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We analyze the Lagrangian and Hamiltonian formulations of the Maxwell-Chern-Simons theory defined
on a manifold with boundary for two different sets of boundary equations derived from a variational
principle. We pay special attention to the identification of the infinite chains of boundary constraints and
their resolution. We identify edge observables and their algebra [which corresponds to the well-known
Uð1Þ Kac-Moody algebra]. Without performing any gauge fixing, and using the Hodge-Morrey theorem,
we solve the Hamilton equations whenever possible. In order to give explicit solutions, we consider the
particular case in which the fields are defined on a 2-disk. Finally, we study the Fock quantization of the
system and discuss the quantum edge observables and states.
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I. INTRODUCTION

The Chern-Simons (CS) theory in manifolds with
boundaries is a very interesting model as pointed out by
Witten in [1] (see also [2]). It plays a relevant role in
condensed matter physics, in particular in the study of the
integral and fractional Hall effects [3–6]. The system
obtained by adding the Maxwell and CS Lagrangians
(MCS) describes important physical phenomena, among
them the gap from the fundamental state and bulk elemen-
tary excitations [3] and topologically massive spinor
electrodynamics [7,8]. An interesting feature of the CS
and MCS dynamics is the appearance of edge excitations
[9–12] and edge observables [13–17]. Edge excitations
play a significant role to explain the transport properties of
integer quantum Hall states [18], whereas in the case of the
fractional Hall effect it is necessary to rely on a low energy
effective theory, obtained by using the so-called hydrody-
namical approximation, in which the Kac-Moody algebra
plays a central role. This effective theory turns out to be

given by an Abelian CS Lagrangian [18,19]. In this context
the edge states correspond to classical solutions to the
effective field equations which are essentially supported on
the boundary. Edge observables also appear in general
relativity [20]. For instance, the Einstein-Maxwell-Chern-
Simons theory has played a relevant role in the study of
(2þ 1)-dimensional black holes [21]. In this case, the black
hole horizon acts as a spacetime boundary.
Hamiltonian methods are important, among other things,

as the starting point for canonical quantization. In the
context of the MCS model in manifolds with boundaries,
these have been discussed by a number of authors [22–24].
In the particular case of a disk, the identification of edge
observables and their algebra (whose relevance on general
grounds was already pointed out in [1]) has been high-
lighted in [22], as well as their role in the Dirac quantization
of the system.
The Dirac analysis of field theories defined on manifolds

with boundaries exhibits a number of interesting features,
in particular with regard to the boundary dynamics (as
defined by the action) and the role of boundary conditions.
For instance, a characteristic phenomenon, which is often
neglected, is the appearance of infinite chains of boundary
constraints, which are necessary for the dynamical con-
sistency of the model. In the case of the scalar field, it is
well known that these chains of constraints play an
important role related to the smoothness of the solutions
to the field equations [25]. From a practical point of view,
the best way to implement the Dirac algorithm for field
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theories with boundaries is the geometric approach dis-
cussed in [26] (or a similar one based on the Gotay-Nester-
Hinds (GNH) method [27–29]).
In the present work we give a general discussion of the

Hamiltonian formulation of the MCS model on a compact
manifold Σ with boundary. We consider two different
situations which are taken into account by adding a surface
term to the Lagrangian proportional to a non-negative
coupling constant λ2, which may be equal or different from
zero. As pointed out in [22], this parameter has a physical
interpretation in the case where the manifold Σ (actually a
disk) is surrounded by a superconductor. By relying on a
geometric version of Dirac’s method [26], we find all of the
constraints, including the often neglected chains of con-
straints at the boundary. We then discuss the edge observ-
ables, their evolution, and their algebra. By using the
Hodge-Morrey theorem, we solve the Hamilton equations
of motion, characterize in a precise way the reduced phase
space, and give a concrete description both of the
Hamiltonian and the edge observables. These results lead
to a straightforward quantization of the model in the
reduced phase space. In order to make contact with the
results of [22], we consider in detail the case in which Σ is a
disk, in particular we give the full solution to the Hamilton
equations for the λ ¼ 0 case, the edge observables, and the
solutions that play the role of edge states. In the λ ≠ 0 case,
the concrete description of the reduce phase space is not
direct. At any rate, we have been able to complete the
resolution of the field equations for the pure Maxwell case.
It is important to note that we have not used any gauge
fixing but, rather, given explicit descriptions of the relevant
reduced phase spaces.
The structure of the paper is the following. After this

introduction, in Sec. II, we use the Abelian CS model
to illustrate some issues relevant for the study of the
MCS theory. In Sec. III we present the Lagrangian and
Hamiltonian analysis of the MCS model for two natural
sets of boundary conditions. Whenever possible, we solve
the resulting Hamilton equations of motion together with
all the constraints, and use these solutions to carry out the
Fock quantization of the theory. Furthermore, we discuss
the classical and quantum edge observables of the model.
Finally, we end the paper with our conclusions in Sec. IV
and two appendixes. In the first one we solve an eigenvalue
problem for the δd operator and in the second we give the
relevant details about the derivation of the infinite chains of
boundary constraints.

II. ABELIAN CHERN-SIMONS

In this section, we use a simple example to illustrate
some features of gauge theories defined on manifolds with
boundary that we exploit in the next section for the models
that we study in the paper. Let Σ be a two-dimensional
compact manifold with boundary and M ¼ R × Σ. The
action

SCSðAÞ ¼
Z
M
A ∧ dA; ð1Þ

where F ¼ dA is the curvature of a connection 1-form A,
defines the Abelian Chern-Simons model. Notice that the
field space is F ¼ Ω1ðMÞ, and that we have not introduced
any other condition in its definition (this is of the utmost
importance when deriving the Euler-Lagrange equations).
The field equations are

dA ¼ 0; ð2aÞ

|�
∂
ðAÞ ¼ 0; ð2bÞ

where |∂∶ ∂M ↪ M is the natural inclusion of the boun-
dary ∂M ≔ R × ∂Σ inM, and |�

∂
denotes the corresponding

pullback. The bulk equation (2) tells us that the connection
A must be flat, and (2b) are boundary conditions of the
Dirichlet type. Notice that other boundary conditions—that
can be included in the definition of the field space—may be
compatible with the action principle (1). This will be made
clear as soon as we perform the 2þ 1 decomposition, as we
discuss now.
To this end, we consider the 2-surfaces, Σt ≔ ftg × Σ, of

constant t, diffeomorphic to Σ, where t is the scalar function
defined on M as t∶ R × Σ → R∶ ðτ; pÞ ↦ τ. For p ∈ Σ,
the vectors tangent to the curves c∶ R → M∶ t ↦ ðt; pÞ
define a vector field t satisfying the condition £tt ¼ 1. In
the following, we use nonbold fonts for the objects living
on Σ to distinguish them from those defined on M. Using
the standard decomposition of the connection, the con-
figuration space is Q¼ fðAt;AÞjAt ∈ C∞ðΣÞ;A ∈Ω1ðΣÞg,
and the action (1) can be written as

SCSðAt; AÞ ¼
Z
R
dt
Z
Σ
ð£tA ∧ Aþ A ∧ dAt þ AtdAÞ: ð3Þ

By demanding the stationarity of (3), we obtainZ
R
dt
Z
Σ
2ðatdA − a ∧ ð£tA − dAtÞÞ

þ
Z
R
dt
Z
∂Σ
{�
∂
ðAta − atAÞ ¼ 0; ∀ ðat; aÞ; ð4Þ

where ðat; aÞ denotes the variations of ðAt; AÞ, {∂∶ ∂Σ ↪ Σ
is the natural inclusion, and {�

∂
its pullback. We get F ≔

dA ¼ 0 and £tA − dAt ¼ 0 in the bulk, as expected. The
vanishing of the boundary term implies {�

∂
ðAtÞ ¼ 0 ¼

{�
∂
ðAÞ ¼ 0. It is important to notice that, in principle, we

can include the following conditions (which are indepen-
dent of the shape of the boundary) in the definition of the
configuration space:

(i) {�
∂
ðAÞ ¼ 0, which leads to the condition {�

∂
ðaÞ ¼ 0

on the variations of A. Then (4) implies that At is
arbitrary at the boundary, or
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(ii) {�
∂
ðAtÞ ¼ 0, which leads to {�

∂
ðatÞ ¼ 0. Then (4)

implies that A is arbitrary at the boundary.
Both (i) and (ii) are compatible with the action (3) in the
sense that the boundary term in (4) vanishes as a conse-
quence of them. The conditions (i) trivialize the edge
observables that we will construct below; therefore we will
work with (ii) from now on. We must mention that if we are
interested on a particular boundary (as in the next section),
we can take advantage of its particular shape to write specific
boundary conditions. For instance, if we consider the
particular case in which the boundary is a disk of radius
R, then a ¼ ardrþ aθdθ and the boundary term {�

∂
ðAta −

atAÞ can be written as ðAtaθ − atAθÞjr¼R. This term
vanishes if we introduce in the definition of the configuration
space the conditions Atjr¼R ¼ Aθjr¼R or Atjr¼R ¼ −Aθjr¼R.
We must remark that adding boundary terms to the action

may change the boundary conditions as a consequence of
the boundary dynamics determined by the action. For
example, the conditions (ii) can become part of the field
equations (i.e., we do not have to put them a priori in
the definition of the configuration space) if we add the
following boundary term

Z
R
dt
Z
∂Σ
{�
∂
ðAtAÞ ð5Þ

to the Chern-Simons action (3). For this reason, in the
following we will work with the action

SCSbðAt; AÞ ¼
Z
R
dt
Z
Σ
ð£tA ∧ Aþ A ∧ dAt þ AtdAÞ

þ
Z
R
dt
Z
∂Σ
{�
∂
ðAtAÞ

¼
Z
R
dt
Z
Σ
ð£tA ∧ Aþ 2AtdAÞ; ð6Þ

whose boundary equations are just (ii). We must mention
that (5) [and, hence, (6)] is adapted to the foliation R × Σ,
and it cannot be written in a covariant “spacetime” form.
We summarize now the main results of the Hamiltonian

analysis of the action (6) using the geometric implementa-
tion of Dirac’s algorithm discussed in [26,30] (similar
information can be obtained by using the GNH method
[27–29,31,32]). The submanifold in phase space where the
dynamics takes place is

C ≔
�
ðAt; A;pt;pÞ ∈ T�Q∶ptð·Þ ¼ 0;pð·Þ

−
Z
Σ
ð·Þ ∧ A ¼ 0; dA ¼ 0; {�

∂
ðAtÞ ¼ 0

�
;

and the components of the Hamiltonian vector field are

XAt ¼ μt; Xptð·Þ ¼ 0;

XA ¼ dAt; Xpð·Þ ¼
Z
Σ
ð·Þ ∧ dAt; ð7Þ

with the Dirac multiplier μt ∈ C∞ðΣÞ vanishing at the
boundary, i.e., {�

∂
ðμtÞ ¼ 0, but otherwise arbitrary.

The presence of the arbitrary function of time μt in the
Hamiltonian vector field (7), which implies that At is
arbitrary, can be immediately interpreted as the Abelian
gauge symmetry A ↦ Aþ dϵ with ϵ ∈ C∞ðΣÞ and
{�
∂
ðϵÞ ¼ 0.

A. Classical edge observables

Let us construct the so-called classical edge observables
[13]. Given any Λ ∈ C∞ðΣÞ, we define

QΛðAÞ ≔
Z
Σ
dΛ ∧ A: ð8Þ

First, notice that the functions (8) are invariant under the
gauge transformations of the theory, A0 ¼ Aþ dϵ, because

QΛðA0Þ ¼
Z
Σ
dΛ ∧ A0 ¼ QΛðAÞ −

Z
∂Σ
{�
∂
ðϵdΛÞ ¼ QΛðAÞ;

where we have used {�
∂
ðϵÞ ¼ 0 [which is a consequence of

{�
∂
ðAtÞ ¼ 0]. Therefore, the functions (8) are observables.

Second, on the constraint submanifold defined by the
condition dA ¼ 0, they satisfy

QΛðAÞ¼
Z
Σ
dΛ∧A¼−

Z
Σ
ΛdAþ

Z
∂Σ
{�
∂
ðΛAÞ¼

Z
∂Σ
{�
∂
ðΛAÞ:

This means that, for a given solution A, the functions (8) are
characterized by the value of Λ on the boundary, {�

∂
ðΛÞ; this

is the reason they are called edge observables.
Using the Hamiltonian vector field (7), we can calculate

the evolution of the QΛðAÞ

_QΛðAÞ ¼
Z
Σ
dΛ ∧ XA ¼

Z
∂Σ
{�
∂
ðΛdAtÞ ¼ 0; ð9Þ

where we have made use of {�
∂
ðAtÞ ¼ 0. As we can see, the

QΛðAÞ are constants of motion. Another interesting aspect of
these edge observables is related to their algebraic properties.
If one uses the Poisson brackets of the full phase space, the
edge observables satisfy fQΛ1

ðAÞ; QΛ2
ðAÞg ¼ 0. However,

if one is interested in quantization, the presence of second-
class constraints prevents us from doing this. Instead, the
relevant Poisson algebra of the edge observables must be
computed with the Poisson brackets f·; ·gPB defined by the
pullback of the canonical symplectic form onto the phase
space submanifold defined by
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pð·Þ −
Z
Σ
ð·Þ ∧ A ¼ 0:

By doing this we find

fQΛ1
ðAÞ; QΛ2

ðAÞgPB ¼ 1

2

Z
Σ
dΛ1 ∧ dΛ2

¼ 1

4

Z
∂Σ
{�
∂
ðΛ1dΛ2 − Λ2dΛ1Þ: ð10Þ

The same result can be obtained by using Dirac brackets
[33]. When ∂Σ ≅ S1, these observables generate a Uð1Þ
Kac-Moody algebra [34] localized on ∂Σ. The relevance of
the loop group LUð1Þ (and in general of LG) to the
treatment of the CS theory was pointed out by Witten in
his celebrated paper [1]. In particular, for the edge observ-
ables of the pure CS theory on the disk, the algebra (10) was
found in [13].
Finally, notice that the construction of these edge

observables is based on the first-class constraints of the
theory, in this case dA ¼ 0, which guarantee their gauge
invariance and show that they vanish in the bulk. We must
also remark the importance of the condition {�

∂
ðAtÞ ¼ 0.

The procedure discussed above suggests a way to construct
edge observables for other gauge theories. However, we
must say that they may or may not exist as well-defined
operators in a fully quantized theory.

III. THE MAXWELL-CHERN-SIMONS MODEL

The main purpose of the present paper is to study the
Maxwell-Chern-Simons model. For a three-dimensional
manifold M ¼ R × Σ this is defined by the action

SMCSðAÞ ¼
Z
M
ðαF ∧ ⋆Fþ βA ∧ FÞ; ð11Þ

where α and β are nonzero real constants, F ¼ dA is the
curvature of the three-dimensional connection 1-form A,
and ⋆ is the Hodge dual inM with respect to the Minkowski
metric with signature ð−;þ;þÞ. The field space is
F ¼ Ω1ðMÞ. In the following, we will work with the
Lagrangian

L∶ TQ ≔ TðC∞
0 ðΣÞ ×Ω1ðΣÞÞ → R;

v ¼ ððAt; AÞ; ðvt; vÞÞ ↦ LðvÞ;

given by

LðvÞ ¼
Z
Σ
ð−αðv − dAtÞ ∧ �ðv − dAtÞ

þ αð�dAÞdAþ βðv − dAtÞ ∧ Aþ βAtdAÞ

þ
Z
∂Σ
{�
∂
ðλ2Aιν � AÞ; ð12Þ

where we have considered a foliation by inertial observers
and, as in the previous section, {∂ is the natural inclusion of
∂Σ in Σ, {�

∂
its pullback, and � is the Hodge dual in Σ with

respect to the induced metric. The bulk terms in (12)
correspond to the 2þ 1 decomposition of the action (11)
(which is performed by introducing the same geometrical
objects as in the Chern-Simons case) and we have added a
boundary term. In that term λ is a function on ∂Σ, ν is the
outer unit normal to the boundary, and ινϑ denotes the
interior product (contraction) of ν with the differential
form ϑ. Finally, notice that the notation C∞

0 ðΣÞ means that
{�
∂
ðAtÞ ¼ 0, i.e., we incorporate this boundary condition in

the definition of the configuration space.
The role of the boundary term in (12) is to give

{�
∂
ðfα � dþ λ2ιν�gAÞ ¼ 0;

as boundary equations naturally derived from the varia-
tional principle. Notice that the boundary term [and hence
the action (12)] is adapted to the foliation R × Σ so it
cannot be written in a covariant form. As we show below,
some details of the Hamiltonian analysis strongly depend
on λ. In fact, it is useful to treat the cases λ ¼ 0 and λ ≠ 0
separately. Finally, we must mention that the added
boundary term is compatible with the gauge symmetries
of the theory (which we will get below), in particular
A ↦ Aþ dϵ with {�

∂
ðϵÞ ¼ 0.

A. Hamiltonian formulation

In this section, we give the relevant steps to obtain the
Hamiltonian formulation of the model defined by the
Lagrangian (12) using the geometric version of the Dirac
algorithm [26]. If we take v, w in the same fiber of TQ,
v ≔ ððAt; A; Þ; ðvt; vÞÞ, w ≔ ððAt; AÞ; ðwt; wÞÞ, we get the
fiber derivative, FL∶ TQ → T�Q,

hpjwi ¼ hFLðvÞjwi ¼
Z
Σ
w ∧ �ð−2αðv − dAtÞ − β � AÞ:

ð13Þ

Boldfaced letters will be used to denote elements of the dual
space, i.e., p ∈ ðC∞

0 ðΣÞ ×Ω1ðΣÞÞ�. Writing p ≔ ðpt;pÞ, we
read the momenta from (13)

ptð·Þ¼0; pð·Þ¼
Z
Σ
·∧�ð−2αðv−dAtÞ−β�AÞ: ð14Þ

The energy function is given by

E ≔ hFLðvÞjvi − L

¼
Z
Σ
ð−αðvþ dAtÞ ∧ �ðv − dAtÞ − αð�dAÞdA

þ βðdAt ∧ A − AtdAÞÞ −
Z
∂Σ
{�
∂
ðλ2Aιν � AÞ: ð15Þ
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An easy way to write down the Hamiltonian is to represent
the canonical momenta in terms of differential forms.
Explicitly, taking advantage of the fact that the Hodge
operator defines a scalar product, the momenta can be
written as

ptð·Þ ¼
Z
Σ
· � pt; pð·Þ ¼

Z
Σ
· ∧ �p;

where pt ∈ C∞ðΣÞ and p ∈ Ω1ðΣÞ. From (14), we obtain

pt ¼ 0; p ¼ −2αðv − dAtÞ − β � A: ð16Þ

Notice that the first equation in (16) is a primary constraint.
Plugging (16) into (15) gives the Hamiltonian

H ¼
Z
Σ

��
dAt −

1

4α
ðpþ β � AÞ

�
∧ �ðpþ β � AÞ

− αð�dAÞdAþ βðdAt ∧ A − AtdAÞ
�

−
Z
∂Σ
{�
∂
ðλ2Aιν � AÞ: ð17Þ

1. Dirac analysis in the bulk

The constraints in the bulk are

pt ¼ 0; δðp − β � AÞ ¼ 0;

where δ is the codifferential defined as δ ¼ − � d� when
acting on forms of any order. In the previous computations,
we have used �� ¼ ð−1Þkð2−kÞ ¼ ð−1Þk on k-forms.
The components of the Hamiltonian vector field are

XAt ¼ μt; Xpt ¼ 0;

XA ¼ −
1

2α
ðpþ β � AÞ þ dAt;

Xp ¼ 2αδdA −
β

2α
� ðpþ β � AÞ − β � dAt; ð18Þ

where the Dirac multiplier μt ∈ C∞ðΣÞ is arbitrary in the
bulk. This implies that At is also arbitrary in the bulk, a fact
which is, of course, related to the Abelian gauge symmetry

A ↦ Aþ dϵ; p ↦ p − β � dϵ; ð19Þ

with ϵ ∈ C∞ðΣÞ and {�
∂
ðϵÞ ¼ 0 [these boundary conditions

are a consequence of requiring {�
∂
ðAtÞ ¼ 0 in the definition

of the configuration space].

2. Dirac analysis on the boundary

The analysis of the boundary constraints strongly
depends on λ; we show the final result below.

a. Case λ ¼ 0. After the first steps of the Dirac algorithm
we obtain

{�
∂
ðAtÞ ¼ 0; ð20aÞ

{�
∂
ðμtÞ ¼ 0; ð20bÞ

{�
∂
ð�dAÞ ¼ 0: ð20cÞ

Remember that (20a) is a condition that was incorporated in
the definition of the configuration space, the consistency
condition derived from it gives (20b), which fixes the value
of μt at the boundary to zero. Equation (20c) is a secondary
constraint at the boundary. Demanding its consistency we
get the following infinite number of boundary constraints
[see equation (B5) and its derivation in Appendix B]

{�
∂
ðð�dÞ2kþ1ðpþ β � AÞÞ ¼ 0; ð21aÞ

{�
∂
ðð�dÞ2kþ1AÞ ¼ 0: ð21bÞ

We pause now to make some comments. (i) These kinds
of constraints (an infinity chain of conditions) also appears
in the case of a scalar field in manifolds with boundary
[26,35,36]. (ii) The actual number of boundary constraints
in (21) depends on the regularity demanded of the solutions
to the field equations. As we are formally allowing for as
much smoothness as we wish, we get an infinite tower of
them. (iii) Although similar conditions are introduced in
the mathematical literature [25] as necessary conditions to
guarantee the smoothness of solutions to partial differential
equations, usually they are not taken into account in the
physical literature, in particular in the Hamiltonian analysis
of field theories.
b. Case λ ≠ 0. After the first steps of the Dirac algorithm,

we obtain

{�
∂
ðAtÞ ¼ 0; ð22aÞ

{�
∂
ðμtÞ ¼ 0; ð22bÞ

{�
∂
ðfα � dþ λ2ιν�gAÞ ¼ 0; ð22cÞ

{�
∂
ðfα � dþ λ2ιν�gðpþ β � AÞÞ ¼ 0: ð22dÞ

The role of (22a) and (22b) is the same as before.
Equation (22c) is a secondary boundary constraint; its
consistency gives rise to the new constraint (22d). In this
step, we have used {�

∂
ðιν � dAtÞ ¼ − �∂ {�∂ðdAtÞ ¼ 0 which

vanishes as a consequence of (22a). Here and in the
following �∂ denotes the Hodge dual in ∂Σ with respect
to the induced metric. As in the λ ¼ 0 case, the consistency
of (22d) gives rise to an infinite chain of boundary
constraints as explained in Appendix B.

EDGE OBSERVABLES OF THE MAXWELL-CHERN-SIMONS … PHYS. REV. D 106, 025011 (2022)

025011-5



For the particular case in which Σ is a disk of radius r0,
redefining λ so that λ2 ↦ −αr0λ2 with the new λ a real
constant, the constraint (22c) becomes

{�
∂
ð�dAÞ ¼ −λ2Aθj∂: ð23Þ

This condition was introduced in Ref. [22] after completing
the Hamiltonian analysis of the action (11). This is why the
constraints (22d) and the corresponding infinite chain were
not considered there. We must say that, according to [22], if
the disk is surrounded by a superconductor, then 1=λ2 can
be interpreted as the penetration depth. This physical
interpretation makes this model interesting, and for this
reason, we will discuss it below.
We remark that we were able to obtain (22c) [or (23)] as

a natural boundary condition thanks to the boundary term
that we included in the Lagrangian (12).

B. Classical edge observables

Given Λ ∈ C∞ðΣÞ, we define the functions

QΛðA; pÞ ¼
Z
Σ
dΛ ∧ �ðp − β � AÞ: ð24Þ

Under the gauge transformations of the theory (19),
A0 ¼ Aþ dϵ, p0 ¼ p − β � dϵ, we have

QΛðA0; p0Þ ¼
Z
Σ
dΛ ∧ �ðp − β � A − 2β � dϵÞ

¼ QΛðA; pÞ − 2β

Z
∂Σ
{�
∂
ðϵdΛÞ ¼ QΛðA; pÞ:

Notice that the boundary term vanishes because {�
∂
ðϵÞ ¼ 0

[which is a consequence of having incorporated the
condition {�

∂
ðAtÞ ¼ 0 in the definition of the configuration

space]. We then conclude that the functions (24) are
observables characterized by the value of {�

∂
ðΛÞ; because

on the constraint submanifold defined by the condition
δðp − β � AÞ ¼ 0 they can be written as a boundary integral

QΛðA; pÞ ¼
Z
Σ
dΛ ∧ �ðp − β � AÞ

¼
Z
Σ
Λ � δðp − β � AÞ þ

Z
∂Σ
{�
∂
ðΛ � ðp − β � AÞÞ

¼
Z
∂Σ
{�
∂
ðΛ � ðp − β � AÞÞ:

We remark that the boundary conditions also play a role
in the definition of the observables because these have to be
evaluated on solutions to the Hamilton equations, which
depend on them.
With the help of the Hamiltonian vector field (18), we get

the evolution of the edge functions (24)

_QΛðA;pÞ ¼
Z
Σ
dΛ ∧ �ðXp − β �XAÞ ¼ 2α

Z
∂Σ
{�
∂
ðΛd � dAÞ;

ð25Þ

where we have used {�
∂
ðAtÞ ¼ 0. Notice that the edge

functions (24) are preserved in time for any Λ if and only
if d{�

∂
ð�dAÞ ¼ 0. In the case λ ¼ 0, the primary boundary

condition (22c) is {�
∂
ð�dAÞ ¼ 0. Therefore, for λ ¼ 0 the

edge observables (24) are constants of motion. We will
return to these observables after obtaining the solutions to
the field equations in the next subsection.
Finally, the Poisson bracket of the two edge observables

QΛ1
ðA; pÞ and QΛ2

ðA; pÞ is

fQΛ1
ðA;pÞ;QΛ2

ðA;pÞg¼2β

Z
Σ
dΛ1∧dΛ2

¼β

Z
∂Σ
{�
∂
ðΛ1dΛ2−Λ2dΛ1Þ: ð26Þ

Notice that for β ¼ 0 they commute, but for β ≠ 0 and
∂Σ ≅ S1 these observables generate the same Uð1Þ Kac-
Moody algebra described in (10). Notice that, in the MCS
theory, all the constraints are first class and hence (26) is the
appropriate algebra.

C. Solving the Hamilton equations

In this section, we determine the space of solutions to the
Hamilton equations of motion in the phase space for λ ¼ 0
and discuss the peculiarities of the λ ≠ 0 case. From now on
we take α ¼ −1=2 (as is customary in the literature). In the
bulk, the field equations in Hamiltonian form are

_At ¼ μt; ð27aÞ

_pt ¼ 0; ð27bÞ

_A ¼ pþ β � Aþ dAt; ð27cÞ

_p ¼ −δdAþ β � p − β2A − β � dAt; ð27dÞ

with μt arbitrary. Equation (27a) tells us that At is arbitrary
and Eq. (27b) tells us that pt is a constant of motion, which
is actually zero because of the bulk constraint pt ¼ 0. We
remark that the fields ðA; pÞmust satisfy the bulk constraint

δðp − β � AÞ ¼ 0: ð28Þ

In order to solve Eqs. (27c)–(27d), the constraint (28), and
the boundary constraints, our main tool will be the Hodge-
Morrey theorem for manifolds with boundary [37–39]. This
theorem will provide us with field decompositions that
are specially appropriate for the problem that we are
discussing here.

J. FERNANDO BARBERO G. et al. PHYS. REV. D 106, 025011 (2022)

025011-6



Let us introduce some definitions. We say that a form α is
normal if it has a vanishing tangential component, i.e.,
{�
∂
α ¼ 0, and tangential if it has a vanishing normal

component, i.e., {�
∂
ð�αÞ ¼ 0.

1. Case λ = 0

A convenient decomposition for ΩkðΣÞ is given by the
Hodge-Morrey theorem

ΩkðΣÞ ¼ EkðΣÞ ⊕ CkðΣÞ ⊕ HkðΣÞ;

where

EkðΣÞ ¼ fdγjγ ∈ Ωk−1ðΣÞwith {�
∂
γ ¼ 0g; ð29aÞ

CkðΣÞ ¼ fδζjζ ∈ Ωkþ1ðΣÞwith {�
∂
ð�ζÞ ¼ 0g; ð29bÞ

HkðΣÞ ¼ fh ∈ ΩkðΣÞjdh ¼ 0 and δh ¼ 0g: ð29cÞ

Notice that, on Ω1ðΣÞ, � satisfies �2 ¼ −id so it endows
Ω1ðΣÞ with the structure of a complex vector space that we
denote as Ω1ðΣÞ�. The subspaces E1ðΣÞ ⊕ C1ðΣÞ and
H1ðΣÞ are complex subspaces of Ω1ðΣÞ�, i.e., �ðE1ðΣÞ ⊕
C1ðΣÞÞ ¼ E1ðΣÞ ⊕ C1ðΣÞ and �H1ðΣÞ ¼ H1ðΣÞ. Finally,
�E1ðΣÞ ¼ C1ðΣÞ and �C1ðΣÞ ¼ E1ðΣÞ.
In the following, given a k-form η we will write it as the

sum η ¼ ηd þ ηδ þ ηh, with ηd ∈ EkðΣÞ, ηδ ∈ CkðΣÞ,
ηh ∈ HkðΣÞ. Then, for the 1-forms A and p we have

A ¼ Ad þ Aδ þ Ah; p ¼ pd þ pδ þ ph: ð30Þ

Substituting (30) in the bulk constraint (28) gives
δðpd − β � AδÞ ¼ 0. Notice that we also have
ðpd − β � AδÞ ∈ E1ðΣÞ [since �C1ðΣÞ ¼ E1ðΣÞ]. In particu-
lar, dðpd − β � AδÞ ¼ 0, then pd − β � Aδ ∈ H1ðΣÞ, but
H1ðΣÞ ∩ E1ðΣÞ ¼ f0g. Therefore, the bulk constraint (28)
implies

pd ¼ β � Aδ: ð31Þ

Before introducing the decomposition (30) into the
Hamilton equations, notice that in this case the first
boundary constraint (20c) is

0 ¼ {�
∂
ð�dAÞ ¼ {�

∂
ð�dAδÞ: ð32Þ

Then we have that δdA ¼ δdAδ ∈ C1ðΣÞ. Actually, it is
straightforward to prove the converse: ðδdAÞd ¼ 0 and
ðδdAÞh ¼ 0 implies {�

∂
ð�dAÞ ¼ 0.

Using (30), (31), and δdAδ ∈ C1ðΣÞ allows us to write the
independent set of equations of motion (27c)–(27d) as

Äδ ¼ −ðδdþ 4β2ÞAδ; ð33aÞ

_Ad ¼ 2β � Aδ þ dAt; ð33bÞ

pδ ¼ _Aδ − β � Ad; ð33cÞ

_Ah ¼ ph þ β � Ah; ð33dÞ

_ph ¼ β � ph − β2Ah: ð33eÞ

Notice that the components Ah and Aδ are decoupled (we
show below that they parametrize the reduced phase space)
and that if we find Aδ, then we can directly calculate Ad, pd,
and pδ. This suggests that, in order to solve (33a) together
with the boundary constraint (32), we should first look for
ϑ ∈ Ω1ðΣÞ satisfying

δdϑ ¼ ω2ϑ with {�
∂
ð�dϑÞ ¼ 0: ð34Þ

This is a well-posed problem in the sense that, under these
conditions, the positive-definite operator δd is self-adjoint
[37]. Hence, according to the spectral theorem, there
always exists an orthonormal basis of eigen 1-forms ϑ.
Notice that, when ω ≠ 0, equation (34) implies ϑ ∈ C1ðΣÞ
and for ω ¼ 0 we have ϑ ∈ E1ðΣÞ ⊕ H1ðΣÞ. This is so
because δdϑ ¼ 0 implies that �dϑ is a constant (which is
actually zero as a consequence of the boundary condition),
hence, dϑ ¼ 0.
For ω ≠ 0, using the eigen 1-forms defined in (34) it is

possible to find the solutions Aδ of (33a). However, before
we write them, it helps to cast (34) in a more familiar form.
Let us define the function F ≔ �dϑ. Taking into account
that ϑ is an eigen 1-form, δdϑ ¼ ω2ϑ, we have

�dF ¼ −ω2ϑ ⇒ ϑ ¼ −
�dF
ω2

; ð35Þ

Therefore, we only have to find the function F to determine
ϑ. Using (35), the conditions (34) are equivalent to

∇2F ¼ −ω2F with {�
∂
ðFÞ ¼ 0; ð36Þ

where, acting on functions, δd ¼ −∇2 is minus the standard
(nonpositive) scalar Laplacian. In order to give an explicit
solution of (36) we need to specify Σ. Notice that ϑmust be
of the form δϕ with {�

∂
ð�ϕÞ ¼ 0. From (35), we can write

ϕ ¼ �F=ω2, which already satisfies {�
∂
ð�ϕÞ ¼ 0 as a con-

sequence of {�
∂
ðFÞ ¼ 0.

Let us assume that the eigen 1-forms in (34) exist and
denote them as ϑI (with eigenvalue ω2

I > 0). Using this
orthonormal basis, hϑI; ϑJi ¼

R
Σ ϑI ∧ �ϑJ ¼ δIJ, the solu-

tions to (33a)–(33c) are
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AδðtÞ ¼
X
I

1ffiffiffiffiffiffiffiffi
2ω̃I

p ðCI exp ðiω̃ItÞ þ C�
I exp ð−iω̃ItÞÞϑI; ð37aÞ

pδðtÞ¼
X
I

iffiffiffiffiffiffiffiffi
2ω̃3

I

p ððω̃2
I −2β2ÞðCI expðiω̃ItÞ−C�

I expð−iω̃ItÞÞþ2β2ðCI−C�
I ÞÞϑI−β�

�
d

�Z
t

0

Atdt0
�
þAdð0Þ

�
; ð37bÞ

AdðtÞ ¼ 2β
X
I

−iffiffiffiffiffiffiffiffi
2ω̃3

I

p ðCIðexp ðiω̃ItÞ − 1Þ − C�
I ðexp ð−iω̃ItÞ − 1ÞÞ � ϑI þ d

�Z
t

0

Atdt0
�
þ Adð0Þ; ð37cÞ

pdðtÞ ¼ β
X
I

1ffiffiffiffiffiffiffiffi
2ω̃I

p ðCI exp ðiω̃ItÞ þ C�
I exp ð−iω̃ItÞÞ � ϑI; ð37dÞ

with ω̃2
I ¼ ω2

I þ 4β2. The real and imaginary parts of the
complex constant C are given by

ffiffiffiffiffi
2

ω̃I

s
ReCI ¼ hϑI; Aδð0Þi;

−
ffiffiffiffiffiffiffiffi
2ω̃I

p
ImCI ¼ hϑI; pδð0Þ þ β � Adð0Þi:

Notice that, so far, we have only used the boundary
constraint (20c), not the infinite chain (21). However, it
must be remarked that all the constraints in (21) are
satisfied if {�

∂
ð�dϑIÞ ¼ 0. Actually, plugging (30) and

(37) in (21a) and (21b), we get

{�
∂
ðð�dÞ2nþ1ðpδ þ β � AdÞÞ ∝

X
I

ð−1Þnω2n
I {�

∂
ð�dϑIÞ;

{�
∂
ðð�dÞ2nþ3AδÞ ∝

X
I

ð−1Þnþ1ω2nþ2
I {�

∂
ð�dϑIÞ:

Then, our solutions (37) actually satisfy the infinite chain of
boundary conditions (21). This situation is similar to the
scalar field case [28,36].
We study now the harmonic sector. First, one should notice

that the harmonic 1-forms satisfy all the boundary conditions
(20c)–(21). The evolution equations are (33d) and (33e). In
order to solve them, we first notice that _ph − β � _Ah ¼ 0,
hence theph − β � Ah are constants ofmotion. Theywill play
a relevant role in the edge observables discussed below.
Second, we define πh ≔ ph þ β � Ah, then (33d) and (33e)
are equivalent to

_Ah ¼ πh; _πh ¼ 2β � πh ⇒ π̈h ¼ −4β2πh;

whose solutions are

πhðtÞ ¼ ðcos ð2βtÞ þ sin ð2βtÞ�Þπhð0Þ;

AhðtÞ ¼ Ahð0Þ þ
1

2β
ðsin ð2βtÞ þ ð1 − cos ð2βtÞÞ�Þπhð0Þ:

In terms of Ah, ph we get

AhðtÞ ¼
1

2β
� ðphð0Þ − β � Ahð0ÞÞ

þ 1

2β
ðsin ð2βtÞ − cos ð2βtÞ�Þðphð0Þ þ β � Ahð0ÞÞ;

ð38aÞ

phðtÞ ¼
1

2
ðphð0Þ − β � Ahð0ÞÞ

þ 1

2
ðcos ð2βtÞ þ sin ð2βtÞ�Þðphð0Þ þ β � Ahð0ÞÞ:

ð38bÞ

As mentioned before the 1-forms

phðtÞ − β � AhðtÞ ¼ phð0Þ − β � Ahð0Þ

are time independent.
Notice that as � is a (linear) complex structure onH1ðΣÞ,

there exists a complex infinite (but countable) orthonormal
basis fhm; h̄mg (m ∈ N and the bar over the 1-forms hm
denotes their complex conjugate) of H1ðΣÞ formed by the
eigen 1-forms of � (as �2 ¼ −1 acting over 1-forms, the
eigenvalues are �i), i.e., the hm satisfy

�hm ¼ −ihm; �h̄m ¼ ih̄m;

ðhm; hlÞ ¼ δml ¼ ðh̄m; h̄lÞ; ðhm; h̄lÞ ¼ 0; ð39Þ

where ðhm; hlÞ ¼
R
Σ h̄m ∧ �hl. Using this basis, for β > 0

we can write

phð0Þ þ β � Ahð0Þ ¼
ffiffiffiffiffi
2β

p X
m

ðamhm þ a�mh̄mÞ;

phð0Þ − β � Ahð0Þ ¼
ffiffiffiffiffi
2β

p X
m

ðb�mhm þ bmh̄mÞ;

with
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am ¼ 1ffiffiffiffiffi
2β

p ðhm; phð0Þ þ β � Ahð0ÞÞ;

a�m ¼ 1ffiffiffiffiffi
2β

p ðh̄m; phð0Þ þ β � Ahð0ÞÞ;

bm ¼ 1ffiffiffiffiffi
2β

p ðh̄m; phð0Þ − β � Ahð0ÞÞ;

b�m ¼ 1ffiffiffiffiffi
2β

p ðhm; phð0Þ − β � Ahð0ÞÞ; ð40Þ

while for β < 0 we must change
ffiffiffiffiffi
2β

p
→

ffiffiffiffiffiffiffiffiffi
−2β

p
, and

interchange am with a�m and bm with b�m. This allows us
to write AhðtÞ and phðtÞ in terms of this basis.
The disk.—In order to give explicit expressions of the

eigen 1-forms ϑ in (34), we consider the case in which Σ is
a disk of radius r0. Using polar coordinates ðr; θÞ and
separation of variables, we write Fðr; θÞ ¼ gðθÞfðrÞ [with
gð0Þ ¼ gð2πÞ] in (36) to get

g00ðθÞ ¼ −N2gðθÞ; ð41aÞ
�
∂
2

∂r2
þ 1

r
∂

∂r
þ
�
ω2 −

N2

r2

��
fðrÞ ¼ 0: ð41bÞ

where N is a constant. The solutions to (41a) are of the
form exp ðiNθÞ with N ∈ Z. Equation (41b) is the Bessel
equation; its finite solutions at r ¼ 0 are the JNðωrÞ Bessel’s
functions. Thus, the solutions Fðr; θÞ to (36) can be written
in terms of the exp ðiNθÞJNðωrÞ, which must satisfy the
boundary condition {�

∂
ðFÞ ¼ 0. This implies JNðωr0Þ ¼ 0,

which tells us what the values of ω are. As we can see, for
each N we have a family of ω’s. We denote these infinite
(but countable) sets byωN;n (equal to zN;n=r0, where zN;n are
the zeros of JN). The index I used in the previous subsection
corresponds now to the pair ðN; nÞ.
We conclude that the real eigen 1-forms ϑN;n are

ϑN;n ¼
1

ω2
N;n

� dððAN;n expðiNθÞ

þ A�
N;n exp ð−iNθÞÞJNðωN;nrÞÞ:

The complex constants AN;n are fixed by the orthonormality
condition hϑN;n; ϑM;mi ¼ δnmδNM (the δNM is a conse-
quence of Bourget’s hypothesis, a corollary of a theorem
proved by Carl Ludwig Siegel [40]). Notice that we must
replace

P
I by

P
N

P
n in the solutions (37).

Finally, in this case, the harmonic forms hn satisfying
(39) are

hn ¼
1ffiffiffiffiffiffiffiffi

2πn
p

rn0
dzn; ð42Þ

with z ¼ x1 þ ix2 (here x1, x2 are Cartesian coordinates in
Σ) and n ∈ N [22]. Notice that, using polar coordinates,

hn ¼
ffiffiffiffiffiffi
n
2π

r �
r
r0

eiθ
�

n
�
dr
r
þ idθ

�
;

and it is straightforward to check that, for r < r0, hn ⟶
n→∞

0.

On the other hand, for r ¼ r0 we get hn ¼ffiffiffiffi
n
2π

p
enθðdrr0 þ idθÞ. Hence the eigen 1-forms hn behave as

classical edge states in the sense of references [10,11].

2. Case λ ≠ 0

Regardless of the boundary conditions, we have shown
that the decomposition (30) can be used to solve the bulk
constraint in a convenient way [obtaining (31)]. However,
for λ ≠ 0, the boundary condition (22c) is

{�
∂
ðf�d − 2λ2ιν�gAÞ ¼ 0; ð43Þ

which is different from the one that appears in the previous
case where we had {�

∂
ð�dAÞ ¼ 0. As a consequence, we

have now ðδdAÞh ≠ 0, thus δdA ¼ ðδdAÞδ þ ðδdAÞh with
both components different from zero. Notice that using (30)
we can write (43) as

{�
∂
ð�dðAδ þ AhÞÞ þ 2λ2 �∂ {�∂ðAδ þ AhÞ ¼ 0: ð44Þ

This leads us to work with the combination Aδ þ Ah≕Aδh.
Using the Hamiltonian equations (27c) and (27d) we see
that Aδh must satisfy

Äδh ¼ −ðδdþ 4β2ÞAδh þ 2β � ðph − β � AhÞ: ð45Þ
The presence of ph − β � Ah in (45) makes it very difficult
to solve because this term involves a projector onto the
harmonic sector, which is related to a (nonlocal) Green’s
operator. We remark that in the λ ≠ 0 case the ph − β � Ah

are no longer constants of motion because _ph − β � _Ah ¼
−ðδdAδÞh. In the pure Maxwell case β ¼ 0, it is possible to
use the eigen 1-forms of the operator δd to solve (45), i.e.,

δdϑ ¼ ω2ϑ with {�
∂
ð�dϑ − 2λ2ιν � ϑÞ ¼ 0: ð46Þ

This is a well-posed problem and the operator δd with these
Robin-like boundary conditions is self-adjoint [22]. The
corresponding spectrum and eigenfunctions when Σ is a
disk were (partially) analyzed in [22]. This is an interesting
problem by itself. In Appendix A, we show how to deal
with (46) from the Hodge decomposition point of view.
Another strategy to solve the Hamiltonian equations is to

use a different Hodge-like decomposition adapted to the
boundary constraints (43). For instance, we can write A
and p as

A ¼ Aδ þ Acn; p ¼ pδ þ pcn; ð47Þ

where Aδ ¼ δϕ, [with ϕ ∈ Ω2ðΣÞ and free at the boundary
∂Σ], and Acn and pcn closed 1-forms normal to ∂Σ,
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(i.e., dAcn ¼ 0 ¼ dpcn and {�
∂
Acn ¼ 0 ¼ {�

∂
pcn) [37,38].

Notice that as Acn is normal to ∂Σ then
{�
∂
ðιν � AcnÞ ¼ �∂{�∂Acn ¼ 0. Taking all this into account

and using the decomposition (47) on the boundary con-
straint (22c) we get

{�
∂
ð�dAδ − 2λ2ιν � AδÞ ¼ 0:

This equation only involves Aδ, which seems to suggest the
use of the composition (47) to solve the Hamilton equations
of motion.
Plugging (47) into the constraint δðp − β � AÞ ¼ 0, we

obtain d � ðpcn − β � AδÞ ¼ 0. Assuming that Σ is a
smoothly contractible manifold with boundary (then, its
first de Rham cohomology group is zero [41]), the previous
equation implies ðpcn − β � AδÞcn ¼ 0, and we get
pcn ¼ βð�AδÞcn. Unfortunately, ð�AδÞcn ≠ �Aδ, and then
the solution to the bulk constraint involves a nonlocal
operator (the projector onto the space of the closed 1-forms
normal to ∂Σ). Once again, the problem becomes intractable.

D. Fock quantization and quantum edge observables

In this section we present the (reduced phase space)
Fock quantization [42] of the MCS model for the case
λ ¼ 0 and study the corresponding quantum edge observ-
ables. We start by computing the pullback of the symplectic
structure Ω ¼ R

Σ dA⩕ � dp to the space of solutions given
by (37) and (38), which we denoted ΩS. The result is

ΩS ¼
Z
Σ
ðdAd⩕�dpdþdAδ⩕�dpδþdAh⩕�dphÞ

¼−i
X
I

dCI⩕dC�
I þ

Z
Σ
dAhð0Þ⩕�dphð0Þ

¼−i
X
I

dCI⩕dC�
I þ

X
m

ð−idam⩕da�m− idbm⩕db�mÞ:

ð48Þ

The pullback of the Hamiltonian (17) to this space in the
λ ¼ 0 case is

HS ¼
X
I

ω̃IC�
ICI þ

1

2

Z
Σ
ðphð0Þ þ β � Ahð0ÞÞ

∧ �ðphð0Þ þ β � Ahð0ÞÞ
¼

X
I

ω̃IC�
ICI þ 2jβj

X
m

a�mam: ð49Þ

Therefore, as it must be clear from the previous expres-
sions, we end up with an infinite number of uncoupled
harmonic oscillators, one harmonic oscillator of frequency
ω̃I for each eigen 1-form ϑI and an infinite number of
oscillators of frequency 2jβj in the harmonic sectors. Notice
that the bm modes are constants of motion.

The Fock quantization of the system is direct: we
promote the variables CI , C�

I , am, a�m, bm, and b�m to
creation and annihilation operators Ĉ†

I , â
†
m, b̂†m and ĈI, âm,

b̂m, respectively, with nonvanishing commutators given by

½ĈI; Ĉ
†
J� ¼ δIJ; ½âm; â†n� ¼ δmn ¼ ½b̂m; b̂†n�:

By using these operators, we get from (49) the quantum
Hamiltonian operator

Ĥ ¼
X
I

ω̃IĈ
†
I ĈI þ 2jβj

X
n

â†nân: ð50Þ

The basis states for the theory are taken as the product of
the basis states for each oscillator (which can be chosen to
be the eigen states of the number operators Ĉ†

I ĈI , â
†
nân,

and b̂†nb̂n).
Quantum edge observables.—The quantum edge observ-

ables are obtained by promoting, when possible, the classical
edge observables to operators. In this case, the observables
(24) evaluated on the solutions (37) and (38) reduce to

QS
ΛðA; pÞ ¼

Z
Σ
dΛ ∧ �ðpðtÞ − β � AðtÞÞ

¼
Z
∂Σ
{�
∂
ðΛ � ðpδðtÞ − β � AdðtÞ

þ phð0Þ − β � Ahð0ÞÞÞ

¼
Z
Σ
dΛ ∧ �ðphð0Þ − β � Ahð0ÞÞ; ð51Þ

where we have used pd ¼ β � Aδ, {�
∂
ð�pδÞ ¼ 0, and

{�
∂
ðAdÞ ¼ 0. In Sec. III B, we have shown that, for λ ¼ 0,

the edge observables are constants of motion (which
correspond to the constants of motion in the harmonic
sector found in the previous section). In fact, by using the
basis fhm; h̄mg, we can write (51) for β > 0 as

QS
ΛðA;pÞ¼

ffiffiffiffiffi
2β

p X
m

Z
Σ
dΛ∧�ðb�mhmþbmh̄mÞ

¼
ffiffiffiffiffi
2β

p X
m

�
b�m

Z
Σ
dΛ∧�hmþbm

Z
Σ
dΛ∧�h̄m

�
;

ð52Þ
and an analogous expression for β < 0.
From (52), we define the quantum edge observable of the

MCS theory acting over the harmonic basis fhn; h̄ng as

Q̂hn ≔
ffiffiffiffiffi
2β

p X
m

�
b̂†m

Z
Σ
hn ∧ �hm þ b̂m

Z
Σ
hn ∧ �h̄m

�

¼
ffiffiffiffiffi
2β

p X
m

ðb̂†mðh̄n; hmÞ þ b̂mðh̄n; h̄mÞÞ

¼
ffiffiffiffiffi
2β

p
b̂n; ð53aÞ
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Q̂h̄n ≔
ffiffiffiffiffi
2β

p X
m

ðb̂†mðhn; hmÞ þ b̂mðhn; h̄mÞÞ

¼
ffiffiffiffiffi
2β

p
b̂†n; ð53bÞ

where we have used ðhm;hlÞ¼δml¼ðh̄m;h̄lÞ, ðhm; h̄lÞ ¼ 0.
For β < 0 we obtain Q̂hn ¼

ffiffiffiffiffiffiffiffiffi
−2β

p
b̂†n and Q̂h̄n ¼

ffiffiffiffiffiffiffiffiffi
−2β

p
b̂n.

As pointed out in [22], the Fock states created by the
operators b̂†n can be thought of as quantum states localized
at the boundary. As expected, the quantum edge observ-
ables correspond to (linear combinations of) the operators
b̂n, b̂

†
n which are obtained by promoting to quantum objects

the bn, b�n-modes (remember that these are constants of
motion).
We end by pointing out that, for the particular case in

which the fields are defined on a disk, the quantization in
the full phase space of the MCS action was discussed
in [22]. There, the authors followed the rules of Dirac’s
quantization, imposed the Gauss law as an operator that
annihilates physical states, and tried to diagonalize it
together with the Hamiltonian. They succeeded for
λ ¼ 0, but not for λ ≠ 0. Despite the differences in the
in the approach of [22] and ours, for the particular case of
the disk and λ ¼ 0, the results about the classical (52) and
quantum (53) edge observables are the same.

IV. CONCLUSIONS

We have used the Abelian Chern-Simons model to
illustrate some classical aspects of the so-called edge
observables. Then, we have studied in detail the
Lagrangian and the Hamiltonian formulations of the
Maxwell-Chern-Simons model defined on a manifold with
boundary for two different sets of boundary equations
naturally derived from a variational principle. Using the
geometric version of the Dirac algorithm, we have been able
to handle in a rigorous way the introduction of the boundary
and obtain the infinite chain of boundary constraints of the
model, which are usually ignored in the literature.
We have shown that, inspired by the Gauss constraint

(which is first class), one can build classical edge observ-
ables. Their formal definition is independent of the boundary
conditions imposed on the field variables, but their actual
values and properties depend on them. We have shown that
for λ ¼ 0 these observables are constants of motion, while
for λ ≠ 0 they are not. Also, we have calculated their algebra
which, when the boundary of Σ is a circumference, is the
well-known Uð1Þ Kac-Moody algebra.
In order to get a better characterization of the classical

edge observables and states and perform the Fock quan-
tization of the MCS model, we have looked for the
solutions of the Hamilton equations of motion together
with the bulk and boundary constraints. Our principal tool
has been the Hodge-Morrey decomposition. For λ ¼ 0, we
have found the solutions, without any gauge fixing, and

showed their explicit form for the particular case in which
the fields are defined on a disk. For the case λ ≠ 0, we have
discussed the obstructions that prevent us from obtaining
the corresponding solutions by using the procedure that
works in the λ ¼ 0 case.
For λ ¼ 0, we have shown that, on the space of solutions,

the system reduces to an infinite collection of uncoupled
oscillators. This has allowed us to directly carry out the
Fock quantization. Furthermore, we have discussed the
classical and quantum edge observables. In the reduced
phase space, they correspond to the constants of motion of
the harmonic sector and the quantum operators associated
with these constants, respectively. Explicitly, when Σ is a
disk, the Hodge dual endows the harmonic sector (of the
Hodge-Morrey decomposition) with a basis of eigen
1-forms (42) that can be identified with the classical edge
states (at least when n is large). These states can be used not
only to expand the constant of motion (51) [see (52)] but
also to define a privileged pair of edge observables (53).
Our results can be applied to other compact regions

besides the disk, in particular the resolution of the field
equations for λ ¼ 0. The case with noncompact Σ is also
interesting and has been considered in the literature
(see, for instance, [24]), but the spectra of some relevant
operators become continuous and the analytical issues that
crop up must be carefully considered.
The strategy that we have followed in the present work

can be used in principle for other boundary conditions
for the MCS model. As far as the edge observables are
concerned, it would be interesting to study them in other
gauge theories, such as BF and gravitational models. It
would also be interesting to analyze the behavior of these
systems under the action of the trace operator which,
for some Sobolev spaces, provides a consistent and well-
defined way to project the dynamics of the bulk onto the
boundary [43]. However, for higher dimensional bounda-
ries, it is important to mention that there are a lot of
functional analytic subtleties that have to be taken into
account.
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APPENDIX A: EIGEN 1-FORMS PROBLEM

In this appendix, we study the eigen 1-forms problem
(46), i.e.,

δdϑ ¼ ω2ϑ with {�
∂
ð�dϑ − 2λ2ιν � ϑÞ ¼ 0: ðA1Þ

Notice that if ϑ is an eigen 1-form with eigenvalue ω2 ≠ 0

and υ ∈ E1 [υ ¼ dg with {�
∂
ðgÞ¼0] then hυ; ϑi ¼ hυ; δdϑi=

ω2 ¼ 0, which implies that ϑ ∈ C1ðΣÞ ⊕ H1ðΣÞ. In this
case, we can use the function F ¼ �dϑ to rewrite (A1) as

∇2F ¼ −ω2F with {�
∂

�
F − 2

�
λ

ω

�
2

ινdF

�
¼ 0; ðA2Þ

which is an eigen functions problem. Remember that if we
have F then we get ϑ as ϑ ¼ − � dF=ω2 [see (35)].
For ω ¼ 0, if we decompose ϑ ¼ ϑd þ ϑδ þ ϑh and plug

it into (A1), we obtain that ϑd is arbitrary [this sector is not
relevant for (45)], and δdϑδ ¼ 0 implies �dϑδ ¼ C1, where
C1 is a constant. Writing ϑδ ¼ δϕ with {�

∂
ð�ϕÞ ¼ 0 and

defining f ≔ �ϕ, the equation �dϑδ ¼ C1 and the boundary
condition (A1) become

∇2f¼−C1 with {�
∂
ðC1 − 2λ2ινðdfþ�ϑhÞÞ ¼ 0: ðA3Þ

Then, given ϑh, we can solve for f in (A3) and finally
get ϑδ.

1. The disk

With the purpose of giving an explicit solution, we
restrict ourselves to the case in which Σ is a disk of radius r0
(to conform with the conventions of [22] we make the
replacement λ2 → r0λ2=2).
For ω ≠ 0 the solutions to (A2) take the form Fðr; θÞ ¼

exp ðiMθÞJMðωrÞ with M ∈ Z, and must satisfy the
boundary condition

{�
∂

�
F−r0

�
λ

ω

�
2

∂rF

�
¼0⇒JMðωr0Þ−r0

λ2

ω
J0Mðωr0Þ¼0;

with J0MðxÞ ¼ ∂xJMðxÞ. These equations give the frequen-
cies: for each M we have a family of ωm. We denote these
infinite (but countable) sets as ωM;m. Then, the eigen
1-form ϑM;m with eigenvalue ω2

M;m is

ϑM;m ¼ 1

ω2
M;m

� dðAM;m exp ðiMθÞJMðωM;mrÞ

þ A�
M;m exp ð−iMθÞJMðωM;mrÞÞ: ðA4Þ

The complex constants AM;m are fixed by the orthonor-
mality condition hϑMn; ϑM0n0 i ¼ δMM0δnn0 .
For ω ¼ 0, we must solve (A3). The solution of

∇2f ¼ −C1 is

f ¼ −
C1

4
r2 þ

X
k¼1

ðAk cos kθ þ Bk sin kθÞrk;

with k ∈ N, and Ak; Bk ∈ R. Using polar coordinates for
the harmonic 1-forms hk, and writing ϑh in this basis as
ϑh ¼

P
k¼1 ðckhk þ c�kh̄kÞ with ck ∈ C, the boundary con-

dition in (A3) gives

C1

�
1þ λ2r20

2

�
− λ2

X
k¼1

��
Ak þ

ffiffiffiffiffi
2

πk

r
r−k0 Imck

�
krk0 cos kθ

þ
�
Bk þ

ffiffiffiffiffi
2

πk

r
r−k0 Reck

�
krk0 sin kθ

�
¼ 0:

which, as the sine and cosine form an orthonormal basis,
implies

Ak¼−
ffiffiffiffiffi
2

πk

r
r−k0 Imck; Bk¼−

ffiffiffiffiffi
2

πk

r
r−k0 Reck; and C1¼0:

Therefore, for ω ¼ 0, the eigen 1-forms are ϑ ¼
ϑd þ ϑδ þ ϑh, with ϑd and ϑh ¼

P
k¼1 ðckhk þ c�kh̄kÞ arbi-

trary, and ϑδ given by

ϑδ ¼
ffiffiffi
2

π

r
� d

�X
k¼1

1ffiffiffi
k

p ððImckÞ cos kθ

þ ðReckÞ sin kθÞ
�
r
r0

�
k
�
:

Notice that the subspace spanned by the ϑh is infinite
dimensional.

APPENDIX B: THE INFINITE CHAIN OF
BOUNDARY CONSTRAINTS

In this section, given a form α, for k ∈ N we denote
αk ≔ ð�dÞkα, α0 ¼ α and α−k ¼ 0. We also denote
π ≔ pþ β � A. Assuming the Hamiltonian dynamics given
by (27), we have the following easy to prove equation:

_Ak ¼ πk; k ¼ 1; 2;…:

Using the Gauss constraint δðπ − 2β � AÞ ¼ 0 and
Eqs. (27) and (20a), it is also straightforward to check that

ð�πÞk ¼ −2βAk; k ¼ 1; 2;… and

_πk ¼
�
A2 þ 2β � π0 k ¼ 0

Akþ2 − 4β2Ak k ≥ 1
:
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We study now the consistency conditions that arise from
Eqs. (20c) and (22c). Notice that they are both of the
form ΓðAÞ ¼ 0 where Γ ¼ {�

∂
� d in the first case and Γ ¼

{�
∂
ðα � dþ λ2ιν�Þ in the second. Notice, however, that the

explicit expression of Γ is irrelevant for the following
argument as long as

ΓðdAtÞ ¼ 0: ðB1Þ

Applying (20a), it is clear that both expressions of Γ
satisfy (B1).
Under the hypotheses spelled out in the previous para-

graph, let us prove that ΓðAÞ ¼ 0 implies the following
infinite chain of boundary constraints:

Γðπ0Þ ¼ 0; ðB2Þ

ΓðA2kþ2β�π2k−2Þ−4β2ΓðA2k−2Þ¼0; k¼1;2;… ðB3Þ

Γðπ2k þ 2β � A2kÞ ¼ 0; k ¼ 1; 2;… ðB4Þ

Equation (B2) follows from (27c) and (B1).
Equation (B3) for k ¼ 1 is found by requiring the con-
sistency of (B2) and applying (27d). Equation (B4) for
k ¼ 1 is obtained by demanding the consistency of (B3) for

k ¼ 1. Now, assuming that (B3) holds for k and (B4) holds
for k − 1, we prove that they hold to the next order. First,
demanding the consistency of (B3) for k leads to

0 ¼ Γðπ2k þ 2β � ðA2k − 4β2A2k−2ÞÞ − 4β2Γðπ2k−2Þ
¼ Γðπ2k þ 2β � A2kÞ − 4β2Γðπ2k−2 þ 2β � A2k−2Þ
¼ Γðπ2k þ 2β � A2kÞ;

which holds as a consequence of (B4) for k − 1. This
proves (B4) for k. Analogously, demanding the consistency
of (B4) for k leads to

0 ¼ ΓðA2kþ2 − 4β2A2k þ 2β � π2kÞ
¼ ΓðA2kþ2 þ 2β � π2kÞ − 4β2ΓðA2kÞ;

which proves (B3) for kþ 1. A final comment is in order
now. For Γ ¼ {�

∂
� d it is easy to prove that Γ � Ak ¼ 0 ¼

Γ � πk for k ≥ 1. Hence, the infinite chain of conditions
simplifies to

�ΓðA2kÞ ¼ 0

Γðπ2kÞ ¼ 0
≡

�
{�
∂
ð�dÞ2kþ1A ¼ 0

{�
∂
ð�dÞ2kþ1π ¼ 0

: ðB5Þ
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