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The false vacuum is a metastable state that can occur in quantum field theory, and its decay was first
studied semiclassically by Coleman. In this work, we consider the 1þ 1 dimensional φ4 theory, which is
the simplest model that provides a realization of this problem. We realize the decay as a quantum quench
and study the subsequent evolution using a truncated Hamiltonian approach. In the thin wall limit, the
decay rate can be described in terms of the mass of the kink interpolating between the vacua in the
degenerate limit and the energy density difference between the false and true vacuum once the degeneracy
is lifted by a symmetry breaking field, also known as the latent heat. We demonstrate that the numerical
simulations agree well with the theoretical prediction for several values of the coupling in a range of the
value of the latent heat, apart from a normalization factor, which only depends on the interaction strength.
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I. INTRODUCTION

Tunneling in quantum field theory, also known as the
decay of the false vacuum, was first investigated using a
semiclassical approach in the groundbreaking work by
Coleman [1,2]. Starting with the quantum field stuck in a
metastable state called the false vacuum, bubbles of the true
ground state of the theory (true vacuum) nucleate via
quantum tunneling. The nucleated bubbles subsequently
expand driven by the energy difference between the true
and false vacuum, and the released energy (also known as
latent heat) also results in a sea of particle excitations filling
the newly formed domains of the true vacuum. In the
original work by Coleman [1,2], the rate of bubble
nucleation was computed in a semiclassical approximation
to the path integral using instantons. Recently, it gathered
additional attention due to indications of metastability of
the Higgs vacuum in the Standard Model [3]. Furthermore,
recent advances in experimental technology (e.g., in
trapped ultracold atoms) bring direct laboratory study of
the phenomenon within reach [4–8].
More generally, the advances in experiments in the past

few decades have promoted the out-of-equilibrium

dynamics of quantum many-body systems to the forefront
of research in condensed matter physics [9–16]. A para-
digmatic and experimentally realizable protocol for non-
equilibrium dynamics is the so-called quantum quench
[17,18], where the system is initially prepared in equilib-
rium such as a thermal state or a ground state of some
Hamiltonian. At the initial time t ¼ 0, one or more
parameters of the theory are suddenly changed, driving
the system out of equilibrium subject to subsequent unitary
time evolution. The decay of the false vacuum can be
naturally implemented as a quantum quench by preparing
the system in the false vacuum state as the initial state and
studying the resulting time evolution. In the condensed
matter context, recently, the phenomenon was also studied
in quantum spin chains [19–21].
Nonequilibrium time evolution of nontrivially interact-

ing quantum field theories is rather nontrivial to describe,
requiring the use of suitable approximations, both analytic
and numerical. For the 1þ 1 dimensional φ4 model, which
is the textbook example of a simple interacting quantum
field theory, one class of methods is semiclassical approx-
imations such as the mean-field approach [22] or the
truncated Wigner approximation [23,24], both of which
are limited to the regime of sufficiently weak interactions.
An alternative method is provided by the truncated
Hamiltonian approach (THA), which can be used for
stronger interactions [25].
THAwas first invented to study relevant perturbations of

minimal conformal field theories [26–28], later extended to
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perturbations of other conformal field theories [29,30] and
also to perturbations of the free massive fermion [31].
Truncated Hamiltonian methods suitable for φ4 were
developed in the works [32–36], including also for higher
space-time dimensions [33]. An alternative approach to
Hamiltonian truncation is provided by light-cone con-
formal truncation [37,38]. Truncated Hamiltonian methods
proved efficient in simulating the full quantum out-of-
equilibrium dynamics in 1þ 1 dimensional quantum field
theories [25,39–45]; for the case of perturbed conformal
theories, an efficient algorithm including a MATLAB
implementation was made publicly available recently [46].
In this paper, we apply the THA built upon a massive

free boson basis [34–36] to study quantum quenches
involving decay of the false vacuum the 1þ 1 dimensional
φ4 theory, using the implementation developed in our
previous work [25], and determine the tunneling rate per
unit volume, which can be compared directly to theoretical
predictions [47].
The outline of the paper is as follows. In Sec. II, we give

a brief overview of the theory of the decay of the false
vacuum. Section III introduces the formulation of false
vacuum decay as a quantum quench, while Sec. IV
specifies implementation of the nonequilibrium time evo-
lution using the truncated Hamiltonian approach. The
detailed results of our investigations are presented in
Sec. V, while Sec. VI contains our conclusions.

II. DECAY OF THE FALSE VACUUM

Here, we briefly review the aspects of the decay of the
false vacuum necessary for our investigations, including
features specific for 1þ 1 space-time dimensions.
Following Coleman [1,2], false vacuum decays via bubble
nucleation initiated by quantum fluctuations. The decay is
dominated by spherically symmetric bubbles. Due to the
finite energy of the walls (surface tension), bubbles smaller
than a critical size only appear as short-lived quantum
fluctuations. However, bubbles larger than a critical radius
can form as stable field configurations, which then expand
driven by the surplus vacuum energy density in the false
vacuum compared to the true vacuum. In his seminal
work [1], Coleman considered tunneling in a scalar
field theory with a potential UðφÞ, which has a global
minimum corresponding to a stable ground state and a
metastable local minimum corresponding to the false
vacuum. In the semiclassical approximation, barrier pen-
etration is described in terms of the instanton bounce φI,
which is a spherically symmetric solution to the Euclidean
equation of motion:

�
∂
2

∂τ2
þ∇2

�
φ ¼ ∂U

∂φ
; ð1Þ

satisfying appropriate boundary conditions. The tunneling
rate per unit volume V is then given by the formula,

γ ¼ Γ
V
¼ A exp

�
−
1

ℏ
SE

�
; ð2Þ

where SE is the Euclidean action of the instanton bounce,
and the amplitude A can be expressed with the determinant
of quantum fluctuations in the instanton background (note
that it requires a careful treatment of zero modes).
The calculation simplifies considerably if the thickness

of the walls is much smaller than the radius of the critical
bubble, which is called the thin wall limit. The scalar
potential is written as

UðφÞ ¼ U0ðφÞ þ εΔUðφÞ; ð3Þ

where the term U0 has two degenerate minima correspond-
ing to vacua of equal energy density. The vacuum degen-
eracy is explicitly broken by switching on ε > 0, and the
thin wall limit corresponds to the limit of small ε [1]. In
1þ 1 dimensions, the bubbles in the thin wall limit take the
form of a kink-antikink pair delimiting a region with the
true vacuum in its interior, and the diameter of the critical
bubble is determined by simple energy conservation:

a� ¼
2M
E

; ð4Þ

where M is the kink mass, and E is the energy density
difference between the false and true vacuum (latent heat):

E ¼ 1

L
ðEFV − ETVÞ: ð5Þ

In the thin wall limit, the action of a bubble with diameter
a is

SðaÞ ¼ πaM −
πa2

4
E; ð6Þ

which has its stationary point for a ¼ a�. As a result,
nucleated bubbles are dominantly of the size a�, and the
instanton action determining the tunneling rate is

SE ¼ πM2

E
: ð7Þ

It is possible to go beyond the semiclassical limit to include
quantum corrections [2]. Moreover, in 1þ 1 dimensions,
these were evaluated exactly in the thin wall limit by
Voloshin [47] with the result,

γ ¼ E
2π

exp

�
−
πM2

E

�
; ð8Þ

where M is the exact renormalized kink mass, and E is the
exact quantum energy density difference between the false
and true vacua. Similar results were obtained for tunneling
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in the quantum Ising spin chain [19] and were recently
verified by numerical simulation of the spin chain dynam-
ics [20].

III. VACUUM DECAY AS A QUANTUM QUENCH
IN THE 1+ 1-DIMENSIONAL φ4 THEORY

The action of φ4 theory in the symmetry broken phase is
given by

S½φ� ¼
Z

d2x

�
1

2
ð∂tφÞ2 −

1

2
ð∂xφÞ2

þm2

2
φ2 −

g
6
φ4 þ εφ

�
; ð9Þ

which corresponds to setting,

U0ðφÞ ¼ −
m2

2
φ2 þ g

6
φ4 ΔUðφÞ ¼ −φ: ð10Þ

In the absence of explicit symmetry breaking (i.e., ε ¼ 0),
the classical ground states are

φ� ¼ �
ffiffiffiffiffiffiffiffiffi
3m2

2g

s
; ð11Þ

with kink/antikink excitation of mass,

M ¼
ffiffiffi
2

p
m3

g
; ð12Þ

interpolating between them. Switching on a nonzero ε
makes φþ the true ground state, while φ− becomes the false
vacuum (note that their positions are also slightly shifted).
At the quantum level, the two vacuum states and their

characteristic parameters, such as the value of the order
parameter and the vacuum energy density splitting, acquire
quantum corrections, and the same is true for the kink
mass M.
We investigate the false vacuum decay by setting up a

quantum quench protocol. Denoting the quantum
Hamiltonian of the ε ¼ 0 theory with H, we initialize
the system in the ground state jΨ−i of H, which becomes
the false vacuum for ε > 0:

jΨð0Þi ¼ jΨ−i
HjΨ−i ¼ E0jΨ−i; hΨ−jφjΨ−i < 0: ð13Þ

At the initial time t ¼ 0, we switch on ε > 0, and so the
postquench Hamiltonian is

Hε ¼ H − ε

Z
dx φ̂ðxÞ; ð14Þ

resulting in the unitary time evolution for t > 0:

jΨðtÞi ¼ e−iHεtjΨð0Þi: ð15Þ

The time evolution of an observable Ô is given by the
expectation value,

hÔðtÞi ≔ hΨðtÞjÔjΨðtÞi: ð16Þ

We consider the time evolution of the order parameter, i.e.,
the expectation value of the field φ̂, which we parametrize
via the combination,

FðtÞ ¼ hφ̂ðtÞi þ hφ̂ð0Þi
2hφ̂ð0Þi ; ð17Þ

inspired by the study of vacuum decay in the spin chain
setting by Lagnese et al. [20]. Neglecting corrections of the
vacuum expectation values of the field from the presence of
the ε, the decay of the false vacuum corresponds to the
change of FðtÞ from 1 to 0, making it a convenient quantity
to monitor the progression of the decay process.

IV. APPLYING THE TRUNCATED HAMILTONIAN
APPROACH TO VACUUM DECAY

Now, we turn to the application of the truncated
Hamiltonian approach to the time evolution starting from
a false vacuum. The Hamiltonian can then be written as

Hε ¼ Hm
KG þ

Z
dx∶

�
−m2φ̂2 þ g

6
φ̂4 − εφ̂

�
∶m; ð18Þ

where

HKG ¼
Z

dx∶
�
1

2
π̂2 þ 1

2
ð∂xφ̂Þ2 þ

m2

2
φ̂2

�
∶m ð19Þ

is the Klein-Gordon Hamiltonian of mass m, and the fields
satisfy the equal time commutation relations,

½π̂ðt; xÞ; φ̂ðt; x0Þ� ¼ −iδðx − x0Þ; ð20Þ

while ∶…∶m denotes normal ordering with respect to the
modes of the free Klein-Gordon field of mass m.
To implement the THA, we consider the system in a

finite volume L with periodic (or antiperiodic) boundary
conditions. Working in units m ¼ 1, the system can be
characterized by the following dimensionless parameters:

l ¼ mL; ḡ ¼ g
m2

and ε̄ ¼ ε

m2
: ð21Þ

The finite volume Hamiltonian then takes the form,
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HKGðLÞ¼
Z

L

0

dx∶
�
1

2
π̂2þ1

2
ð∂xφ̂Þ2þ

m2

2
φ̂2

�
∶m;LþE0ðLÞ

HεðLÞ¼Hm
KGþg0ðlÞV0þg2ðlÞV2þg4ðlÞV4− εV1

Vn¼
Z

l

0

dx∶φ̂n∶m;L: ð22Þ

Here, ∶…∶m;L denotes normal ordering with respect to the
free bosonic modes with mass m in a finite volume L,

E0ðlÞ ¼
Z

∞

−∞

dθ
2π

cosh θ log ð1 − el cosh θÞ; ð23Þ

and the finite volume couplings giðlÞ are related to infinite
volume couplings as [36]

g0ðlÞ ¼ −m2z�ðlÞ −m2
3 log 2
8π

þ g
2
z̃�ðlÞ2

g2ðlÞ ¼ gz̃�ðlÞ −m2 g4 ¼
g
6
; ð24Þ

with

zþðlÞ ¼
Z

∞

0

dθ
π

1

el cosh θ − 1
z−ðlÞ ¼ 2zþð2lÞ − zþðlÞ

z̃�ðlÞ ¼ z�ðlÞ þ log 2
4π

; ð25Þ

where the � superscript refers to (anti)periodic boundary
conditions φ̂ðxþ LÞ ¼ �φ̂ðxÞ.
The next step is to separate the zero mode using the

“minisuperspace” method [35,36] to take into account the
main effect of symmetry breaking (including the tunnel-
ing), which highly improves the convergence of the
method. Writing

φ̂ðxÞ ¼ φ̂0 þ φ̃ðxÞ; φ̂0 ¼
1

L

Z
L

0

dxφ̂ðxÞ; ð26Þ

where φ̂0 is the zero mode, while φ̃ðxÞ is the nonzero mode
of the field, and separating the Hilbert space accordingly as

H ¼ Hmini ⊗ H̃; ð27Þ

the Hamiltonian can be decomposed as

Hε ¼ H̃m
KG þHmini

ε þ
Z

L

0

dx½g0 þ g2∶φ̃ðxÞ2∶

þ g4ð∶φ̃ðxÞ4∶þ 6∶φ̃ðxÞ2∶φ̂2
0 þ 4∶φ̃ðxÞ3∶φ̂0Þ�

Hmini
ε ¼ L

�
1

2
∶π̂20∶þ

m2

2
∶φ̂2

0∶þ g2∶φ̂2
0∶þ g4∶φ̂4

0∶

− ε∶φ̂0∶
�
; ð28Þ

where π̂0 is the zero mode conjugate momentum, and H̃m
KG

denotes the free Klein-Gordon Hamiltonian with the zero
mode omitted. We note that this step is only necessary for
periodic boundary conditions since there is no zero mode in
the antiperiodic case.
Representing the Hamiltonian on the Fock space of the

Klein-Gordon model with mass m in finite volume L with
(anti)periodic boundary conditions, its matrix elements can
be explicitly evaluated. The space decomposes in sectors of
different total momentum; in our subsequent computations,
we only need the sector with zero total momentum.
The space is made finite dimensional by introducing an

ultraviolet (UV) cutoff separately in the minisuperspace
and the space of nonzero modes. In the minisuperspace
Hmini, the procedure is to diagonalize numerically the zero
mode Hamiltonian and keep a suitably large number of the
lowest lying eigenstates; we chose a cutoff for this
numerical diagonalization such that the energy levels kept
after this diagonalization can be considered numerically
exact. For the nonzero modes, we impose an upper energy
cutoff Λ in the total energy computed with the KG part of
the Hamiltonian. The cutoff Λ is parametrized as

Λ
m

¼ 4πnmax

l
; ð29Þ

where nmax is a dimensionless parameter, which can be
interpreted as to the maximum momentum quantum num-
ber that is allowed to be filled when neglecting m.
The spectrum of the Hamiltonian obtained in this way

still depends on the UV cutoff. The leading order depend-
ence on the nonzero mode cutoff Λ can be eliminated by a
renormalization of the Hamiltonian [35]:

HRG
ε ¼Hεþ

Z
L

0

dx½κ0þκ2∶φ̃ðxÞ2∶

þκ4ð∶φ̃ðxÞ4∶þ6∶φ̃ðxÞ2∶φ2
0þ4∶φ̃ðxÞ3∶φ0Þ�; ð30Þ

where explicit expressions for the κn are given in the
literature [25,35]. The zero-mode part, however, can be
considered essentially exact; the only condition is to keep
sufficient number of states to be consistent with the nonzero
mode cutoff Λ.

V. RESULTS

To evaluate (8), it is necessary to know the values of the
kink mass and of the latent heat.

A. Kink mass

The kink mass can be computed by setting ε̄ ¼ 0 and
computing the difference between the lowest levels in the
antiperiodic and periodic sectors, which correspond to a
stationary kink and the vacuum state, respectively. Note
that for antiperiodic boundary conditions, there are no zero
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modes, so the procedure outlined above simplifies. Figure 1
shows the g-dependence of the kink mass [36] for various
values of the cutoff nmax together with the semiclassical
prediction [48],

M ¼
ffiffiffi
2

p
m3

g
−

ffiffiffi
2

p
m

�
3

2π
−

1

4
ffiffiffi
3

p
�
þOðgÞ: ð31Þ

Note that for small couplings, the kink mass is large, and
therefore, it has a strong dependence on the UV cutoff,
while for larger couplings, the kink masses agree very well
with the semiclassical prediction.

B. Latent heat

The latent heat E is the difference of energy density
between the true and false vacuum, which can be easily

computed from the THA diagonalizing Hε by considering
the spectrum as a function of ε̄ for fixed volumes as
illustrated in Fig. (2) for ḡ ¼ 1.1 and l ¼ 8. Performing this
procedure for several values of the volume, we can then
plot the vacuum energy splitting as a function of the volume
for each value of the symmetry breaking parameter ε, which
is shown in Fig. 3 for ḡ ¼ 1.1. The slope of these lines gives
the value of the latent heat Eðε̄Þ as a function of ε̄. For small
ε, this function is expected to be linear corresponding to
first order in perturbation theory, which turns out to hold in
all the range of ε needed for the later computations of the
vacuum decay as shown in Fig. 4 for various values of ḡ. As
a result, the latent heat can be parametrized by fitting a
linear relation,

E ¼ AðḡÞε̄; ð32Þ

FIG. 1. The kink masses as obtained via THA (markers)
together with the semiclassical prediction. The different colors
denote different values of the cutoff nmax ¼ 21=2;…37=2 cor-
responding to cc. 1000–100000 basis states.

FIG. 2. The spectrum of Hε for l ¼ 8 and ḡ ¼ 1.1 as a
representative spectrum of the asymmetric theory, with the true
vacuum line subtracted. The false vacuum line is denoted by open
black markers.

FIG. 3. The energy difference between the false and true
vacuum as a function of the volume with the linear dependence
fitted for some values of the symmetry breaking field ε for
ḡ ¼ 1.1. The slope of the fitted linear curve is the energy density
difference (latent heat) E for a given ε̄.

FIG. 4. The latent heat E as a function of ε̄ for various couplings
ḡ with the fitted linear dependence. The error bars represent a
crude estimate obtained from the uncertainty of the parameter
estimation from the fits shown in Fig. 3.
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and extracting the coefficient AðḡÞ, which only depends on
ḡ. The procedure was carried out for several different values
of ḡ, with a nonzero mode basis of around 1000 states and a
minisuperspace dimension of 11, which provided sufficient
accuracy as demonstrated by the results presented in
the plots.

C. Bubble nucleation rate

Having computed the kink mass and the latent heat in the
quantum theory, we turn to the evaluation of the tunneling
rate via the THA using the quantum quench setting
presented in Sec. III. The tunneling rate is computed as
a function of the latent heat E, which is controlled using the
symmetry breaking parameter ε̄. The validity of the THA
simulation restricts the range of ε̄ for which the simulation
makes sense:

(i) To avoid finite size effects, the size of the critical
bubble [Eq. (4)] must be smaller than the volume L,
at least by a few times the correlation length (which,
for the regime of coupling considered here, is of
order 1=m).

(ii) The false vacuum state must fit below the cutoff;
therefore, it is necessary to fulfil E ¼ AðḡÞε̄ ≪ Λ.

These two conditions impose a lower and upper limit on the
values of ε̄ for the simulations, which depend on the self-
interaction ḡ. We simulated the time evolution in a volume
l ¼ 20, using a minisuperspace dimension of 41 and
verified that the results were stable against increasing
the number of zero-mode eigenstates kept. For the nonzero
modes, the cutoff was varied with the values nmax ¼ 10, 12,
14, 16, and 18, with the dimension of the truncated Hilbert
space going up to cc. 280000. With these parameters and
settings, it was possible to estimate the available interval for

ε̄ at any fixed choice for ḡ. Finally, we chose values for ḡ for
which this interval was large enough so that the dependence
of the decay rate on ε̄ could be seen in a reasonable interval.
Figure 5 shows the time evolution of FðtÞ for coupling

ḡ ¼ 1.1 and different values of the symmetry breaking field
ε̄. For small values ε̄, the size [Eq. (4)] of the resonant
bubble is too large compared to the volume, preventing
nucleation and leading instead to persistent oscillations. For
larger ε̄, the nature of the time evolution changes: After a
short initial transient corresponding to quantum Zeno
regime [49,50] where the time dependence is quadratic,
a time window with exponential decay of FðtÞ follows,
which can be more easily identified as a linear drop on the
plot of log FðtÞ shown in Fig. 6. The validity of exponential
behavior is limited in time, however, and it is followed by
oscillations with their amplitude apparently decreasing in
time with a power law, although the available time window
is not a long enough time to make this observation more
precise. Note that even if the oscillating regime were
absent, the range of time evolution available in the THA
is limited from above by the volume, since for t > L,
excitations can travel around the circle, resulting in devia-
tions from infinite volume behavior. Therefore, the expo-
nential behavior can only be observed in a finite time
window. We return to a more detailed discussion of the
theoretical and methodological limitations of simulating
the vacuum decay in the conclusions.
To determine the tunneling rate, we plot the logarithm of

FðtÞ and determine the slope of the linear segment in the
logarithmic plot. This was carried out for various quartic
couplings ḡ and ε̄, with some representative plots shown in
Fig. 6 corresponding to ḡ ¼ 1.1 and l ¼ 20. Identification
of the linear segment is simpler for larger values of ε̄, while
for smaller ε̄, the identification is helped by following the

FIG. 5. Time evolution of FðtÞ for ḡ ¼ 1.1 and different values of ε. The different colors denote different values of the cutoff. Here,
results corresponding to nmax ¼ 10, 12, 14, 16, and 18 are presented, corresponding to cc. 4100–287000 states.

D. SZÁSZ-SCHAGRIN and G. TAKÁCS PHYS. REV. D 106, 025008 (2022)

025008-6



time evolution gradually from larger to smaller values of
the symmetry breaking field. Dividing by the value of L
gives the nucleation rate per unit volume, which is shown in
Fig. 7 for l ¼ 20, and various couplings as discrete data
points connected by continuous lines for convenience. The
dashed curves show the theoretical prediction computed
using the kink mass M and latent heat E extracted from
THA using the formula,

γ ¼ CðḡÞ E
2π

exp

�
−
πM2

E

�
; ð33Þ

which differs from Voloshin’s result (8) by including a
ḡ-dependent factor CðḡÞ, which is a fitting parameter that
can be used to translate the prediction curve to overlay it
with the simulation results. Note that apart from this factor,
the ε̄ dependence follows the theoretical prediction very
well. The appearance of such a redefinition is eventually
expected since the same proved necessary when comparing

simulation results for the transverse field Ising spin chain
[20] with the corresponding theoretical predictions [19].
The match between the numerical and theoretical results

is made stronger by observing that it holds for different
values of the coupling strength ḡ. In all cases, the curves
show deviations both for small and for large values of ε̄. For
small values of ε̄ (i.e., large values of 1=ε̄), the disagree-
ment originates from finite size effects resulting from the
size of the resonant bubble (4) being comparable to the
volume. The color-coded vertical lines in Fig. 7 are drawn
at values of ε̄ where the resonant bubble size a� is equal to
half the volume. It can be clearly seen that this coincides
well with the regime where the numerical results start to
deviate appreciably from the theoretical predictions.
The deviations for large values of the symmetry breaking

field the numerical data can have two different origins.
First, the theoretical predictions assume the thin wall
approximation, which assumes a suitable small value of
the symmetry breaking field, although we cannot really
provide a concrete estimate for the value where the
prediction should fail. In addition, for larger values of
the latent heat, the energy injected by the quantum quench
becomes comparable with the truncation, leading to loss of
precision of the numerical simulation. In addition, large
values of the symmetry breaking field ε̄ can even lead to the
disappearance of the local minimum corresponding to the
false vacuum, changing the dynamics entirely.
To test whether the factor CðḡÞ depends on the volume,

we carried out simulations in other volumes l ¼ 25 and 30.
For these simulations, we used a minisuperspace of
dimension of 41, together with a nonzero mode cutoff of
nmax ¼ 18, 22, and 24, resulting in Hilbert space dimen-
sions of cc. 280000, 680000, and 680000 for l ¼ 20, 25,
and 30, respectively. As illustrated in Fig. 8, the results
show that logCðḡÞ (which is the quantity directly obtained)
shows no dependence on the volume. For large 1=ε̄, where
the limiting factor is the finite system size, the agreement
between the simulations and the prediction (33) improves
with larger volume, as expected. The deviations for small
1=ε̄ grow with the volume, which suggests that rather than
resulting from the invalidity of the thin wall approximation,
this discrepancy is caused by truncation effects since,
according to (29), the physical cutoff Λ in units of m is

FIG. 6. The logarithm of FðtÞ for l ¼ 20 and ḡ ¼ 1.1 obtained with the largest cutoff nmax ¼ 18, plotted together with the linear fits to
the apparent tunneling regime. The slope of the linear fits gives the tunneling rate Γ.

FIG. 7. The logarithm of γ obtained from THA (with
nmax ¼ 18) for various couplings in l ¼ 20 as a function of
1=ε̄ together with the theoretical predictions (8) (dashed lines).
The vertical lines correspond to the values of the symmetry
breaking field values where the resonant bubble size reaches
a� ¼ l=2, demonstrating that the difference between the theo-
retical and numerical results for small values of ε̄ originate from
finite size effects. The error bars represent a crude estimate
obtained from the uncertainty of the parameter estimation from
the fits, a representative sample of which is shown in Fig. 6.
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4πnmax=l, which, in our simulations, was decreasing with
the volume.
Figure 9 shows the numerically obtained values of log C

as a function of 1=ḡ, extracted in volume l ¼ 20 as in
Fig. 7, which suggests that the correct prefactor in the
nucleation rate has a highly nonperturbative dependence on
the interaction strength.

VI. CONCLUSIONS

We investigated the decay of the false vacuum in the
1þ 1 dimensional φ4 theory by studying the time evolution
of the order parameter triggered by a quantum quench. We
simulated the dynamics by a truncated Hamiltonian
approach built using the Fock space of the free massive
boson as computational basis and demonstrated the

existence of a regime of exponential decay and extracted
its rate. The decay rate normalized to unit volume was first
computed theoretically in the semiclassical approximation
by Coleman [1,2]; here, we used a later prediction by
Voloshin [47], which is expected to be exact at the quantum
level if the nucleated bubbles are in the thin wall limit.
Apart from an overall normalization factor CðḡÞ, we found
that the numerically determined decay rate considered as a
function of the latent heat matches the theoretical predic-
tions well. The appearance of CðḡÞ is consistent with recent
results obtained in the spin chain setting [20]. Beyond the
overall prefactor, the observed deviations are consistent
with the expected limitations of the theoretical approach
and the numerical simulation.
Extracting the nucleation rate from the decay rate of the

order parameter is subject to certain general, as well as
method specific limitations. Concerning the general limi-
tations, at short times, the exponential behavior is absent
due to general principles of quantum theory, while for later
times, a complicated dynamics takes place involving the
expansion and collision of nucleated bubbles, and finally,
thermalization of the resulting finite density medium [20].
Specifically for the THA method, our results demonstrate
that despite that the available time window is limited by the
finite volume, it can still access the full time range in which
the exponential behavior holds.
As already mentioned in the Introduction, the decay of

the false vacuum was recently studied in quantum spin
chains using tensor network methods [20], for which time
evolution can be simulated directly in infinite volume
using tensor network methods, which is a definite advan-
tage over the THA. However, in spite of the absence
of finite size effects, tensor network methods are still
limited in their time range due to the buildup of entangle-
ment. In addition, time evolution in spin chains is affected
by lattice effects such as, e.g., Bloch oscillations [51],
that can prevent the subsequent expansion, and therefore
thermalization, of the nucleated bubbles [21], while
from the point of view of field theory, the truncated
Hamiltonian approach has the advantage that lattice
effects are absent.
Now we turn to the issue of the appearance of the fitting

parameter CðḡÞ. The predicted nucleation rate (8) has the
form,

γ ¼ E
2π

exp

�
−
πM2

E

�
; ð34Þ

consisting of the exponential of the instanton action and
a prefactor resulting from quantum fluctuations. The
observed rate (33) agrees with the above prediction if
CðḡÞ is set to 1. In our comparison, we eventually looked at
the logarithm of the rate, whose dependence on the latent
heat is dominated by the 1=E coming from the instanton
action; the presence and also the precise value of this

FIG. 8. The (logarithm of the) nucleation rate γ obtained from
THA for different volumes l at interaction ḡ ¼ 1.1 as a function
of 1=ε̄ together with the theoretical predictions (33). The inset
shows the fitted values of logC for different values of the volume,
where the (barely visible) error bars show the uncertainty of the
parameter estimation from the fits.

FIG. 9. THA results (with nmax ¼ 18) for the logarithm of the
prefactor C plotted as a function of the inverse of the interaction
strength 1=ḡ together with a linear fit. The numerical evaluation
was performed in volume l ¼ 20.
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contribution are strongly confirmed by the comparison to
the simulation results. The fluctuations contribute a
dependence log E to log γ, and while its presence is
consistent with our simulation results, it cannot be verified
to high precision due to the slowly changing nature of the
logarithm. Nevertheless, the observed agreement strongly
suggests that the relative factor CðḡÞ between the theoreti-
cal predictions and numerical results is independent of the
latent heat E as well as the volume L. The numerical data
also indicate that logCðḡÞ is inversely proportional to
the interaction strength ḡ. The precise origin of the factor
CðḡÞ is not clear to us at present and deserves further
investigation.

Other interesting avenues to explore is to extend our
studies beyond the thin wall regime and also to other 1þ 1
dimensional quantum field theories. In addition, the late
time behavior eventually corresponds to thermalization
dynamics, which is another interesting physical regime
to study in the future.
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