PHYSICAL REVIEW D 106, 025009 (2022)

Large N correlators of Chern-Simons theory in lens spaces
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We compute the invariants for a class of knots and links in arbitrary representations in S*/Z » in the large
k (level), large N (rank) limit, keeping N/(k + N) = A fixed, in U(N) and Sp(N) Chern-Simons theories.
Using the relation between the saddle-point description and collective field theory, we first find that the
invariants for the Hopf link and unknot are given by the on-shell collective field theory action. We next
show that the results of these two invariants can be used to compute the invariants of other torus knots and
links. We also discuss the large N phase structure of the Hopf link invariant and observe that the same may
admit a Douglas-Kazakov type phase transition depending on the choice of representations and A.
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I. INTRODUCTION

Knot theory is an interesting field in mathematics. A knot
is a smooth embedding of a circle S! to a three manifold. A
link is a collection of disjoint knot. An important question in
knot theory is whether two knots (or links in general) are
equivalent by ambient isotopy (i.e., if one can continuously
deform one knot into the other without breaking it). Knot
invariants' are used to distinguish between different inequi-
valent knots.

A variety of knot invariants in three dimensions can be
obtained from the correlation functions of Wilson loop
(WL) operators in Chern-Simons (CS) theory [1]. The CS
theory is topological at classical as well as quantum level.
The only interesting observables in this theory are WLs
along oriented knots and links. Since WLs are independent
of metric, their expectation values are topological and hence
they are bona fide candidates for the knot invariants. Witten
proved that these topologically invariant correlation func-
tions are precisely the generalized knot invariants in three
manifolds [1]. For G=SU(N), G=SU(2) and G =
SO(N) these correlation functions give the HOMFLY-PT
polynomial, the Jones polynomial, and the Kauffman
polynomials, respectively, when the representations asso-
ciated with the WLs are in fundamental representations.
In general the correlation functions of WLs in arbitrary
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'Knot invariants in general mean invariants for both knots
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representations provide a wide class of topological invar-
iants. These are known as coloured polynomials. From the
CS theory perspective such invariants are well defined and
we also understand the source of representations associated
with the invariants. In mathematics such colored invariants
have been defined by Reshetikhin and Turaev [2] and used
to construct new quantum invariants of three manifolds.

Although CS theory can be solved exactly, the calcu-
lation of knot invariants is difficult. There exists a large
literature on the computation of generalized colored
invariants for different links and knots. Some of them
can be found in [3-18]. In this paper we consider U(N)
and Sp(N) CS theories and compute the knot invariants in
the following limit:

fixed.

N
N,k keeping 4 =
— oo keeping TN

(1.1)
Here, N is the rank of the gauge group and k is the level of
the CS theory. This limit is called a double scaling limit.
We use the saddle-point technique to calculate the invariant
for the Hopf link, shown in Fig. 1 in lens space S*/Z p for
any representations R; and R, associated with two
unknots.” We then show that with this result in hand
one can compute the invariants for the class of torus knots
(2, k = odd) and links (2, k = even) following the method
developed in [3].

Since the representations R/, are integrable, in the large
N limit we describe these representations in terms of
eigenvalue distributions of unitary matrices. As a result,

*The computation presented in this paper could be extended to
find the invariants for hyperbolic knots and links. For example
Borromean links (for three given representations R, R,, and R3).
Therefore such calculations might be helpful in understanding the
volume conjecture [18-21] and its generalized version.

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.025009&domain=pdf&date_stamp=2022-07-14
https://doi.org/10.1103/PhysRevD.106.025009
https://doi.org/10.1103/PhysRevD.106.025009
https://doi.org/10.1103/PhysRevD.106.025009
https://doi.org/10.1103/PhysRevD.106.025009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

KUSHAL CHAKRABORTY and SUVANKAR DUTTA

PHYS. REV. D 106, 025009 (2022)

Rl Ro

FIG. 1. Hopf link.

in the double scaling limit the problem can be studied with
the aid of a collective field theory3 [24]. We find that the
Hopf link invariant satisfies the Hamilton-Jacobi equation
with pA playing the role of time and the Hamiltonian being
the free collective field theory Hamiltonian. Therefore, large
N (classical) value of the Hopf link invariant, evaluated on
the classical solutions, is given by the on-shell action of the
free collective field theory. The Hamilton’s equations are
similar to the continuity and Navier-Stokes equations of an
incompressible fluid with negative pressure. Thus the study
of a Hopf link invariant boils down to the study of time
evolution of a one-dimensional incompressible fluid with
the boundary conditions depending on R ;.

The knowledge of the Hopf link invariant should be
enough to find the invariants for the class of other torus
knots (2,k =odd) and links (2,k =even) using the
generalized Alexander-Conway skein relations recur-
sively. However when we place representations other than
fundamental it becomes difficult. In [3] Ramadevi et.al.
developed a technique to get the invariants for links made
of braids up to four strands. A class of invariants for links
and knots including torus knots can be obtained from the
eigenvalues of half-twist braid matrices. We use these
relations and show that in the double scaling limit the
invariants for a wide class of knots and links can be
computed from the result of the Hopf link invariant. We
also emphasize that our results are valid for any arbitrary
large N representations associated with the knots.

We also study the large N phase structure of two-point
correlation functions of CS theory. We show that in the
double scaling limit the two-point correlation function (Hopf
link invariant) admits a third-order phase transition depend-
ing on the choice of R/, and 4. Such a phase transition is
similar to the Douglas-Kazakov phase transition [25].

A. Main results

The main results of this paper are the following:

(i) We show that in the large N limit the computation of
two-point correlation functions of CS theory for
Hopf link boils down to computation of an on-shell
action of a free collective field theory. To be precise,
the calculation of a Hopf link invariant turns out to

3Similar analysis was done by Gross and Matytsin [22,23] in
the context of 2d Yang-Mills theory.

be equivalent to the time evolution of a one-dimen-
sional incompressible fluid with the boundary con-
ditions depending on R ;.

(i) The Hopf link invariant in the large N limit is equal
to the on-shell partition function of a collective field
theory. The result is given by Eq. (3.32). The
functions &y/,(6) contain information of the repre-
sentations R/, associated with the Hopf link.

(iii) We also show that in the large N limit the invariants
for torus knots (2, k = odd) and links (2, k = even)
can be computed from the Hopf link invariants and
are given by (3.42).

(iv) We study the large N phase transition in two-point
correlation functions of CS theory.

The plan of the paper is as follows. In Sec. II we review
the correlation functions of WLs in CS theory in Seifert
manifold in different framings. Section III provides the
detailed calculation of the Hopf link invariant and other
torus knot invariants in U(N) CS theory. We also discuss
the large N phase structure of the Hopf link invariant in this
section. We conclude Sec. III with an example. Large N
phase structure of Sp(N) CS theory and correlations
functions are discussed in Sec. IV. We end the paper with
a discussion in Sec. V. In Appendix A we discuss how to
obtain the correlation functions in different manifolds using
surgery and their framing dependence. In other appendixes
we elaborate various technical details used in the main text.

II. PRELIMINARY: CORRELATION FUNCTIONS
IN CHERN-SIMONS THEORY

In this section we review the correlation functions in CS
theory on Seifert manifolds in different framings. Experts
may skip this section.

The topological nature of classical CS theory is pre-
served even at the quantum level (correlation functions) but
at the cost of a choice of framing. Physical observables
(correlations of WLs) are completely determined in terms
of topological data of the three manifold M up to a framing.
In order to understand the framing dependence in detail we
first state an important connection between CS theory and
the Wess-Zumino-Witten (WZW) model [1]. Quantization
of CS theory with gauge group G and level k in M with
boundary X (= dM) renders a physical Hilbert space H(X)
which is isomorphic to space of conformal blocks of the
WZW model with an affine Lie algebra g,. Using this
connection, correlations of WL operators in CS theory can
be written in terms of observables of the WZW model.

To show the framing dependence explicitly we consider
the CS theory on a Seifert manifold M, ,. A Seifert
manifold is a nontrivial circle bundle over genus g Riemann
surface’ %, with the first Chern class p. Seifert manifolds

“In this paper, we have considered the Riemann surface X, to
be smooth.
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for a generic p can be obtained from M, (which is a
product of genus g Riemann surface and a circle £, x S')
by surgery. Different choices of surgeries give different
framings of M, ). The n-point correlation functions in CS
theory are defined as

Wiy = / [DAJeSe T Wi (4)

a=1

(2.1)

where WK (A) = Trp U with Ug = Pexp ¢ A and Sy is
the standard CS action with gauge field A. Denoting the
n-point correlations of WLs by W,(,gl" )72 [G, k] one can
write them in the following form [26-28]

W»(;glmnn [Gs k] - Z’Cg])RWRRZ"'Rn (Zy X Sl s G, k) (2.2)
R

where K(?) depends on the framing. Note that being
topological ngl” )R [G, k] does not explicitly depend on
the geometry of the knots, it only depends on the topology
up to a framing. Wrg,..g, (Z, X S', G, k) is the n-point
correlation function of n vertical lines (wrapped around S')
in £, x ! carrying representation R;, given by

Wrrer,(Zg X 81.G.k) = > S [[ Swr,-  (23)
R a=1

See Appendix A for a detailed discussion. Here Spz/ and
T ryr are the modular transform matrices associated with
the highest weight representations of the affine Lie algebra
g, under inversion and translation of modular parameter,
respectively (see [29] for details). They satisfy

§?=(8T) =1L (2.4)

The summation on the right-hand side of (2.2) runs over
integrable representations of g;. Wg]p ?R” [G, k] in (2.2)
represents a topological invariant of links of n unknots as
shown’ in Fig. 2.

When p =1 and g = 0 the Seifert manifold is a three
sphere § 3. On S5, there exists a canonical choice of framing,

given by K1) = S. In canonical framing the correlation of
n WLs (2.2) is given by

SFigure 2 describes the linking of the knots schematically. The
exact diagrams of such links in M,y is complicated. Math-
ematically the p dependence in the correlation function comes
(after surgery) through the operator 7.

FIG. 2. Links of unknots.

Wr,.%,[8%. G.K] = S35 T Sr,r,- (2.5)
a=2

The invariant for the link diagram in Fig. 2 in a Seifert
manifold can be obtained from %, x S! by surgery with the
choice K(P) = (TST)?. This particular choice is called
Seifert framing. In Seifert framing, therefore, the invariant
is given by [26-28]

WD (G = S TS [ Ser,-  (26)
R a=1

The main focus of this paper is to study the large N
structure of these knot invariants.

III. KNOT INVARIANTS IN U(N)
CHERN-SIMONS THEORY

In this section we consider the gauge group G = U(N).

For our purpose, we define a modified WL operator W,

b, = VR

= . 3.1
Wr Son (3.1)

The n-point correlation functions of these modified WL
operators are given by

n

~ Srr
8 2—2g—n pr— "

WR@]"’. R) ,,(N’ k) = E Sor TR o
R a=1 Ra

(3.2)

S and 7 for u(N), are given by (B2) and (BS). For a given
representation R, we define a set of N variables

GRS

0@ _ 2r h@)—N_l
" N+K\' 2 )

where h{) =n!” 4+ N —i are the hook numbers of the

Young diagram associated with R, and nl(-“) is number of

boxes in the ith row. Since R,’s are integrable representa-
(a)

i

(3.3)

tions of u(N),, n;"’s satisfy
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S"'Snga)ﬁ

N

(3.4)

L

l\)l??‘

It is easy to check that in the double scaling limit the

variables 6\*) ranges from — to . These 6\) can be thought
of as eigenvalues of unitary matrices. However, there is a
difference. The minimum gap between two eigenvalues is
27/(k+ N). Therefore, in large N limit an integrable
representation can be described in terms of a distribution
of these eigenvalues, denoted by o(,)(6) and defined as

RS (a)
:N;(s(a—ei ).

In the double scaling limit (1.1), ¢, () satisfies the constraint

(3.5)

1

0a(0) <7 (3.6)

which follows from the fact that two eigenvalues have a
minimum separation 2z/(k + N). Considering the above
change of variables one can compute the ratio of S, and
Sor,- It turns out to be

SRRy _ A3 =T 0 (009

3.7
Son. (3.7)

where h;’s are the hook numbers associated with R and
x=(0) is the character of the U(N) in the representation R.
Using the expression for 7 (B5) the n-point correlation
function can be written as

(0 q —l@C n
WR, N = Szg+n 2 H)(R 3.8)
R
where
q= 27/ (k+N) (3.9)
and
n 1 N
0=2%" (NZG,‘“)) (3.10)
a=1 i=1

This correlation function is similar to the partition function
of a g-deformed Yang-Mills theory with a ®-term on a
genus g Riemann surface with n boundaries [22,26]. The
|

N2
627”1’}\2,_4

det || ¥, |

distributions of holonomies on those boundaries are given by

{an)}. The only difference between (3.8) and the partition
function of a g-deformed 2d Yang-Mills theory is that the
sum in (3.8) runs over integrable representations.

When Ry =..--="R, =0, the correlation function
(3.8) gives the partition function of U(N) CS theory of
level k on the Seifert manifold. The large N phase structure
of this theory for g = 0 was studied in [30]. The theory
undergoes a third-order phase transition in the double
scaling limit (1.1). We have reviewed the result in
Appendix B

In this section we explicitly compute the two-point
correlation functions (n = 2) in the double scaling limit
(1.1) and show that using the result of two-point correlation
function one can compute the invariants for a class of torus
knots (2, k = odd) and links (2, k = even).

Two-point correlators in S3/Z p» Which is a Seifert
manifold with g = 0 for any p, is given by

WRlst [83/ZP,N, k] — ZT;@[;@S'RRISRRZ (311)
R

and represents a topological invariant for the Hopf link
(Fig. 1). In the large N limit the two-point function admits a
genus expansion (perturbative part) [31]

In[We, z,[8%/Z,.N.K| = > N>W) o (1), (3.12)
h=0

Our goal is to compute the leading contribution ng])ﬂz (1)
for any R/, using the saddle-point technique.

The modified two-point correlation function (3.1) is
given by

Wg . (8%/2,,N, k)

_ Zq_% =10C1(R) o (0 )y (6?), (3.13)

where 01/2) are eigenvalues corresponding to the repre-
sentation R ,. We consider the representations R and R,
such that the eigenvalues are symmetrically distributed
about zero and hence the ® term drops out from (3.13).
Expressing the characters of U(N) in terms of a Schur
polynomial we can explicitly write down the two-point
correlation functions in the following form:

det [|eiN%: |

. N 2
e—pmN/I Zj:l Vi

Wz, (8*/Z,,N. k) = ZZN(N—I)

{vi} {V</

9(])_951) 9(2) 952)
sin (- N jsin( -+

(3.14)
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where

1 N-1
yj—ﬁ<hj_—2 > (3.15)

is the shifted hook number for the representation R.

In general it is difficult to find an exact expression for
the two-point function. However, in the large N limit we
see that the right-hand side of (3.14) is dominated by a
single representation for a specific class of R; and R,
and it is indeed possible to find an exact expression
for Wg,,(8%/Z,.N. k).

A. Large N analysis of two-point function: Invariant
for the Hopf link

We follow the work of Gross and Matytsin [22,23] to do
the large N analysis of (3.14). In the large N limit the
integrable representation on the right-hand side of (3.13)
can be denoted by a density function p(y),

dx v, i

. wh —2 -
e where y(x) N x=

o) = - (3.16)

Since i runs from 1 to N, x € [0,1]. Also from the
discreteness of y;s [Eq. (3.15)] it follows that

p(y) < 1. (3.17)

Following [30], after a Wick rotation in complex p plane
(p - —ip) we introduce®

Zp g, = 28NN =N/ 2V 1 (83/2Z,,N k) (3.18)
and a new variable A in place of pA

A =2zpl. (3.19)
One can show from (3.14) that ZR]RZ satisfies

N
2N Z()RIRZ = ];‘a;i NZprl)  (3.20)
where

N 9(“) _ 9(”)
( )] — Hsin<%> fora=1,2. (3.21)

Assuming Z5 \R, 1s dominated by a single representation in
the large N limit, we choose

®Since the correlation function is an analytic function of p one
can Wick rotate the final answer back to the original p.

Zrg, =€V and lmFy=F  (322)
and after a little algebra we find that F satisfies (see
Appendix C for detailed calculation)

e fiol(Gtg) 2

2

+ U(0)? —?6 «(0) }

(3.23)

Considering F to be of the following form’

Flo1(0),0,(0)|A]
= S[01(0),0,(0)|A]

__Z/ga dafaa(e’)log[sm(e;g)]dH’ (3.24)

one can recast Eq. (3.23) as

as 1 / ) 0 485 \?
oA~ 2) 7 \90560,(0)
As discussed in [22] this equation can be thought of as the
Hamilton-Jacobi equation with Hamiltonian

H[G,H]:% / o(1,6) [<an§;9)>z_%zo(tﬂ)2] 6 (3.26)

of a (1 + 1)-dimensional field theory with field o(¢, 6) and
conjugate momentum II(z,0) = The Hamiltonian

72'2 2
-5 04(0) }d& (3.25)

66(t 6)
equations of motion are given by

do  d(ov) 0

ot 00 ’
ov av , 0o
o Z_ Z 2
o V"% (3:27)

where
aIl(z,0)
t,0) = . 3.28
o1,0) =" (3.28)

These equations are similar to the continuity and Navier-
Stokes equations of a one-dimensional fluid moving on a
circle with density o(z, 6), velocity v(z, ), and a negative
pressure. Finding a solution of Eq. (3.25) for S(oy, 0,) is
equivalent to solve these fluid equations with the boundary
conditions

"Here the cut-integral Fd0' represents integration over ¢ over
the valid range except the point 6. Such integrals sometimes are
denoted by P |.
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o(t=0,0) =0,(0),

o(t =A,0) =0,(0). (3.29)
Suppose (a(t,0),9(t,0)) is a solution of fluid equations
with the desired boundary conditions. The quantity
S(o1,0,,A) evaluated on this solution is therefore given by

S 61,0'2,

/H (0,60),9(0,0)]dA + const. (3.30)

Using the series of definitions (3.24), (3.22), and (3.18) one
can write the knot invariant for Hopf link in S°/Z p as

Wr,r, = Sor, Sor, Wr R,

— exp {NZ (3(61,62,A) +13 P in 2)} (3.31)

Hence from (3.12) we find

W = S(01,02,4) + 22 —In2.

- (3.32)

Thus we see that the invariant for the Hopf link with any
arbitrary large representations of u(N), is given by the on-
shell free collective field theory action with the boundary
conditions (3.29). Further, since the fluid equations (3.27)
are dispersionless KdV equations (Burger equations),
the whole exercise to find the Hopf link invariant boils
down to solving a dispersionless KdV equation with a set
of boundary conditions. According to our notation if R,
(or R,) is zero, then the corresponding two-point function
Wg,r, becomes a one-point function and gives the
invariant for unknot. R, = 0 corresponds to a o, given
by (3.60).

Our next goal is to find out the invariants for other
classes of torus knots with the result of the Hopf link
invariant in our disposal.

B. Invariants for a class of torus knots in S3

In this section we discuss how knot invariants for other
torus knots in % (a Seifert manifold with g = 0, p = 1) can
be computed in the large N limit from the result of the
Hopf link.

Torus knots are special kinds of knots which can be put
on the surface of a torus. A formalism of knot operators was
developed in [7] to compute the invariants of torus knots.
In [3] the authors developed a different method to obtain the
invariants of links made from braids of up to four strands.
It was shown in [3] that for special types of links as shown in
Figs. 3(a) and 3(b), the knot invariants can be written in
terms of the eigenvalues of the half-twist matrix. The half-
twist matrix B(R, R,) introduces right-handed half-twists
in parallel oriented strands carrying representations R and

R, whereas, B (R,.R,) introduces right-handed half-twists

R R -
1 2 ) R1 R )
/
2m times 2m times
i i
1 1
1 1
1 1
1 1
1 1
1 1
/
Ri R,
R, R, l
(a) (b)

FIG. 3. Braiding of knots in S3. (a) For any values of m such
braiding gives m links of two unknots in representations R; and
R, with the same orientations. (b) For any values of m such
braiding gives 2m crossings of two unknots in representations R
and R, with opposite orientations.

in oppositely oriented strands carrying representations R
and R,. The dimensions of B and B depend on the number
of irreducible representations in the product R, and R,
(R,). Denoting the link invariants in Figs. 3(a) and 3(b) by
V[Lon(R1.Ry)] and V[L,,, (R, R,)], respectively, it was
shown in [3] that they are given by

VILy(R1.Ry)] = dim, R(A%(R,. Ry))™  (3.33)
R

and

V[Low(R1.Ry)| ZdlmR (R1.R))*™,  (3.34)

where 15 (R, R,) are the eigenvalues of B(R;, R,) and
B(R,.R,), respectively. They are given by

[C2(R1)=C2(Rp)|_C2(R)
2 2

’

(RI’RQ) (
AR(R1,Ry) = (=1) g~

)GR qcz(R1)+C2(R2)+

Cr(R1)-Cr (R CH(R
1€a( 1)2 2 ( z)\+2;)

(3.35)

where ¢ is given by (3.9). The sum on the right-hand
side runs over distinct irreducible representations of
Ri ® Ry(R,). The factor (—1)°® depends on the symmetric
or antisymmetric properties of R in the productof R ® R,.
For m = 1, V[£s,(R1, Ry)] and V[L,,, (R, Ry)] give the
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invariants for the Hopf link in $® with the same and opposite
orientations respectively.

In the double scaling limit (1.1), using the change of
variables (3.3) and denoting the large representations R/,

Denoting by o ,, respectively, the invariants (3.36) can be written as
GRI,R,) = qcz<R1)+Cz( o) +H2ED ) (3.36)
the knot invariant V|[L,,,(R, R,)] can be written as VLo (R1, Ry = G(m, 2, 61,065)F(m, 2), (3.38)
VLo (R1,Ry)] = G(m. Ry, Rz)z dim, RgR)
R
(3.37) where
|
A imN? 1 inmAN?
G(m. 2 0,.0,) = exp| = /d992(61 +o,) + /dee2( —)|) - (3.39)
27 2 3
and
N? 9(x) -0 /mN?
F(m,2) = | [DO(x)]exp | = [ dx{ —dylogsin (x) = 0G)| _ im dx0(x)?|. (3.40)
2 2 27A
The function F(m, 1) is difficult to calculate as the func-
tional integration over 6(x) does not run over all possible VIL,(Ri. Ry Z dim, R(1%(R1. Ry))".  (3.43)

configurations [since R in (3.33) runs over irreducible
representations of R; ® R,(R,) only]. However in the
large N limit one can find the invariant for any m knowing
the value of the same for m = 1. As we have mentioned that
for m = 1, V[£5,,(R1. R2)] = Wg,r,(4), the invariant for
the Hopf link evaluated in the last section.® Now from the
expression of the function F(m, 1) we see that

F(m, ) =F(1,4/m)

(3.41)
since the space of functional integration over 6(x) remains
unchanged (for given R and R,) as we vary m. Therefore
we find that in the double scaling limit the link invariants
for the class of links shown in Fig. 3(a) are given by

VILyn(R1,R,)] = (M

G(1,4/m, o1, 02)) Wr,r, (4/m).

(3.42)

In a similar way it is also possible to compute the link
invariants V[Z,,,(R;, R,)] from Wy, =, (4)-

When R, = R, one can construct a different braiding
as shown in Fig. 4. For even m this is the same as braiding
in Fig. 3(a) with R, = R,. However for odd values of
m such braiding gives a single knot. For example, when
m = 3 we get trefoil in S*. m = 1 gives an unknot. The
invariant for this knot is given by

8Up to an analytic continuation in A:4 — iA. This is due to the
fact that in deriving Wy %, we did an analytic continuation in p.

Following the same argument, V[L,,(R;,R,)] for
any odd m can be evaluated from V[L;(R;,R;)] in the
double scaling limit. The knot invariant V[L; (R, R;)]
is given by (3.32) with o, representing a trivial repre-
sentation (3.60).

Rl Rl
A
m times
1
1
1
1
1
1
1
1
Ri Ry

FIG. 4. For any odd values of m, such braiding gives a knot in
representations R; with m crossings.

025009-7



KUSHAL CHAKRABORTY and SUVANKAR DUTTA

PHYS. REV. D 106, 025009 (2022)

C. Large N phases of two-point correlators in U(N)
Chern-Simons theory

Large N phase transition in U(N) CS theory has been
discussed in [30]. Similar phase transition is also observed
in the correlation functions. In this section we give
qualitative arguments for such phase transitions.

It can be shown that if the fluid equations (3.27) admit a
solution such that there exists a time 0 < * < A when the
velocity of the fluid is zero, i.e.,

v(r*.0) =0 (3.44)

then the fluid velocity and density satisfy an identity

inc* [0 — (t—1")(v(t,0) + ino(1,0))] = v(t,0) + ino(1,0)).,
(3.45)

where

6" (0) = o(1*,0). (3.46)
The maximum value of the density is minimum at ¢ = ¢*.
For such solution one can show that the two-point function
(3.14) is dominated by an integrable representation p(y)
given by (see Appendix D for details)

(3.47)

i.e., inverse of *(0). If the fluid equations do not admit any
such solution then there exists no real saddle points.
Needless to mention the existence of a real saddle point
depends on the choice of o/, and 4.

If the fluid equations admit the existence of a real saddle
point for a given o/, then depending on the value of 4 the
system may undergo a phase transition. In order to discuss
this phase transition qualitatively we assume that the initial
and final densities ¢, () and o,(6) are even functions of @
and they have gaps (i.e., vanishes for |6| greater than some
|0p| < 7). The fluid density o(z,6) starting from the
configuration o, () at r = 0 spreads out (i.e., the gap starts
decreasing). The absolute value of velocity of the fluid also
decreases with time. At some intermediate time #* when the
velocity of the fluid is zero the density has a maximum
spread. After that fluid velocity starts increasing (in the
opposite direction) and the density starts contracting and
reaches the final configuration o,(6) at t = A. The system
will observe no phase transition if the maximum spread of
o(t,0) at r=1r" is less than z or at max touches z.
Otherwise the system will undergo a phase transition.
The Young diagram density p(y) have an upper cap
p(y) <1. In addition the variable y ranges between
+1/24. Since the two functions ¢* (@) and p(y) are func-
tional inverse of each other, * having a gap means p < 1.

If 6" is gapless then p develops a cap. Depending on the
initial conditions and 4 we can have four possibilities.
(i) If 6*(0) has gap but no cap then p(y) has a no cap
but a gap.
(i) If 6*(0) is gapless with no cap then the dominant
Young diagram p(y) will have a cap but it is gapless.
(iii) If 6* (@) has a cap with a gap then p(y) has no gap
but no cap.
(iv) If 6*(0) has a cap and no gap then p(y) has a cap and
no gap.
The last two cases are special in CS theory (unlike 2d YM
theory [22]) as all the representations are integrable
representations. In the next section we elaborate this
qualitative discussion with an example.

D. An example: Explicit computation of two-point
function and study of phase structure for Wigner
semicircle distributions

Wigner semicircle distribution is a probability distribution
on a real line between =R

) = ROVE = 2),

= (3.48)
Such distributions appear in different contexts in physics and
mathematics. The eigenvalue density of Gaussian Hermitian
random matrix theory is given by the semicircle distribution.
The transition distribution of the limit shape of asymptotic
Young diagrams studied by Vershik-Kerov and Logan-
Shepp [32,33] is given by semicircle distribution. In this
section we consider the large N distribution ¢, /,(6) corre-
sponding to R; and R, are given by the semicircle
distributions. The reason behind this choice is that the fluid
equations can be solved exactly. Our goal is to explicitly
calculate the knot invariant for the Hopf link for such
representations in the large N limit and study the phase
transition of a two-point function.

We take the following semicircular distributions for the
Young diagram density corresponds to R/,

Lo L%/zy2
1/2 i

PR/R, = ; (3-49)

Since R/, are integrable representations L, satisfies

L\,L,<7* and L, L,>16A% (3.50)
Suppose u(y, t) denotes Young diagram distributions that
interpolate between pr and pr, from 1 =0to r = A. We

consider

(3.51)
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L ]
- n

FIG. 5. Plot of ¢(0,1) as a function of O at r =0 (solid),
t =1t = A/2 (dashed), and any arbitrary 0 < r < ¢* (dotted).

such that

u(0) =L, and u(A)=L,. (3.52)

Considering the relation @ = 2zly, the eigenvalue distri-
bution ¢(6, t) corresponding to u(y, 1) is given by

1 (6 1 ()26
0.1)=—u|—.1) =—1/pult) ——F5—.
o(6.1) 2m”<2m1 > 22\ ez

For the choice of fluid density (3.53) the fluid velocity
can be solved exactly from the continuity equation and is

given by
v(t,0) = -6 (%)

(3.53)

(3.54)

where j(f) is a derivative of u(f) with respect to .
Plugging the ansatz for o(z,6) and the solution for
|

(1, 0) in the Navier-Stokes equation we find a differential
equation for p(r)

3@ 1
2u(ty 32204t

ji(t) (1) = 0. (3.55)

This is a second-order nonlinear ordinary differential
equation and has a simple solution up to two integration
constants. These two constants can be fixed from the
boundary conditions (3.52).

First we consider a special case L; = L, = L. Solving
Eq. (3.55) for symmetric boundary conditions we find

4L7*(87%0% + VAL A* + 647°8)
L2(A — 1)t + 4n2(8722% + VAZL22* + 647°18)
(3.56)

u() =

Since v(t, 6) is proportional to j(7) it is easy to see that the
velocity is proportional to A — 2¢ and hence for L; = L, =
L the fluid equations always admit a solution such that
v(1,0) =0 at t = A/2. The density o(z,0) coincides with
61(0) at t = 0 and then starts spreading out as ¢ increases.
The spreading is maximum at t = A/2. Finally the density
again starts contracting and finally becomes o, at t = A.
See Fig. 5.

If the maximum spread of o(¢,6) at t = A/2 is less than
2z then Wy , does not observe any phase transition. For

167222
> 3.57
Tt —4p*A? ( )
o(A/2,0) always has a gap. Since there exists a point * =
A/2 when velocity is zero, there exists a real dominant
Young diagram which maximizes Wg, ,. Itis given by the
(3.47) and has the form

p(y) =

Since ¢* () has gap, the dominant Young diagram does not

saturate the upper bound. However at L =

in ¢*(0) vanishes and the corresponding dominant Young
diagram touches the upper cap. Therefore Wy %, under-
goes a Douglas-Kazakov type phase transition at this
critical value of L.

The value of the knot invariant can be obtained by
calculating the Hamiltonian on this solution and integrating
over A. After an explicit calculation we obtain the following
result (substituting A = 2z pAl):

\/(SEZ/IZ + VAZL? + 647%2%) (4L — 167°2%y?) — A2L?y?

3.58
2Ln ( )
|
T2 W () — 274 1 | 16720  zp 2
=y e gap Win(l) = =7 P oy 1+ =5+ —in
1 pL
h™ ' — 3.5
i <4ﬂ1> (3:59)

This is the HOMFLY-PT polynomial in the double scaling
limit for Hopf link where two representations associated
with two unknots are the same and given by Wigner
semicircle distributions. In general HOMFLY-PT is a
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polynomial of two variables g = >/ +N) and s = ¢V.

However in the double scaling limit the variable ¢ = 1 and
s = ¢ hence W\")(1) is a function of A only.
Surprisingly, the final expression for the action
S(6y.0,]A) with 6,/,, given by the same semicircle dis-
tribution of size L, is similar to the limit shape of
asymptotic Young diagrams [32-34] up to an analytic
continuation in p. In particular
4

T (S(M) + 1)u—>iu = Q(M)’ pL

here u = ——
wnere u 27

and Q(u) is the limit shape. This is nothing but an
observation, we think.

One can also choose two different representations by
considering the boundary conditions u(0) =L; and
u(A) = L,. The expression for u(z) can also be computed
exactly. From these expression we see that the existence of
a dominant Young diagram depends on the values of L,
L,, and A. For a given choice of the set (L, L, 4) if the
fluid velocity never reaches zero then there exists no real
dominant Young diagram to maximize (3.13). However one
can calculate S(oy, 6,|A) from (3.25) and hence WY ; . In

this case ng 1, does not observe any phase transition. We
see that to get a real dominant Young diagram for L > L,

. ST T 22
the parameters must satisfy A > % and for L, >

. . T 22 .
L, the relation is given by A > % In this case there

exists a critical relation between L;, L,, and A which
determines whether the two-point function W ; —will
undergo a phase transition or not. However such condition
does not have any handy expression but can be found
numerically. One can also compute the knot polynomial in
this case.

E. Calculation of partition function

From (2.6) we see that we get back the partition function
of CS theory on the Seifert manifold when R, =0 V «a
(no box in the Young diagram). The phase structure of this
theory in the aforementioned double scaling limit was
discussed in [30] by directly solving the saddle-point
equation. As a consistency check, in this subsection we
reproduce the same result from the solution of fluid
equations.

When R, = 0 the corresponding o,(6) is given by

2l _ (3.60)
0  for otherwise.

L for —zA<0<7A
0,(0) =

We expect that the solutions of the fluid equations (3.27)
with the boundary conditions that o(z,60) merges with
(3.60) at t = 0 and r = A will admit an intermediate time
t* = A/2 (follows from symmetry) when fluid velocity is
zero and the functional inverse of the fluid density at * will

give the dominant Young diagram representation obtained
in [30].

In order to check our expectation we use the dominant
Young diagram found in [30]

2z

p e r

=LZtanh |4/ 1 -
p(y) _tan [

cosh(nﬁy)} ’ (361)

for 0 < 1 < Zlog[cosh (z/ p)]. Inverse of this function gives
c*(0). We now use the identity (3.45) to find v(¢,0) and
o(t, ). Since both velocity and density are real functions of
t and 0, we solve the real and imaginary parts of this
equation and find that o (¢, 8) matches with (3.60) at t = 0
and t = A. For A > Zlog[cosh (z/p)] the dominant Young
diagram distribution has a cap. It is difficult to invert that
distribution to find ¢*(6). However, one can numerically
check that other phase also solve the fluid equations.

IV. Sp(N) CHERN-SIMONS THEORY AND KNOT
INVARIANTS

A symplectic group Sp(n, F) is a group of 2n X 2n-
dimensional symplectic matrices over a field F under
matrix multiplication. A 2n X 2n-dimensional matrix A
is a symplectic matrix if it satisfies the relation

ATQZnA = an, (41)
where ,, is a 2n x 2n-dimensional skew-symmetric
matrix: an + Q,, = 0. A standard choice of €,, is

o 0 I,

" ( _Hn 0 ) '
Irreducible representations of Sp(n, F) are characterized by
Young diagrams with maximum » number of rows.

CS theory for the Sp(N) gauge group is well studied.
The large N limit of these theories and their connections
with dual string theories were studied in [35]. In this section
we shall discuss the phase structure of the theory in the
aforementioned double scaling limit. Then we show that
the analysis, given in Sec. III A, can be extended for Sp(N)
gauge group to obtain the invariant for the Hopf link in
terms of the collective field theory action. The analysis is a
little different than that of a U(N) theory since the modular
transformation matrices S and 7 for sp(N), affine algebra
have different forms.

(4.2)

A. The partition function

The partition function of CS theory with gauge group
Sp(N) and level k on a Seifert manifold is given by

Z(8%/2,.Sp(N). k] = > TSt (43)
R
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Here S and 7 for sp(N), affine lie algebra are given by

A N=1) 2 3
Sem = 2 ()

N+k+1
(R)F-(RD\ |V
x det | sin ~fi(R)f(R) . (4.4)
N+k+1 )|
where
filR)=n;(R)—i+N+1=h(R) (4.5)
and
izN(N + 1) in
T opor = -
RR eXp{ 12 2INTk+1)
N
x ) h,-(R)Z] Sr R (4.6)
i=1
We define new variables 0,
mhi(R') hi(R) N
. = = h =
O oy oy Ik I L ) ey
(4.7)

The double scaling limit is given by, as before, N — oo,
k — oo keeping A fixed. For an integrable representation R
we have 0 < h;(R) < N + k + 1; hence the new variables
0,(R) satisfies

0<6,(R) < (4.8)
Although 6; > 0 for sp(N) representations, we introduce a

distribution function o°7(@) which defines a symmetric
distribution of eigenvalues between —z and 7,

0‘”’(9) = ﬁ

1 N
i=1

5(0-0,) + % EN: 5(0+06,). (4.9)
i=1

Introducing mirror images of the eigenvalues
(4.10)

6*? (@) can be written as

7 (0) :%Za(e—ai). 4.11)

i=
i#0

Hence ¢°7(0) is a distribution of 2N eigenvalues: N 6;s and
their mirror images 6_;s. We should remember the relation

(4.10) while taking derivative with respect to 6;. We also note
that 6°7 (6) has an upper cap given by

(4.12)

similar to the U(N) case (3.6).
The partition function in the continuum limit is therefore
given by

2(5°/2,.5p(0).K = [lablexp -2 sl 413

where

Sulo?) =2 [* [ ar0)0m @)

2
x log [4sin2 (6 5 0 )] dode’

2pA [ 0> n?
sl sp Z_Z
I Lo (5-5)

2prA(l =)
_ 4.14
+—1 (4.14)
The saddle-point equation is given by
L4 0-0 p
P(g f=——0. 4.1
][_,,6 @) cot( 5 )d@ 27719 (4.15)

Thus we see that the saddle-point equation for Sp(N) CS
theory on §°/Z,, is the same as that of U(N) CS theory
(B10). Hence in the large N limit the phase structure of
these two theories are identical. Therefore, in the double
scaling limit, Sp(N) CS theory on $°/Z, admits a third-
order phase transition at 4 = plog(cosh?)/x.

B. Two-point correlator and Hopf link invariants

Though the structure of the modular § and 7" matrices
for sp(N), affine algebra is different than that for u(N),,
the two-point correlator for the Hopf link admits a
description in the language of incompressible fluid and
hence can be written in terms of the on-shell action of a free
collective field theory. The calculation follows the similar
line as what we did for U(N) theory but the intermediate
steps are different since hook numbers of the Young
diagrams of sp(N) representations are always positive.
The bulk of the calculations are given in Appendix C2;
here we outline the main steps.

Using the expression of modular S and 7 matrices we
write down the modified two-point correlation function
(3.1) as
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ipaN(2N+1)
e 2

22N(N-1)

Wrr,(8*/Z,.Sp(N),N. k) =

Z (det[sin(Né’j(Rl)yi(R))}>

y:(R) D[Q(Rl )]

" (det[sin(NQj (Rz))’z(Rm) D n(R)

where
yi(R) = hi;’?) (4.17)
and
D[O(R,)] = [ [ sin(6;(R,)) [ ] sin <9, (Ry) ; 0,(R ))
i=1 i<j
X sin (9’(R‘) ; 91(R1)> @.18)

We follow the same procedure, what we did for U(N) CS
theory, and define (after a wick rotation p — —ip)
Zr,r,(8°/Z,.Sp(N),N. k),

Wrr,(8%/Z,.Sp(2N),N k)

1 paN(2N+1) ~

)
:We 12 ZRIRZ(S?’/Z])?SP(ZN)’N’]() (419)

Following (3.22), in the large N limit we define a similar
function F(c}),,A) where o\7,(0) are eigenvalue distribu-
tions corresponding to R ,, respectively. Segregating the
pure o), dependent part from F(o}),,A), we define a
function S(s,, A) given in (C13) and show that S[o}/,, A]
satisfies

oS 1 [ , [(1o &5 \> =
— == [ 6l0) || 55557 | —45 0 (0)*|do,
oA 2/” >K2095aff’(9)> 394 (0)

where

A = zpl. (4.21)
Thus we see that S[e.”, A]/4 [Hopf link invariant in Sp(N)
CS theory] satisfies the same Hamilton-Jacobi equation and
hence the saddle point is governed by Sp(N) free collective
field theory equations.

The real dominant Young diagram in the large N limit
can also be obtained by studying the Hamiltonian equa-
tions. The real dominant representation, if it exists, is given
by the inverse of Sp(N) fluid density o°7(6, ) at some
intermediate time when the fluid velocity is zero. The

DIO(R,) (4.16)

[

detailed calculation for dominant representation is given in
Appendix D 1.

V. DISCUSSION

In this paper, we find that the computation of a two-
point correlation function in U(N) and Sp(N) CS theory in
S3)z » (which renders invariant for the Hopf link) in the
large N limit boils down to finding solutions of continuity
and Navier-Stokes equations of an incompressible one-
dimensional fluid evolving from ¢ =0 to t = A with the
initial and final densities corresponding to the representa-
tions R and R,. The Hopf link invariant W;gl)Rz (4) in the
large N limit satisfies the Hamilton-Jacobi equation where
pA plays the role of time and the Hamiltonian is given by a
U(N) [or Sp(N)] free collective field theory Hamiltonian.
The invariant for the Hopf link turns out to be equal to
the on-shell action. Using the method developed in [3]
we finally show that invariants for other torus knots
(2, k = odd) and links (2, k = even) can be obtained from
the invariants for the Hopf link and unknot.

We further discuss the large N phase structure of two-
point correlators in CS theory. Whether the two-point
function undergoes a phase transition or not depends on
the evolution of the fluid. The absolute value of the fluid
velocity at a given point 8 decreases with time as the fluid
starts evolving from ¢ = 0. The existence of a real dominant
representation depends on whether the absolute value of
velocity can reach zero at some intermediate time for all
—n < 0 < &. If one starts with a class of R; and R, such
that corresponding (@) and o,(0) are gapped, then the
density of the fluid starts spreading from its initial dis-
tribution o;(6). The spreading is maximum when the
velocity is zero (if such solution exists) and then starts
shrinking and goes to its final distribution o,(0) at t = A.
The maximum spreading of fluid density (at t = t*)
depends on the choice of R;,, and A. If the maximum

spread lies between —z and z then there is no phase

L (0) (0) .
transition in W'R,Rz' However, WRIR2 observes a third-

order phase transition otherwise. The CS theory enjoys
level-rank duality. A theory with rank N and level k& is dual
to a theory with level and rank exchanged. The two-point
correlation function in the dual theory also admits the
similar fluid structure. It would be interesting to understand
the relation between the fluid and its dual fluid in the large
N limit.
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The study of large N correlation functions is important in
many aspects. It sets up the platform to check the
generalized volume conjecture [18-21]. Further, based
on the Gopakumar-Vafa conjecture [36] it was observed
in [37] that the CS invariants are mapped to topological
string amplitudes on Riemann surfaces with boundaries in
the topological string theory side. The knot invariants were
reformulated in terms of new invariants (integer invariants)
capturing the spectrum of M2 branes ending on M5 branes.
The results were checked explicitly for unknot. Large N
analysis of this observation and its generalization to other
links were considered in [9]. Our analysis to compute
invariants for a class of knots and links will be useful to
further investigate the connection between CS theory and
topological string theory beyond partition function.

As we mentioned in Sec. I1, in S° there exists a canonical
framing /C = S. In this framing the two-point correlation
function for the Hopf link is given by S », and does not
show phase transition for any R ,. In Seifert framing the
same quantity is given by (3.11). The sum is over the
integrable representations. Using the properties of S and 7
matrices one can show that these two expressions are
related to each other up to a phase factor. The question is
why we see a phase transition in the two-point function in
the double scaling limit. If one takes the N, k — oo limit
without any restriction, then the sum in (3.11) runs over all
possible Young diagrams with any number of rows and any
number of columns. However, here we are considering a
particular limit N, k — oo keeping N/k fixed. Under this
condition the sum becomes restricted—one does not sum
over all possible Young diagrams. Therefore we do not
expect that in the double scaling limit the above equality
holds. This was also the reason behind the phase transition
in CS theory in $* studied in [30]. The framing dependence
of correlation functions in CS theory has a mining in the
topological string theory side. Framing is related to
inherent ambiguity in the open topological string amplitude
related to the IR geometry of the D-brane [38,39]. It would
be interesting to study the topological string amplitudes in
the same double scaling limit and understand the con-
nection better. We keep the problem for future.

ACKNOWLEDGMENTS

The work of S. D. is supported by the MATRICS (Grant
No. MTR/2019/000390, the Department of Science and
Technology, Government of India). S.D. acknowledges
the Simons Associateship of the Abdus Salam ICTP,
Trieste, Italy.

APPENDIX A: FRAMING DEPENDENCE OF
PARTITION FUNCTION

Partition function of CS theory in three dimensions
depends on choice of framing [1]. In this appendix we
discuss the framing dependence in details.

Canonical quantization of CS theory on a three manifold
M with a boundary X produces the “physical Hilbert
space” H(X). In [1] Witten constructed H(X) in terms of
conformal blocks of the WZW model on X with a gauge
group G and level k. One can explicitly construct
the Hilbert space for £ = $? and X = T%. For X = §?
the Hilbert space is trivial (dimension one). However for
¥ = T? the space of conformal blocks has one-to-one
correspondence with integrable representations of g;.
There is a natural choice of basis for H(Z = T?). The
basis vectors are given by integrable representations |R,)
of g,: these are the states associated with the partition
function of CS theory in a solid torus T?> with a WL in
representation R, along the noncontractible cycle.
Therefore the Hilbert space is finite dimensional and
spanned by these integrable representations.

In order to write the partition function of CS theory on a
generic three manifold M, we split the manifold into two
parts X; and X sharing a common boundary X. The path
integral of CS theory on X’ corresponds to a vector |¢) in
H(X). Since the boundary ¥ of X; has an opposite
orientation of that of X' the path integral on X'; is mapped
to a vector (y| € H*(X) where H*(X) is dual of H(X).
Since the manifold M can be obtained by gluing &X', and
Xy along X, the partition function of CS theory on M is
therefore given by [1]

Z(M) = (yl#). (A1)
Using this result Witten showed that one can write the
partition function and correlation functions of CS theory in
S* and other generic three manifolds from the partition
function and WLs in §% x S'.

In order to understand the prescription in detail let us
start with CS theory on a three manifold M. We consider a
WL Wy, = Trg, Ug in M along a knot K, where Ug =
Pexp([xA) and R, is an integrable representation of g;.
We take a tubular neighborhood of the knot K which is a
solid torus T2 such that 0T?> = T? is a torus. We take the T?
out of the manifold and hence the three manifold M is now
a connected sum of X = T? with a WL inserted and the
reminder X;. Note both X; and X have common
boundary T?. Following the work of Verlinde [40]
Witten showed that the path integral over T?> with a WL
Wr, along the noncontractible cycle of T, is mapped to a
state |R,) in H(T?). Thus, following (A1) we see that the
expectation value of WL Wy, in representation R, in M
can be written as

Wr, ) = W[Ra). (A2)
where (y| € H*(T?) is the path integral over X;. For R,
to be a trivial representation, the WL is equal to 1.
Therefore (y|0) is the partition function on M.
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Now, before gluing the solid torus with X', one can also
make a diffeomorphism on the boundary of T?. Such
operation (scooping out T?> from M — apply diffeomor-
phism on the boundary — gluing back with X’; ) generates a
new manifold M. Let us first understand this with the help
of a simple example. Suppose our M = §% x S!. The
manifold $? x §! can be written as a connected sum of
two solid tori. To understand this one can think that a solid
torus is a disc times a circle: T> = D x S'. When we glue
two discs at the boundary we get the two manifold S°.
Therefore, when we glue two solid tori along their
boundaries without any diffeomorphism we get $? x S'.
Thus we see that when we scoop out a solid torus from
§% x S! the reminder is also a solid torus. Consider now a
solid torus T? embedded in S* which is R? U co. T? is
invariant under inversion. The exterior of this T? is another
solid torus T'? (as we have identified the points at infinity).
However, there is a difference. The contractible cycle in T?
is mapped to the noncontractible cycle in T'? and vice
versa. Therefore these two tori are related to each other by §
modular transformation on the boundary T2. Thus when we
glue T? and T we get S*. Now starting from M = §? x S!
we split the manifold in two solid tori. Then we perform an
S modular transformation (i.e., inverting the torus) on the
boundary of one of them (say the right one) and then glue
them again. This surgery produces S* from S? x S!.

Consider now a CS theory in a solid torus with a WL in
representation R, along the noncontractible circle. The
path integral maps to |R,) € H(T?). If K is the diffeo-
morphism that acts on the boundary of the solid torus, the
path integral on T? changes and hence is mapped to a
different state in H(T?). The new state can be written as

) =D KhIRy). (A3)
Ry

The matrix K € Hom(H(T?), H(T?)) depends on the
diffeomorphism K that acts on the torus. If we now glue

this solid torus with X'; we get a new manifold M with a
WL in R,. The expectation value of the WL in represen-

tation R, in M can be written in terms of expectation value
of WLs in M

Wi = SKEWr ) e (Ad)
Ry

Hence the partition function on M can be obtained by
considering R, to be a trivial representation

Z(M) = Kh (W) - (AS)
Ry

This is a very powerful relation.

The partition function of Chern-Simons theory on S? x
S! can be calculated using (A5). As explained above the
manifold $? x S' can be written as a connected sum of two
solid tori. As mentioned earlier, a partition function in T?
without any WL is mapped to |0) in H(T?). Thus we get a
partition function of CS theory on S x S! is given by

Z(82 x S') = (0]0) = 1. (A6)

Similarly when we have a nontrivial WL in S? x S! we can
split the manifold into two solid tori with one torus
containing the WL along the noncontractible cycle.
Hence the expectation value of a WL in S? x S! is given by
(Wr,)s2xst = (0Ra) = dor,- (A7)
Our goal is to generate S from S x S' by surgery.
Starting from S? x S! we split the manifold into two solid
tori. Then we perform an S modular transformation on the
boundary T? and then glue them again. This surgery
produces S3. The diffeomorphism K is the modular trans-
formation S and hence the corresponding K matrix is the
modular transform matrix S in H(T?). Therefore following
(A5) and (A6) we find the CS partition function on S° is
given by

Z($%) = Sor, %%, = Soo- (A8)
Ry

However, instead of choosing K =S if we choose
K =T8T =S8T-'S, this also produces S* but in a
different framing called Seifert framing. In this framing
the partition function is given by

Zsp(S%) = ZS(Z)RT%IR (A9)
R

which is the same as Z(S®) up to a phase.

Partition function for CS theory on a generic lens space
S3/ Z, (a Seifert manifold with g =0) can be obtained
from $%2x S! by choosing K = (7S87T)" = (ST-'S)’.
The partition function is given by (B1) with g = 0.

In order to get the partition function of Hopf link in
§%/7, we can start with CS theory on $? x S! with two
WLs. We consider a solid torus along one WL and split the
manifold with two parts scooping out the solid torus. The
remainder is also a solid torus with the other loop. Partition
functions on these two tori are given by |R,) and (R,|.
Hence the CS partition function with two WLs is given by

Z(S2 X Sl, RaRb) = <Rh|Ra> = 67%7%. (AlO)
Before gluing if we give an inversion on the right torus by
choosing K = (S7~'S)” we get Hopf link in $*/Z,, given
by (3.11).
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We now want to find the correlation of three WLs in
representations R1, R,, and R; in §? x S'. We can split
§? x S! with three WLs into two solid tori: one contains a
WL in R and the other torus contains two WLs in R, and
R5. Suppose the CS partition function in T? with two WLs
along the noncontractible circle is mapped to a state
|R,Rs3) in H(T?). Since R;’s correspond to primary fields
in WZW we have

IRyR3) = ZNR =R (A11)
where N %1722 is the Verlinde numbers. Hence
Z($?x S Ry. Ry R3) = Ng'n (A12)

One can now use the result (All) to write the n-point
correlation function in §? x S given by (2.3) for g =0
with the help of the Verlinde formula,

Z SRRZSRmS%R,

NR2R3 S()R

(A13)
R

Starting from (2.3) we take a solid torus out from S x S!
with any of the n WLs inside, apply an inversion on the
torus, and then put that back inside. In this process we
generate an S3 with the link, shown in Fig. 2 inside and the
invariant is given by (2.2).

APPENDIX B: REVIEW OF U(N), CHERN-
SIMONS THEORY ON SEIFERT MANIFOLD

The partition function for U(N) CS theory on a Seifert
manifold is given by

Zyr= Zsz T (B1)

Since the affine Lie algebra u(N), is the quotient of
su(N) X u(1)yusny by Zy, the u(N) representations
can be expressed in terms of su(N) representations
(denoted by R) and eigenvalues of u(1) generator Q:

= (R,Q), where Q =r(R) mod N and r(R) is the
number of boxes in R. The trivial representation R =0
means both R =0 and Q = 0. The modular transform
matrix Sgrs for u(N), in terms of su(N) representations
and the u(1) charges is given by [26,29,41]

L NV-1)
Spr = _l)—2 s TdetM(R.R'),
TEE

(B2)

where M(R,R’) is a N x N matrix with elements,

MR R) = o0 |22 RIS (R)|. (B3)
¢i(R)—l,—$—i+%(N+l) (B4)

and /;’s are the number of boxes in the ith row in R. The
modular transformation matrix 7 g/ is given by

. 1C5(R) N(Nk+1)

T - 2/rl(hR—*)5 , hp—=— 2 , =7

RRIZ €T ORRL . ARTHTUN k+N
(B5)

where C,(R) is the quadratic Casimir of u(N),. The u(N)
representations R can be characterized by extended YDs
by introducing the number of boxes in the ith row
n;=1;+s,for 1 <i<N-1 and ny = s where s € Z.
n;s can be negative and the corresponding YDs will have
antiboxes [42]. In terms of these n;’s the quadratic Casimir
C>(R) is given by

N
Co(R) =) ni(n; =2i+N+1). (B6)
i=1
For an integrable representation R of u(N),
k k
_ESnNS"'Sn]S§9 (B7)
and hence
k k
—§<hN<-~-<h1§§+N—1. (B8)

In terms of the variables 6; introduced in (3.3), the CS
partition function (B1) in S*/Z » in the continuum limit is
given by

2z, = / (0 KPSale), where

Serr|o] —pﬂ/a(e) (%2 i) do + w

5 ot (05

(B9)
The saddle-point equation for (@), obtained from the
effective action is given by

0-0 p
/ /
%0(9 ) cot( 5 )d@ =5 0.

In the large N limit we have to solve this equation for ¢(6)
in the presence of this constraint (3.6).

c(0')log [4sm <

(B10)
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The unitary matrix model (B9) has a gapped phase in the
large k, N limit and the eigenvalue distribution is given by
[43,44]

_2zd

c(0) —Lﬂtanh [ 1= ;9] for

—2cos™!

It turns out that the solution saturates the upper bound (3.6)
at A= p/rlogcosh(z/p)=2* [44] and is not valid
beyond that.

Cap-gap phase.—It was observed in [30] that for A > 1*
the saddle-point equation admits a cap-gap solution.
The eigenvalue density (@) for 1 > p/zlogcosh(z/p)
is given by

5(0) =

cos” § 1
B o s for—-60,<60<0
e% <0 <2cosle. (B11)  o(0)= {’f* ’ ? (B12)
U( ) for—91<9<—92 and 92<9<91,
where
|s1n¢| \/ (sin? £ — sin? 92)(sin2% — sin? 4’) {4(1-[(”2’ my) — sinng(mz))
A \/(1 +c0s6,)(1 —cos ) sinZ¢
2p(0052‘92_1H(1//,n1,m1) _COSZ%F(V/,WZ])) (B13)
(1 4 cos¢)(cos ¢ —cos b)) )

The constants m;, m,, ny, n,,y are given in [30].

APPENDIX C: EXPLICIT DERIVATION
OF HAMILTON-JACOBI EQUATION

1. U(N) Chern-Simons theory

Replacing Zp z, = eMFyv in (3.20) and using the

relation
1 D[ oU
@ Ea)z}:N w VR (D)
D[0'] a0\ 26,
for
U 10logD[e@] 1 & t 0" 6\ o
k=N @ —ﬁZCO 2 ( )
0,
J#k
we get
oF N PFy 1 OF v\ 2
i <¢+—2(N—<z)
0A N — 00\“ NK:1 00,
1 Noou, 1
+ Uk — > —+~> Ui (C3)
Calculating
1 <X oU, 1 K 1
N2 ;69(”) - _4—32 Z 9@ _g@ (C4)
= k J;

|
we note that the right-hand side is zero in the large N limit

when 9,(;1) #* 9}‘1)
0 6
distribution functions o,(0) for {9§“>} given by (3.5)

. It only gives a nonzero contribution for

. In the large N limit we define continuous

(C5)

(@ _ gl@) o, k=i
Thus 6" - 0" ~ 71,

replaced by integration and all the partial derivatives by
corresponding functional derivatives

1 N
=) - / 6,(0)do
Nk:l
v 0o 5
-> = .
agl(ca) 00 66 ,(0)

also in this limit the sum will be

(Co)

Finally using the identity

N—oo 1

71.2
;U—k)z:?

j#k

the equation (C3) reduced to (3.23). Here we have

2 . . . . .
g (F)ﬁ as it is O(4,) in the large N limit.
a0

neglected the term

2. Sp(N) Chern-Simons theory

The derivation of the Hamilton-Jacobi equation for
Sp(N) CS theory falls in the same line as that of a
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U(N) theory once we define the eigenvalue density for the
eigenvalues and their mirror images (4.11).
The function Zg ,(S°/Z,,Sp(N), N, k) is given by

Zr,%,($*/Z,. Sp(N).N.k)
det(sin N@,(R )yi(R))]
-2 (Ra)
det[sm(NGj(Rz)yi(R))]
D[O(R,)]

e EL R ()

The quantity 27317%2 in (C7) will satisfy (3.20) with
A = zp. The quantity log[D[0]] for Sp(N) theory has
the form

For Sp(N) theory we define the quantity U, as follows:

1 dlog[D[6']]
N o0

2;] Zcot( o 9(“)> (C9)

= —cot 9
J#k

Uk:

and find that it satisfies

1 oU, 1 X 1 3
WW B _WZ (9§a>_9<_a>) - Wsin@k' (C10)
k 3 J

N gin2
72 sin

In the large N limit the only contribution will come from

those 6; which are close to 6. Thus 6" — 9§“> ~ ZN[;:)j(‘Hk)

= %2 we find that

and using the identity limy_ o, > ¥ _, T
i#k

—Z Ui z——Z4N2 8(a)(61)-

(C11)
- 69
Assuming ZRIRZ is dominated by a single representation in

the large N limit, we use the ansatz Z z, = e"’*~, where
Fy can be written

Fy=Sy— sz[ Zlogsmea
i=—N

+= ZZIO};[&H(U 95@)”. (C12)

k——N J

From the above equation we can find two relations,

OFy _ dSy 1

Oy _Bn 1y

a0 00" N

OFy _ 9Sy

—N_N 1
0A ~ 0A (€13)

Using the above two relations we can reduce the differential
equation of Z , to differential equation of Sy

asy_ 1 KNOSN>2
0A 2N &=\ o8

In the continuum we assume that the density converges
to a smooth function and the sum and partial derivative
replaced by

10U,
N 00,

} (C14)

1 N 0 0 1)
lim L 5P (9)dO 2N — -
i 2 = [ 00 = S,

(C15)

Replacing the sum by integral and using (C11), we get the
continuum version of (C14) as given by (4.20). With
redefinition of § =45’ the above equation is the same
as (3.25) which can be mapped to a Hamilton-Jacobi
equation with Hamiltonian

_ % / 5(0)? [(%)2 -”;6(9)2} a0

The Hamiltonian equation of motion is the same as
(3.27) with the boundary condition (7 = 0,60) = 6,(0)
and o(t = A,0) = 6,(0).

Hlo.11] (Cl6)

APPENDIX D: FROM EIGENVALUE DENSITY
TO YOUNG TABLEAU DENSITY

To find the dominant Young tableau density, we can use
the large N properties of the Itzykson-Zuber integral

det ||eNubi||

OO

IN(A,B) = /[dU] NTr(AUBU™) _
Here A and B are arbitrary Hermitian matrices, a; and b;
are their eigenvalues, and A(a) = [];-;(a; — a;). One nice
property of the integral is
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det”eNakij g[zk . k+2/ 1 /} det||e‘7 ay—b;)? || (DZ)
A(a)A(b) A(a)A(b)
Then one can define the quantity
1 det ||e~2(a=b)||
Jy(t,A,B) = ——F——F——F—— D3
W A-B) = A @A D) (B3)
which satisfies the partial differential equation
ay 1 K
2N — = — [A(a)dy]. D4
ot A(Cl) ;aa% [ (a) N] ( )
Equation (D4) is similar to (3.20) with
11
U, =— D5
e (D3)
J#k
and like (3.24) we can also write
11m —log[JN} = S[a, p, 1]
——/][ (d')logla — d']
-5 [ o0 0e-p1 (00

with a(a) and $(b) being the densities of a and b. S;|a, S, 1]
satisfies the differential equation

oS; 1 0 855 \?

—L—_ [ ala)| (=

or 2 daba(a)
One can think of this as the Hamilton-Jacobi equation for
the dynamical system with the Hamiltonian

e [0 Ga) -5

We are interested to the solution which connects
p(t=0,a) =a(a) and p(r=1,b)=p(b) within
time t = 1. The variational derivative at the end of the
trajectory is

- ”;a(ay] da. (D7)

p(a)z] da. (D8)

58,
da(a)

oS
=I(r=0,a), 5ﬁ(lj7):

The equation of motion which follows from the above

Hamiltonian can be transformed to a single equation

01—;51 @) 4 inp(a),

“N(r=1b). (DY)

(Hopf equation) of the function f,(,a) =

<3fJ 5f1

i (D10)

The general solution of (D10) can be written in para-
metric form

x=RE+Fr  [fi(t.x)=

If we introduce two analytic functions,

F(&).

Gy(x) =x+f,(t=0,x), G_(x) =x—f;(t=1x),

then one can show that

G (G_(x)) = G_(G.(x)) = x. (D11)
After replacing a; = y; = 7y, and b; = 6; followed by
T — i we can transform the Itzykson-Zuber integral to a
character of the Uy group

det ||e™ || — det [|e™ ]| = yr(U)A(e").  (D12)
Also, the densities of y' and y are related by
ox 1 [y
=—-——=—-p|= D13
pe(¥) o TP(T> _ (D13)
With this we can define two types of velocity
0 6S;|p;,0 06S)\p;.0
U(y) :_M, U.(y) :_M’
dy dp(y) 9y 3p.(y)
9 85, [p,.0] 9 85[0, )]
V(0) = 0)=————=, (D14
O =350 9= "5 o000 @ P

where the quantity S|, 0,] is from (3.24). The above
four velocities are related to each other by

U(y) =tUc(ty)l=ir  —V(0) +0=-12(0) (DI5)
from the large N limit of yx(U) = ¢V’E») and using
on-shell condition one can show

0 5EL0,01]

ay () (D16)

A
= TUT(Ty)|T:l -y= Ey

We can also define two analytic functions with these
variables:

A

G () = x4 Uelx) + impe(x) = =5 x + —7pe(x),
G_(x) =x—=V(x) —ino|(x) = —vy(x) — ino(x). (D17)
Hence from (3.45) with 6; = 05, in this case * = % and at

t = A we have

inc* |0 —%(112(9) +inc((0))| = vy +inci(0). (DI8)
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By using (D13) and (D17) we can show that

zp(—mc*(0)) = 0. (D19)

1. Sp(N)

To find the Young-Tableau density for the Sp(N) group
we can extend the above procedure of U(N) by a simple
observation:

1 ~\NWV N
det || sinh Nayb || = 2_NeAz'[zk:| ai+) 1 bl det ||~ ¥ @b

— e~2lath)?||. (D20)
This helps us to define
1 det[[edob) _ o)
Jy(t,a,b) = D21
wita.b) =y A(a)A(b) (b21)

which satisfies the same differential equation as (D4),
with A(a) = [T¥, ¢, [T} ;(a; + a;)(a; = a;). Following
the same procedure as depicted in (IV B), i.e., identifying
a_, = —ay and the same for b, also, we can write every-

thing in terms of this new a; as

log[A(a)] = % DD logla;-a) +411 > log[2a;] (D22)

i=—N Jj=-N i=—N
J#k
with
1 1< 1 1
U, =—log[A(a)] = — — D23
k Nog[ (a)] N;ak_aj 2a; (D23)
J#k
and
10U, n?
PR ot 2 D24
N 9a 3 a(ay) (D24)

Assuming that J at the large N is given by Jy = ' F¥

and

Fl = S}~ (loglA(@)] + loglAB)).  (D25)

then §7 = limy_, S% will satisfy the differential equation

% - / a(a) K%%éif;)z - 4%2a(a)2} da. (D26)

After redefinition of §/ =— 45/, the above equation
reduces to the Hamilton-Jacobi-like Eq. (D7). Thus the
function f(t,a) = v(t,a) + inp(t, a) follows the Burger’s
equation with the boundary condition:

J
Im{f,(1=0,a)]=na(a), Re| ,<z:o,a>]=%aifa>’
J
Im[f,(r=1,b)] =7B(b), Re| J<z=1,b>1=—£;ﬂ—fm.
(D27)

Similar to the U(N) case, after replacing a; =y} = 7y
and b; = 0; followed by 7 — it we get

det || sin Ny, 0, ||

det||sinh Ny 6;|| — G

()VDlo]. (D28)

We can follow the same procedure as above and prove that
when ¢,(0) = 0,(0) the dominant young tableau density
satisfies

np|—no*(0)] = 6. (D29)
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