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We compute the invariants for a class of knots and links in arbitrary representations in S3=Zp in the large
k (level), large N (rank) limit, keeping N=ðkþ NÞ ¼ λ fixed, in UðNÞ and SpðNÞ Chern-Simons theories.
Using the relation between the saddle-point description and collective field theory, we first find that the
invariants for the Hopf link and unknot are given by the on-shell collective field theory action. We next
show that the results of these two invariants can be used to compute the invariants of other torus knots and
links. We also discuss the large N phase structure of the Hopf link invariant and observe that the same may
admit a Douglas-Kazakov type phase transition depending on the choice of representations and λ.
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I. INTRODUCTION

Knot theory is an interesting field in mathematics. A knot
is a smooth embedding of a circle S1 to a three manifold. A
link is a collection of disjoint knot. An important question in
knot theory is whether two knots (or links in general) are
equivalent by ambient isotopy (i.e., if one can continuously
deform one knot into the other without breaking it). Knot
invariants1 are used to distinguish between different inequi-
valent knots.
A variety of knot invariants in three dimensions can be

obtained from the correlation functions of Wilson loop
(WL) operators in Chern-Simons (CS) theory [1]. The CS
theory is topological at classical as well as quantum level.
The only interesting observables in this theory are WLs
along oriented knots and links. Since WLs are independent
of metric, their expectation values are topological and hence
they are bona fide candidates for the knot invariants. Witten
proved that these topologically invariant correlation func-
tions are precisely the generalized knot invariants in three
manifolds [1]. For G≡ SUðNÞ, G≡ SUð2Þ and G≡
SOðNÞ these correlation functions give the HOMFLY-PT
polynomial, the Jones polynomial, and the Kauffman
polynomials, respectively, when the representations asso-
ciated with the WLs are in fundamental representations.
In general the correlation functions of WLs in arbitrary

representations provide a wide class of topological invar-
iants. These are known as coloured polynomials. From the
CS theory perspective such invariants are well defined and
we also understand the source of representations associated
with the invariants. In mathematics such colored invariants
have been defined by Reshetikhin and Turaev [2] and used
to construct new quantum invariants of three manifolds.
Although CS theory can be solved exactly, the calcu-

lation of knot invariants is difficult. There exists a large
literature on the computation of generalized colored
invariants for different links and knots. Some of them
can be found in [3–18]. In this paper we consider UðNÞ
and SpðNÞ CS theories and compute the knot invariants in
the following limit:

N; k → ∞ keeping λ ¼ N
kþ N

fixed: ð1:1Þ

Here, N is the rank of the gauge group and k is the level of
the CS theory. This limit is called a double scaling limit.
We use the saddle-point technique to calculate the invariant
for the Hopf link, shown in Fig. 1 in lens space S3=Zp for
any representations R1 and R2 associated with two
unknots.2 We then show that with this result in hand
one can compute the invariants for the class of torus knots
(2; k ¼ odd) and links (2; k ¼ even) following the method
developed in [3].
Since the representationsR1=2 are integrable, in the large

N limit we describe these representations in terms of
eigenvalue distributions of unitary matrices. As a result,
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1Knot invariants in general mean invariants for both knots
and links.

2The computation presented in this paper could be extended to
find the invariants for hyperbolic knots and links. For example
Borromean links (for three given representationsR1,R2, andR3).
Therefore such calculations might be helpful in understanding the
volume conjecture [18–21] and its generalized version.
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in the double scaling limit the problem can be studied with
the aid of a collective field theory3 [24]. We find that the
Hopf link invariant satisfies the Hamilton-Jacobi equation
with pλ playing the role of time and the Hamiltonian being
the free collective field theory Hamiltonian. Therefore, large
N (classical) value of the Hopf link invariant, evaluated on
the classical solutions, is given by the on-shell action of the
free collective field theory. The Hamilton’s equations are
similar to the continuity and Navier-Stokes equations of an
incompressible fluid with negative pressure. Thus the study
of a Hopf link invariant boils down to the study of time
evolution of a one-dimensional incompressible fluid with
the boundary conditions depending on R1=2.
The knowledge of the Hopf link invariant should be

enough to find the invariants for the class of other torus
knots (2; k ¼ odd) and links (2; k ¼ even) using the
generalized Alexander-Conway skein relations recur-
sively. However when we place representations other than
fundamental it becomes difficult. In [3] Ramadevi et.al.
developed a technique to get the invariants for links made
of braids up to four strands. A class of invariants for links
and knots including torus knots can be obtained from the
eigenvalues of half-twist braid matrices. We use these
relations and show that in the double scaling limit the
invariants for a wide class of knots and links can be
computed from the result of the Hopf link invariant. We
also emphasize that our results are valid for any arbitrary
large N representations associated with the knots.
We also study the large N phase structure of two-point

correlation functions of CS theory. We show that in the
double scaling limit the two-point correlation function (Hopf
link invariant) admits a third-order phase transition depend-
ing on the choice of R1=2 and λ. Such a phase transition is
similar to the Douglas-Kazakov phase transition [25].

A. Main results

The main results of this paper are the following:
(i) We show that in the large N limit the computation of

two-point correlation functions of CS theory for
Hopf link boils down to computation of an on-shell
action of a free collective field theory. To be precise,
the calculation of a Hopf link invariant turns out to

be equivalent to the time evolution of a one-dimen-
sional incompressible fluid with the boundary con-
ditions depending on R1=2.

(ii) The Hopf link invariant in the large N limit is equal
to the on-shell partition function of a collective field
theory. The result is given by Eq. (3.32). The
functions σ1=2ðθÞ contain information of the repre-
sentations R1=2 associated with the Hopf link.

(iii) We also show that in the large N limit the invariants
for torus knots (2; k ¼ odd) and links (2; k ¼ even)
can be computed from the Hopf link invariants and
are given by (3.42).

(iv) We study the large N phase transition in two-point
correlation functions of CS theory.

The plan of the paper is as follows. In Sec. II we review
the correlation functions of WLs in CS theory in Seifert
manifold in different framings. Section III provides the
detailed calculation of the Hopf link invariant and other
torus knot invariants in UðNÞ CS theory. We also discuss
the large N phase structure of the Hopf link invariant in this
section. We conclude Sec. III with an example. Large N
phase structure of SpðNÞ CS theory and correlations
functions are discussed in Sec. IV. We end the paper with
a discussion in Sec. V. In Appendix A we discuss how to
obtain the correlation functions in different manifolds using
surgery and their framing dependence. In other appendixes
we elaborate various technical details used in the main text.

II. PRELIMINARY: CORRELATION FUNCTIONS
IN CHERN-SIMONS THEORY

In this section we review the correlation functions in CS
theory on Seifert manifolds in different framings. Experts
may skip this section.
The topological nature of classical CS theory is pre-

served even at the quantum level (correlation functions) but
at the cost of a choice of framing. Physical observables
(correlations of WLs) are completely determined in terms
of topological data of the three manifoldM up to a framing.
In order to understand the framing dependence in detail we
first state an important connection between CS theory and
the Wess-Zumino-Witten (WZW) model [1]. Quantization
of CS theory with gauge group G and level k in M with
boundary Σ (¼ ∂M) renders a physical Hilbert space HðΣÞ
which is isomorphic to space of conformal blocks of the
WZW model with an affine Lie algebra gk. Using this
connection, correlations of WL operators in CS theory can
be written in terms of observables of the WZW model.
To show the framing dependence explicitly we consider

the CS theory on a Seifert manifold Mðg;pÞ. A Seifert
manifold is a nontrivial circle bundle over genus g Riemann
surface4 Σg with the first Chern class p. Seifert manifolds

FIG. 1. Hopf link.

3Similar analysis was done by Gross and Matytsin [22,23] in
the context of 2d Yang-Mills theory.

4In this paper, we have considered the Riemann surface Σg to
be smooth.
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for a generic p can be obtained from Mðg;0Þ (which is a
product of genus g Riemann surface and a circle Σg × S1)
by surgery. Different choices of surgeries give different
framings ofMðg;pÞ. The n-point correlation functions in CS
theory are defined as

hWK1;…;Kn
R1;���Rn

i ¼
Z

½DA�eiSCS
Yn
a¼1

WKa
Ra
ðAÞ ð2:1Þ

whereWK
RðAÞ ¼ TrRUK with UK ¼ P exp

H
K A and SCS is

the standard CS action with gauge field A. Denoting the

n-point correlations of WLs by Wðg;pÞ
R1���Rn

½G; k� one can
write them in the following form [26–28]

Wðg;pÞ
R1���Rn

½G;k� ¼
X
R

KðpÞ
R1R

WRR2���Rn
ðΣg ×S1;G;kÞ ð2:2Þ

where KðpÞ depends on the framing. Note that being

topological Wðg;pÞ
R1���Rn

½G; k� does not explicitly depend on
the geometry of the knots, it only depends on the topology
up to a framing. WRR2���Rn

ðΣg × S1; G; kÞ is the n-point
correlation function of n vertical lines (wrapped around S1)
in Σg × S1 carrying representation Ri, given by

WRR2���Rn
ðΣg × S1; G; kÞ ¼

X
R

S2−n−2g
0R

Yn
a¼1

SRRa
: ð2:3Þ

See Appendix A for a detailed discussion. Here SRR0 and
T RR0 are the modular transform matrices associated with
the highest weight representations of the affine Lie algebra
gk under inversion and translation of modular parameter,
respectively (see [29] for details). They satisfy

S2 ¼ ðST Þ3 ¼ I: ð2:4Þ

The summation on the right-hand side of (2.2) runs over

integrable representations of gk. Wðg;pÞ
R1���Rn

½G; k� in (2.2)
represents a topological invariant of links of n unknots as
shown5 in Fig. 2.
When p ¼ 1 and g ¼ 0 the Seifert manifold is a three

sphere S3. On S3, there exists a canonical choice of framing,
given by Kð1Þ ¼ S. In canonical framing the correlation of
n WLs (2.2) is given by

WR1���Rn
½S3; G; k� ¼ S2−n

0R1

Yn
a¼2

SR1Ra
: ð2:5Þ

The invariant for the link diagram in Fig. 2 in a Seifert
manifold can be obtained from Σg × S1 by surgery with the
choice KðpÞ ¼ ðTSTÞp. This particular choice is called
Seifert framing. In Seifert framing, therefore, the invariant
is given by [26–28]

Wðg;pÞ
R1���Rn

½G; k� ¼
X
R

T −p
RRS

2−n−2g
0R

Yn
a¼1

SRRa
: ð2:6Þ

The main focus of this paper is to study the large N
structure of these knot invariants.

III. KNOT INVARIANTS IN UðNÞ
CHERN-SIMONS THEORY

In this section we consider the gauge group G ¼ UðNÞ.
For our purpose, we define a modified WL operator W̃R

W̃R ¼ WR

S0R
: ð3:1Þ

The n-point correlation functions of these modified WL
operators are given by

W̃ðg;pÞ
R1··Rn

ðN; kÞ ¼
X
R

S2−2g−n
0R T−p

RR

Yn
a¼1

SRRa

S0Ra

: ð3:2Þ

S and T for uðNÞk are given by (B2) and (B5). For a given
representation Ra we define a set of N variables

fθðaÞ1 ; � � � θðaÞN g

θðaÞi ¼ 2π

N þ K

�
hðaÞi −

N − 1

2

�
; ð3:3Þ

where hðaÞi ¼ nðaÞi þ N − i are the hook numbers of the

Young diagram associated with Ra and nðaÞi is number of
boxes in the ith row. Since Ra’s are integrable representa-

tions of uðNÞk, nðaÞi ’s satisfy

FIG. 2. Links of unknots.

5Figure 2 describes the linking of the knots schematically. The
exact diagrams of such links in Mðg;pÞ is complicated. Math-
ematically the p dependence in the correlation function comes
(after surgery) through the operator Kp.
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−
k
2
≤ nðaÞN ≤ � � � ≤ nðaÞ1 ≤

k
2
: ð3:4Þ

It is easy to check that in the double scaling limit the

variables θðaÞi ranges from−π to π. These θðaÞi can be thought
of as eigenvalues of unitary matrices. However, there is a
difference. The minimum gap between two eigenvalues is
2π=ðkþ NÞ. Therefore, in large N limit an integrable
representation can be described in terms of a distribution
of these eigenvalues, denoted by σðaÞðθÞ and defined as

σaðθÞ ¼
1

N

XN
i¼1

δðθ − θðaÞi Þ: ð3:5Þ

In the double scaling limit (1.1), σaðθÞ satisfies the constraint

σaðθÞ ≤
1

2πλ
ð3:6Þ

which follows from the fact that two eigenvalues have a
minimum separation 2π=ðkþ NÞ. Considering the above
change of variables one can compute the ratio of SRRa

and
S0Ra

. It turns out to be

SRRa

S0Ra

¼ e−
2i
N

P
i
ðhi−N−1

2
Þ
P

i
θðaÞi χRðθðaÞi Þ ð3:7Þ

where hi’s are the hook numbers associated with R and
χRðθÞ is the character of the UðNÞ in the representation R.
Using the expression for T (B5) the n-point correlation
function can be written as

W̃ðg;pÞ
R1··Rn

ðN; kÞ ¼
X
R

q−
p
2
C2ðRÞe−iΘC1ðRÞ

S2gþn−2
0R

Yn
a¼1

χRðθðaÞÞ; ð3:8Þ

where

q ¼ e2πi=ðkþNÞ ð3:9Þ

and

Θ ¼ 2
Xn
a¼1

�
1

N

XN
i¼1

θðaÞi

�
: ð3:10Þ

This correlation function is similar to the partition function
of a q-deformed Yang-Mills theory with a Θ-term on a
genus g Riemann surface with n boundaries [22,26]. The

distributions of holonomies on those boundaries are given by

fθðaÞi g. The only difference between (3.8) and the partition
function of a q-deformed 2d Yang-Mills theory is that the
sum in (3.8) runs over integrable representations.
When R1 ¼ � � � ¼ Rn ¼ 0, the correlation function

(3.8) gives the partition function of UðNÞ CS theory of
level k on the Seifert manifold. The large N phase structure
of this theory for g ¼ 0 was studied in [30]. The theory
undergoes a third-order phase transition in the double
scaling limit (1.1). We have reviewed the result in
Appendix B.
In this section we explicitly compute the two-point

correlation functions (n ¼ 2) in the double scaling limit
(1.1) and show that using the result of two-point correlation
function one can compute the invariants for a class of torus
knots (2; k ¼ odd) and links (2; k ¼ even).
Two-point correlators in S3=Zp, which is a Seifert

manifold with g ¼ 0 for any p, is given by

WR1;R2
½S3=Zp; N; k� ¼

X
R

T −p
RRSRR1

SRR2
ð3:11Þ

and represents a topological invariant for the Hopf link
(Fig. 1). In the large N limit the two-point function admits a
genus expansion (perturbative part) [31]

ln ½WR1;R2
½S3=Zp; N; k�� ¼

X∞
h¼0

N2−2hWðhÞ
R1;R2

ðλÞ: ð3:12Þ

Our goal is to compute the leading contribution Wð0Þ
R1;R2

ðλÞ
for any R1=2 using the saddle-point technique.
The modified two-point correlation function (3.1) is

given by

W̃R1R2
ðS3=Zp; N; kÞ

¼
X
R

q−
p
2
C2ðRÞe−iΘC1ðRÞχRðθð1ÞÞχRðθð2ÞÞ; ð3:13Þ

where θð1=2Þ are eigenvalues corresponding to the repre-
sentationR1=2. We consider the representationsR1 andR2

such that the eigenvalues are symmetrically distributed
about zero and hence the Θ term drops out from (3.13).
Expressing the characters of UðNÞ in terms of a Schur
polynomial we can explicitly write down the two-point
correlation functions in the following form:

W̃R1R2
ðS3=Zp; N; kÞ ¼

X
fyig

e2πip
N2

24

2NðN−1Þ
det jjeiNyjθ

ð1Þ
k jjQ

N
i<j sin

�
θð1Þi −θð1Þj

2

� det jjeiNyjθ
ð2Þ
k jjQ

N
i<j sin

�
θð2Þi −θð2Þj

2

� e−pπiNλ
P

N
j¼1

y2j ; ð3:14Þ
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where

yj ¼
1

N

�
hj −

N − 1

2

�
ð3:15Þ

is the shifted hook number for the representation R.
In general it is difficult to find an exact expression for

the two-point function. However, in the large N limit we
see that the right-hand side of (3.14) is dominated by a
single representation for a specific class of R1 and R2

and it is indeed possible to find an exact expression
for W̃R1R2

ðS3=Zp; N; kÞ.

A. Large N analysis of two-point function: Invariant
for the Hopf link

We follow the work of Gross and Matytsin [22,23] to do
the large N analysis of (3.14). In the large N limit the
integrable representation on the right-hand side of (3.13)
can be denoted by a density function ρðyÞ,

ρðyÞ ¼ −
dx

dyðxÞ ; where yðxÞ ¼ yi
N
; x ¼ i

N
: ð3:16Þ

Since i runs from 1 to N, x ∈ ½0; 1�. Also from the
discreteness of yis [Eq. (3.15)] it follows that

ρðyÞ ≤ 1: ð3:17Þ

Following [30], after a Wick rotation in complex p plane
ðp → −ipÞ we introduce6

Z̃R1R2
¼ 2NðN−1Þe−πpN2=12W̃R1R2

ðS3=Zp; N; kÞ ð3:18Þ

and a new variable A in place of pλ

A ¼ 2πpλ: ð3:19Þ

One can show from (3.14) that Z̃R1R2
satisfies

2N
∂Z̃R1R2

∂A
¼ 1

D½θðaÞ�
XN
k¼1

∂
2

∂θðaÞ
2

k

½D½θðaÞ�Z̃R1R2
�; ð3:20Þ

where

D½θðaÞ� ¼
YN
i<j

sin

�
θðaÞi − θðaÞj

2

�
for a ¼ 1; 2: ð3:21Þ

Assuming Z̃R1R2
is dominated by a single representation in

the large N limit, we choose

Z̃R1R2
¼ eN

2FN and lim
N→∞

FN ¼ F ð3:22Þ

and after a little algebra we find that F satisfies (see
Appendix C for detailed calculation)

2
∂F
∂A

¼
Z

σaðθÞ
��

∂

∂θ

δF
δσaðθÞ

�
þ 2UðθÞ ∂

∂θ

δF
δσaðθÞ

þ UðθÞ2 − π2

3
σaðθÞ2

�
: ð3:23Þ

Considering F to be of the following form7

F½σ1ðθÞ;σ2ðθÞjA�
¼ S½σ1ðθÞ;σ2ðθÞjA�

−
1

2

X2
a¼1

Z
σaðθÞdθ

Z
�σaðθ0Þ log

�
sin

�
θ− θ0

2

��
dθ0 ð3:24Þ

one can recast Eq. (3.23) as

∂S
∂A

¼ 1

2

Z
σaðθÞ

��
∂

∂θ

δS
δσaðθÞ

�
2

−
π2

3
σaðθÞ2

�
dθ: ð3:25Þ

As discussed in [22] this equation can be thought of as the
Hamilton-Jacobi equation with Hamiltonian

H½σ;Π�¼ 1

2

Z
σðt;θÞ

��
∂Πðt;θÞ

∂θ

�
2

−
π2

3
σðt;θÞ2

�
dθ ð3:26Þ

of a (1þ 1)-dimensional field theory with field σðt; θÞ and
conjugate momentum Πðt; θÞ ¼ δS

δσðt;θÞ. The Hamiltonian

equations of motion are given by

∂σ

∂t
þ ∂ðσvÞ

∂θ
¼ 0;

∂v
∂t

þ v
∂v
∂θ

− π2σ
∂σ

∂θ
¼ 0; ð3:27Þ

where

vðt; θÞ ¼ ∂Πðt; θÞ
∂θ

: ð3:28Þ

These equations are similar to the continuity and Navier-
Stokes equations of a one-dimensional fluid moving on a
circle with density σðt; θÞ, velocity vðt; θÞ, and a negative
pressure. Finding a solution of Eq. (3.25) for Sðσ1; σ2Þ is
equivalent to solve these fluid equations with the boundary
conditions

6Since the correlation function is an analytic function of p one
can Wick rotate the final answer back to the original p.

7Here the cut-integral
R�dθ0 represents integration over θ0 over

the valid range except the point θ. Such integrals sometimes are
denoted by P

R
.
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σðt ¼ 0; θÞ ¼ σ1ðθÞ;
σðt ¼ A; θÞ ¼ σ2ðθÞ: ð3:29Þ

Suppose ðσ̄ðt; θÞ; v̄ðt; θÞÞ is a solution of fluid equations
with the desired boundary conditions. The quantity
Sðσ1; σ2; AÞ evaluated on this solution is therefore given by

S̄ðσ1; σ2; AÞ ¼
1

2

Z
H½σ̄ð0; θÞ; v̄ð0; θÞ�dAþ const: ð3:30Þ

Using the series of definitions (3.24), (3.22), and (3.18) one
can write the knot invariant for Hopf link in S3=Zp as

WR1R2
¼ S0R1

S0R2
W̃R1R2

¼ exp

�
N2

�
S̄ðσ1; σ2; AÞ þ

πp
12

− ln 2

��
: ð3:31Þ

Hence from (3.12) we find

Wð0Þ
R1R2

¼ S̄ðσ1; σ2; AÞ þ
πp
12

− ln 2: ð3:32Þ

Thus we see that the invariant for the Hopf link with any
arbitrary large representations of uðNÞk is given by the on-
shell free collective field theory action with the boundary
conditions (3.29). Further, since the fluid equations (3.27)
are dispersionless KdV equations (Burger equations),
the whole exercise to find the Hopf link invariant boils
down to solving a dispersionless KdV equation with a set
of boundary conditions. According to our notation if R2

(orR1) is zero, then the corresponding two-point function
WR1R2

becomes a one-point function and gives the
invariant for unknot. R2 ¼ 0 corresponds to a σ2 given
by (3.60).
Our next goal is to find out the invariants for other

classes of torus knots with the result of the Hopf link
invariant in our disposal.

B. Invariants for a class of torus knots in S3

In this section we discuss how knot invariants for other
torus knots in S3 (a Seifert manifold with g ¼ 0, p ¼ 1) can
be computed in the large N limit from the result of the
Hopf link.
Torus knots are special kinds of knots which can be put

on the surface of a torus. A formalism of knot operators was
developed in [7] to compute the invariants of torus knots.
In [3] the authors developed a different method to obtain the
invariants of links made from braids of up to four strands.
It was shown in [3] that for special types of links as shown in
Figs. 3(a) and 3(b), the knot invariants can be written in
terms of the eigenvalues of the half-twist matrix. The half-
twist matrix BðR1;R2Þ introduces right-handed half-twists
in parallel oriented strands carrying representations R1 and
R2 whereas, B̂ðR1; R̄2Þ introduces right-handed half-twists

in oppositely oriented strands carrying representations R1

and R̄2. The dimensions of B and B̂ depend on the number
of irreducible representations in the product R1 and R2

(R̄2). Denoting the link invariants in Figs. 3(a) and 3(b) by
V½L2mðR1;R2Þ� and V½L̂2mðR1; R̄2Þ�, respectively, it was
shown in [3] that they are given by

V½L2mðR1;R2Þ� ¼
X
R

dimq RðλþRðR1;R2ÞÞ2m ð3:33Þ

and

V½L̂2mðR1; R̄2Þ� ¼
X
R

dimqRðλ−RðR1; R̄2ÞÞ2m; ð3:34Þ

where λ�RðR1;R2Þ are the eigenvalues of BðR1;R2Þ and
B̂ðR1; R̄2Þ, respectively. They are given by

λþRðR1;R2Þ ¼ ð−1ÞϵRqC2ðR1ÞþC2ðR2ÞþjC2ðR1Þ−C2ðR2Þj
2

−C2ðRÞ
2 ;

λ−RðR1; R̄2Þ ¼ ð−1ÞϵRq−jC2ðR1Þ−C2ðR2Þj
2

þC2ðRÞ
2 ; ð3:35Þ

where q is given by (3.9). The sum on the right-hand
side runs over distinct irreducible representations of
R1 ⊗ R2ðR̄2Þ. The factor ð−1ÞϵR depends on the symmetric
or antisymmetric properties ofR in the product ofR1 ⊗ R2.
For m ¼ 1, V½L2mðR1;R2Þ� and V½L̂2mðR1;R2Þ� give the

(a) (b)

FIG. 3. Braiding of knots in S3. (a) For any values of m such
braiding gives m links of two unknots in representations R1 and
R2 with the same orientations. (b) For any values of m such
braiding gives 2m crossings of two unknots in representations R1

and R2 with opposite orientations.
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invariants for the Hopf link in S3 with the same and opposite
orientations respectively.
Denoting

GðR1;R2Þ ¼ qC2ðR1ÞþC2ðR2ÞþjC2ðR1Þ−C2ðR2Þj
2 ð3:36Þ

the knot invariant V½L2mðR1;R2Þ� can be written as

V½L2mðR1;R2Þ� ¼ Gðm;R1;R2Þ
X
R

dimqRq−mC2ðRÞ:

ð3:37Þ

In the double scaling limit (1.1), using the change of
variables (3.3) and denoting the large representations R1=2

by σ1=2, respectively, the invariants (3.36) can be written as

V½L2mðR1;R2Þ� ¼ Ĝðm; λ; σ1; σ2ÞF ðm; λÞ; ð3:38Þ

where

Ĝðm; λ; σ1; σ2Þ ¼ exp
�
imN2

2πλ

�Z
dθθ2ðσ1 þ σ2Þ þ

1

2

���� Z dθθ2ðσ1 − σ2Þ
����� −

iπmλN2

3

�
ð3:39Þ

and

F ðm; λÞ ¼
Z

½DθðxÞ� exp
�
N2

2

Z
dx

Z
� − dy log sin

���� θðxÞ − θðyÞ
2

���� − imN2

2πλ

Z
dxθðxÞ2

�
: ð3:40Þ

The function F ðm; λÞ is difficult to calculate as the func-
tional integration over θðxÞ does not run over all possible
configurations [since R in (3.33) runs over irreducible
representations of R1 ⊗ R2ðR̄2Þ only]. However in the
large N limit one can find the invariant for any m knowing
the value of the same form ¼ 1. As we have mentioned that
for m ¼ 1, V½L2mðR1;R2Þ� ¼ WR1R2

ðλÞ, the invariant for
the Hopf link evaluated in the last section.8 Now from the
expression of the function F ðm; λÞ we see that

F ðm; λÞ ¼ F ð1; λ=mÞ ð3:41Þ

since the space of functional integration over θðxÞ remains
unchanged (for given R1 and R2) as we vary m. Therefore
we find that in the double scaling limit the link invariants
for the class of links shown in Fig. 3(a) are given by

V½L2mðR1;R2Þ� ¼
�

Ĝðm; λ; σ1; σ2Þ
Ĝð1; λ=m; σ1; σ2Þ

�
WR1R2

ðλ=mÞ:

ð3:42Þ
In a similar way it is also possible to compute the link
invariants V½L̂2mðR1; R̄2Þ� from WR1R̄2

ðλÞ.
When R2 ¼ R1, one can construct a different braiding

as shown in Fig. 4. For even m this is the same as braiding
in Fig. 3(a) with R2 ¼ R1. However for odd values of
m such braiding gives a single knot. For example, when
m ¼ 3 we get trefoil in S3. m ¼ 1 gives an unknot. The
invariant for this knot is given by

V½LmðR1;R1Þ� ¼
X
R

dimqRðλþRðR1;R1ÞÞm: ð3:43Þ

Following the same argument, V½LmðR1;R1Þ� for
any odd m can be evaluated from V½L1ðR1;R1Þ� in the
double scaling limit. The knot invariant V½L1ðR1;R1Þ�
is given by (3.32) with σ2 representing a trivial repre-
sentation (3.60).

FIG. 4. For any odd values of m, such braiding gives a knot in
representations R1 with m crossings.

8Up to an analytic continuation in λ∶λ → iλ. This is due to the
fact that in deriving WR1R2

we did an analytic continuation in p.
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C. Large N phases of two-point correlators in UðNÞ
Chern-Simons theory

Large N phase transition in UðNÞ CS theory has been
discussed in [30]. Similar phase transition is also observed
in the correlation functions. In this section we give
qualitative arguments for such phase transitions.
It can be shown that if the fluid equations (3.27) admit a

solution such that there exists a time 0 ≤ t� ≤ A when the
velocity of the fluid is zero, i.e.,

vðt�; θÞ ¼ 0 ð3:44Þ

then the fluid velocity and density satisfy an identity

iπσ�½θ− ðt− t�Þðvðt;θÞ þ iπσðt;θÞÞ� ¼ vðt;θÞ þ iπσðt;θÞÞ;
ð3:45Þ

where

σ�ðθÞ ¼ σðt�; θÞ: ð3:46Þ

The maximum value of the density is minimum at t ¼ t�.
For such solution one can show that the two-point function
(3.14) is dominated by an integrable representation ρðyÞ
given by (see Appendix D for details)

πρð−πσ�ðθÞÞ ¼ θ; ð3:47Þ

i.e., inverse of σ�ðθÞ. If the fluid equations do not admit any
such solution then there exists no real saddle points.
Needless to mention the existence of a real saddle point
depends on the choice of σ1=2 and λ.
If the fluid equations admit the existence of a real saddle

point for a given σ1=2 then depending on the value of λ the
system may undergo a phase transition. In order to discuss
this phase transition qualitatively we assume that the initial
and final densities σ1ðθÞ and σ2ðθÞ are even functions of θ
and they have gaps (i.e., vanishes for jθj greater than some
jθ0j ≤ π). The fluid density σðt; θÞ starting from the
configuration σ1ðθÞ at t ¼ 0 spreads out (i.e., the gap starts
decreasing). The absolute value of velocity of the fluid also
decreases with time. At some intermediate time t� when the
velocity of the fluid is zero the density has a maximum
spread. After that fluid velocity starts increasing (in the
opposite direction) and the density starts contracting and
reaches the final configuration σ2ðθÞ at t ¼ A. The system
will observe no phase transition if the maximum spread of
σðt; θÞ at t ¼ t� is less than π or at max touches π.
Otherwise the system will undergo a phase transition.
The Young diagram density ρðyÞ have an upper cap
ρðyÞ ≤ 1. In addition the variable y ranges between
�1=2λ. Since the two functions σ�ðθÞ and ρðyÞ are func-
tional inverse of each other, σ� having a gap means ρ < 1.

If σ� is gapless then ρ develops a cap. Depending on the
initial conditions and λ we can have four possibilities.

(i) If σ�ðθÞ has gap but no cap then ρðyÞ has a no cap
but a gap.

(ii) If σ�ðθÞ is gapless with no cap then the dominant
Young diagram ρðyÞ will have a cap but it is gapless.

(iii) If σ�ðθÞ has a cap with a gap then ρðyÞ has no gap
but no cap.

(iv) If σ�ðθÞ has a cap and no gap then ρðyÞ has a cap and
no gap.

The last two cases are special in CS theory (unlike 2d YM
theory [22]) as all the representations are integrable
representations. In the next section we elaborate this
qualitative discussion with an example.

D. An example: Explicit computation of two-point
function and study of phase structure for Wigner

semicircle distributions

Wigner semicircle distribution is a probability distribution
on a real line between �R

fRðxÞ ¼
2

πR2
Rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
Þ: ð3:48Þ

Such distributions appear in different contexts in physics and
mathematics. The eigenvalue density of Gaussian Hermitian
random matrix theory is given by the semicircle distribution.
The transition distribution of the limit shape of asymptotic
Young diagrams studied by Vershik-Kerov and Logan-
Shepp [32,33] is given by semicircle distribution. In this
section we consider the large N distribution σ1=2ðθÞ corre-
sponding to R1 and R2 are given by the semicircle
distributions. The reason behind this choice is that the fluid
equations can be solved exactly. Our goal is to explicitly
calculate the knot invariant for the Hopf link for such
representations in the large N limit and study the phase
transition of a two-point function.
We take the following semicircular distributions for the

Young diagram density corresponds to R1=2

ρR1=R2
¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=2 −

L2
1=2y

2

4

s
: ð3:49Þ

Since R1=2 are integrable representations L1=2 satisfies

L1; L2 ≤ π2 and L1; L2 ≥ 16λ2: ð3:50Þ

Suppose uðy; tÞ denotes Young diagram distributions that
interpolate between ρR1

and ρR2
from t ¼ 0 to t ¼ A. We

consider

uðy; tÞ ¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðtÞ − μðtÞ2y2

4

r
ð3:51Þ
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such that

μð0Þ ¼ L1 and μðAÞ ¼ L2: ð3:52Þ

Considering the relation θ ¼ 2πλy, the eigenvalue distri-
bution σðθ; tÞ corresponding to uðy; tÞ is given by

σðθ; tÞ ¼ 1

2πλ
u

�
θ

2πλ
; t

�
¼ 1

2π2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðtÞ−μðtÞ2θ2

16π2λ2

s
: ð3:53Þ

For the choice of fluid density (3.53) the fluid velocity
can be solved exactly from the continuity equation and is
given by

vðt; θÞ ¼ −θ
�

_μðtÞ
2μðtÞ

�
; ð3:54Þ

where _μðtÞ is a derivative of μðtÞ with respect to t.
Plugging the ansatz for σðt; θÞ and the solution for

vðt; θÞ in the Navier-Stokes equation we find a differential
equation for μðtÞ

μ̈ðtÞ − 3_μðtÞ2
2μðtÞ −

1

32π4λ4
μðtÞ3 ¼ 0: ð3:55Þ

This is a second-order nonlinear ordinary differential
equation and has a simple solution up to two integration
constants. These two constants can be fixed from the
boundary conditions (3.52).
First we consider a special case L1 ¼ L2 ¼ L. Solving

Eq. (3.55) for symmetric boundary conditions we find

μðtÞ ¼ 4Lπ2ð8π2λ4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2L2λ4 þ 64π4λ8

p
Þ

L2ðA − tÞtþ 4π2ð8π2λ4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2L2λ4 þ 64π4λ8

p
Þ :

ð3:56Þ

Since vðt; θÞ is proportional to _μðtÞ it is easy to see that the
velocity is proportional to A − 2t and hence for L1 ¼ L2 ¼
L the fluid equations always admit a solution such that
vðt; θÞ ¼ 0 at t ¼ A=2. The density σðt; θÞ coincides with
σ1ðθÞ at t ¼ 0 and then starts spreading out as t increases.
The spreading is maximum at t ¼ A=2. Finally the density
again starts contracting and finally becomes σ2 at t ¼ A.
See Fig. 5.
If the maximum spread of σðt; θÞ at t ¼ A=2 is less than

2π then WR1R2
does not observe any phase transition. For

L ≥
16π2λ2

π2 − 4p2λ2
ð3:57Þ

σðA=2; θÞ always has a gap. Since there exists a point t� ¼
A=2 when velocity is zero, there exists a real dominant
Young diagram which maximizesWR1R2

. It is given by the
(3.47) and has the form

ρðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8π2λ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2L2 þ 64π4λ4

p
Þð4L − 16π2λ2y2Þ − A2L2y2

q
2Lπ

: ð3:58Þ

Since σ�ðθÞ has gap, the dominant Young diagram does not
saturate the upper bound. However at L ¼ 16π2λ2

π2−4p2λ2
the gap

in σ�ðθÞ vanishes and the corresponding dominant Young
diagram touches the upper cap. Therefore WR1R2

under-
goes a Douglas-Kazakov type phase transition at this
critical value of L.
The value of the knot invariant can be obtained by

calculating the Hamiltonian on this solution and integrating
over A. After an explicit calculation we obtain the following
result (substituting A ¼ 2πpλ):

Wð0Þ
LLðλÞ ¼ −

2πλ

pL
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16π2λ2

p2L2

s
þ πp

12
− ln 2

−
1

2
sinh−1

�
pL
4πλ

�
: ð3:59Þ

This is the HOMFLY-PT polynomial in the double scaling
limit for Hopf link where two representations associated
with two unknots are the same and given by Wigner
semicircle distributions. In general HOMFLY-PT is a

FIG. 5. Plot of σðθ; tÞ as a function of θ at t ¼ 0 (solid),
t ¼ t� ¼ A=2 (dashed), and any arbitrary 0 < t < t� (dotted).
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polynomial of two variables q ¼ e2πi=ðkþNÞ and s ¼ qN .
However in the double scaling limit the variable q ¼ 1 and

s ¼ e2πiλ, hence Wð0Þ
LLðλÞ is a function of λ only.

Surprisingly, the final expression for the action
Sðσ1; σ2jAÞ with σ1=2, given by the same semicircle dis-
tribution of size L, is similar to the limit shape of
asymptotic Young diagrams [32–34] up to an analytic
continuation in p. In particular

4

π
ðSðuÞ þ 1Þu→iu ¼ Ω̂ðuÞ; where u ¼ pL

2πλ

and Ω̂ðuÞ is the limit shape. This is nothing but an
observation, we think.
One can also choose two different representations by

considering the boundary conditions μð0Þ ¼ L1 and
μðAÞ ¼ L2. The expression for μðtÞ can also be computed
exactly. From these expression we see that the existence of
a dominant Young diagram depends on the values of L1,
L2, and λ. For a given choice of the set ðL1; L2; λÞ if the
fluid velocity never reaches zero then there exists no real
dominant Young diagram to maximize (3.13). However one
can calculate Sðσ1; σ2jAÞ from (3.25) and hence W0

L1L2
. In

this case W0
L1L2

does not observe any phase transition. We
see that to get a real dominant Young diagram for L1 > L2

the parameters must satisfy A ≥ 8
ffiffiffiffiffiffiffiffiffiffi
L1−L2

p
π2λ2

L2

ffiffiffiffi
L1

p and for L2 ≥

L1 the relation is given by A ≥ 8
ffiffiffiffiffiffiffiffiffiffi
L2−L1

p
π2λ2

L1

ffiffiffiffi
L2

p . In this case there

exists a critical relation between L1, L2, and A which
determines whether the two-point function WL1L2

will
undergo a phase transition or not. However such condition
does not have any handy expression but can be found
numerically. One can also compute the knot polynomial in
this case.

E. Calculation of partition function

From (2.6) we see that we get back the partition function
of CS theory on the Seifert manifold when Ra ¼ 0 ∀ a
(no box in the Young diagram). The phase structure of this
theory in the aforementioned double scaling limit was
discussed in [30] by directly solving the saddle-point
equation. As a consistency check, in this subsection we
reproduce the same result from the solution of fluid
equations.
When Ra ¼ 0 the corresponding σaðθÞ is given by

σaðθÞ ¼

 1

2πλ for − πλ ≤ θ ≤ πλ

0 for otherwise:
ð3:60Þ

We expect that the solutions of the fluid equations (3.27)
with the boundary conditions that σðt; θÞ merges with
(3.60) at t ¼ 0 and t ¼ A will admit an intermediate time
t� ¼ A=2 (follows from symmetry) when fluid velocity is
zero and the functional inverse of the fluid density at t� will

give the dominant Young diagram representation obtained
in [30].
In order to check our expectation we use the dominant

Young diagram found in [30]

ρðyÞ ¼ p
π
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

e−
2πλ
p

coshðπλyÞ

s �
; ð3:61Þ

for 0 ≤ λ ≤ p
π log½cosh ðπ=pÞ�. Inverse of this function gives

σ�ðθÞ. We now use the identity (3.45) to find vðt; θÞ and
σðt; θÞ. Since both velocity and density are real functions of
t and θ, we solve the real and imaginary parts of this
equation and find that σðt; θÞ matches with (3.60) at t ¼ 0
and t ¼ A. For λ > p

π log½cosh ðπ=pÞ� the dominant Young
diagram distribution has a cap. It is difficult to invert that
distribution to find σ�ðθÞ. However, one can numerically
check that other phase also solve the fluid equations.

IV. SpðNÞ CHERN-SIMONS THEORY AND KNOT
INVARIANTS

A symplectic group Spðn; FÞ is a group of 2n × 2n-
dimensional symplectic matrices over a field F under
matrix multiplication. A 2n × 2n-dimensional matrix A
is a symplectic matrix if it satisfies the relation

ATΩ2nA ¼ Ω2n; ð4:1Þ

where Ω2n is a 2n × 2n-dimensional skew-symmetric
matrix: ΩT

2n þ Ω2n ¼ 0. A standard choice of Ω2n is

Ω2n ¼
�

0 In
−In 0

�
: ð4:2Þ

Irreducible representations of Spðn; FÞ are characterized by
Young diagrams with maximum n number of rows.
CS theory for the SpðNÞ gauge group is well studied.

The large N limit of these theories and their connections
with dual string theories were studied in [35]. In this section
we shall discuss the phase structure of the theory in the
aforementioned double scaling limit. Then we show that
the analysis, given in Sec. III A, can be extended for SpðNÞ
gauge group to obtain the invariant for the Hopf link in
terms of the collective field theory action. The analysis is a
little different than that of a UðNÞ theory since the modular
transformation matrices S and T for spðNÞk affine algebra
have different forms.

A. The partition function

The partition function of CS theory with gauge group
SpðNÞ and level k on a Seifert manifold is given by

Z½S3=Zp; SpðNÞ; k� ¼
X
R

T −p
RRS

2
0R: ð4:3Þ
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Here S and T for spðNÞk affine lie algebra are given by

SRR0 ¼ ð−iÞNðN−1Þ
2

�
2

N þ kþ 1

�N
2

× det

���� sin�πfiðRÞfjðR0Þ
N þ kþ 1

�����N
i;j¼1

; ð4:4Þ

where

fiðRÞ ¼ niðRÞ − iþ N þ 1≡ hiðRÞ ð4:5Þ

and

T RR0 ¼ exp

�
−
iπNðN þ 1Þ

12
þ iπ
2ðN þ kþ 1Þ

×
XN
i¼1

hiðRÞ2
�
δR;R0 : ð4:6Þ

We define new variables θi

θiðRÞ ¼ πhiðR0Þ
NþKþ 1

¼ πλ
hiðRÞ
N

; where λ¼ N
Nþ kþ 1

:

ð4:7Þ

The double scaling limit is given by, as before, N → ∞;
k → ∞ keeping λ fixed. For an integrable representation R
we have 0 ≤ hiðRÞ ≤ N þ kþ 1; hence the new variables
θiðRÞ satisfies

0 ≤ θiðRÞ ≤ π: ð4:8Þ

Although θi ≥ 0 for spðNÞ representations, we introduce a
distribution function σspðθÞ which defines a symmetric
distribution of eigenvalues between −π and π,

σspðθÞ ¼ 1

2N

XN
i¼1

δðθ − θiÞ þ
1

2N

XN
i¼1

δðθ þ θiÞ: ð4:9Þ

Introducing mirror images of the eigenvalues

θ−i ¼ −θi ð4:10Þ

σspðθÞ can be written as

σspðθÞ ¼ 1

2N

XN
i¼−N
i≠0

δðθ − θiÞ: ð4:11Þ

Hence σspðθÞ is a distribution of 2N eigenvalues: N θis and
their mirror images θ−is. We should remember the relation

(4.10) while taking derivative with respect to θi. We also note
that σspðθÞ has an upper cap given by

σspðθÞ ≤ 1

2πλ
ð4:12Þ

similar to the UðNÞ case (3.6).
The partition function in the continuum limit is therefore

given by

Z½S3=Zp; SpðNÞ; k� ¼
Z

½dθ� exp
�
−
N2

λ2
Seff ½σsp�

�
; ð4:13Þ

where

Seff ½σsp� ¼ −λ2
Z

π

−π

Z
π

−π
σspðθÞσspðθ0Þ

× log

�
4sin2

�
θ − θ0

2

��
dθdθ0

þ 2pλ
π

Z
π

−π
σspðθÞ

�
θ2

4
−
π2

12

�
þ 2pπλð1 − λÞ

12
: ð4:14Þ

The saddle-point equation is given byZ
�

π

−π
σspðθ0Þ cot

�
θ − θ0

2

�
dθ0 ¼ p

2πλ
θ: ð4:15Þ

Thus we see that the saddle-point equation for SpðNÞ CS
theory on S3=Zp is the same as that of UðNÞ CS theory
(B10). Hence in the large N limit the phase structure of
these two theories are identical. Therefore, in the double
scaling limit, SpðNÞ CS theory on S3=Zp admits a third-
order phase transition at λ ¼ plogðcosh π

pÞ=π.

B. Two-point correlator and Hopf link invariants

Though the structure of the modular S and T matrices
for spðNÞk affine algebra is different than that for uðNÞk,
the two-point correlator for the Hopf link admits a
description in the language of incompressible fluid and
hence can be written in terms of the on-shell action of a free
collective field theory. The calculation follows the similar
line as what we did for UðNÞ theory but the intermediate
steps are different since hook numbers of the Young
diagrams of spðNÞ representations are always positive.
The bulk of the calculations are given in Appendix C 2;
here we outline the main steps.
Using the expression of modular S and T matrices we

write down the modified two-point correlation function
(3.1) as
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W̃R1R2
ðS3=Zp; SpðNÞ; N; kÞ ¼ e

ipπNð2Nþ1Þ
12

22NðN−1Þ
X
yiðRÞ

�
det½sinðNθjðR1ÞyiðRÞÞ�

D½θðR1Þ�
�

×

�
det½sinðNθjðR2ÞyiðRÞÞ�

D½θðR2Þ�
�
e−

iπpλN
2

P
N
i¼1

yiðRÞ2 ; ð4:16Þ

where

yiðRÞ ¼ hiðRÞ
N

ð4:17Þ

and

D½θðR1Þ� ¼
YN
i¼1

sinðθiðR1ÞÞ
YN
i<j

sin

�
θiðR1Þ þ θjðR1Þ

2

�

× sin

�
θiðR1Þ − θjðR1Þ

2

�
: ð4:18Þ

We follow the same procedure, what we did for UðNÞ CS
theory, and define (after a wick rotation p → −ip)
Z̃R1R2

ðS3=Zp; SpðNÞ; N; kÞ,

W̃R1R2
ðS3=Zp; Spð2NÞ; N; kÞ

¼ 1

22NðN−1Þ e
pπNð2Nþ1Þ

12 Z̃R1R2
ðS3=Zp; Spð2NÞ; N; kÞ: ð4:19Þ

Following (3.22), in the large N limit we define a similar
function Fðσsp1=2; AÞ where σsp1=2ðθÞ are eigenvalue distribu-
tions corresponding to R1=2, respectively. Segregating the
pure σsp1=2 dependent part from Fðσsp1=2; AÞ, we define a
function Sðσsp1=2; AÞ given in (C13) and show that S½σsp1=2; A�
satisfies

∂S
∂A

¼ 1

2

Z
σspa θÞ

��
1

2

∂

∂θ

δS
δσspa ðθÞ

�
2

− 4
π2

3
σspa ðθÞ2

�
dθ;

ð4:20Þ

where

A ¼ πpλ: ð4:21Þ

Thus we see that S½σspa ; A�=4 [Hopf link invariant in SpðNÞ
CS theory] satisfies the same Hamilton-Jacobi equation and
hence the saddle point is governed by SpðNÞ free collective
field theory equations.
The real dominant Young diagram in the large N limit

can also be obtained by studying the Hamiltonian equa-
tions. The real dominant representation, if it exists, is given
by the inverse of SpðNÞ fluid density σspðθ; tÞ at some
intermediate time when the fluid velocity is zero. The

detailed calculation for dominant representation is given in
Appendix D 1.

V. DISCUSSION

In this paper, we find that the computation of a two-
point correlation function inUðNÞ and SpðNÞ CS theory in
S3=Zp (which renders invariant for the Hopf link) in the
large N limit boils down to finding solutions of continuity
and Navier-Stokes equations of an incompressible one-
dimensional fluid evolving from t ¼ 0 to t ¼ A with the
initial and final densities corresponding to the representa-

tions R1 and R2. The Hopf link invariant Wð0Þ
R1R2

ðλÞ in the
large N limit satisfies the Hamilton-Jacobi equation where
pλ plays the role of time and the Hamiltonian is given by a
UðNÞ [or SpðNÞ] free collective field theory Hamiltonian.
The invariant for the Hopf link turns out to be equal to
the on-shell action. Using the method developed in [3]
we finally show that invariants for other torus knots
(2; k ¼ odd) and links (2; k ¼ even) can be obtained from
the invariants for the Hopf link and unknot.
We further discuss the large N phase structure of two-

point correlators in CS theory. Whether the two-point
function undergoes a phase transition or not depends on
the evolution of the fluid. The absolute value of the fluid
velocity at a given point θ decreases with time as the fluid
starts evolving from t ¼ 0. The existence of a real dominant
representation depends on whether the absolute value of
velocity can reach zero at some intermediate time for all
−π ≤ θ ≤ π. If one starts with a class of R1 and R2 such
that corresponding σ1ðθÞ and σ2ðθÞ are gapped, then the
density of the fluid starts spreading from its initial dis-
tribution σ1ðθÞ. The spreading is maximum when the
velocity is zero (if such solution exists) and then starts
shrinking and goes to its final distribution σ2ðθÞ at t ¼ A.
The maximum spreading of fluid density (at t ¼ t�)
depends on the choice of R1=2 and λ. If the maximum
spread lies between −π and π then there is no phase

transition in Wð0Þ
R1R2

. However, Wð0Þ
R1R2

observes a third-
order phase transition otherwise. The CS theory enjoys
level-rank duality. A theory with rank N and level k is dual
to a theory with level and rank exchanged. The two-point
correlation function in the dual theory also admits the
similar fluid structure. It would be interesting to understand
the relation between the fluid and its dual fluid in the large
N limit.
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The study of large N correlation functions is important in
many aspects. It sets up the platform to check the
generalized volume conjecture [18–21]. Further, based
on the Gopakumar-Vafa conjecture [36] it was observed
in [37] that the CS invariants are mapped to topological
string amplitudes on Riemann surfaces with boundaries in
the topological string theory side. The knot invariants were
reformulated in terms of new invariants (integer invariants)
capturing the spectrum of M2 branes ending on M5 branes.
The results were checked explicitly for unknot. Large N
analysis of this observation and its generalization to other
links were considered in [9]. Our analysis to compute
invariants for a class of knots and links will be useful to
further investigate the connection between CS theory and
topological string theory beyond partition function.
As we mentioned in Sec. II, in S3 there exists a canonical

framing K ¼ S. In this framing the two-point correlation
function for the Hopf link is given by SR1R2

and does not
show phase transition for any R1=2. In Seifert framing the
same quantity is given by (3.11). The sum is over the
integrable representations. Using the properties of S and T
matrices one can show that these two expressions are
related to each other up to a phase factor. The question is
why we see a phase transition in the two-point function in
the double scaling limit. If one takes the N; k → ∞ limit
without any restriction, then the sum in (3.11) runs over all
possible Young diagrams with any number of rows and any
number of columns. However, here we are considering a
particular limit N; k → ∞ keeping N=k fixed. Under this
condition the sum becomes restricted—one does not sum
over all possible Young diagrams. Therefore we do not
expect that in the double scaling limit the above equality
holds. This was also the reason behind the phase transition
in CS theory in S3 studied in [30]. The framing dependence
of correlation functions in CS theory has a mining in the
topological string theory side. Framing is related to
inherent ambiguity in the open topological string amplitude
related to the IR geometry of the D-brane [38,39]. It would
be interesting to study the topological string amplitudes in
the same double scaling limit and understand the con-
nection better. We keep the problem for future.
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APPENDIX A: FRAMING DEPENDENCE OF
PARTITION FUNCTION

Partition function of CS theory in three dimensions
depends on choice of framing [1]. In this appendix we
discuss the framing dependence in details.

Canonical quantization of CS theory on a three manifold
M with a boundary Σ produces the “physical Hilbert
space” HðΣÞ. In [1] Witten constructed HðΣÞ in terms of
conformal blocks of the WZW model on Σ with a gauge
group G and level k. One can explicitly construct
the Hilbert space for Σ ¼ S2 and Σ ¼ T2. For Σ ¼ S2

the Hilbert space is trivial (dimension one). However for
Σ ¼ T2 the space of conformal blocks has one-to-one
correspondence with integrable representations of gk.
There is a natural choice of basis for HðΣ ¼ T2Þ. The
basis vectors are given by integrable representations jRai
of gk: these are the states associated with the partition
function of CS theory in a solid torus T2 with a WL in
representation Ra along the noncontractible cycle.
Therefore the Hilbert space is finite dimensional and
spanned by these integrable representations.
In order to write the partition function of CS theory on a

generic three manifold M, we split the manifold into two
parts XL and XR sharing a common boundary Σ. The path
integral of CS theory on XR corresponds to a vector jϕi in
HðΣÞ. Since the boundary Σ of XL has an opposite
orientation of that of XR the path integral on XL is mapped
to a vector hψ j ∈ H�ðΣÞ where H�ðΣÞ is dual of HðΣÞ.
Since the manifold M can be obtained by gluing XL and
XR along Σ, the partition function of CS theory on M is
therefore given by [1]

ZðMÞ ¼ hψ jϕi: ðA1Þ

Using this result Witten showed that one can write the
partition function and correlation functions of CS theory in
S3 and other generic three manifolds from the partition
function and WLs in S2 × S1.
In order to understand the prescription in detail let us

start with CS theory on a three manifoldM. We consider a
WL WRa

¼ TrRa
UK in M along a knot K, where UK ¼

P expðRK AÞ and Ra is an integrable representation of gk.
We take a tubular neighborhood of the knot K which is a
solid torus T2 such that ∂T2 ¼ T2 is a torus. We take the T2

out of the manifold and hence the three manifoldM is now
a connected sum of XR ¼ T2 with a WL inserted and the
reminder XL. Note both XL and XR have common
boundary T 2. Following the work of Verlinde [40]
Witten showed that the path integral over T2 with a WL
WRa

along the noncontractible cycle of T2 is mapped to a
state jRai in HðT2Þ. Thus, following (A1) we see that the
expectation value of WL WRa

in representation Ra in M
can be written as

hWRa
iM ¼ hψ jRai; ðA2Þ

where hψ j ∈ H�ðT2Þ is the path integral over XL. For Ra
to be a trivial representation, the WL is equal to 1.
Therefore hψ j0i is the partition function on M.
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Now, before gluing the solid torus with XL one can also
make a diffeomorphism on the boundary of T2. Such
operation (scooping out T2 from M → apply diffeomor-
phism on the boundary→ gluing back withXL) generates a

new manifold fM. Let us first understand this with the help
of a simple example. Suppose our M ¼ S2 × S1. The
manifold S2 × S1 can be written as a connected sum of
two solid tori. To understand this one can think that a solid
torus is a disc times a circle: T2 ¼ D × S1. When we glue
two discs at the boundary we get the two manifold S2.
Therefore, when we glue two solid tori along their
boundaries without any diffeomorphism we get S2 × S1.
Thus we see that when we scoop out a solid torus from
S2 × S1 the reminder is also a solid torus. Consider now a
solid torus T2 embedded in S3 which is R3 ∪ ∞. T2 is
invariant under inversion. The exterior of this T2 is another
solid torus T02 (as we have identified the points at infinity).
However, there is a difference. The contractible cycle in T2

is mapped to the noncontractible cycle in T02 and vice
versa. Therefore these two tori are related to each other by S
modular transformation on the boundary T2. Thus when we
glueT2 andT02 we get S3. Now starting fromM ¼ S2 × S1

we split the manifold in two solid tori. Then we perform an
S modular transformation (i.e., inverting the torus) on the
boundary of one of them (say the right one) and then glue
them again. This surgery produces S3 from S2 × S1.
Consider now a CS theory in a solid torus with a WL in

representation Ra along the noncontractible circle. The
path integral maps to jRai ∈ HðT 2Þ. If K is the diffeo-
morphism that acts on the boundary of the solid torus, the
path integral on T2 changes and hence is mapped to a
different state in HðT2Þ. The new state can be written as

jχi ¼
X
Rb

Kb
ajRbi: ðA3Þ

The matrix K ∈ HomðHðT 2Þ;HðT2ÞÞ depends on the
diffeomorphism K that acts on the torus. If we now glue

this solid torus with XL we get a new manifold fM with a
WL in Ra. The expectation value of the WL in represen-

tationRa in fM can be written in terms of expectation value
of WLs in M

hWRa
ieM ¼

X
Rb

Kb
ahWRb

iM: ðA4Þ

Hence the partition function on fM can be obtained by
considering Ra to be a trivial representation

ZðfMÞ ¼
X
Rb

Kb
0hWRb

iM: ðA5Þ

This is a very powerful relation.

The partition function of Chern-Simons theory on S2 ×
S1 can be calculated using (A5). As explained above the
manifold S2 × S1 can be written as a connected sum of two
solid tori. As mentioned earlier, a partition function in T2

without any WL is mapped to j0i in HðT 2Þ. Thus we get a
partition function of CS theory on S2 × S1 is given by

ZðS2 × S1Þ ¼ h0j0i ¼ 1: ðA6Þ
Similarly when we have a nontrivial WL in S2 × S1 we can
split the manifold into two solid tori with one torus
containing the WL along the noncontractible cycle.
Hence the expectation value of a WL in S2 × S1 is given by

hWRa
iS2×S1 ¼ h0jRai ¼ δ0Ra

: ðA7Þ

Our goal is to generate S3 from S2 × S1 by surgery.
Starting from S2 × S1 we split the manifold into two solid
tori. Then we perform an S modular transformation on the
boundary T 2 and then glue them again. This surgery
produces S3. The diffeomorphism K is the modular trans-
formation S and hence the corresponding K matrix is the
modular transform matrix S in HðT2Þ. Therefore following
(A5) and (A6) we find the CS partition function on S3 is
given by

ZðS3Þ ¼
X
Rb

S0Rb
δ0Rb

¼ S00: ðA8Þ

However, instead of choosing K ¼ S if we choose
K ¼ T ST ¼ ST −1S, this also produces S3 but in a
different framing called Seifert framing. In this framing
the partition function is given by

ZSFðS3Þ ¼
X
R

S2
0RT

−1
RR ðA9Þ

which is the same as ZðS3Þ up to a phase.
Partition function for CS theory on a generic lens space

S3=Zp (a Seifert manifold with g ¼ 0) can be obtained
from S2 × S1 by choosing K ¼ ðT ST Þp ¼ ðST −1SÞp.
The partition function is given by (B1) with g ¼ 0.
In order to get the partition function of Hopf link in

S3=Zp we can start with CS theory on S2 × S1 with two
WLs. We consider a solid torus along one WL and split the
manifold with two parts scooping out the solid torus. The
remainder is also a solid torus with the other loop. Partition
functions on these two tori are given by jRai and hRbj.
Hence the CS partition function with two WLs is given by

ZðS2 × S1;RaRbÞ ¼ hRbjRai ¼ δRaRb
: ðA10Þ

Before gluing if we give an inversion on the right torus by
choosing K ¼ ðST −1SÞp we get Hopf link in S3=Zp given
by (3.11).
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We now want to find the correlation of three WLs in
representations R1, R2, and R3 in S2 × S1. We can split
S2 × S1 with three WLs into two solid tori: one contains a
WL in R1 and the other torus contains two WLs inR2 and
R3. Suppose the CS partition function in T2 with two WLs
along the noncontractible circle is mapped to a state
jR2R3i in HðT 2Þ. Since Ri’s correspond to primary fields
in WZW we have

jR2R3i ¼
X
R

NR
R1R2

jRi; ðA11Þ

where NR
R1R2

is the Verlinde numbers. Hence

ZðS2 × S1;R1;R2;R3Þ ¼ NR1

R2R3
: ðA12Þ

One can now use the result (A11) to write the n-point
correlation function in S2 × S1 given by (2.3) for g ¼ 0
with the help of the Verlinde formula,

NR1

R2R3
¼

X
R

SRR2
SRR3

S�
RR1

S0R
: ðA13Þ

Starting from (2.3) we take a solid torus out from S2 × S1

with any of the n WLs inside, apply an inversion on the
torus, and then put that back inside. In this process we
generate an S3 with the link, shown in Fig. 2 inside and the
invariant is given by (2.2).

APPENDIX B: REVIEW OF UðNÞk CHERN-
SIMONS THEORY ON SEIFERT MANIFOLD

The partition function for UðNÞ CS theory on a Seifert
manifold is given by

ZN;k ¼
X
R

S2−2g
0R T −p

RR: ðB1Þ

Since the affine Lie algebra uðNÞk is the quotient of
suðNÞk × uð1ÞNðkþNÞ by ZN, the uðNÞ representations
can be expressed in terms of suðNÞ representations
(denoted by R) and eigenvalues of uð1Þ generator Q:
R ¼ ðR;QÞ, where Q ¼ rðRÞ mod N and rðRÞ is the
number of boxes in R. The trivial representation R ¼ 0
means both R ¼ 0 and Q ¼ 0. The modular transform
matrix SRR0 for uðNÞk in terms of suðNÞ representations
and the uð1Þ charges is given by [26,29,41]

SRR0 ¼ ð−iÞNðN−1Þ
2

ðkþ NÞN2 e
−2πiQQ0
NðNþkÞ detMðR;R0Þ; ðB2Þ

where MðR;R0Þ is a N × N matrix with elements,

MijðR;R0Þ ¼ exp

�
2πi

kþ N
ϕiðRÞϕjðR0Þ

�
; ðB3Þ

ϕiðRÞ ¼ li −
rðRÞ
N

− iþ 1

2
ðN þ 1Þ ðB4Þ

and li’s are the number of boxes in the ith row in R. The
modular transformation matrix T RR0 is given by

T RR0 ¼e2πiðhR− c
24
ÞδRR0 ; hR¼

1

2

C2ðRÞ
kþN

; c¼NðNkþ1Þ
kþN

;

ðB5Þ

where C2ðRÞ is the quadratic Casimir of uðNÞk. The uðNÞ
representations R can be characterized by extended YDs
by introducing the number of boxes in the ith row
ni ¼ li þ s, for 1 ≤ i ≤ N − 1 and nN ¼ s where s ∈ Z.
nis can be negative and the corresponding YDs will have
antiboxes [42]. In terms of these ni’s the quadratic Casimir
C2ðRÞ is given by

C2ðRÞ ¼
XN
i¼1

niðni − 2iþ N þ 1Þ: ðB6Þ

For an integrable representation R of uðNÞk

−
k
2
≤ nN ≤ � � � ≤ n1 ≤

k
2
; ðB7Þ

and hence

−
k
2
< hN < � � � < h1 ≤

k
2
þ N − 1: ðB8Þ

In terms of the variables θi introduced in (3.3), the CS
partition function (B1) in S3=Zp in the continuum limit is
given by

Zp
N;k ¼

Z
½dθ�e−ðNþKÞ2Seff ½σ�; where

Seff ½σ� ¼
pλ
π

Z
σðθÞ

�
θ2

4
−
π2

12

�
dθ þ πpλð1 − λÞ

12

−
λ2

2

Z Z
�σðθÞσðθ0Þ log

�
4sin2

�
θ − θ0

2

��
dθdθ0:

ðB9Þ

The saddle-point equation for σðθÞ, obtained from the
effective action is given byZ

�σðθ0Þ cot
�
θ − θ0

2

�
dθ0 ¼ p

2πλ
θ: ðB10Þ

In the large N limit we have to solve this equation for σðθÞ
in the presence of this constraint (3.6).
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The unitary matrix model (B9) has a gapped phase in the
large k, N limit and the eigenvalue distribution is given by
[43,44]

σðθÞ ¼ p
2π2λ

tanh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
e−

2πλ
p

cos2 θ
2

s �
; for

− 2cos−1e−
πλ
p < θ < 2cos−1e−

πλ
p : ðB11Þ

It turns out that the solution saturates the upper bound (3.6)
at λ ¼ p=π log coshðπ=pÞ≡ λ� [44] and is not valid
beyond that.

Cap-gap phase.—It was observed in [30] that for λ > λ�
the saddle-point equation admits a cap-gap solution.
The eigenvalue density σðθÞ for λ > p=π log coshðπ=pÞ
is given by

σðθÞ¼

 1

2πλ for −θ2<θ<θ2

σ̂ðθÞ for −θ1<θ<−θ2 and θ2<θ<θ1;
ðB12Þ

where

σ̂ðθÞ ¼ j sinϕj
π2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin2 ϕ

2
− sin2 θ2

2
Þðsin2 θ1

2
− sin2 ϕ

2
Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ cos θ2Þð1 − cos θ1Þ

p �
4ðΠðn2; m2Þ − sin2 ϕ

2
Kðm2ÞÞ

sin2ϕ

×
2pðcos2 θ1

2
Πðψ ; n1; m1Þ − cos2 ϕ

2
Fðψ ; m1ÞÞ

ð1þ cosϕÞðcosϕ − cos θ1Þ
�
: ðB13Þ

The constants m1; m2; n1; n2;ψ are given in [30].

APPENDIX C: EXPLICIT DERIVATION
OF HAMILTON-JACOBI EQUATION

1. UðNÞ Chern-Simons theory

Replacing Z̃R1R2
¼ eN

2FN in (3.20) and using the
relation

1

D½θðaÞ�
∂
2D½θðaÞ�
∂θðaÞ

2

k

¼ N
∂Uk

∂θðaÞk

þ N2U2
k ðC1Þ

for

Uk ¼
1

N
∂ log½D½θðaÞ�

∂θðaÞk

¼ 1

2N

XN
j¼1
j≠k

cot

�
θðaÞk − θðaÞj

2

�
ðC2Þ

we get

2
∂FN

∂A
¼ 1

N

XN
k¼1

∂
2FN

∂θðaÞ
2

k

þ 1

N

XN
K¼1

�
N
∂FN

∂θðaÞk

�
2

þ 2

N

XN
k¼1

UkN
∂FN

∂θðaÞk

þ 1

N2

XN
k¼1

∂Uk

∂θðaÞk

þ 1

N

XN
k¼1

U2
k: ðC3Þ

Calculating

1

N2

XN
k¼1

∂Uk

∂θðaÞk

¼ −
1

4N3

XN
k¼1

XN
j¼1
j≠k

1

sin2
�
θðaÞk −θðaÞj

2

� ðC4Þ

we note that the right-hand side is zero in the large N limit

when θðaÞk ≠ θðaÞj . It only gives a nonzero contribution for

θðaÞk ≈ θðaÞj . In the large N limit we define continuous

distribution functions σaðθÞ for fθðaÞi g given by (3.5)

θðaÞi ¼ θðaÞðxÞ: ðC5Þ

Thus θðaÞk − θðaÞj ≈ jk−jj
NσðaÞðθkÞ, also in this limit the sum will be

replaced by integration and all the partial derivatives by
corresponding functional derivatives

1

N

XN
k¼1

→
Z

σaðθÞdθ;

N
∂

∂θðaÞk

→
∂

∂θ

δ

δσaðθÞ
: ðC6Þ

Finally using the identity

XN→∞

j¼1
j≠k

1

ðj − kÞ2 ¼
π2

3

the equation (C3) reduced to (3.23). Here we have

neglected the term ∂
2FN

∂θðaÞ
2

k

as it is Oð1NÞ in the large N limit.

2. SpðNÞ Chern-Simons theory

The derivation of the Hamilton-Jacobi equation for
SpðNÞ CS theory falls in the same line as that of a
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UðNÞ theory once we define the eigenvalue density for the
eigenvalues and their mirror images (4.11).
The function Z̃R1R2

ðS3=Zp; SpðNÞ; N; kÞ is given by

Z̃R1R2
ðS3=Zp; SpðNÞ; N; kÞ

¼
X
yiðRÞ

det½sinðNθjðR1ÞyiðRÞÞ�
D½θðR1Þ�

×
det½sinðNθjðR2ÞyiðRÞÞ�

D½θðR2Þ�
e−

AN
2

P
N
i¼1

yiðRÞ2 : ðC7Þ

The quantity Z̃R1R2
in (C7) will satisfy (3.20) with

A ¼ πpλ. The quantity log½D½θ�� for SpðNÞ theory has
the form

log½D½θ�� ¼ 1

4

XN
i¼−N

log½sin θi�

þ 1

4

XN
k¼−N

XN
j¼−N
j≠k

log

�
sin

�
θk − θj

2

��
: ðC8Þ

For SpðNÞ theory we define the quantity Uk as follows:

Uk ¼
1

N
∂ log½D½θðaÞ��

∂θðaÞk

¼ 1

2N
cot θðaÞk þ 1

2N

XN
j¼−N
j≠k

cot

�
θðaÞk − θðaÞj

2

�
ðC9Þ

and find that it satisfies

1

N2

∂Uk

∂θðaÞk

¼ −
1

4N3

XN
j¼−N
j≠k

1

sin2
�
θðaÞk −θðaÞj

2

� −
3

4N3

1

sin2θk
: ðC10Þ

In the large N limit the only contribution will come from

those θj which are close to θk. Thus θ
ðaÞ
k − θðaÞj ≈ jk−jj

2Nσ̂ðaÞðθkÞ
and using the identity limN→∞

P
N
j¼−N
j≠k

1
ðj−kÞ2 ¼ π2

3
we find that

1

N

XN
k¼1

∂Uk

∂θðaÞk

≈ −
1

N2

XN
k¼1

4N2
π2

3
σ̂ðaÞðθkÞ: ðC11Þ

Assuming Z̃R1R2
is dominated by a single representation in

the large N limit, we use the ansatz Z̃R1R2
¼ eN

2FN , where
FN can be written

FN ¼ SN −
1

N2

X2
a¼1

�
1

4

XN
i¼−N

log½sin θðaÞi �

þ 1

4

XN
k¼−N

XN
j¼−N
j≠k

log

�
sin

�
θðaÞk − θðaÞj

2

���
: ðC12Þ

From the above equation we can find two relations,

∂FN

∂θðaÞk

¼ ∂SN

∂θðaÞk

−
1

N
Uk;

∂FN

∂A
¼ ∂SN

∂A
: ðC13Þ

Using the above two relations we can reduce the differential
equation of Z̃R1R2

to differential equation of SN

∂SN
∂A

¼ 1

2N

XN
K¼1

��
N
∂SN
∂θak

�
2

þ 1

N
∂Uk

∂θk

�
: ðC14Þ

In the continuum we assume that the density converges
to a smooth function and the sum and partial derivative
replaced by

lim
N→∞

1

2N

XN
j¼−N

→
Z

σspðaÞðθÞdθ 2N
∂

∂θðaÞk

→
∂

∂θ

δ

δσspðaÞðθÞ
����
θ¼θðaÞk

:

ðC15Þ

Replacing the sum by integral and using (C11), we get the
continuum version of (C14) as given by (4.20). With
redefinition of S ¼ 4S0 the above equation is the same
as (3.25) which can be mapped to a Hamilton-Jacobi
equation with Hamiltonian

H½σ;Π� ¼ 1

2

Z
σðθÞ2

��
∂Π
∂θ

�
2

−
π2

3
σðθÞ2

�
dθ: ðC16Þ

The Hamiltonian equation of motion is the same as
(3.27) with the boundary condition σðt ¼ 0; θÞ ¼ σ̂1ðθÞ
and σðt ¼ A; θÞ ¼ σ̂2ðθÞ.

APPENDIX D: FROM EIGENVALUE DENSITY
TO YOUNG TABLEAU DENSITY

To find the dominant Young tableau density, we can use
the large N properties of the Itzykson-Zuber integral

INðA;BÞ≡
Z

½dU�eNTrðAUBU†Þ ¼ det jjeNakbj jj
ΔðaÞΔðbÞ : ðD1Þ

Here A and B are arbitrary Hermitian matrices, ak and bj
are their eigenvalues, and ΔðaÞ ¼ Q

i<jðai − ajÞ. One nice
property of the integral is
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det jjeNakbj jj
ΔðaÞΔðbÞ ¼ e

N
2

hP
N
k¼1

a2kþ
P

N
j¼1

b2j

i
det jje−N

2
ðak−bjÞ2 jj

ΔðaÞΔðbÞ : ðD2Þ

Then one can define the quantity

JNðt; A; BÞ ¼
1

t
N
2

det jje−N
2tðak−bjÞ2 jj

ΔðaÞΔðbÞ ðD3Þ

which satisfies the partial differential equation

2N
∂JN
∂t

¼ 1

ΔðaÞ
XN
k¼1

∂
2

∂a2k
½ΔðaÞJN �: ðD4Þ

Equation (D4) is similar to (3.20) with

Uk ¼
1

N

XN
j¼1
j≠k

1

ak − aj
ðD5Þ

and like (3.24) we can also write

lim
N→∞

1

N2
log½JN � ¼ SJ½α; β; t�

−
1

2

Z Z
�αðaÞαða0Þ log½a − a0�

−
1

2

Z Z
�βðbÞβðb0Þ log½b − b0� ðD6Þ

with αðaÞ and βðbÞ being the densities of a and b. SJ½α; β; t�
satisfies the differential equation

∂SJ
∂t

¼ 1

2

Z
αðaÞ

��
∂

∂a
δSJ
δαðaÞ

�
2

−
π2

3
αðaÞ2

�
da: ðD7Þ

One can think of this as the Hamilton-Jacobi equation for
the dynamical system with the Hamiltonian

H½ρ;Π� ¼ 1

2

Z
ρðaÞ

��
∂

∂a
δSJ
δρðaÞ

�
2

−
π2

3
ρðaÞ2

�
da: ðD8Þ

We are interested to the solution which connects
ρðt ¼ 0; aÞ ¼ αðaÞ and ρðt ¼ 1; bÞ ¼ βðbÞ within
time t ¼ 1. The variational derivative at the end of the
trajectory is

δSJ
δαðaÞ ¼ Πðt ¼ 0; aÞ; δSJ

δβðbÞ ¼ −Πðt ¼ 1; bÞ: ðD9Þ

The equation of motion which follows from the above
Hamiltonian can be transformed to a single equation
(Hopf equation) of the function fJðt; aÞ ¼ ∂ΠðaÞ

∂a þ iπρðaÞ,

∂fJ
∂t

þ fJ
∂fJ
∂a

¼ 0: ðD10Þ

The general solution of (D10) can be written in para-
metric form

x ¼ RðξÞ þ FðξÞt; fJðt; xÞ ¼ FðξÞ:

If we introduce two analytic functions,

GþðxÞ ¼ xþ fJðt ¼ 0; xÞ; G−ðxÞ ¼ x − fJðt ¼ 1; xÞ;

then one can show that

GþðG−ðxÞÞ ¼ G−ðGþðxÞÞ ¼ x: ðD11Þ

After replacing ak ¼ y0k ¼ τyk and bj ¼ θj followed by
τ → i we can transform the Itzykson-Zuber integral to a
character of the UN group

det jjeNakbj jj → det jjeiNykθj jj ¼ χRðUÞΔðeiθÞ: ðD12Þ

Also, the densities of y0 and y are related by

ρτðyÞ ¼ −
∂x
∂y0

¼ 1

τ
ρ

�
y
τ

�����
τ¼i

: ðD13Þ

With this we can define two types of velocity

UðyÞ ¼ ∂

∂y
δSJ½ρτ;σ�
δρðyÞ ; UτðyÞ ¼

∂

∂y
δSJ½ρτ;σ�
δρτðyÞ

;

VðθÞ ¼−
∂

∂θ

δSJ½ρτ;σ�
δσðθÞ ; v2ðθÞ ¼−

∂

∂y
δS½σ1;σ2�
δσ2ðθÞ

; ðD14Þ

where the quantity S½σ1; σ2� is from (3.24). The above
four velocities are related to each other by

UðyÞ ¼ τUτðτyÞjτ¼i; −VðθÞ þ θ ¼ −v2ðθÞ ðD15Þ

from the large N limit of χRðUÞ ¼ eN
2Ξ½ρ;σ� and using

on-shell condition one can show

∂

∂y
δΞ½ρ; σ1�
δρðyÞ ¼ τUτðτyÞjτ¼i − y ¼ A

2
y: ðD16Þ

We can also define two analytic functions with these
variables:

GþðxÞ ¼ xþUτðxÞ þ iπρτðxÞ ¼ −
A
2
xþ −πρτðxÞ;

G−ðxÞ ¼ x − VðxÞ − iπσ1ðxÞ ¼ −v2ðxÞ − iπσ1ðxÞ: ðD17Þ

Hence from (3.45) with σ1 ¼ σ2, in this case t� ¼ A
2
and at

t ¼ A we have

iπσ�
�
θ −

A
2
ðv2ðθÞ þ iπσ1ðθÞÞ

�
¼ v2 þ iπσ1ðθÞ: ðD18Þ

KUSHAL CHAKRABORTY and SUVANKAR DUTTA PHYS. REV. D 106, 025009 (2022)

025009-18



By using (D13) and (D17) we can show that

πρð−πσ�ðθÞÞ ¼ θ: ðD19Þ

1. SpðNÞ
To find the Young-Tableau density for the SpðNÞ group

we can extend the above procedure of UðNÞ by a simple
observation:

det jj sinhNakbjjj ¼
1

2N
e
N
2
½
P

N
k¼1

a2kþ
P

N
j¼1

b2j � det jje−N
2
ðak−bjÞ2

− e−
N
2
ðakþbjÞ2 jj: ðD20Þ

This helps us to define

JNðt; a; bÞ ¼
1

t
N
2

det jje−N
2tðak−bjÞ2 − e−

N
2tðakþbjÞ2 jj

ΔðaÞΔðbÞ ðD21Þ

which satisfies the same differential equation as (D4),
with ΔðaÞ ¼ Q

N
i¼1 ai

Q
N
j<jðai þ ajÞðai − ajÞ. Following

the same procedure as depicted in (IV B), i.e., identifying
a−k ¼ −ak and the same for bk also, we can write every-
thing in terms of this new ak as

log½ΔðaÞ� ¼ 1

4

XN
i¼−N

XN
j¼−N
j≠k

log½ai−aj�þ
1

4

XN
i¼−N

log½2ai� ðD22Þ

with

Uk ¼
1

N
log½ΔðaÞ� ¼ 1

N

XN
j¼−N
j≠k

1

ak − aj
þ 1

2ak
ðD23Þ

and

1

N
∂Uk

∂ak
≈ −4

π2

3
αðakÞ2: ðD24Þ

Assuming that JN at the large N is given by JN ¼ eN
2FJ

N

and

FJ
N ¼ SJN −

1

N2
ðlog½ΔðaÞ� þ log½ΔðbÞ�Þ; ðD25Þ

then SJ ¼ limN→∞ SJN will satisfy the differential equation

∂SJ

∂t
¼ 1

2

Z
αðaÞ

��
1

2

∂

∂a
δSJ

δαðaÞ
�

2

− 4
π2

3
αðaÞ2

�
da: ðD26Þ

After redefinition of SJ ¼→ 4S̃J, the above equation
reduces to the Hamilton-Jacobi-like Eq. (D7). Thus the
function fJðt; aÞ ¼ vðt; aÞ þ iπρðt; aÞ follows the Burger’s
equation with the boundary condition:

Im½fJðt¼0;aÞ�¼παðaÞ; Re½fJðt¼0;aÞ�¼ ∂

∂a
δSJ

δαðaÞ ;

Im½fJðt¼1;bÞ�¼πβðbÞ; Re½fJðt¼1;bÞ�¼−
∂

∂b
δSJ

δβðbÞ :

ðD27Þ

Similar to the UðNÞ case, after replacing ak ¼ y0k ¼ τyk
and bj ¼ θj followed by τ → iτ we get

det jj sinhNy0kθjjj →
det jj sinNykθjjj

D½θ� ðiÞND½θ�: ðD28Þ

We can follow the same procedure as above and prove that
when σ1ðθÞ ¼ σ2ðθÞ the dominant young tableau density
satisfies

πρ½−πσ�ðθÞ� ¼ θ: ðD29Þ
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