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We construct a double copy relation between the Cotton spinor and the dual field strength spinor of
topologically massive theories, as the three-dimensional analog of the Weyl double copy. The relationship
holds in curved backgrounds for wave solutions. We give an explicit proof for type N spacetimes and show
examples satisfying the Cotton double copy.
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I. INTRODUCTION

The nonlinearities of gravitational theories lead to
involved perturbative calculations and intriguing features
of exact classical solutions. In recent years, it has become
apparent that the double copy [1–3], which allows us towrite
gravitational amplitudes as the square of Yang-Mills (YM)
amplitudes, can be used to understand fundamental proper-
ties of gravity (such as cancellations of UV divergences)
while allowing us to perform computations (such as loop
amplitudes and gravitational radiation) in a simpler frame-
work [4,5]. This has been observed: for example, it is known
that this relationship holds beyond the scattering amplitudes
case and it can relate classical solutions [6–26]. The different
versions of the classical double copy share the philosophy
of the amplitudes versions. For example, the Kerr-Schild
double copy [7] uses the BCJ (Bern-Carrasco-Johansson)
philosophy of exchanging color for kinematics [2,3].
Meanwhile, the Weyl double copy [11,12], follows the
KLT (Kawai-Lewellen-Tye) approach [1], schematically,
Gravity ¼ ðYang −MillsÞ2=biadjoint scalar. The Weyl
double copy holds for exact solutions of Petrov types D
andN spacetimeswhenwritten in terms of spinors [11,12], it
can be explained from a twistors perspective [27–29], and it
has been formulated in tensorial form [30,31]. Altogether,
the Weyl double copy provides a nonperturbative relation
that can be extend asymptotically to generic spacetimes [32].
A simple version of the Weyl double copy, which gives the
Weyl tensorWμνρλ as the square of theYMfield strengthFμν,
can be constructed for plane waves at linearized order

Wlin
μνρλ ¼

1

2

Flin
μνFlin

ρλ

eip·x
: ð1Þ

An interesting question is whether the double copy
holds beyond the massless case. As studied in [33–43],
there are only a couple of known cases where the
scattering amplitudes arising as the double copy of
massive theories lead to a well-defined local theory.
One example requires an infinite tower of massive states
that satisfies a special relationship between the masses in
the theory. The second example corresponds to topologi-
cally massive theories in three dimensions (3D). Note that
a related double copy relation involving Chern-Simons
terms can be found in [44]. We will now construct the
analog of the Weyl double copy in 3D for type N solutions
in topologically massive theories. This is a step forward
towards understanding how the double copy operates in
the massive case, which can help constructing exact
solutions for theories driving the acceleration of the
Universe and it can also provide hints on how to construct
a double copy for cosmological correlators [5]. Just as in
the massive case, the double copy of cosmological
correlators contains nonphysical poles that in both cases
can be traced to the lack of BCJ relations. While in the
massive case we now have a clearer understanding of
how to avoid such poles, that is not the case for
cosmological correlators. Special cases with nonstandard
BCJ relations, such as the topologically massive double
copy, show how to generalize the double copy in more
involved situations.

II. TOPOLOGICALLY MASSIVE THEORIES

We start by introducing the topologically massive
theories that are related through the double copy. The
action of topologically massive Yang-Mills (TMYM) in a
curved spacetime is
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where m is the mass of the gauge field, g the coupling
strength, and εμνρ is the Levi-Civita tensor given by
εμνρ ¼ ffiffiffiffiffiffi−gp

ϵμνρ, with ϵμνρ as the Levi-Civita symbol. We
consider gauge fields and sources of the form Aμa ¼ caAμ

and Jμa ¼ caJμ, with ca a constant color charge and a an
adjoint UðNÞ index, so that the equations of motion
become linear and read

∇μFμν þm
2
ενργFργ ¼

gffiffiffi
2

p Jν; ð3Þ

where Fμν is the linearized Yang-Mills field strength. The
double copy of TMYM corresponds to topologically
massive gravity (TMG) whose action is

STMG ¼ 1

κ2

Z
d3x

ffiffiffiffiffiffi
−g
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−
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νβΓ
β
ρα

��
; ð4Þ

where κ2 ¼ 16πG, and Λ is the cosmological constant. The
equations of motion read

Gμν þ Cμν=m ¼ −κ2
Tμν

2
− Λgμν; ð5Þ

where Gμν is the Einstein tensor, Tμν the stress-energy
tensor, and Cμν ¼ εμαβ∇αðRν

β −
1
4
gνβRÞ the Cotton tensor.

We proceed to understand whether one can construct an
of the Weyl double copy for topologically massive theories.
When trying to generalize this to 3D, one immediately hits
a roadblock since the Weyl tensor is zero. Instead, we will
look at the analog of the Weyl tensor in 3D, which is the
Cotton tensor. In 3D, the Cotton tensor is invariant under
conformal transformations and thus is zero for conformally
flat spacetimes, just like the Weyl tensor for d > 3. Since
the Cotton tensor appears in the TMG equations of motion,
Eq. (5), this tells us that we could write it as a square of
terms in the TMYM equations of motion. By a simple
counting of derivatives, we see that an appropriate ansatz is

Clin:
μν ¼ −

1

4

ð∂λFlin:
λðνÞðεμÞργðFργÞlin:Þ

eip·x
; ð6Þ

which is satisfied for plane waves. Note that we can use the
TMYM equations of motion, (3), to rewrite this relation in a
simpler form. Considering only localized sources, outside
of the source we have

Clin:
μν ¼ m

2

⋆Flin:
ðμ

⋆FνÞlin:

eip·x
; ð7Þ

where ⋆Fρ ¼ εμνρFμν=2 is the dual field strength. In the
following section we will use this relation as motivation for
the Cotton double copy.

III. 3D SPINOR FORMALISM AND THE COTTON
DOUBLE COPY

The spinor formalism in 3D has been considered in
[45–47]. It uses the fact that the 3D Lorenz group SOð1; 2Þ
is isomorphic to SLð2;RÞ=Z2 to rewrite the tangent space
Lorentz transformations. This allows us to write a vector in
tangent space as va ¼ −ðσaÞABvAB, where the sigma
matrices, σa, form a basis of SLð2;RÞ that satisfy the
Clifford algebra. To move between coordinate space and
tangent space we use the frame eμa that satisfies
ηab ¼ eμaeνbgμν. Thus, we can write a vector in coordinate
space as vμ ¼ −eμaðσaÞABvAB. The SLð2;RÞ indices,
A;B ¼ 1; 2, are lowered and raised with the 2D Levi-
Civita symbol ϵAB according to the following conventions
ψA ¼ ψBϵ

BA;ψA ¼ ϵABψ
B [46]. In the following, it will

be useful to work with a spinor basis given by a dyad ðι; oÞ
that satisfies ιAι

A ¼ oAoA ¼ 0; ιAoA ¼ −1. Thus we can
write ϵAB ¼ 2ι½AoB�.
In a vacuum 3D spacetime, the TMG equations of

motion together with the definition of the Cotton tensor
and the Bianchi identities tell us that

∇EACBECD ¼ mffiffiffi
2

p CA
CDE; ð8Þ

where Cμν ¼ σμABσ
ν
CDCABCD. Meanwhile, the equation of

motion for linearized TMYM and the Bianchi identity for
the field strength give

∇CAfBC ¼ mffiffiffi
2

p fAB; ð9Þ

where the dual field strength is given by fμ ¼ −σμABfAB.
Motivated by the linear relationship found in Eq. (7), we
propose that the analog of the Weyl double copy between
the Cotton and field strength spinors is1

CABCD ¼ m
2

fðABfCDÞ
S

: ð10Þ

Below we will prove that this relationship is satisfied for
type N spacetimes with a scalar field S satisfying the

1The mass factor in Eq. (10) is a choice of conventions. It could
be absorbed in S or we could write the relation for the traceless
Ricci spinor since the TMG equations tell us that
CABCD ¼ −mΦABCD, where the traceless Ricci tensor is given
as Sμν ≡ Rμν − Rgμν=3 ¼ σμABσ

μ
CDΦABCD.
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massive Klein Gordon equation with a nonminimal
coupling in curved spacetimes. Note that (10) follows
the KLT double copy philosophy. In our case S plays
the role of the KLT kernel and can be thought of as a
linearized solution of the massive biadjoint scalar when
considering the ansatz Sab ¼ cacbS; this is commonly
referred to as the zeroth copy.

IV. TYPE N SOLUTIONS

For type N solutions, which encode transverse radiation,
the Cotton spinor and field strength spinor can be written as

CABCD ¼ ψ4oAoBoCoD; fAB ¼ Φ2oAoB; ð11Þ

where ψ4 andΦ2 are Newman-Penrose (NP) scalars. In this
case, the double copy can simply be expressed as

ψ4 ¼
mΦ2

2

2S
: ð12Þ

We will now prove that the Cotton double copy holds for
type N spacetimes in curved backgrounds by deriving the
equation of motion of the zeroth copy S.
We start by substituting (11) into (8) and (9), and

contracting the equations with ι and o to get

oA∇A
C logΨ4þ4oAιB∇A

CoB− ιAoB∇A
CoB¼

mffiffiffi
2

p oc; ð13Þ

oA∇A
C logΦ2þ2oAιB∇A

CoB− ιAoB∇A
CoB¼

mffiffiffi
2

p oc; ð14Þ

oBoC∇CAoB ¼ 0: ð15Þ

From the Cotton double copy in (12), together with
Eqs. (13) and (14), we find

oA∇A
C log S − ιAoB∇A

CoB ¼ −
mffiffiffi
2

p oc: ð16Þ

To show that S satisfies the Klein-Gordon equation with a
nonminimal coupling term first we write ∇μ∇μS as

−∇AB∇ABS ¼ −ϵAC∇C
B∇ABS ¼ 2ιCoA∇C

B∇ABS: ð17Þ

Then, one can use the Leibniz rule and (16) to eliminate the
derivatives of S:

2ιCoA∇C
B∇ABS ¼ −2ιC∇C

BoA∇ABS

þ 2ιC∇C
B

�
SιAoD∇ABoD −

mffiffiffi
2

p SoB
�
:

ð18Þ

Expanding (18) and using (16) to eliminate ∇S terms
we get

−∇AB∇ABS ¼ Sð2ιC∇C
BιAoD∇ABoD þ 2ιCιA∇C

BoD∇ABoD þ 2ιDιA∇A
CoDιEoF∇ECoF

−m
ffiffiffi
2

p
ðιC∇C

BoB þ ιDιA∇A
CoDoC − ιCιEoF∇ECoFÞ þm2 þ 2ιCιAoD∇C

B∇ABoDÞ: ð19Þ

The first three terms as well as the terms linear in m add
up to zero by (15). The term with the second derivative
of o can be related to curvature spinors by the following
relation [46]:

∇DðA∇BÞDoC ¼ 1

2
ΦABCDoD þ 1

24
RðϵACoB þ ϵBCoAÞ; ð20Þ

where ΦABCD is the spinor equivalent of the traceless Ricci
tensor, which is proportional CABCD, see footnote 1. By
substituting (11), we see that the term proportional to
ΦABCD does not contribute. Therefore we find that

2ιCιAoD∇C
B∇ABoD ¼ 1

6
R:

Finally, substituting everything into (19) we get

−∇AB∇ABS ¼ □S ¼
�
m2 þ 1

6
R

�
S: ð21Þ

This proves that the Cotton double copy is satisfied for type
N solutions with the zeroth copy given by a linearized
massive biadjoint scalar with a nonminimal coupling. Note
that we obtained the same nonminimal coupling as in the
4D zeroth copy [14,15,27], but in 3D it does not give a
conformally invariant equation. We will now show explicit
examples of type N spacetimes where the Cotton double
copy holds.

A. Parallel propagation waves

We analyze the double copy relation for plane-fronted
waves with parallel propagation (pp waves). For TMG, any
solution that admits a null Killing vector, well defined
through all space, is a pp-wave solution2 [49]. In flat space
the metric of pp waves can always be written as [50]

2The nomenclature of pp waves for the nonzero cosmological
constant case can be misleading since the null Killing vector is
not covariantly conserved [48].
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ds2 ¼ dy2 − 2dudvþ e−myfðuÞdu2; ð22Þ

where u, v are light cone coordinates, while in anti–de
Sitter (AdS) terms it reads

ds2 ¼ dy2 − 2e2
y
Ldudvþ e

ð1−mLÞ
L yfðuÞdu2; ð23Þ

where L is the AdS radius. Note that we can obtain the dS
solution by taking L → iL. On the TMYM side, we can
write the pp-wave solution as

Aa ¼ cae−mygðuÞdu ð24Þ

for the Minkowski, AdS, and dS cases. In Table I we show
the NP scalars for the corresponding pp waves in
Minkowski and AdS. One can easily see that the scalar
S, which is computed using the Cotton double copy in
Eq. (12) satisfies

�
∇2 −m2 −

R
6

�
Sðu; yÞ ¼

�
∂
2
y −m2 þ 1

L2

�
S ¼ 0: ð25Þ

B. Shock waves and gyratons

1. Minkowski

We now consider solutions with a source corresponding
to a fast moving particle whose stress tensor is traceless and
is given by

Tμν ¼ ðEkμkν þ σkðμϵ
αβ
νÞ kα∂βÞδðuÞδðyÞ; ð26Þ

where the null vector kμ is defined as kμdxμ ¼ du, E is the
energy of the source particle, and σ is its classical spin.
Note that this source can be thought of as a boosted
gravitational anyon. If the particle has no classical spin
(σ ¼ 0), then it generates shockwaves; otherwise, the
solutions are dubbed gyratons. In flat space, both of these
solutions have a metric of the form3

ds2 ¼ dy2 − 2dudvþ κFðu; yÞdu2: ð27Þ

For these solutions, we have that the only nonzero NP
Cotton scalar is

ψ4 ¼ −
1

4
∂
3
yFðu; yÞ; ð28Þ

where F satisfies the following equation of motion

∂
3
yFðu; yÞ þm∂

2
yFðu; yÞ ¼ κmδðuÞðEδðyÞ − σδ0ðyÞÞ: ð29Þ

On the gauge theory side, we will also consider a boosted
spinning source whose current is given by

Jμ ¼ ðQkμ þQ0ϵαβμ kα∂βÞδðuÞδðyÞ; ð30Þ

where Q is the electric charge and Q0 contributes, together
with Q, to the magnetic flux. We consider the following
gauge field

Aa ¼ caGðu; yÞdu; ð31Þ

which linearizes the TMYM equations of motion and gives
only one nonvanishing component of field strength Fuy ¼
−∂yGðu; yÞ. Hence the only nonzero NP field strength
scalar is

Φ2 ¼
1ffiffiffi
2

p ∂yGðu; yÞ; ð32Þ

where G satisfies

∂
2
yGðu; yÞ þm∂yGðu; yÞ ¼ gδðuÞðQδðyÞ −Q0δ0ðyÞÞ: ð33Þ

Then the scalar S in the Cotton double copy, Eq. (10), is
given as

S ¼ −m
ð∂yGðu; yÞÞ2
∂
3
yFðu; yÞ

: ð34Þ

Equations (29) and (33) imply that outside the sources the
following is true:

ð∇2 −m2ÞSðu; yÞ ¼ 0: ð35Þ

To see the double copy for an explicit gyraton or shock
wave solution, we need to pick boundary conditions for the
metric. As realized in [52], we cannot have the same
coordinate chart on both sides of the shockwave. In [37],
we have shown that a useful prescription to observe the
double copy relation is to a consider boundary conditions
where the metric is flat for y < 0 and Cartesian for y > 0
[53]. Then we can solve (29) by imposing these boundary
conditions:

TABLE I. In this table we show the NP scalars for the Cotton
spinor and the dual field strength spinor. We also show the scalar
S constructed from the Cotton double copy in Eq. (12).

Ψ4 Φ2 S

Minkowski m3

4
e−myfðuÞ − mffiffi

2
p e−mygðuÞ gðuÞ2

fðuÞ e
−my

AdS m3

4
e−ð3LþmÞyfðuÞ − mffiffi

2
p e−ð

2
LþmÞygðuÞ gðuÞ2

fðuÞ e
−ð1L−mÞy

3Note that the gyraton metric is generically written as
ds2 ¼ −2dudvþ dy2 þ κFðu; yÞdu2 þ 2καðu; yÞdudy, where
the cross term proportional to αðu; yÞ allows us to see the
rotation explicitly [51]. Here we have chosen a gauge where
α ¼ 0.
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Fðu;yÞ¼ κ

m
ðEþmσÞe−myθðyÞþ κ

m
ðEþmσ−EmyÞθð−yÞ;

ð36Þ

Choosing the analog boundary condition in TMYM,
namely Fμν ¼ 0 for y < 0 and limy→∞ Aμ ¼ 0, leads to

Gðu; yÞ ¼ g
QþmQ0

m
ðθðyÞe−myÞ þ g

Q
m
θð−yÞ: ð37Þ

On the y < 0 side of the gyraton, the double copy is
trivial since Ψ4 ¼ Φ2 ¼ 0. On the other hand, in the y > 0
side the NP scalars are proportional to those of the flat
space pp waves in Table I times δðuÞ. Making the
replacement ðQþmQ0Þ2 → ðEþmσÞ leads to the
double copy relation in Eq. (12). Note that the shockwave
solutions can be obtained by setting σ ¼ 0 and Q0 ¼ 0. We
then see that the gyraton NP scalar is obtained from the
shockwave one by the shift E → Eð1þm σ

EÞ in TMG and

Q → Qð1þmQ0
QÞ in TMYM, which arise from spin

deformations of on shell 3-point amplitudes [40] and
was originally found for gravitational anyons [54].

2. AdS

We proceed to consider gyraton solutions of TMG,
TMYM in an AdS background. Just like gravitational
shockwaves in AdS, the gyraton solution can be written
in Poincare coordinates as

ds2 ¼ L2

y2
ð−2dudvþ dy2 þ δðuÞFðyÞdu2Þ; ð38Þ

where F satisfies

y
L
F000 þmF00 −m

F0

y
¼ κm

�
E
L
y
δðy − y0Þ − σδ0ðy − y0Þ

�
;

ð39Þ

where y0 ≠ 0 is the location of the source in the bulk and
we will assume mL > 1. As before, we need to fix the
boundary conditions to find the explicit solution. We
choose to have the same boundary conditions as in the
Minkowski case in the flat space limit. This is equivalent
to imposing Brown-Henneaux boundary conditions and
requiring a regular solution in the bulk. The explicit
solution with these boundary conditions is

FðyÞ ¼ −
κL2mE

2ð1 − ðLmÞ2Þ
�
2

�
1þ σ

E
ðð1þmLÞ=LÞ

��
y
y0

�
1−Lm

θðy − y0Þ

þ
�
ð1 − LmÞ

�
y
y0

�
2

þ
�
1þ 2σ

EL

�
ð1þ LmÞ

�
θð−yþ y0Þ

�
: ð40Þ

On the nontrivial side of the gyraton solution, y > y0, we
have that the only nonzero Cotton NP scalar is

Ψ4 ¼ −
1

2

y
L
δðuÞF000ðyÞ ¼ κ

2
E

�
1þ σ

E
ðð1þmLÞ=LÞ

�

× L2m2

�
y
y0

�
−1−Lm

δðuÞ: ð41Þ

On the other hand, the linearized gyraton solution for
TMYM in an AdS background is given by

Aa ¼ caδðuÞGðyÞdu; ð42Þ

where the function G satisfies

y4

L4

�
G00 þ 1þ Lm

y
G0
�

¼ y3

L3
g

�
Qδðy − y0Þ −Q0 y

L
δ0ðy − y0Þ

�
: ð43Þ

The explicit gyraton solution with boundary condition
analog to the gravitational case, namely Fμν ¼ 0 for
y < y0 and limy→∞ Aμ ¼ 0, is given by

GðyÞ ¼ −
gQ
m

��
1þ Q0

QL
ð1þmLÞ

��
y
y0

�
−Lm

θðy − y0Þ

þ
�
1þ Q0

QL

��
y0
L

�
3

θð−yþ y0Þ
�
: ð44Þ

Thus we have that for y > y0 the only nonzero dual field
strength NP scalar is

Φ2 ¼ 2δðuÞ y
L
f0ðyÞ;

¼ 2gQ

�
1þQ0

Q
ðð1þmLÞ=LÞ

�
δðuÞ

�
y
y0

�
−Lm

: ð45Þ

Lastly, we consider the linearized biadjoint scalar,
Saã ¼ cacãS, living in an AdS background with a
nonminimal coupling as in Eq. (21) and sourced by
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ðλþ λ0 yL
∂

∂y
Þδðy − y0ÞδðuÞ The gyraton solution is now

given by

S ¼ −
λL

2my0

��
1 −m

λ0

λ

��
y
y0

�
1−Lm

θðy − y0Þ

þ
�
1þm

λ0

λ

��
y
y0

�
1þLm

θð−yþ y0Þ
�
δðuÞ; ð46Þ

where we chose boundary conditions by requiring that the
field vanishes deep in the bulk and as we approach the AdS
boundary. We note that this solution corresponds to the
scalar that arises from Eq. (12), which shows that the
Cotton double copy is satisfied for AdS shock waves as
expected. Again the shockwave solutions can be obtained
by setting σ and Q0 to zero. In a similar manner to the flat
space case, one can consider shifts of the charge and energy
to obtain the gyraton double copy from shockwaves. In
this case the shifts are given E → Eð1þ σ

E ðð1þmLÞ=LÞÞ
for the TMG case and Q → Qð1þ Q0

Q ðð1þmLÞ=LÞÞ in
TMYM. In future work, we will explore whether the origin
of these shifts can be traced down to spin deformations of
three-point correlators.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have constructed a double copy relation for topo-
logically massive theories that gives the Cotton spinor as
the square of the dual field strength spinor in curved
spacetime backgrounds. This generalizes the 4D Weyl
double copy to 3D spacetimes. In this paper, we have
focused on type N spacetimes, which correspond to

radiative solutions. We gave a proof of the Cotton double
copy for gravitational waves and showed explicit examples.
Other examples that we did not look at explicitly can be
found in [48,55]. It would be interesting to understand
whether the double copy holds for type D solutions, which
describe fields around isolated objects such as black holes.
Previous analysis studying the scattering of massive fields,
which represent isolated objects, through topologically
massive mediators [37,39,40] have shown that this is not
straightforward, and further investigations should clarify
this intriguing case.
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