
Feynman diagrams in terms of on-shell propagators

F. T. Brandt ,1,* J. Frenkel,1,† and D. G. C. McKeon 2,3,‡

1Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
2Department of Applied Mathematics, The University of Western Ontario,

London, Ontario N6A 5B7, Canada
3Department of Mathematics and Computer Science, Algoma University,

Sault Ste. Marie, Ontario P6A 2G4, Canada

(Received 2 June 2022; accepted 29 June 2022; published 13 July 2022)

It is shown that the usual expression for a Feynman diagram in terms of the Feynman propagator
ΔFðx − yÞ can be replaced by an equivalent expression involving the positive-energy on-shell
propagator Δþðx − yÞ, supplemented by appropriate functions associated with time ordering. When
this alternate way of expressing a Feynman diagram is Fourier transformed into momentum space, the
momentum associated with each function Δþðx − yÞ is on shell, and is only conserved at each vertex if
an energy is attributed to the contributions of the time-ordering functions. The resulting expression is
analogous to what Kadyshevsky had obtained by deriving an alternate expansion for the S matrix.
A detailed explanation of how this alternate expansion is derived is given, and it is shown how it
provides a straightforward way of determining the imaginary part of a Feynman diagram, which
makes it useful when using unitarity methods for computing a Feynman diagram. By considering a
number of specific Feynman diagrams in self-interacting scalar models and in QED, we show how this
alternative approach can be related to the old perturbation theory and can simplify direct calculations
of Feynman diagrams.
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I. INTRODUCTION

A key ingredient of the S matrix for a scattering process
in quantum field theory is the vacuum expectation value
of the time-ordered product of fields [1–3]. The original
approach to computing these “Green’s functions” lacked
manifest covariance and was cumbersome to use [4]. With
the advent of Feynman perturbation theory [5], perturbative
calculation became streamlined and manifest covariance
was retained, leading to almost universal adoption of this
approach [6].
The covariant perturbative approach to computing

S-matrix elements that originated with Feynman
involves the use of the causal (or Stueckelberg-
Feynman) propagator [5,7]

ΔFðx− yÞ ¼ θðx0 − y0ÞΔþðx− yÞ þ θðy0 − x0ÞΔ−ðx− yÞ;
ð1:1Þ

where Δ�ðx − yÞ are positive (negative) energy on-shell
functions

Δ�ðx − yÞ ¼
Z

d4k
ð2πÞ3i e

−ik·ðx−yÞθð�k0Þδðk2 −m2Þ

¼ Δ∓ðy − xÞ: ð1:2Þ

We first restrict our attention to self-interacting scalar
fields. Any Feynman loop may be expressed as a linear
combination of scalar loops by using an integral reduction
procedure [8].
Representing the step function θ in terms of an integral

θðx0 − y0Þ ¼
Z

∞

−∞

dτ
2πi

eiτðx0−y0Þ

τ − iϵ
; ð1:3Þ

we see from Eqs. (1.1), (1.2) and (1.3) that

ΔFðx − yÞ ¼
Z

d4k
ð2πÞ4

e−ik·ðx−yÞ

k2 −m2 þ iϵ
¼ ΔFðy − xÞ: ð1:4Þ

(A detailed discussion of ΔF is given in Ref. [9].)
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We can express a Feynman diagram in the form

In;mðy1; y2;…; ymÞ ¼
Z

dx1 � � � dxnΔFðy1 − x1Þ � � �ΔFðym − xmÞ½ΔFðxi − xjÞ � � �ΔFðxk − xlÞ�; ð1:5Þ

where m is the number of vertices associated with an
external propagator and n is the total number of vertices,
located at points x1, x2, � � �, xn. With a cubic interaction,
there are ð3n −mÞ=2 propagators ΔFðxi − xjÞ within the
square brackets in Eq. (1.5). Since ΔF is manifestly
covariant, systematic ways of computing Feynman dia-
grams can be developed (see, for example, Refs. [1–3]).
An alternate way of perturbatively expanding the S

matrix was developed by Kadyshevsky [10] (see also [11]).
It involves use of the on-shell propagator Δþðx − yÞ of
Eq. (1.2) as well as the time ordering function θ of
Eq. (1.3). In this paper, we first show in Sec. II that the
expansion of Kadyshevsky can be derived from the
Feynman expansion.
In Secs. III and IV we discuss a number of applications

of using the functions Δþ and θ in a perturbative expansion
of S. One useful feature is that the imaginary part of a
Feynman diagram can be found immediately, and is
equivalent to the cutting rules of Cutkosky [12] (see the
Appendix). Using the imaginary part of a Feynman dia-
gram in conjunction with a dispersion relation makes it
possible to compute the Feynman diagram without calcu-
lating the usual Feynman integral over an off-shell loop
momentum [13]. This approach also allows for a simple
and direct integration over the internal loop energies, which
enables us to establish useful connections between on-shell
tree amplitudes and loop integrals [14–20]. In Sec. V we
extend the analysis to fermionic fields and give an

application to the vacuum polarization in QED, while in
Sec. VI we apply this method to the calculation of the
amplitude for the decay process π0 → 2γ We conclude the
paper with a brief discussion in Sec. VII.

II. USE OF THE FUNCTIONS Δ + AND θ

We begin by considering the one-loop, two-point func-
tion when there is a cubic interaction in D ¼ dþ 1 space-
time dimensions. In this case, Eq. (1.5) becomes

iIð1Þ2;2ðy1; y2Þ

¼
Z

dDx1dDx2ΔFðy1 − x1ÞΔ2
Fðx1 − x2ÞΔFðx2 − y2Þ:

ð2:1Þ

Since

θðzÞθð−zÞ ¼ 0 ð2:2aÞ

and

θðzÞθðzÞ ¼ 1; ð2:2bÞ

Eq. (1.1) reduces Eq. (2.1) to

iIð1Þ2;2ðy1; y2Þ ¼
Z

dDx1dDx2ΔFðy1 − x1Þ½θðx01 − x02ÞΔþ
F
2ðx1 − x2Þ þ θðx02 − x01ÞΔþ

F
2ðx2 − x1Þ�ΔFðx2 − y2Þ; ð2:3Þ

which now involves only the functions θ and Δþ. Since

θð�k0Þδðk2 −m2Þ ¼ δðk0 ∓ ωkÞ
2ωk

;

�
ωk ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

q �
; ð2:4Þ

Eqs. (1.2), (1.3) and (1.4) now show that

iIð1Þ2;2ðy1; y2Þ ¼
i
4

Z
dDp
ð2πÞD

e−p·ðy1−y2Þ

ðp2 −m2 þ iϵÞ2
Z

ddq
ð2πÞd

Z
∞

−∞

dτ
τ − iϵ

�
δðp0 − ωq − ωp−q þ τÞ

ωqωp−q
þ δðp0 þ ωq þ ω−p−q − τÞ

ωqω−p−q

�

ð2:5Þ

upon integrating over x1 and x2 in Eq. (2.3). The two terms in Eqs. (2.3) and (2.5) can be represented graphically in Fig 1.
The argument used to obtain Eq. (2.5) from Eq. (2.1) will now be applied to the Feynman diagram of Fig. 2.
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In general, if there are n vertices at xμ1, x
μ
2, …, xμn, then

their time component can be ordered in n! ways

x0ð1Þ ≥ x0ð2Þ � � � ≥ x0ðnÞ: ð2:6Þ

For the diagram of Fig. 2, let us consider the time ordering

x03 ≥ x04 ≥ x01 ≥ x02: ð2:7Þ

The Feynman diagram of Fig. 2 corresponds to the integral

Ið2Þ4;2ðy1; y2Þ ¼
Z

dDx1dDx2dDx3dDx4ΔFðy1 − x1Þ

× ½ΔFðx1 − x3ÞΔFðx1 − x4ÞΔFðx3 − x4Þ
× ΔFðx3 − x2ÞΔFðx4 − x2Þ�ΔFðx2 − y2Þ:

ð2:8Þ

The propagators ΔF with the square brackets of Eq. (2.8)
can result in a product of five θðx0i − x0jÞ≡ θij. The time
ordering of Eq. (2.7) is contained within the product

θ34θ31θ32θ41θ42: ð2:9Þ

The product of Eq. (2.9) also contains the time ordering

x03 ≥ x04 ≥ x02 ≥ x01: ð2:10Þ

Two of the 4! time orderings of the vertices in Fig. 2 are
given explicitly in Eqs. (2.7) and (2.10); these correspond
to a contribution

Jð2Þ4;2ðy1; y2Þ ¼
Z

dDx1dDx2dDx3dDx4ΔFðy1 − x1Þ½θ34θ41θ12 þ θ34θ42θ21�

× ½Δþ
34Δ

þ
41Δ

þ
42Δ

þ
31Δ

þ
32�ΔFðx2 − y2Þ; ðΔþ

ij ≡ Δþðxi − xjÞÞ: ð2:11Þ

In general, a Feynman diagram with n vertices, m of which
are external, has ð3n −mÞ=2 internal lines and ðn −
mÞ=2þ 1 loops when there is cubic self-interaction. Each
distinctive time ordering of the vertices according to
Eq. (2.6) results in a factor of

θð1Þð2Þθð2Þð3Þ � � � θðn−1ÞðnÞ: ð2:12Þ

This is multiplied by ð3n −mÞ=2 factors of Δþðxi − xjÞ in
place of the factor ΔFðxi − xjÞ in the original expression of
Eq. (1.5) with x0i ≥ x0j . Upon using Eqs. (1.2) and (1.3) and

doing the integrals over xμ1;…; xμn, we find that we have
the graphical rules of Fig. 3, with conservation of spatial
components of momentum at each vertex, and with the sum
of the temporal components of momentum entering a
vertex equaling the sum of the τi entering that vertex.
This leads to a factor of ð2πÞD at each vertex. These rules
are consistent with those derived by Kadyshevsky [10].
If we were to apply these rules to the second term in

Eq. (2.11) to the Feynman diagram of Fig. 2 [Eq. (2.10)],
we obtain

Jð2Þ4;2ðy1; y2Þ ¼
Z

dDp
ð2πÞD

e−ip·ðy1−y2Þ

ðp2 −m2 þ iϵÞ2
Z

ddq1
ð2πÞd

ddq2
ð2πÞd

1

2ω−p−q1þq2

1

2ωq2

1

2ωp−q2

1

2ωq1

1

2ω−p−q1

×

�
1

ωq1 þ ω−p−q1þq2 þ ωp−q2 − iϵ
1

ωq1 þ ωq2 þ ω−p−q1 þ ωp−q2 − iϵ
1

p0 þ ωq1 þ ω−p−q2 − iϵ

�
: ð2:13Þ

This is represented diagrammatically in Fig. 4.

FIG. 1. Graphical representation of the two terms in Eqs. (2.3)
and (2.5).

FIG. 2. Diagram which corresponds to the integral in Eq. (2.8).
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This is associated with the time ordering of Eq. (2.10);
the remaining 23 contribution associated with the Feynman
diagram of Fig. 2 can be found in a similar fashion.
The rules that have been outlined can be recast in a

different way. If one were to consider all contributions with
n vertices,m of which are external, occurring at xμ1, x

μ
2…xμn,

with x01 ≥ x02… ≥ x0n, then this can be represented by a
vertical line as in Fig. 5(a) for n ¼ 4.

To m of these vertices, an external leg with momentum
pμ
i (i ¼ 1;…; m) can be attached as in Fig. 5(b) for n ¼ 4,

m ¼ 2 (
P

i p
μ
i ¼ 0). All vertices are now connected so that

each vertex is associated with three lines as in Fig. 5(c).
The momentum in each connecting line has momentum
flowing from xμi to xμj with x0i > x0j and spatial momentum
conserved at each vertex.
Each dotted line connecting x0i to x

0
iþ1 (i ¼ 1; 2…; n − 1)

has τi chosen so that the temporal momentum is conserved
at each vertex. In Fig. 5(c) this means that we have

τ1 ¼ ωk2 þ ω−k1−k2 þ ωk1 ; ð2:14aÞ

τ2 ¼ ω−k1−k2 þ ωk1 þ ωk2þp − p0; ð2:14bÞ

and

τ3 ¼ ωk1−p þ ω−k1−k2 þ ωk2þp: ð2:14cÞ

The diagram of Fig. 5(c) can also be represented in Fig. 6.

The integral associated with Figs. 5 and 6 is

Z
dDp
ð2πÞD

Z
ddk1
ð2πÞd

ddk2
ð2πÞd

1

ð2ωk1Þð2ωk2Þð2ω−k1−k2Þð2ωk2þpÞð2ωk1−pÞ
e−ip·ðy2−y1Þ

ðp2 −m2 þ iϵÞ2

×
1

ðωk2 þ ω−k1−k2 þ ωk1 − iϵÞðω−k1−k2 þ ωk1 þ ωk2þp − p0 − iϵÞðωk1−p þ ω−k1−k2 þ ωk2þp − iϵÞ : ð2:15Þ

Similarly, the diagram of Fig. 7(a), or alternatively, Fig. 7(b), is associated to the integral

Z
dDp
ð2πÞD

Z
ddk1
ð2πÞd

ddk2
ð2πÞd

1

ð2ωk1Þð2ωk2Þ2ð2ω−k1−k2Þð2ω−k2þpÞ
e−ip·ðy2−y1Þ

ðp2 −m2 þ iϵÞ2

×
1

ðωk1 þ ω−k1−k2 þ ωk2 − iϵÞðω−k1−k2 þ ωk1 þ ω−k2þp þ p0 − iϵÞðωk2 þ ω−k2þp − p0 − iϵÞ : ð2:16Þ

FIG. 4. Graphical representation of Eq. (2.13).

FIG. 3. Graphical rules obtained upon using Eqs. (1.2) and (1.3)
and doing the integrals over xμ1;…; xμn. There is conservation of
spatial components of momentum at each vertex; the sum of the
temporal components of momentum entering a vertex is equal to
the sum of the τi entering that vertex. FIG. 5. Stages in constructing a two-loop, two-point diagram.
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III. APPLICATION TO LOOP CALCULATIONS

Having demonstrated how to express a Feynman dia-
gram in terms of the on-shell propagator Δþ, we will
consider how this alternate approach can be used. We first
note that the imaginary contribution to a Feynman diagram
must come from the step function θ.

Since

1

A� iϵ
¼ P

1

A
∓ iπδðAÞ; ð3:1Þ

we find, for example, that in Eq. (2.5)

ℑIðp2Þ ¼ ℑ
Z

ddq
ð2πÞd

Z
∞

−∞

dτ
τ − iϵ

�
1

ωqωp−q
δðp0 − ωq − ωp−q þ τÞ þ 1

ωqω−p−q
δðp0 þ ωq þ ω−p−q − τÞ

�

¼ π

Z
ddq
ð2πÞd

δðp0 þ 2ωqÞ þ δðp0 − 2ωqÞ
ω2
q

; ð3:2Þ

if we consider the frame of reference in which p⃗ ¼ 0, so
that p0 ¼ �

ffiffiffiffiffi
p2

p
. Since in d dimensions [21]

Z
ddqfðjq⃗jÞ ¼ 2πd=2

Γðd=2Þ
Z

∞

0

dqjq⃗jd−1fðjq⃗jÞ ð3:3Þ

and as

Z
∞

−∞
dxfðxÞδðgðxÞÞ ¼

X
i

fðaiÞ
jg0ðaiÞj

ðgðaiÞ ¼ 0Þ; ð3:4Þ

ℑIðp2Þ ¼ 4π

ð2πÞd
πd=2

Γðd=2Þ
1ffiffiffiffiffi
p2

p �
p2

4
−m2

�
d=2−1

θðp2 −4m2Þ:

ð3:5Þ

This approach to computing the imaginary part of a
Feynman diagram is equivalent to using “cut” Feynman
propagators [12]. At one-loop order, Feynman essentially
used the expansion outlined here to demonstrate the existence
of ghost contributions in Yang-Mills theory and gravity [14].
One can now consider a direct computation of the

integrals in Eq. (2.5), which involve, in d dimensions,
the function

Iðp2Þ ¼
Z

ddq
ð2πÞd

Z
∞

−∞

dτ
τ − iϵ

�
1

ωqωp−q
δðp0 − ωq − ωp−q þ τÞ þ 1

ωqω−p−q
δðp0 þ ωq þ ω−p−q − τÞ

�
: ð3:6Þ

This is a Lorentz invariant quantity proportional to the self-energy function, which is more easily evaluated in the reference
frame p⃗ ¼ 0. Setting m2 ¼ 0 and first integrating over τ, we obtain the result

Iðp2Þ ¼ 8

ð16πÞd=2
Γðd=2 − 1=2ÞΓð3=2 − d=2Þ

Γðd=2Þ ð−p2Þd=2−3=2: ð3:7Þ

In Eq. (3.6) we could also set p⃗ ¼ 0 and then integrate over q⃗ in d dimensions before integrating over τ. This procedure
leaves us with

FIG. 7. Graphical representations of Eq. (2.16).

FIG. 6. Alternative representation of the diagram of Fig. 5(c).
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Iðp2Þ ¼
Z

∞

−∞

dτ
τ − iϵ

�
2πd=2

ð2πÞdΓðd=2Þ
�Z

∞

0

dqqd−1

q2 þm2

�
δðp0 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
þ τÞ þ δ

�
p0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
− τ

��

¼ 8

ð2πÞd
πd=2

Γðd=2Þ
Z

∞

2m

ðτ2=4 −m2Þd=2−1
τ2 − p2 − iϵ

dτ: ð3:8Þ

The integral over q is well defined and the divergence only
arises from the integral over τ. This is consistent with
Ref. [10]. The above integral has precisely the form of a
dispersion relation. This may be explicitly evaluated, for
m2 ¼ 0, when it leads to the result given in Eq. (3.7). For
m ≠ 0, it may be expressed in terms of the Gauss hyper-
geometric function 2F1ð1; ð3 − dÞ=2; 3=2;p2=4m2Þ.
It is interesting to note how Eq. (3.6) is related to what

one encounters when using the old perturbation theory
(OPT) [4]. In this approach, if S ¼ 1–2πiT, then one solves
for the matrix elements of T iteratively,

Tβα ¼ Vβα þ
Z

dγ
VβγVγα

Eα − Eγ þ iϵ

þ
Z

dγdγ0
VβγVγγ0Vγ0α

ðEα − Eγ þ iϵÞðEα − E0
γ þ iϵÞ þ…;

ð3:9Þ

where V is the interaction part of the Hamiltonian [4]. If we
integrate Eq. (3.6) over τ, we get

Iðp2Þ ¼
Z

ddq
ð2πÞd

�
1

ωqωp−q

1

−p0 þ ωq þ ωp−q − iϵ

þ 1

ωqω−p−q

1

p0 þ ωq þ ω−p−q − iϵ

�
; ð3:10Þ

which corresponds to the diagrams of Fig. 8. The vertical
cuts in Fig. 8 cut lines associated with intermediate states in
the second term in the sums of Eq. (3.9). The factors
1=ðωqωp−qÞ and 1=ðωqω−p−qÞ in Eq. (3.10) are associated
with the wave function of the virtual intermediate states.

IV. THE SUNRISE DIAGRAM

As a workable application at two loops, let us now
consider the self-energy diagram of Fig. 9 that occurs in
four dimensions with a quartic interaction for a scalar field.
The two diagrams associated with the time orderings

indicated in Fig. 9 result in the Feynman integral

Ið2Þ2;2ðy1; y2Þ

¼
Z

d4x1d4x2ΔFðy1 − x1Þ½ΔFðx1 − x2Þ�3ΔFðx2 − y2Þ

ð4:1Þ

being expressed as

Ið2Þ2;2ðy1; y2Þ

¼ 1

8

Z
d4p
ð2πÞ4

e−ip·ðy1−y2Þ

ðp2 −m2 þ iϵÞ
Z

d3q
ð2πÞ3

d3k
ð2πÞ3

Z
∞

−∞

dτ
τ − iϵ

×

�
δðp0 − ωk − ωq − ωp−k−q þ τÞ

ωkωqωp−k−q

þ δðp0 þ ωk þ ωq þ ω−p−k−q − τÞ
ωkωqω−p−k−q

�
ð4:2Þ

upon using the rules obtained earlier.
Performing the τ integration leads to the following

expression for the scalar self-energy at two-loops:

ΠðpÞ ¼ λ2

3!

Z
d3q
ð2πÞ3

d3k
ð2πÞ3

1

2ωk

1

2ωq

×
1

2ωpþkþq

�
1

ωk þ ωq þ ωpþkþq − p0 − iϵ

þ 1

ωk þ ωq þ ωpþkþq þ p0 − iϵ

�
; ð4:3Þ

FIG. 8. Graphical representation of the two terms in Eq. (3.6).
FIG. 9. Two-loop sunrise self-energy diagrams with a quartic
interaction, corresponding to the integral in Eq. (4.2).
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where we made the transformations k⃗ → −k⃗ and q⃗ → −q⃗ in
the first term. Note that the second term in Eq. (4.3)
can be obtained from the first term by making
p0 → −p0.

Let us now evaluate the imaginary part of the above
equation, which corresponds, by unitarity, to the decay rate
of a scalar particle into three on-shell particles with energies
ωk, ωq and ωpþkþq

ℑΠðpÞ ¼ λ2

3!
π

Z
d3q
ð2πÞ3

d3k
ð2πÞ3

1

2ωk

1

2ωq

1

2ωpþkþq
½δðωk þ ωq þ ωpþkþq − p0Þ þ δðωk þ ωq þ ωpþkþq þ p0Þ�: ð4:4Þ

Let us take, for definiteness, p0 > 0, so that only the first
delta function will contribute to the imaginary part of
the self-energy. For simplicity, we will consider the mass-
less case with m ¼ 0. By Lorentz invariance, since pμ

must be timelike in order for this process to occur,
we may do the calculation in the frame where p⃗ ¼ 0.
In this case ωk ¼ jk⃗j≡ k, ωq ¼ jq⃗j≡ q and ωkþq ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 þ 2kqx

p
, where x is the cosine of the angle

between k⃗ and q⃗. Thus, we must evaluate the integral over
this angle which involves

Z
1

−1
dxδ

�
kþ qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 þ 2kqx

q
− p0

�

¼ θðp0 − k − qÞp
0 − k − q

kq
; ð4:5Þ

where we have used the relation (3.4), together with the fact
that the argument of the δ function vanishes at the point

x0 ¼ 1þ p02 − 2p0ðkþ qÞ
2kq

: ð4:6Þ

It turns out that the requirement that −1 < x0 < 1, leads
to the condition kþ qþ jk − qj < p0 < 2ðkþ qÞ. Using
these relations and performing the remaining angular
integrations in Eq. (4.4), we obtain

ℑΠðpÞ ¼ λ2

3!

π

ð2πÞ4
1

4

Z
∞

0

dk
Z

∞

0

dqθðp0 − k − q − jk − qjÞ

× θð2ðkþ qÞ − p0Þ: ð4:7Þ

These integrals may be evaluated by using the change of
variables kþ q ¼ Qþ and k − q ¼ Q−. Then, a straight-
forward integration over the variables Qþ and Q− leads to
the following result

ℑΠðpÞ ¼ λ2

3!

π

ð4πÞ4
1

2
p2; ð4:8Þ

where we have set ðp0Þ2 → p2 by Lorentz invariance.

The above result was obtained in four space-time
dimensions. In D dimensions, the corresponding result
can be written in the form

ℑΠðpÞ ¼ λ2

3!

π

ð4πÞD
Γ3ðD=2 − 1Þ
Γð3D=2 − 3Þ

1

ΓðD − 2Þ ðp
2ÞD−3; ð4:9Þ

which reduces to Eq. (4.8) for D ¼ 4.
With the help of this result for the imaginary part of the

sunrise graph, one can write a dispersion relation for the
self-energy ΠðpÞ

ΠðpÞ ¼ 1

π

Z
∞

4m2

ds
ℑΠðsÞ

s − p2 − iϵ
: ð4:10Þ

Using the expression (4.9) and rescaling s ¼ p2x, we
obtain in the massless case that

ΠðpÞ ¼ λ2

3!

1

ð4πÞD
Γ3ðD=2 − 1Þ

Γð3D=2 − 3ÞΓðD − 2Þ ð−p
2ÞD−3

×
Z

∞

0

dx
xD−3

x − 1 − iϵ
: ð4:11Þ

This integral can be performed using the formula (3.194)
in [22], which leads to the following result

ΠðpÞ ¼ λ2

3!

1

ð4πÞD
Γð3−DÞΓ3ðD=2− 1Þ

Γð3D=2− 3Þ ð−p2ÞD−3; ð4:12Þ

where −p2 → −ð1þ iϵÞp2. The above expression agrees
with that obtained in the massless case by using conventional
Feynman propagators, as expected [see for example Eq. (C4)
of [20]]. But the present approach is more convenient for
clarifying the way that the unitarity of the S matrix arises
from the intermediate states. The corresponding result
obtained for a nonzero mass is more involved and can be
expressed in terms of elliptic integrals [23].

V. SPINOR FIELDS

The use of on-shell propagators is also possible when
dealing with spinor fields. The Feynman propagator, much
like that for a scalar field in Eq. (1.1) is given by
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SFðxÞ ¼ θðx0ÞSþðxÞ þ θð−x0ÞS−ðxÞ
¼ ðiγ · ∂þmÞΔFðxÞ; ð5:1Þ

where

S�ðxÞ¼ðiγ ·∂þmÞΔ�ðxÞ

¼
Z

d3k
ð2πÞ3i

e−ið�ωkx0−k⃗·x⃗Þ

2ωk
ð�ωkγ

0− k⃗ · γ⃗þmÞ: ð5:2Þ

[Only if m ¼ 0 does S�ðxÞ ¼ −S∓ð−xÞ.]
The vacuum polarization is given by

Πμνðy1; y2Þ ¼
Z

d4x1d4x2DFμλðy1 − x1ÞDFνσðy2 − x2Þ

× ð−ieÞ2Tr½γλSFðx1 − x2ÞγσSFðx2 − x1Þ�;
ð5:3Þ

where

DFλσðxÞ ¼ −iηλσ
Z

d4p
ð2πÞ4

e−ip·x

p2 þ iϵ
: ð5:4Þ

Using Eq. (2.2) we find that

γμSFðxÞγνSFð−xÞ
¼ θðx0ÞγμSþðxÞγνS−ð−xÞ þ θð−x0ÞγμS−ðxÞγνSþð−xÞ:

ð5:5Þ

Following the same steps that lead from Eqs. (2.3) to (3.6),
we find that

Πμνðy1; y2Þ ¼
−ie2

4

Z
d4p
ð2πÞ4

e−ip·ðy1−y2Þ

ðp2 þ iϵÞ2
Z

d3k
ð2πÞ3

1

ωpþkωk
Tr

�
γμðωkγ

0 þ k⃗ · γ⃗ þmÞγνð−ωpþkγ
0 þ ðp⃗þ k⃗Þ · γ⃗ þmÞ

−p0 þ ωk þ ωpþk − iϵ

þ γμð−ωkγ
0 þ k⃗ · γ⃗ þmÞγνðωpþkγ

0 þ ðp⃗þ k⃗Þ · γ⃗ þmÞ
p0 þ ωk þ ωpþk − iϵ

�
: ð5:6Þ

Using the well-known trace formulas, it follows that the vacuum polarization may be written in momentum space as

ΠμνðpÞ ¼ e2
Z

d3k
ð2πÞ3

1

ωkωpþk

�
1

p0 þ ωk þ ωpþk − iϵ
þ 1

−p0 þ ωk þ ωpþk − iϵ

�

× ½m2ημν − ωkωpþkð2ημ0ην0 − ημνÞ þ kiðpþ kÞjðημiηνj þ ημjηνi − ημνηijÞ�: ð5:7Þ

This expression may be conveniently evaluated in the
reference frame in which pμ ¼ ðp0; 0⃗Þ. In this frame, it
is easy to verify that Πμν satisfies the Ward identity
pμΠμνðpÞ ¼ 0 at the integrand level (in any dimensions).
Since pμΠμνðpÞ is a four-vector, this must hold in any
frame so that Πμν should have the transverse form

ΠμνðpÞ ¼ ðημνp2 − pμpνÞΠðp2Þ: ð5:8Þ

It is interesting to note that this approach naturally
preserves gauge invariance. The imaginary part of the
function Πðp2Þ may be easily evaluated from Eq. (5.7)
to give, in the above reference frame where p2 ¼ ðp0Þ2,

ℑΠðp2Þ ¼ e2

4π

1

3

�
1þ 2m2

p2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

p2

s
θðp2 − 4m2Þ: ð5:9Þ

Using this expression, one can write for Πðp2Þ a dispersion
relation of the form given in Eq. (4.10). The integration can
be performed and leads to the result

Πðp2Þ − Πð0Þ

¼ −
e2

2π2

Z
1

0

dx xð1 − xÞ ln
�
1 −

p2

m2
xð1 − xÞ

�
; ð5:10Þ

which agrees with that obtained by using the
covariant Feynman rules to compute the photon self-
energy [1–3].

VI. PION DECAY TO PHOTONS

This process takes place through an anomaly in the
divergence of the axial-vector current [24]. In QCD, it
provides evidence that the number of quark colors should
be equal to 3, in agreement with the experimental data
[1–3]. Here, we will calculate the amplitude for the decay
π0 → 2γ in QED, by using the present approach. The one-
loop graphs for this process are shown in Fig. 10, where the
coupling of the pion to the fermions is gπγ5. The sum of the
diagrams gives
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Γμν ¼ −gπe2
Z

d4k
ð2πÞ4 Tr½γ

νSFðkÞγμSFðkþ pÞγ5SFðk − qÞ

þ ðμ ↔ ν; p ↔ qÞ�: ð6:1Þ

In order to evaluate these contributions, one can use for
the spinor propagators the form given in Eqs. (5.1) and
(5.2). However, a simplification occurs if we first calculate

the trace over the γ matrices. To this end, we note that the
trace of γ5 with any number, less than 4, of γ matrices
vanishes. The trace of γ5 with four γ matrices is

Tr½γμγνγαγβγ5� ¼ −4iϵμναβ: ð6:2Þ

Thus, since the trace of γ5 with an odd number of γ matrices
vanishes, we get the relation

Tr½γνð=kþmÞγμð=kþ =pþmÞγ5ð=k−=qþmÞ� ¼ 4imϵμναβpαqβ;

ð6:3Þ

which is independent of k. This transverse result arises in
consequence of gauge invariance.
In this way, one can write Eq. (6.1) in the alterna-

tive form

Γμν ¼ −8gπe2ϵμναβpαqβi
Z

d4k
ð2πÞ4

1

k2 −m2 þ iϵ
1

ðkþ pÞ2 −m2 þ iϵ
1

ðk − qÞ2 −m2 þ iϵ
: ð6:4Þ

We remark that the above integral corresponds to a contribution coming from a one-loop 3-point scalar function. This can be
computed in our approach by using Eq. (1.1) for the scalar propagators, together with the procedure outlined in Sec. II.
After a straightforward calculation, we obtain the result

Γμν ¼ −8gπe2ϵμναβpαqβΓðp; qÞ; ð6:5Þ

where the cubic scalar vertex can be written as

Γðp; qÞ ¼
Z

d3k
ð2πÞ3

1

2ωk

1

2ωkþp

1

2ωk−q

�
1

ωk þ ωkþp − p0 − iϵ
1

ωk þ ωk−q − q0 − iϵ

þ 1

ωkþp þ ωk−q − p0 − q0 − iϵ

�
1

ωk þ ωkþp − p0 − iϵ
þ 1

ωk þ ωk−q − q0 − iϵ

�
þ
�
p0 → −p0

q0 → −q0

��
: ð6:6Þ

One can see that this contribution has a similar form to that of the last term in Eq. (3.9).
We will now evaluate the imaginary part of this expression in the physical case when p2 ¼ 0, q2 ¼ 0 with p0 and q0

positive. Then, one finds that

ℑΓðp; qÞ ¼ π

Z
d3k
ð2πÞ3

1

2ωk

1

2ωkþp

1

2ωk−q
δðωkþp þ ωk−q − p0 − q0Þ

�
1

ωk þ ωkþp − p0
þ 1

ωk þ ωk−q − q0

�
: ð6:7Þ

The δ function corresponds to the contribution coming
from the intermediate state involving the cut lines shown in
Fig. 10. This integral can be evaluated with the help of the
relation (3.4), by employing a procedure similar to that
used in Eqs. (4.4)–(4.8). We then get, after some calcu-
lation, the Lorentz invariant expression

ℑΓðsÞ ¼ 1

16π

1

s
ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p �
θðs − 4m2Þ; ð6:8Þ

where s ¼ ðpþ qÞ2. Using this imaginary part in the
dispersion relation,

Γððpþ qÞ2Þ ¼ 1

π

Z
∞

4m2

dσ
ℑΓðσÞ

σ − ðpþ qÞ2 − iϵ
; ð6:9Þ

one can compute the full cubic scalar vertex Γððpþ qÞ2Þ.
Integrating over σ and using the Eq. (6.5), we obtain for the
one-loop amplitude Γμνðp; qÞ the result

FIG. 10. Feynman diagrams contributing to the amplitude for
the pion decay.
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Γμν¼ 1

2π2
gπe2

m
m2

π
ϵμναβpαqβ

Z
1

0

dx
x
ln

�
1−xð1−xÞ m2

π

m2− iϵ

�
;

ð6:10Þ

where we have now set ðpþ qÞ2 ¼ m2
π , since the pion is

on shell.
The above result is in agreement with the one found

by using the covariant Feynman rules [1–3]. It has been
shown that such a result implies that the classical chiral
symmetry, which turns up for massless fermions, is violated
by quantum effects.

VII. DISCUSSION

The usual approach to evaluating Feynman diagrams
through the use of the Feynman propagator ΔFðx − yÞ of
Eq. (1.1) has the advantage of retaining manifest covari-
ance, while providing the physical interpretation of having
a particle propagating forward in time from y to x and an
antiparticle propagating similarly from x to y. Nevertheless,
reexpressing Feynman diagrams in terms of the on-shell
propagator Δþ½�ðx − yÞ� of Eq. (1.2) may be of interest.
Establishing the connection between the perturbative

method introduced in Ref. [10] and the usual Feynman
approach is our first result. This method makes the
determination of the imaginary part of a Feynman diagram
quite straightforward, coming as it does entirely from the
step function θ. It is somewhat simpler than using the
“largest time” approach of Ref. [25]. Once the imaginary
part of the scattering amplitude is determined, a dispersion
relation can be used to compute the full amplitude, as was
done in Eqs. (4.10), (4.12), (5.10) and (6.10). This alter-
native to the direct evaluation of Feynman integrals is
considered, for example, in Ref. [13].
As we have shown in scalar models and in QED, the

integration over the τ parameters leads to results that are
equivalent to those arising when using the OPT. Since the
present method is based on the forms (1.1) and (5.1), which
involve the Lorentz invariant Feynman propagator (1.4), it
may be thought of as a covariant formulation of the OPT.
An interesting feature of this method is that it consistently
preserves the gauge invariance in QED. In this context, we
have examined the vacuum polarization and the decay
process of the neutral pion in two photons.
Such an approach is convenient in some circumstances

when it provides physical insights on quantum field theory
[2,3,26]. For example, an appropriate version of OPT is
given by Schwinger’s proper time formalism, which is the
best way to carry out certain effective action calculations
[27]. Moreover, the OPT is also convenient to give a
general proof of the infrared finiteness of averaged tran-
sition probabilities [28]. Another helpful feature of OPT is
that it clarifies the way that the singularities of the S matrix
arise from various physical intermediate states. This may be
useful in connection with the unitarity methods applied to

loop computations in gauge theories [29–33], which rely
on the fact that loop amplitudes are determined by their
singularities.

ACKNOWLEDGMENTS

We would like to thank CNPq (Brazil) for financial
support.

APPENDIX: UNITARITY AND CUT DIAGRAMS

Let us illustrate the equivalence between the imaginary
parts of Feynman graphs found in the present approach
and the cutting rules of Cutkosky. To this end we consider,
for definiteness, the two loop self-energy graph discussed
in Sec. II. As we have shown, performing the τ integra-
tions, we obtain the same result as that found in the old
time-ordered perturbation theory. Thus, the contribution
from this graph may be written in the compact form
[compare with Eq. (3.9) where we set the interaction
vertex equal to g]

GðpÞ¼g4
Z

dγ1dγ2dγ3
ðp0−Eγ1 þ iϵÞðp0−Eγ2 þ iϵÞðp0−Eγ3 þ iϵÞ ;

ðA1Þ
where the integrals over γi denote integrations over the
internal momentum with the corresponding energy factors
1=2ωj, as well as a summation over all time-ordered
configurations. Here Eγi is the energy of the intermediate
state γi which contains a sum of mass-shell energies ωj of
the lines in the state γi [see, for example, Eq. (2.16)]
The unitarity condition may be represented as shown in

Fig. 11, where the sum is over all cuts C.
The above relation can be written in the formX

allC

GCðpÞ ¼ 2iℑGðpÞ; ðA2Þ

where the sum over all cuts of GðpÞ is connected with the
decay rate of the particle with momentum p.
Let us denote by Gn the graph to the left of the cut

involving the on-shell state γn which has an energy
denominator replaced by 2πδðp0 − EγnÞ. The correspond-
ing graph to the right side of the cut, denoted by G⋆

n, is
computed according to the complex conjugate rules. Then,
using expressions like the one given in Eq. (A1) and
suppressing for simplicity the integrals and overall factors,
we obtain the relation

FIG. 11. Unitarity applied to the two-loop self-energy graph.
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X
n

G⋆
nGn ¼

X3
n¼1

� Y3
j¼nþ1

1

p0 − Eγj − iϵ
2πδðp0 − EγnÞ

×
Yn−1
i¼1

1

p0 − Eγi þ iϵ

�
: ðA3Þ

On the other hand (omitting the same factors), the
imaginary part of G (times 2i) is

2iℑG ¼ i

�Y3
j¼1

1

p0 − Eγj þ iϵ
−
Y3
j¼1

1

p0 − Eγj − iϵ

�
: ðA4Þ

The expressions (A3) and (A4) are equal, as may be
verified using the identity (3.1) which implies that

i

�
1

Aþ iϵ
−

1

A − iϵ

�
¼ 2πδðAÞ: ðA5Þ

The equality of the Eqs. (A3) and (A4) is equivalent to
the unitarity relation (A2). The above derivation may be
generalized in a straightforward way to an arbitrary
Feynman diagram (see also the Sec. 9.6 of [28]).
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