PHYSICAL REVIEW D 106, 025007 (2022)

Feynman diagrams in terms of on-shell propagators
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It is shown that the usual expression for a Feynman diagram in terms of the Feynman propagator
Ap(x—y) can be replaced by an equivalent expression involving the positive-energy on-shell
propagator AT (x —y), supplemented by appropriate functions associated with time ordering. When
this alternate way of expressing a Feynman diagram is Fourier transformed into momentum space, the
momentum associated with each function A*(x — y) is on shell, and is only conserved at each vertex if
an energy is attributed to the contributions of the time-ordering functions. The resulting expression is
analogous to what Kadyshevsky had obtained by deriving an alternate expansion for the S matrix.
A detailed explanation of how this alternate expansion is derived is given, and it is shown how it
provides a straightforward way of determining the imaginary part of a Feynman diagram, which
makes it useful when using unitarity methods for computing a Feynman diagram. By considering a
number of specific Feynman diagrams in self-interacting scalar models and in QED, we show how this
alternative approach can be related to the old perturbation theory and can simplify direct calculations

of Feynman diagrams.
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I. INTRODUCTION

A key ingredient of the S matrix for a scattering process
in quantum field theory is the vacuum expectation value
of the time-ordered product of fields [1-3]. The original
approach to computing these “Green’s functions” lacked
manifest covariance and was cumbersome to use [4]. With
the advent of Feynman perturbation theory [5], perturbative
calculation became streamlined and manifest covariance
was retained, leading to almost universal adoption of this
approach [6].

The covariant perturbative approach to computing
S-matrix elements that originated with Feynman
involves the use of the causal (or Stueckelberg-
Feynman) propagator [5,7]
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Ap(x—y) =0(x"=Y)AT (x —y) +0(° —x°) A~ (x —y),
(1.1)

where A*(x —y) are positive (negative) energy on-shell
functions

4k
Afx—y) = / (2n)%i
= AT(y —x).

e~k Q(£k)5(k> — m?)

(1.2)

We first restrict our attention to self-interacting scalar
fields. Any Feynman loop may be expressed as a linear
combination of scalar loops by using an integral reduction
procedure [8].

Representing the step function @ in terms of an integral

0 0 _ 0y — / b —
(=) o 2T T — i€

(1.3)

we see from Egs. (1.1), (1.2) and (1.3) that

AF(x_y) :/(d4k

20 K —m? +ie

o-ik =)

Ap(y—x). (1.4)

(A detailed discussion of A is given in Ref. [9].)
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We can express a Feynman diagram in the form

In,m(ylvyZ’---’ym) = /dxl "'danF(yl _xl)"'AF(ym_xm)[AF(xi_-xj)"'AF(xk_xl)]y

where m is the number of vertices associated with an
external propagator and » is the total number of vertices,
located at points x;, x,, - -+, x,,. With a cubic interaction,
there are (3n —m)/2 propagators Ap(x; — x;) within the
square brackets in Eq. (1.5). Since Ay is manifestly
covariant, systematic ways of computing Feynman dia-
grams can be developed (see, for example, Refs. [1-3]).

An alternate way of perturbatively expanding the §
matrix was developed by Kadyshevsky [10] (see also [11]).
It involves use of the on-shell propagator A™(x —y) of
Eq. (1.2) as well as the time ordering function 6 of
Eq. (1.3). In this paper, we first show in Sec. II that the
expansion of Kadyshevsky can be derived from the
Feynman expansion.

In Secs. III and IV we discuss a number of applications
of using the functions A" and 6 in a perturbative expansion
of S. One useful feature is that the imaginary part of a
Feynman diagram can be found immediately, and is
equivalent to the cutting rules of Cutkosky [12] (see the
Appendix). Using the imaginary part of a Feynman dia-
gram in conjunction with a dispersion relation makes it
possible to compute the Feynman diagram without calcu-
lating the usual Feynman integral over an off-shell loop
momentum [13]. This approach also allows for a simple
and direct integration over the internal loop energies, which
enables us to establish useful connections between on-shell
tree amplitudes and loop integrals [14-20]. In Sec. V we
extend the analysis to fermionic fields and give an

(1.5)

application to the vacuum polarization in QED, while in
Sec. VI we apply this method to the calculation of the
amplitude for the decay process 7z, — 2y We conclude the
paper with a brief discussion in Sec. VIL

II. USE OF THE FUNCTIONS A* AND 6

We begin by considering the one-loop, two-point func-
tion when there is a cubic interaction in D = d + 1 space-
time dimensions. In this case, Eq. (1.5) becomes

ilgz)()’hyz)
= /deldezAF(y1 - x1)A%(x1 =) Ap(xy = ¥2).
(2.1)
Since
0(z)0(-z) =0 (2.2a)
and
0(z)0(z) =1, (2.2b)

Eq. (1.1) reduces Eq. (2.1) to

il;g()’l,yz) = /deldDXZAF(yl —x)[0(x) = X)) AL (x) = x3) + O(x§ = x0) A2 (x5 — x1)|Ap(x2 = y2),  (2.3)

which now involves only the functions # and A™. Since

Egs. (1.2), (1.3) and (1.4) now show that

o(k -
0(deko)5(k2 — m?) = 2R F @), <a)k = /IR + m2>, (2.4)
2a)k
ilglg(% y,) = i/ d’p e / d’q /°° dr F(PO — 0y~ Wy +7) + 8(p° +wy +@_py—1)
' 4 ) 2r)P (p*-m?+ie)? ) (2n) )T —i€ W0,y W0y
(2.5)

upon integrating over x; and x, in Eq. (2.3). The two terms in Egs. (2.3) and (2.5) can be represented graphically in Fig 1.
The argument used to obtain Eq. (2.5) from Eq. (2.1) will now be applied to the Feynman diagram of Fig. 2.

025007-2



FEYNMAN DIAGRAMS IN TERMS OF ON-SHELL PROPAGATORS

PHYS. REV. D 106, 025007 (2022)

p—q
FIG. 1. Graphical representation of the two terms in Eqgs. (2.3)
and (2.5).
z3
Y1 Y2
I To
T4

FIG. 2. Diagram which corresponds to the integral in Eq. (2.8).

In general, if there are n vertices at x/, x}, ..., x4, then
their time component can be ordered in n! ways

...Zxo .

(n) (2.6)

For the diagram of Fig. 2, let us consider the time ordering

x>0 >0 > K. (2.7)

The Feynman diagram of Fig. 2 corresponds to the integral

If%(yl’h) = /deldeZde3de4AF(yl —x1)
X [AF(xl - XS)AF(-XI - x4)AF(X3 —_ _X'4>

X Ap(x3 = %) Ap(x4 = x2)]Ap (X2 = ¥2).
(2.8)

The propagators Ay with the square brackets of Eq. (2.8)
can result in a product of five 9(x? — x?) = 0;;. The time
ordering of Eq. (2.7) is contained within the product

034051032041 045. (2.9)

The product of Eq. (2.9) also contains the time ordering

X9 > x> a0 > 0. (2.10)

Two of the 4! time orderings of the vertices in Fig. 2 are
given explicitly in Eqgs. (2.7) and (2.10); these correspond
to a contribution

2
Jz(x.%()’h)’z) = /de1de2de3de4AF()’1 — X1)[034041612 + 03404,0;]

X [ALAL AZ&A& A;Z]AF()Q - 2);

In general, a Feynman diagram with n vertices, m of which
are external, has (3n—m)/2 internal lines and (n—
m)/2 + 1 loops when there is cubic self-interaction. Each
distinctive time ordering of the vertices according to
Eq. (2.6) results in a factor of
0n@200)3)  On-1)(n)- (2.12)

This is multiplied by (3n — m)/2 factors of A*(x; — x;) in
place of the factor Ay (x; — x;) in the original expression of
Eq. (1.5) with x¥ > xg-). Upon using Egs. (1.2) and (1.3) and
|

dPp  emirniy) dlq, dq,

(A?; = AT (x; — x;)).

: (2.11)

doing the integrals over x%, ..., x5, we find that we have
the graphical rules of Fig. 3, with conservation of spatial
components of momentum at each vertex, and with the sum
of the temporal components of momentum entering a
vertex equaling the sum of the r; entering that vertex.
This leads to a factor of (27) at each vertex. These rules
are consistent with those derived by Kadyshevsky [10].

If we were to apply these rules to the second term in
Eq. (2.11) to the Feynman diagram of Fig. 2 [Eq. (2.10)],
we obtain

1 1 1 1 1

2)
J , =
4201 2) / 2x)P (p* —m* +ie)* | (2n)! (2n)" 20_p—g 44, 200, 20—, 200, 200

—P—q
1 1

1
x . —— .
Wgy T O—pg g, T Opg, —1EDg + By + O_p_g, T Opg, —1EP" + Wy + Oy, — 1€

This is represented diagrammatically in Fig. 4.

(2.13)
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kM "
e — > Z0) T ——Y()
1 1 1 1 1 1

T - = E()

2mi T — e (2m)di 2wy, (2m)D p2 — m? + ie
0 0 0 0
(i) Z T(j) T 2 T

FIG. 3. Graphical rules obtained upon using Egs. (1.2) and (1.3)
and doing the integrals over x/, ..., xi. There is conservation of
spatial components of momentum at each vertex; the sum of the
temporal components of momentum entering a vertex is equal to
the sum of the 7; entering that vertex.

—P—q

TL = Wg + Wopgit+go T Wp—gs
T2 = Wq, + Wyy + Wop—q1 + Wp—gz

_ .0
T3=DpP +Wyg +W—p—q

FIG. 4. Graphical representation of Eq. (2.13).

This is associated with the time ordering of Eq. (2.10);
the remaining 23 contribution associated with the Feynman
diagram of Fig. 2 can be found in a similar fashion.

The rules that have been outlined can be recast in a
different way. If one were to consider all contributions with
n vertices, m of which are external, occurring at x§, x5...x%,
with x¥ > x9... > x0, then this can be represented by a

vertical line as in Fig. 5(a) for n = 4.

The integral associated with Figs. 5 and 6 is

o ;
| |
0 | |
1172 ¢ -
: P
o ! |
Z3 o P
| I —pt
| |
) t
(a) (b)
FIG. 5. Stages in constructing a two-loop, two-point diagram.

To m of these vertices, an external leg with momentum
Pl (i =1,...,m) can be attached as in Fig. 5(b) for n = 4,
m =23, pi =0). All vertices are now connected so that
each vertex is associated with three lines as in Fig. 5(c).
The momentum in each connecting line has momentum
flowing from x} to ¥/ with x > x9 and spatial momentum
conserved at each vertex.

Each dotted line connecting x9 to x? | (i = 1,2...,n— 1)
has 7; chosen so that the temporal momentum is conserved
at each vertex. In Fig. 5(c) this means that we have

T) = Wy, + O_g, g, + O, (2.14a)
Ty = w_g_p, +0p, + g, —p°.  (2.14b)

and
T3 = Wp,_p + O, g, + Op, 4 p- (2.14c¢)

The diagram of Fig. 5(c) can also be represented in Fig. 6.

e~ip-(2=y1)

/ dPp /ddkl d'k, 1
27)P ) 2r)? (22)! (204,) 2wy,) 20—k, 1) 2ws, 4 p) (2w, ) (p* — m* + i€)?

1

X

: : . (2.15)
(@, + Oy i, + O, = 1€) (O, s, + O, + O = PO = i€) (W _pp + O, + D — i€)
Similarly, the diagram of Fig. 7(a), or alternatively, Fig. 7(b), is associated to the integral
d®p A%k, dk, 1 e~ip-(v2=y1)
/ (27)° / (2n)7 (22)7 (205,) 20, ) Qs 1) Q0 1,) (97— 2 i)’
1
X (2.16)

(@4, + O, + O, = i€) (@, + O, + O_p i, + PO —i€) (@, + Oty 1p — P —i€)
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T4

FIG. 6. Alternative representation of the diagram of Fig. 5(c).

III. APPLICATION TO LOOP CALCULATIONS

Having demonstrated how to express a Feynman dia-
gram in terms of the on-shell propagator A™, we will
consider how this alternate approach can be used. We first
note that the imaginary contribution to a Feynman diagram
must come from the step function 6.

dlq [~ dr 1
i = [ 28 [ [y
7)) T — i€ (0,0,

/ diq 8(p° +2w,) +8(p° - 2w,)
=7

(2r)4 w; ’

if we consider the frame of reference in which p = 0, so
that p® = 4/ p?. Since in d dimensions [21]

274/2

/ 40 () = 7 / dqld*f (i) (3.3)

and as

dlg [~ dr 1
I1(p?) = S(p° —w —
(P7) (27)4 /_001— i€ L} ,_ (p" =

q-r—q

-0, =0,y +7)+

Wp_y+ 7)+

(a) (b)

FIG. 7.

Graphical representations of Eq. (2.16).

Since

1

1
= — i A .1
Azic DA T imoA) G.1)
we find, for example, that in Eq. (2.5)
! 0
——6(p° +w, +o_,_,—7)
q®P-p—q
(3.2)

SI(p?) =

4z 7?1 (p2

d/2-1
G T () T’") O(p" = dm?).

(3.5)

This approach to computing the imaginary part of a
Feynman diagram is equivalent to using “cut” Feynman
propagators [12]. At one-loop order, Feynman essentially
used the expansion outlined here to demonstrate the existence
of ghost contributions in Yang-Mills theory and gravity [14].

One can now consider a direct computation of the
integrals in Eq. (2.5), which involve, in d dimensions,
the function

1
— 5(p° o — .
WgW—p—q (Pot gt 0mpeg =)

(3.6)

This is a Lorentz invariant quantity proportional to the self-energy function, which is more easily evaluated in the reference
frame p = 0. Setting m?> = 0 and first integrating over 7, we obtain the result

I(p?) =

8 T(d/2-1/2)(3/2-4d/2)

(_pZ)d/2—3/2‘

(16m)4/?

I(d/2)

(3.7)

In Eq. (3.6) we could also set p = 0 and then integrate over ¢ in d dimensions before integrating over 7. This procedure

leaves us with
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1(p?) = /: = ((2@2;;2;/2)) /0006% [5(”0 )

g8 g2 o (124 — m?)d/2-1 ,
N (27)4T(d/2) lm 2 —p*—ie B

The integral over g is well defined and the divergence only
arises from the integral over z. This is consistent with
Ref. [10]. The above integral has precisely the form of a
dispersion relation. This may be explicitly evaluated, for
m? = 0, when it leads to the result given in Eq. (3.7). For
m # 0, it may be expressed in terms of the Gauss hyper-
geometric function ,F (1, (3 — d)/2;3/2; p?/4m?).

It is interesting to note how Eq. (3.6) is related to what
one encounters when using the old perturbation theory
(OPT) [4]. In this approach, if S = 1-2ziT, then one solves
for the matrix elements of 7 iteratively,

Vs,V
br ¥ ya
Ts,=Vs,+ | d
pa = " fa / "Eu—E, +ic
/ dydy AGAST
(Ey— E, + i€)(E, — E, + ie)

(3.9)

where V is the interaction part of the Hamiltonian [4]. If we
integrate Eq. (3.6) over 7, we get

d
1(p?) = / dq 1 1
2m)? w0,y —p° + 0, + o, — ic
1 1

0 .
WqW—p—g P~ + Oy + Oy — 1€

, (3.10)

which corresponds to the diagrams of Fig. 8. The vertical
cuts in Fig. 8 cut lines associated with intermediate states in
the second term in the sums of Eq. (3.9). The factors
1/(w,0,_,) and 1/(w,0_,_,) in Eq. (3.10) are associated
with the wave function of the virtual intermediate states.

z9 < x9

FIG. 8. Graphical representation of the two terms in Eq. (3.6).

2\/q2+m2+r)+5<p0+2\/q2+m2—1>}

(3.8)

IV. THE SUNRISE DIAGRAM

As a workable application at two loops, let us now
consider the self-energy diagram of Fig. 9 that occurs in
four dimensions with a quartic interaction for a scalar field.

The two diagrams associated with the time orderings
indicated in Fig. 9 result in the Feynman integral

1&2()’1,)’2)
= /d4x1d4X2AF()’1 —x)[Ap(x) = )P Ap(xy = y2)
(4.1)
being expressed as

2
12,2>(y17)’2)

B l/ d'p e i) / dq Pk /oo dr
8 )t (p?P—m?+ie)) (27) (2x)} )7 — i€

0
8 {5(17 — 0= Oy = Oy +T)
W DD p—f—q

+

S(P’+ o +w,+ oy gy — 7)]
W DqD—p—k—q

(4.2)

upon using the rules obtained earlier.
Performing the 7 integration leads to the following
expression for the scalar self-energy at two-loops:

_,12/ dq &k 1 1

M) =31 ) @y oy 20 20,

1 [ 1
X .
2wp+k+q Wy + oF + WDpiktrqg — pO — e

1
] ea
O+ 0+ Oy p g+ P — i€

29 < 23 23 < %

FIG. 9. Two-loop sunrise self-energy diagrams with a quartic
interaction, corresponding to the integral in Eq. (4.2).
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where we made the transformations k — —k and § — —g in
the first term. Note that the second term in Eq. (4.3)
can be obtained from the first term by making

P’ = -p’

~31" | 22) (22) 204 20,

2 / dqg &Pk 1 1 1
(27)* (27)° 24 200, 200, 41

Let us take, for definiteness, p° > 0, so that only the first
delta function will contribute to the imaginary part of
the self-energy. For simplicity, we will consider the mass-
less case with m = (0. By Lorentz invariance, since p*
must be timelike in order for this process to occur,
we may do the calculation in the frame where p = 0.

In this case w; = |k| =k, w, =gl =q and wp, =

Vk* + ¢* + 2kqgx, where x is the cosine of the angle

between k and g. Thus, we must evaluate the integral over
this angle which involves

1
/ dxé{k%—q%— \/k2+q2—|—2kqx—p0}
-1

P’ —k—gq

=0(p° - k—-q)
kq

(4.5)

where we have used the relation (3.4), together with the fact
that the argument of the § function vanishes at the point

pP? =2p°(k+ q)
2kq '

It turns out that the requirement that —1 < xy < 1, leads
to the condition k + g + |k — g| < p® < 2(k + g). Using
these relations and performing the remaining angular
integrations in Eq. (4.4), we obtain

2o 1 [ oo
T T ak | dgo(p® —k—q— |k -
3!(%)44% A q6(p q-lk—ql)

x 0(2(k+ q) — p°). (4.7)

o~

SH(p) =

These integrals may be evaluated by using the change of
variables k 4+ ¢ = Q, and k— g = Q_. Then, a straight-
forward integration over the variables O, and Q_ leads to
the following result

/1271'12

SMip) = 3@n 2t

(4.8)

where we have set (p°)?> — p? by Lorentz invariance.

[5(wk + wq =+ wp+k+q - pO) =+ 5<a)k + wq + a)p+k+q + pO)]'

Let us now evaluate the imaginary part of the above
equation, which corresponds, by unitarity, to the decay rate
of a scalar particle into three on-shell particles with energies
0y, 0y and @y iy

(4.4)

The above result was obtained in four space-time
dimensions. In D dimensions, the corresponding result
can be written in the form

2 oz T3(D/2-1) 1

3@ rana -2 P ¢

SM(p) =

which reduces to Eq. (4.8) for D = 4.

With the help of this result for the imaginary part of the
sunrise graph, one can write a dispersion relation for the
self-energy I1(p)

11(p) zlf’ LN

7 Jame  s—p?—ie

(4.10)

Using the expression (4.9) and rescaling s = p’x, we
obtain in the massless case that

A2 3(D/2-1)
" 31(4x)PT(3D/2 -3)[(D -2)

© xD-3
X dx——.
0 x—1-—ie

This integral can be performed using the formula (3.194)
in [22], which leads to the following result

(p)

(—p?)P-3

(4.11)

21
 31(4n)P

r(3-D)3(D/2-1)
r(3D/2-3)

I(p) (=p*)P73, (4.12)

where —p? — —(1 + ie)p?. The above expression agrees
with that obtained in the massless case by using conventional
Feynman propagators, as expected [see for example Eq. (C4)
of [20]]. But the present approach is more convenient for
clarifying the way that the unitarity of the S matrix arises
from the intermediate states. The corresponding result
obtained for a nonzero mass is more involved and can be
expressed in terms of elliptic integrals [23].

V. SPINOR FIELDS

The use of on-shell propagators is also possible when
dealing with spinor fields. The Feynman propagator, much
like that for a scalar field in Eq. (1.1) is given by
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Sp(x) = 0(x°)ST(x) + 0(—=x°)S~(x)

= (iy- 0+ m)Ap(x), (5.1)
where
S*(x) = (iy-0+m)A%(x)
Bk e—i(:ﬁ:(ukxo—lz)?) .o
_/(271)31' o (o’ —k-7+m). (5.2)

[Only if m = 0 does $*(x) = =S¥ (—x).]
The vacuum polarization is given by

Hﬂy(ylvyZ) = /d4xld4x2DF;M<yl _xl)DFua(yZ _xZ)

X (—ie)* Tr[y*Sp(x; — x2)7°Sp(xa — x1)],
(5.3)
|

where

) d4p e—ip-x
Dt = -in |

(2n)* p? + ie”

(5.4)

Using Eq. (2.2) we find that

Y”SF(X)7”5F<—X)
= O(xO)y ST (x)y*S™(=x) + O(=x")y* S~ (x)y*S™ (=x).
(5.5)

Following the same steps that lead from Egs. (2.3) to (3.6),
we find that

—ie2 [ d*p e ik 1
Hm/(ylvyZ): /( /(

4 22)* (p* +ie)* ) (27) @, 10

-

- [m(wk%’ +k-7+m)y, (0,47’ + (P+k)-7+m)

-’ + wp + @) — 1€

N Yoy’ + k-7 +m)y (@, 7"+ (P+k) -7+ m)}

PP+ wy +w, — i€

(5.6)

Using the well-known trace formulas, it follows that the vacuum polarization may be written in momentum space as

() 2/ Fr1 .
=e
wAP (27)? @, \P° + @y + @, 4y — i€

X [mzn;w - a)kprrk(zn/AOr]uO - ’7/41/) + kl(p + k>j(’7/u’nbj + NyuiMvi — nﬂunij)]‘

This expression may be conveniently evaluated in the
reference frame in which p# = ( p0,6). In this frame, it
is easy to verify that I, satisfies the Ward identity
P, (p) = 0 at the integrand level (in any dimensions).
Since p*Il,,(p) is a four-vector, this must hold in any
frame so that I1,, should have the transverse form

H;w(p) = (npwp2 - pﬂpU)H(p2)' (58)
It is interesting to note that this approach naturally
preserves gauge invariance. The imaginary part of the
function T1(p?) may be easily evaluated from Eq. (5.7)
to give, in the above reference frame where p? = (p°)2,

2 1 2 2 4 2

S(p2) = (1425 ) 1= 0(p? — 4m2). (5.9)
473 p p

Using this expression, one can write for I1(p?) a dispersion

relation of the form given in Eq. (4.10). The integration can

be performed and leads to the result

1
-’ + o + Wpik— ie)

(5.7)
[
M(p?) - 11(0)

:‘;ﬂz/oldxx(l—x)l“ |:1_:12x(1—x):|, (5.10)

which agrees with that obtained by using the
covariant Feynman rules to compute the photon self-
energy [1-3].

VI. PION DECAY TO PHOTONS

This process takes place through an anomaly in the
divergence of the axial-vector current [24]. In QCD, it
provides evidence that the number of quark colors should
be equal to 3, in agreement with the experimental data
[1-3]. Here, we will calculate the amplitude for the decay
7% = 2y in QED, by using the present approach. The one-
loop graphs for this process are shown in Fig. 10, where the
coupling of the pion to the fermions is g,7°. The sum of the
diagrams gives

025007-8



FEYNMAN DIAGRAMS IN TERMS OF ON-SHELL PROPAGATORS

PHYS. REV. D 106, 025007 (2022)

FIG. 10. Feynman diagrams contributing to the amplitude for

the pion decay.

d*k
P =g | Gy TSRS+ Pl Sl = q)

+ (< v, p<q) (6.1)

In order to evaluate these contributions, one can use for
the spinor propagators the form given in Egs. (5.1) and
(5.2). However, a simplification occurs if we first calculate
|

d*k 1

the trace over the y matrices. To this end, we note that the
trace of y> with any number, less than 4, of y matrices
vanishes. The trace of y° with four y matrices is

Tr[p*y r*y’y’] = —4ie . (6.2)

Thus, since the trace of > with an odd number of y matrices
vanishes, we get the relation

Tr[y (K+m)r* (K + P+ m)y’ (K — g +m)] = 4ime™ P p,qp,
(6.3)

which is independent of k. This transverse result arises in
consequence of gauge invariance.

In this way, one can write Eq. (6.1) in the alterna-
tive form

1 1

I = —8g,e2e" P p,qpi /

) k> —m* +ie (k+ p)? —m? +ie(k—q)* —m> + ie’

(6.4)

We remark that the above integral corresponds to a contribution coming from a one-loop 3-point scalar function. This can be
computed in our approach by using Eq. (1.1) for the scalar propagators, together with the procedure outlined in Sec. II.

After a straightforward calculation, we obtain the result

" = —8g,e*c" P p,qsT(p.q).

where the cubic scalar vertex can be written as

(6.5)

1

F(pm_/(cﬂk 11 1 [ 1

271')3 2_a),(2a)k+p Za)k_q

wp + oy, — pP —iew, + wp_, —q° —ie

1 1
_0_ ,0_ ( _ 0 _
Wp T g — P’ — ¢’ — i€ \0p + wpy, — p° — i€

1 p’ = -p’
+ 0 ) + <ﬁ . (6.6)
O + Wp—g —q — 1€ 9 = —q

One can see that this contribution has a similar form to that of the last term in Eq. (3.9).
We will now evaluate the imaginary part of this expression in the physical case when p?> = 0, ¢g*> = 0 with p° and ¢°

positive. Then, one finds that

&Pk 1 1 1
(277.')3 Za)k 2a)k+p 20)k_q

SC(p.q) = ﬂ/

The ¢ function corresponds to the contribution coming
from the intermediate state involving the cut lines shown in
Fig. 10. This integral can be evaluated with the help of the
relation (3.4), by employing a procedure similar to that
used in Egs. (4.4)-(4.8). We then get, after some calcu-
lation, the Lorentz invariant expression

11 1 1 —4m?
Jl(s) =— ln< i /s

! )
6ns l_m>9(s 4m?*), (6.8)

S(wprp + oy — P° — ¢°) <

1 1
5+ - 67)
ot oy =P ot o, =g

|
where s = (p + ¢)?. Using this imaginary part in the
dispersion relation,

((p+9)°) =~ / ® do— 1) (6.9)

T Jam? 6_(p+q)2_i€’

one can compute the full cubic scalar vertex I'((p + ¢)?).
Integrating over ¢ and using the Eq. (6.5), we obtain for the
one-loop amplitude I'**(p, g) the result
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1 m Ldx m2
l"llv__gﬂeZm_]zreﬂl/aﬂpaqﬁA 7ln [1—x(1—x) 5

272 m?—ie|’

(6.10)

where we have now set (p + ¢)* = m2, since the pion is
on shell.

The above result is in agreement with the one found
by using the covariant Feynman rules [1-3]. It has been
shown that such a result implies that the classical chiral
symmetry, which turns up for massless fermions, is violated
by quantum effects.

VII. DISCUSSION

The usual approach to evaluating Feynman diagrams
through the use of the Feynman propagator Ag(x — y) of
Eq. (1.1) has the advantage of retaining manifest covari-
ance, while providing the physical interpretation of having
a particle propagating forward in time from y to x and an
antiparticle propagating similarly from x to y. Nevertheless,
reexpressing Feynman diagrams in terms of the on-shell
propagator A [£(x — y)] of Eq. (1.2) may be of interest.

Establishing the connection between the perturbative
method introduced in Ref. [10] and the usual Feynman
approach is our first result. This method makes the
determination of the imaginary part of a Feynman diagram
quite straightforward, coming as it does entirely from the
step function 6. It is somewhat simpler than using the
“largest time” approach of Ref. [25]. Once the imaginary
part of the scattering amplitude is determined, a dispersion
relation can be used to compute the full amplitude, as was
done in Egs. (4.10), (4.12), (5.10) and (6.10). This alter-
native to the direct evaluation of Feynman integrals is
considered, for example, in Ref. [13].

As we have shown in scalar models and in QED, the
integration over the z parameters leads to results that are
equivalent to those arising when using the OPT. Since the
present method is based on the forms (1.1) and (5.1), which
involve the Lorentz invariant Feynman propagator (1.4), it
may be thought of as a covariant formulation of the OPT.
An interesting feature of this method is that it consistently
preserves the gauge invariance in QED. In this context, we
have examined the vacuum polarization and the decay
process of the neutral pion in two photons.

Such an approach is convenient in some circumstances
when it provides physical insights on quantum field theory
[2,3,26]. For example, an appropriate version of OPT is
given by Schwinger’s proper time formalism, which is the
best way to carry out certain effective action calculations
[27]. Moreover, the OPT is also convenient to give a
general proof of the infrared finiteness of averaged tran-
sition probabilities [28]. Another helpful feature of OPT is
that it clarifies the way that the singularities of the S matrix
arise from various physical intermediate states. This may be
useful in connection with the unitarity methods applied to

loop computations in gauge theories [29-33], which rely
on the fact that loop amplitudes are determined by their
singularities.
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APPENDIX: UNITARITY AND CUT DIAGRAMS

Let us illustrate the equivalence between the imaginary
parts of Feynman graphs found in the present approach
and the cutting rules of Cutkosky. To this end we consider,
for definiteness, the two loop self-energy graph discussed
in Sec. II. As we have shown, performing the 7 integra-
tions, we obtain the same result as that found in the old
time-ordered perturbation theory. Thus, the contribution
from this graph may be written in the compact form
[compare with Eq. (3.9) where we set the interaction
vertex equal to g]

G(p) —94/ dy,dy,dy;
(pO_E;/] +i€)(p0_Ey2 +i€)(p0_Ey3 +l€> 7
(A1)

where the integrals over y; denote integrations over the
internal momentum with the corresponding energy factors
1/2w;, as well as a summation over all time-ordered
configurations. Here E, is the energy of the intermediate
state y; which contains a sum of mass-shell energies w; of
the lines in the state y; [see, for example, Eq. (2.16)]

The unitarity condition may be represented as shown in
Fig. 11, where the sum is over all cuts C.

The above relation can be written in the form

> Gelp) = 2i3G(p),

allC

(A2)

where the sum over all cuts of G(p) is connected with the
decay rate of the particle with momentum p.

Let us denote by G, the graph to the left of the cut
involving the on-shell state y, which has an energy
denominator replaced by 2z8(p® — E, ). The correspond-
ing graph to the right side of the cut, denoted by Gj, is
computed according to the complex conjugate rules. Then,
using expressions like the one given in Eq. (Al) and
suppressing for simplicity the integrals and overall factors,
we obtain the relation

FIG. 11. Unitarity applied to the two-loop self-energy graph.
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3 3
1
326i6,= 3| 1] jomg—32000" = 52

n=1 Lj=n+1 7j

n—1
1
X .
H 0 Eyi+ie}

- (A3)
i1 P

On the other hand (omitting the same factors), the
imaginary part of G (times 2i) is

3
: 1 1
2i3G =i —_— || - A4
a lLl_[lpO—E},j—l-ie jl_[lpo—E_—iJ (Ad)

The expressions (A3) and (A4) are equal, as may be
verified using the identity (3.1) which implies that

i(A Jlr - ! ie) — 215(A). (AS)

The equality of the Eqs. (A3) and (A4) is equivalent to
the unitarity relation (A2). The above derivation may be
generalized in a straightforward way to an arbitrary
Feynman diagram (see also the Sec. 9.6 of [28]).
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