: (1) invertible on
jZðM4Þj ¼ 1 on a closed four manifold, (2) this WZW term really
is a 3D boundary theory on M3 of the extended M4. This WZW
term is meant to capture the 3D boundary anomaly of the 4D bulk

invertible TQFT: ð−1Þ
R
M4 w2ðVSOð3ÞÞw2ðVSOð2ÞÞ.
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classes, the WZW term is written in the singular
cohomology class of A and B:

expðiSWZWÞ¼exp

�
iπ
Z
M4

A⌣δB
�����

M3¼∂M4

¼exp

�
i2π

Z
M4

A⌣Sq1B
�����

M3¼∂M4

;

ðC14Þ

with the coboundary operator δ, and the Steenrod
square Sq1 ≡ δ

2
mod 2 here maps the singular

cohomologyH2ðM;Z2Þ↦H3ðM;Z2Þ, on some
triangulable manifold M.43

(ii) The 3D DQC construction [28] is supported by
a 3D ’t Hooft anomaly in the SOð3Þ × SOð2Þ
global symmetry on a three manifold M3,
captured by a 4D bulk invertible TQFT [66]
living on a four manifold M4 with a boundary
∂M4 ¼ M3:

exp

�
iπ
Z
M4

w2ðVSOð3ÞÞw2ðVSOð2ÞÞ
�
: ðC15Þ

This 3D ’t Hooft anomaly is a mod 2 class
global anomaly, whose 4D invertible TQFT
corresponds to a Z2 generator in the following
cobordism group Ωd

G ≡ TPdðGÞ (see the de-
tailed computations in [63]):

aZ2 generatorw4ðVSOð5ÞÞ in TP4ðSO × SOð5ÞÞ
¼ Z2;

aZ2 generatorw2ðVSOð3ÞÞw2ðVSOð2ÞÞÞ
in TP4ðSO × SOð3Þ × SOð2ÞÞ ¼ Z2: ðC16Þ

With (C14) and (C15), these conclude our derivation of 3D
WZW and ’t Hooft anomaly for 3D DQC for Néel-VBS
transition.

APPENDIX D: PERTURBATIVE LOCAL AND
NONPERTURBATIVE GLOBAL ANOMALIZES
VIA COBORDISM: WITHOUT OR WITH T OR

CP SYMMETRY

Here we enlist the results of perturbative local and
nonperturbative global anomalies via cobordism mostly
obtained from [23,25]. Some of these results are used in
(2.5). For some spacetime-internal symmetry group Ḡ of
the SM or GUT models, we denote

Ḡ≡Gspacetime ×Nshared
Ginternal ≡

�
Gspacetime ×Ginternal

Nshared

�
:

We apply a version of cobordism group Ωd
Ḡ ≡ TPdðḠÞ

from Freed and Hopkins [27]. References [12,23,25,63]
had computed some of these fifth cobordism group TP5
classifications of the 4D anomalies (via the Thom-Madsen-
Tillmann spectra [84,85], Adams spectral sequence [86], and
Freed-Hopkins’s theorem [27]), to obtain

TP5ðSpin ×ZF
2
Z4;X ×GSMq

Þ ¼
�
Z5 × Z2 × Z2

4 × Z16; q ¼ 1; 3

Z5 × Z2
2 × Z4 × Z16; q ¼ 2; 6

;

TP5ðSpin ×ZF
2
Z4;X × SUð5ÞÞ ¼ Z × Z2 × Z16;

TP5ðSpin ×ZF
2
GPS2Þ ¼ TP5

�
Spin ×ZF

2

Spinð6Þ × Spinð4Þ
Z2

�
¼ Z × Z2

2;

TP5ðSpin ×ZF
2
GPS1Þ ¼ TP5ðSpin ×ZF

2
Spinð6Þ × Spinð4ÞÞ ¼ Z × Z3

2;

TP5ðSpin ×ZF
2
Spinð10ÞÞ ¼ Z2;

TP5ðSpin × Spinð10ÞÞ ¼ 0: ðD1Þ

For details about their 5D manifold generators and 5D
invertible TQFTs, see Ref. [25]. Comments on these per-
turbative local and nonperturbative global anomalies are
in order:

(1) Perturbative local anomalies are classified by integerZ
classes, detectable via the infinitesimal or small gauge
or diffeomorphism transformations deformable to the
identity element. Given the chiral fermion (quarks and
leptons) contents in Appendix A, we can check that all
the perturbative local anomalies (all Z classes) are
cancelled in SMs and GUTs. These perturbative local
anomaly cancellations are well known, verified in any
standard text books on SMs and GUTs.

43The Z2 classification of the WZW term also comes from
another quantum matter intuitive argument: When two copies of
the WZW terms are put together, the system can be trivialized by
an interlayer large coupling without breaking symmetry.
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(2) Nonperturbative global anomalies are classified by
finite torsion Zn classes, detectable via the large
gauge or diffeomorphism transformations, not de-
formable to the identity element.
(i) The Z2 and Z4 anomalies in TP5ðSpin ×ZF

2

Z4;X ×GSMq
Þ or TP5ðSpin ×ZF

2
Z4;X × SUð5ÞÞ

include the variants or mutated versions of the
Witten anomaly [72], by modifying the original
SU(2) bundle to some principal SUðnÞ bundles.
Also there is a Z4 class anomaly from the
hypercharge Uð1Þ2Y paired with a X-background
field with ðXÞ2 ¼ ð−1ÞF. All these Z2 and Z4

anomalies are checked to be canceled [38–40].
(ii) The Z16 anomaly in TP5ðSpin ×ZF

2
Z4;X ×

GSMq
Þ or TP5ðSpin ×ZF

2
Z4;X × SUð5ÞÞ can be

canceled if there are 16n Weyl fermions, each is
charged under Z4;X with ðXÞ2 ¼ ð−1ÞF. Since
we only observe 15n Weyl fermions so far by
experiments, Refs. [38–40] proposed alterna-
tive scenarios to cancel Z16 anomaly with 15n
Weyl fermions at low energy—we revisit this
issue separately in Sec. IV B.

(iii) Several Z2 anomalies in TP5ðSpin ×ZF
2
GPSq0¼1;2

Þ
or TP5ðSpin ×ZF

2
Spinð10ÞÞ come from either

the variants of the Witten SU(2) anomaly [72]
[modifying the SU(2) gauge bundle to other
bundles] or thevariants of the newSU(2) anomaly
[18] [modifying the w2ðTMÞw3ðTMÞ ¼
w2ðVSOð3ÞÞw3ðVSOð3ÞÞ of SOð3Þ bundle to other
SOðnÞ bundles]. Following [12,18], we can check
that the chiral fermion sectors (of quarks and
leptons) of PS and soð10Þ GUTs do not suffer
from any of these Z2 global anomalies.

However, the hallmark of our 4D WZW term, and the
fragmentary GUT-Higgs liquid model in Sec. III D, relies
on matching them with the w2w3 anomaly. So, below, we
walk through the distinct properties of the various kinds of
w2w3 anomalies listed in (D1), in more details.
(1) TP5ðSpin ×ZF

2
Spinð10ÞÞ ¼ Z2 is generated by a 5D

invertible TQFT, explained in [12,18,23,25],

ð−1Þ
R

w2ðTMÞw3ðTMÞ ¼ ð−1Þ
R

w2ðVSOð10ÞÞw3ðVSOð10ÞÞ:

(2) TP5ðSpin ×ZF
2
GPS1Þ includes ðZ2Þ3. One Z2 is

closely related to the Witten SU(2) anomaly, see
[25]. The other ðZ2Þ2 are generated by 5D invertible
TQFTs:

ð−1Þ
R

w2ðVSOð6ÞÞw3ðVSOð6ÞÞ and ð−1Þ
R

η̃ðPDðw4ðVSOð4ÞÞÞÞ:

The η̃ is a mod 2 index of 1D Dirac operator as a real
massive 1D fermion, as a 1D cobordism invariant
of TP1ðSpinÞ ¼ Z2.

(3) TP5ðSpin ×ZF
2
GPS2Þ includes ðZ2Þ2, which are gen-

erated by 5D invertible TQFTs:

ð−1Þ
R
w2ðVSOð6ÞÞw3ðVSOð6ÞÞ and ð−1Þ

R
w2ðVSOð4ÞÞw3ðVSOð4ÞÞ:

(4) Now we can ask what are the relations between the
w2w3 of SOð10Þ bundle [for the soð10Þ GUT], and
that of SOð6Þ and SOð4Þ bundles (for the PS
model)? We find that

w2ðVSOðnþmÞÞw3ðVSOðnþmÞÞ
¼ w2ðVSOðnÞÞw3ðVSOðnÞÞ
þ w2ðVSOðmÞÞw3ðVSOðmÞÞ mod 2; ðD2Þ

where the crossing terms become

w2ðVSOðnÞÞw3ðVSOðmÞÞ þ w2ðVSOðmÞÞw3ðVSOðnÞÞ
¼ Sq1ðw2ðVSOðnÞÞw2ðVSOðmÞÞÞ
¼ w1ðTMÞðw2ðVSOðnÞÞw2ðVSOðmÞÞÞ; ðD3Þ

based on the Wu formula using the Steenrod square
Sq1. This (D3) vanishes if we restrict to the system
without time-reversal T symmetry (i.e., charge-
conjugation-parity CP symmetry) or on orientable
manifolds so w1ðTMÞ ¼ 0 (i.e., here we only require
Spin structures instead of Pin� structures). So with
no T or CP symmetry, we simply relate a mod 2
anomaly of the soð10Þ, to two mod 2 anomalies of
PS model:

w2ðVSOð10ÞÞw3ðVSOð10ÞÞ
¼ w2ðVSOð6ÞÞw3ðVSOð6ÞÞ
þ w2ðVSOð4ÞÞw3ðVSOð4ÞÞ mod 2: ðD4Þ

(5) With a time-reversal T or CP symmetry, or a generic
T 0 such as CT symmetry: If we hope to have the
crossing term

w2ðVSOð6ÞÞw3ðVSOð4ÞÞ þ w2ðVSOð4ÞÞw3ðVSOð6ÞÞ
ðD5Þ

to enter the anomaly constraint in the PS models,
we need to have Sq1ðw2ðVSOð6ÞÞw2ðVSOð4ÞÞÞ ¼
w1ðTMÞðw2ðVSOð6ÞÞw2ðVSOð4ÞÞÞ ≠ 0, this means
that we need to include the time-reversal T (or CP)
symmetry, or a generic T 0 such as CT symmetry.
In the soð10Þ GUT, there are actually two kinds of

time-reversal symmetry square:

T2¼ð−1ÞF for Pinþ; T2¼þ1 for Pin−: ðD6Þ
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There are two kinds of commutation relations
between time-reversal T and the Spin(10) genera-
tors: either commute (direct product “×”) or non-
commute (semidirect product “⋉”).
So if we include the time-reversal T into the

ðSpin ×ZF
2
Spinð10ÞÞ structure, then there are totally

(at least) four kinds of time-reversal symmetries for
the soð10Þ GUT. Based on the computation in
Ref. [63], we summarize the four versions of the
soð10Þ GUT with time-reversal symmetries, and
their cobordism group TP5:

TP5ðPinþ ×ZF
2
Spinð10ÞÞ ¼ Z2;

TP5ðPin− ×ZF
2
Spinð10ÞÞ ¼ Z2;

TP5ðPinþ ⋉ZF
2
Spinð10ÞÞ ¼ Z2;

TP5ðPin− ⋉ZF
2
Spinð10ÞÞ ¼ Z2: ðD7Þ

Interestingly, for the cases of TP5ðPinþ ⋉ZF
2

Spinð10ÞÞ ¼ Z2 and TP5ðPin−⋉ZF
2
Spinð10ÞÞ¼Z2,

their 4D anomalies are generated by a subtly distinct
5D invertible TQFT

ð−1Þ
R

w2ðTMÞw3ðTMÞ ¼ ð−1Þ
R

w2ðVOð10ÞÞw3ðVOð10ÞÞ: ðD8Þ

Notice now we have w2ðVOð10ÞÞw3ðVOð10ÞÞ instead of w2ðVSOð10ÞÞw3ðVSOð10ÞÞ. The bundle constraints for ðPinþ ⋉ZF
2

Spinð10ÞÞ and ðPin− ⋉ZF
2
Spinð10ÞÞ are also different:

i: Pinþ ⋉ZF
2
Spinð10Þconstraint∶ w2ðVOð10ÞÞ ¼ w2ðTMÞ; w3ðVOð10ÞÞ ¼ w3ðTMÞ:

ii: Pin− ⋉ZF
2
Spinð10Þconstraint∶ w2ðVOð10ÞÞ ¼ w2ðTMÞ þ w1ðTMÞ2;

w3ðVOð10ÞÞ þ w1ðVOð10ÞÞw2ðVOð10ÞÞ ¼ Sq1w2ðVOð10ÞÞ ¼ Sq1w2ðTMÞ ¼ w3ðTMÞ þ w1ðTMÞw2ðTMÞ: ðD9Þ

The punchline here in (D9) is that because time-reversal
T (orCP) or some T 0 is a valid global symmetry, we can put
the theory on an unorientable manifold with w1ðTMÞ ≠ 0
also w1ðVOð10ÞÞ ≠ 0. Therefore, the crossing term in (D5)
can still contribute a potential anomaly. This crossing term
anomaly w2ðVSOð6ÞÞw3ðVSOð4ÞÞ þ w2ðVSOð4ÞÞw3ðVSOð6ÞÞ
turns out to play a possible crucial role in our construction
of Sec. III D. See more discussions in a companion work.
Similar stories apply to a larger gauge group unification

for three generations of fermions, such as the soð18Þ GUT
with a Spin(18) gauge group. We simply replace all above

discussions of soð10Þ to soð18Þ, and replace Spin(10) to
Spin(18).

APPENDIX E: FERMIONIC DOUBLE SPIN
STRUCTURE DSPIN FOR A MODIFIED soð10Þ

GUT-HIGGS LIQUID MODEL

Here are detailed comments about our construction of
spacetime-internal symmetry that involves the fermionic
double Spin structure DSpin given in Sec. III D 2.
(1) First, we recall that we have introduced

�
Weyl fermionψ in the 16 of Spinð10Þ for the soð10ÞGUT;
Dirac fermion ξ in the 10 of SOð10Þ ½also of Spinð10Þ� for the fermionic parton QED0

4 theory:

(2) The modified soð10Þ GUT requires a Spin ×ZF
2

Spinð10Þ structure in order to manifest a w2w3

anomaly. In this structure, the fermion ψ in 16 is
charged with ð−1ÞF odd under the fermion parityZF

2 .
This meanwhile implies the constraint on the matter
field spectrumunder theSpin ×ZF

2
Spinð10Þ structure:

There is a short exact sequence: 1→ZF
2 →

ZðSpinð10ÞÞ ¼Z4;X → ZðSOð10ÞÞ ¼Z2 → 1. Given
the Z4;X charge state jXi with X ¼ 0, 1, 2, 3, we

have its representation zX such that z ∈ Uð1Þ with
jzj ¼ 1, where we embed the normal subgroup
ZF

2 ⊂ Z4;X ⊂ Uð1Þ.
(i) The Z4;X symmetry generator UZ4;X

acts on jXi,
which becomes UZ4;X

jXi ¼ iXjXi with z ¼ i.
(ii) The subgroup ZF

2 symmetry generator UZF
2
¼

ðUZ4;X
Þ2 can also act on jXi, which becomes

UZF
2
jXi ¼ ðUZ4;X

Þ2jXi ¼ i2XjXi ¼ ð−1ÞXjXi.
Thus, we read the fermion parity ð−1ÞF, the j1i
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and j3i are fermionic with −1 (thus odd in ZF
2 ),

while the j0i and j2i are bosonic with þ1 (thus
even in ZF

2 ).
(iii) Any fermion charged under ZF

2 must have the
ð−1ÞF ¼ −1 also identified as the Z2 normal
subgroup of the center ZðSpinð10ÞÞ ¼ Z4;X.
Thus these fermionsmust have aZðSpinð10ÞÞ ¼
Z4;X charge either 1 or 3 mod 4.

(iv) Any boson not charged under ZF
2 must have a

ZðSpinð10ÞÞ ¼ Z4;X charge either 0 or 2 mod 4.
(3) The ξ fermion in the 10 of SOð10Þ has a charge 1

mod 2 under ZðSOð10ÞÞ ¼ Z2. The ξ fermion has a
charge 2 mod 4 under ZðSpinð10ÞÞ ¼ Z4;X, thus the
ξ is “bosonic under the ZF

2 .” Thus the ξ fermion is
not compatible with the fermion parity required in
Spin ×ZF

2
Spinð10Þ described earlier. Thus, we must

introduce a new fermion parity ZF0
2 for ξ.

(4) We construct the full spacetime-internal symmetry
group by including the bosonic spacetime rotational
symmetry SO, the bosonic internal symmetry
SOð10Þ, and the two fermion parities ZF

2 × ZF0
2 ,

then we combine the group extensions

1 → ZF
2 → Spin ¼ ZF

2 ⋊ SO → SO → 1;

1 → ZF0
2 → Spin0 ¼ ZF0

2 ⋊ SO → SO → 1;

1 → ZF
2 × ZF0

2 → DSpin → SO → 1;

1 → ZF
2 → Spinð10Þ → SOð10Þ → 1;

1 → ZF0
2 → ZF0

2 × SOð10Þ → SOð10Þ → 1; ðE1Þ

to obtain the full web (3.49),

ðE2Þ

where we can choose G0
int ¼ ZF0

2 ;Uð1Þ0, or SUð2Þ0 to
reproduce the required structure in Sec. III D 2. In all
cases, we have G0

int ⊇ ZF0
2 contains the new fermion parity

as its normal subgroup.
In addition to the DSpin structure, by including an extra

discrete symmetry (such as a time-reversal symmetry), the
literature also discovers the structure known as DPin [70]
and EPin [37] structures.
(1) The DPin [70] is known as introducing two types of

fermions with ZFþ
2 and ZF−

2 , such that an extra
discrete ZT

2 symmetry (e.g., called a time-reversal
symmetry) exchanges this two types of fermions.
The DPinðdÞ contains a discrete dihedral group of
order 8, known as D8¼ðZFþ

2 ×ZF−
2 Þ⋊ρ;0ZT

2 , where

ρ is a nontrivial ZT
2 action on AutðZFþ

2 × ZF−
2 Þ with

two kinds of fermion parity ZFþ
2 × ZF−

2 at the D8’s
center. Overall, the D8 structure sits at the group
extension 1 → ðZFþ

2 × ZF−
2 Þ → D8 → ZT

2 → 1.
(2) The EPin [37] is known as simultaneously imposing

both Pinþ and Pin− structure, via introducing two
types of fermions (with ZFþ

2 and ZF−
2 ) with the time-

reversal symmetry acting differently on fermions,
T2 ¼ ð−1ÞFþ and T2 ¼ þ1 respectively (via the
group extension 1 → ZFþ

2 → ZTFþ
4 → ZT

2 → 1 and
1 → ZF−

2 → ZT
2 × ZF−

2 → ZT
2 → 1).

See also the interpretations via the regularized quantum
many-body model [71].
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