PHYSICAL REVIEW D 106, 025004 (2022)

Near horizon aspects of acceleration radiation of an atom falling into a
class of static spherically symmetric black hole geometries
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The near horizon aspects (and beyond) of a black hole metric, which belongs to a large class of static
spherically symmetric black holes, is considered here. It has been realized recently that an atom falling into a
black hole leads to the generation of acceleration radiation through virtual transitions. In recent studies it has
been argued that this acceleration radiation can be understood from the near horizon physics of the black hole.
The near horizon approximation leads to conformal symmetry in the problem. We go beyond the near horizon
approximation in our analysis. This breaks the conformal symmetry associated with the near horizon physics
of the black hole geometry. We observe that even without the consideration of the conformal symmetry,
the modified equivalence relation holds. Further, our analysis reveals that the probability of virtual transition
retains its Planck-like form with the amplitude getting modified due to the beyond near horizon
approximation. For the next part of our analysis, we have observed the horizon brightened acceleration
radiation entropy (HBAR) for a Garfinkle-Horowitz-Strominger black hole. We observe that the HBAR
entropy misses out on quantum gravitylike corrections while considering the conformal case. However, such

corrections emerge when the conformal symmetry gets broken in the beyond near horizon analysis.
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I. INTRODUCTION

With the advent of general theory of relativity [1,2], the
concept of the black hole arose as an exact solution to the
nonlinear field equations of general relativity. Stephen
Hawking, in his papers [3-5], showed that a black hole
emits radiation while considering quantum effects in curved
spacetime. The efforts to unite gravity, geometry, and
thermodynamics led to seminal works like black hole
thermodynamics [3—7], Hawking radiation [3-5], particle
emission from black holes [8—10], the Unruh effect [11], and
acceleration radiation [12-24]. The Hawking radiation from
ablack hole can be directly related to the Unruh effect which
is nothing but the detection of particles by an accelerated
detectorin an inertial vacuum. In recent times, there has been
an upsurge in the efforts to analytically explain the combined
effects of quantum optics and black hole physics [19,24-26].
In this scenario, the two-level atom behaves as a detector. In
several recent works, it has been shown that an atom falling
into a black hole with an arbitrary metric feels the effect of
thermal radiation similar to that of Hawking radiation
[19,24]. The entropy of radiation emitted in this process
is termed as horizon brightened acceleration radiation
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entropy (HBAR) which is a tool to understand the relation
between atom optics and general relativity as mentioned
above [19]. A few works have also focused on the effects of
conformal symmetry in analyzing the near horizon aspects
of ablack hole [20-23,27,28]. In these works, the main focus
is on the near horizon aspects of a generalized D-dimen-
sional Schwarzschild black hole and its relation with
Hawking radiation in case of the existence of conformal
symmetry. In this work, we consider a large class of
D-dimensional static spherically symmetric black hole
spacetimes and study the near horizon aspects (and beyond)
of acceleration radiation of an atom falling into this geo-
metrical setup. In particular, we go beyond the near horizon
(NH) expansion of the black hole metric and study its
consequences in the acceleration radiation of the atom. The
results that we obtain are important in its own right because
they capture the beyond near horizon aspects of the black
hole in the problem of virtual transition and HBAR entropy.

A generalized spacetime geometry arises in case of low-
energy string theory [29,30] which are quantum gravity
theories that combine all the fundamental forces of nature
into one single unified theory.1 The Garfinkle-Horowitz-
Strominger (GHS) black hole is a solution of a low-energy
string theoretic action [34-36]. It reads

'Other attempts to combine gravity with quantum mechanics
are loop quantum gravity [31,32] and noncommutative geo-
metry [33].
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ds* = —f(r)dt* + g(r)~'dr* + r*dQ>. (1)

The analytical forms of f(r) and g(r) reads

(. 2Meh Q%3 ~!
- (1-25) 1-252)

o= (1242 (1-2e2).

where ¢ is the asymptotic constant value of the dilaton
field.

Inspired by the earlier works in this field and the
previously discussed generic black model (GHS black
hole), we have considered here a D-dimensional static
spherically symmetric black hole metric. Our aim is to
calculate the excitation probability of a virtual transition
due to an atom falling into the event horizon of such a
D-dimensional static spherically symmetric black hole. Our
next goal is to check for the equivalence principle for such a
scenario with and without the consideration of conformal
symmetry. The conformal symmetry in the near horizon
avatar of the Klein-Gordon equation can be broken by
keeping higher-order terms in the near horizon expansion
of the metric. We shall look precisely into the role played
by the higher-order terms. There were several attempts
to give an alternative explanation of the equivalence
principle [37-42] along with the recent consideration
of generalized uncertainty relation for an atom-mirror
system [43]. It was observed in [19] that an atom falling
into a black hole emits a similar spectrum to that of a mirror
which is accelerating uniformly with respect to a fixed
atom. We will investigate this modified equivalence relation
in the most general setup possible. For the next part of our
work, we will calculate the transition and absorption rates
for the GHS black hole geometry from the analytical
expressions derived for the generic metric with an event
horizon at r = r, such that f(r,) = g(r, ) = 0. Using the
density matrix formalism from atom optics, we shall
calculate the horizon brightened acceleration radiation
(HBAR) entropy for the GHS black hole.

The paper is organized as follows. In Sec. I we provide a
basic description of the near horizon approximation and
obtained the Rindler form of the static spherically sym-
metric black hole geometry. In Sec. II we have found a
solution to the covariant Klein-Gordon field equation with
and without considering conformal symmetry. In Sec. III
we have obtained the transition probabilities due to virtual
transition for an atom falling into the event horizon of a
static spherically symmetric black hole metric. In Sec. IV
we obtained the HBAR entropy for the GHS black hole.
We conclude in Sec. V.

—~
[\
~—

II. THE GENERALIZED AND STATIC BLACK
HOLE GEOMETRY AND THE BASIC
FORMALISM

The metric describing a large class of static spherically
symmetric black holes is given as follows (in natural units)

ds* = —f(r)de* + g(r)~'dr* + r?dQ3 _,, (4)

where D is the number of spacetime dimensions with the
condition D > 4. Here, r, is the horizon radius such that

flre) =g(ry) =0. (5)

Under a near horizon expansion [keeping terms upto first
order in (r —r)], f(r) and g(r) [satisfying Eq. (5)] takes
the following form

f)=(r=rof'(rye), g2 (r=—rg(ry).  (6)

where ’ denotes derivative with respect to r. Note that while
writing the covariant Klein-Gordon equation, we will use
higher-order corrections in the near horizon approximation.
We now define a transformation of coordinates as follows:

r—7r;
g(ry)

p=2 . (7)

Using Egs. (6) and (7) in Eq. (4), we obtain the following
form of the metric

P ()

ds? =
s 4

d? +dp* + r*dQ3_,. (8)
This particular form of the metric given in Eq. (1.9) is also
known as the Rindler form of the metric in D-spacetime
dimensions. Following earlier literature [24], we can
compute the uniform acceleration corresponding to curves
of constant p as follows:

g/(r+)‘ (9)

We shall use this acceleration to check for the validity of the
modified equivalence relation in this generic setup.

III. SOLUTION OF THE COVARIANT
KLEIN-GORDON FIELD EQUATION

The covariant Klein-Gordon quantum field equation for
a scalar field with rest mass m reads

1
TV =0, (10
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where the mode expansion of the scalar field ¥ reads

V(. Q) =Y [DuimWain(t. 7. Q) +Hel] (1)

n,l,m

with b,,;,,, being the field annihilation operator. We can now
use a separation of variables for y,,;,, as follows:

Ynim = Z:(r)unl(r)Ylm(Q)e_w’ﬂt (12)
with v,,; being the frequency of the scalar mode and Y/, (Q)
being the spherical harmonics. Note that y,,;,, satisfies the

classical Klein-Gordon field equation. We take a form of
{(r) as follows:

coon 3 {30853

= (f(r)g(r)=r &0, (13)
Equation (10) can be recast in the following form,
ik g D-2 o0 0
_ Tt < rf(r) rg(F))g(r)ar‘I’
f(r) ro 2f(r)  29(r)
1
+ g(r)0?¥ + —2A113_2‘I’ -m?¥ =0, (14)
r

where I' is the metric on the unit (D — 2)-dimensional
sphere, SP~2. Using Egs. (12) and (13) in Eq. (14), we
obtain the following radial equation

" f'(r) , g"(r)
t (r) + {_ (4f(r) +4g(r) 4r
(r)

where f = mf and a = (I + 252)%. We shall now carry out
our analysis by going beyond the near horizon (beyond
NH) approximation. The forms of f(r) and its higher-order
derivatives in this beyond NH formalism are given by

r—r.)?
102 = )+ ) ot )
(16
P~ S+ =R ()
70~ 1), (19

g(r), ¢(r), and ¢"(r) has similar structure to that of f(r),
f'(r), and f”(r). For notational simplicity we will be
llSiIlg r—ry =5, unl(r) =U, Uy =V, f/(r+) :fl+’ and
f'(ry) = f", [similarly for ¢(r,) and ¢’(r,)]. In this
beyond near horizon approximation Eq. (15) takes the

following form
2 1 2 1 !
()i G o) G o)
g 4)y dJ; 2f 24/,
+ D -3
_'_O‘ '"+ﬁ_( )?

(D-2) “
2r, g, 4g.rt Jy

+

(19)

We can rewrite Eq. (19) in a more simpler form as follows:

v 1
y2u' —Kyu+< > =0. (20)
i
The form of « in the above equation is given as
2 1/ // D-2
K=<,” +)<f/+ )+< )
" d\ 2f 24, 2ry
D —3)?
a+r/+ﬁ_( 2) ‘ (21)
rig. 4g\ ri

With the general form of the equation in hand, we can now
proceed to obtain the solution of the radial equation. As
r—r, =y is avery small quantity, (“)(y%) term is the most
dominant term in Eq. (19). If we neglect the O(%) term in
Eq. (19), we obtain the following equation

1/2

o) + (7

1
XA + Z) u(y) =0. (22)

This equation has an interesting property. It exhibits an
asymptotic conformal symmetry. This can be seen by
taking an ansatz of the form

u(y) = 4. (23)
Putting this ansatz back in Eq. (22), we obtain a quadratic
equation in g given as

V2 1
P —q+—— =0. (24)
£/+
Solving the above equation, we obtain the analytical form
of g as

1 . v

q===ti .
2 i

(25)
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The solution of Eq. (22) can be recast in the following form

uly) =y V- (26)
The outgoing part of the solution in Eq. (26) is given as

1

_+ !l
u(y) =y ’ (27)

The fact that scaling solutions are allowed for Eq. (22)
validates the conformal symmetry in the problem. Further,
from Eq. (22), we can observe that the near horizon physics
corresponds to a one-dimensional effective Hamiltonian

H=p2—— (28)

where 1= (f,”; +3) > 0. This is the representation
+9+

of the well-known
mechanics [44].

The position and time dependent part of the solution,
therefore is given by

long-range conformal quantum

w(r t) = e M¢(r)u(r) = Ke ¥y VI (29)
with K = r%l( . ¢,)7%. We will now investigate the case
where we now include the O(1/y) term in Eq. (20). Note
that the ansatz in Eq. (23) will not go through now since
Eq. (20) does not have the conformal symmetry. We
assume a solution of the form given by

u) = Ay (30)

=0

where s is a constant. Now substituting Eq. (30) back in
Eq. (20), we get the following relation

V2 1
Loty =0
"
(31)
We will now compare the coefficients for equal powers

of y. Equating the coefficient of the y* term to zero, we get
the following quadratic equation for s

ZA y1+3[(s+j)(s+j— 1) —ky+——

V? 1

R SR} 32
2 =5+ /+9/++4 (32)

which has a solution given by

s=—=x1i .
2 A

The higher-order equations in y yield a recursion relation
among the coefficients as follows:

A,
A, = Bl (n=123..). (34)
(nts)(n+s—1)+7#-+;
+9+
For s =3 1+ \/f’—d: the generalized form of the coefficient

A,, with arbitrary value of n is given as

K"A0F<1 ti

0 /T . (35)
! !
n!T[ 1(l+lm> nF(n+1+z @ ;)
For simplicity we will be using, A, = 1. Neglecting higher-

order terms, the solution in Eq. (30) takes the following
form

Ay =

f//

o "K"r(l +i )
Y N
n=on!l'(n—+ —|—z\/f+_+

Therefore, the position- and time-dependent part of the
classical scalar field solution takes the following form

(36)

PR y"K"F(l +i

ey VIS ) NEY)
ﬂon'r(n+1+l\/m)

In the next section we will compute the transition prob-
ability due to virtual transition for an atom falling into the
event horizon of a black hole which belongs to a large class
of static spherically symmetric geometries.

w(r. 1) ~

IV. CALCULATING THE TRANSITION
PROBABILITIES

To calculate the transition probability, we need the
atom trajectory at first. We will simplify our calculations
by restricting to a four-dimensional case. In terms of the
Killing vectors ¢ = 9,, ¢ = d,, and spacetime velocity u,
we can define two conserved quantities as follows:

i L dp
a- L _pY
dr’ m s dt’ (38)

E

m —0-u=f(r)
where ¢ = % is the relativistic energy per unit rest mass of
the atom and 7 :% is the angular momentum per unit
rest mass of the atom. In terms of the above conserved
quantities, the spacetime geometry [Eq. (4) for D = 4] can
be recast in the following form
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() - L ()
(1+5) =555 (&)
_\/ﬁ dr
g(r) Wz — f(N+5)
_/\/ﬁ\/ez—ff:xw%f

Using this relation in Eq. (38), we can obtain the form of
t(r) as follows:

(39)

ﬂzf(”)%

dr

VF(r)g(r) \/62 — (N1 +5)

- e dr
/ VF(r)g(r) \/g2 —f(+5)

dt = —

(40)

The proper time 7z and ¢ which give the atom trajectories can
therefore be written as follows:

_ (1 [f(n) dr
7(r) = /6 9(r) 1—L§)(1+"”2)’ (41)
dr
r)=— 42
((r) /w ONp=ET: (42)

Applying the beyond near horizon approximation along
with the consideration Z = 0, we will now calculate the
atom trajectories up to O(y). The forms of = and ¢ up to
O(y) are given by

f/

T = g g+ +Cl? (43)
. 1 & 1 f// ﬁ
t= _;g; <1ny+y<2€2 <f’ + >>>+C2,
(44)

where C; and C, are integration constants. We will at first
calculate the transition probability for the case when the
O(1/y) term is kept in the analysis. The atom field
interaction Hamiltonian has the form given as follows:
H = flg[i?,/lp,/(t(l’)

r(e)) + Hellle™ + He]  (45)

where G is the atom-field coupling constant, b, is the
photon annihilation operator, w is the atom transition
frequency and £ is given by |g) (e| with |e) and |g) denoting
the excited and ground states of the two-level atom. The
transition probability concerning Eq. (29) reads

2
de(1,,

1,10, 9)

2
dryi(r,1)e'™| .

1
PK:ﬁ

=@ (46)

We observe that the contribution to the transition proba-
bility in Eq. (46) is due to the counter-rotating terms in
Eq. (45). To proceed further, we make a simple change
in variables as given by y =<2, where x,v <@ [19].
Substituting the form of y(r, r) from Eq. (37) in the above
equation, we get

g_\/}?/ Kex

giEa w 1_\/2w_)
G
A

IIZ

X e

(47)

We shall now make another change of variables as
follows:

xf = /Trdr (48)

Using Eq. (48) in Eq. (47), we obtain the form of the
probability as follows:

O [ i [l L L [
Po==—=| [ dy 1+— = +—+— — =5
? /! 4l d.
] o (9),
I ’
(49)
where y = —~

5.
1 .411
A

To obtain the final form of the probability, we will
introduce a change of variables given by

{=xB, (50)

025004-5



SEN, MANDAL, and GANGOPADHYAY

PHYS. REV. D 106, 025004 (2022)

where

(2 GG D) o

Using the coordinate transformation in Eq. (50), we obtain
the final form of the excitation probability as

g2 ~ __ 2w gC f/
o= / dge€¢ VI l+5 f, Ht5 s
- 1 i _gf+ N 2iepvC] | (52)
(A Bwf!,
Next we will use another quantity given by
/ 1/ /!
7:ﬂ+f +7 [—,—g%]- (53)
9+

As v < @, we will keep only up to O(%) terms in our
calculation. Hence, we can express % as

(-2 GG

Up to O(%), & 7 can similarly be expressed as

dvep 3v

/2 ) 2N
Vg e g -

1 2 ! 1 1/ /!
e B = B N L)
B wfy \2e 4\fL d;
Using the form of y in Eq. (4), we can express the final form
of the probability in a much simpler form given by

ety [d.
/d(:{w \ﬂ,‘+

The final form of the probability in Eq. (56) takes the
following form

2
-
w2152

2ieuv —
- —14’2: \/f+0+ .
Bawf’

(56)

P~ 47GPv dyve . doeryt  dveu
T\ B "wB ' f otB Bf.w
1
X 4av ’ (57)
eV _

where we have neglected (9(1’;—22) order quantities in the
parenthesis of the amplitude factor (as v < @). We observe
that in Eq. (56) the probability has Planck like factor which
is independent of k. In Eq. (57), the term in the parenthesis
can be expressed in the following form

AL =, )P

dyve g, ey | N
"wB e’ Bfiw T ew

where

e(=f1d, +3f917)

£ =
2113

If one neglects the u term and the beyond NH approxi-
mation, the probability in Eq. (57) takes the form

4nG*v 3v iy 1
Pooni &t (1=
xk=0,NH /—f;g;wz ( ew Al

4av
eV 1

(60)

From Eq. (57), we observe that the conformal symmetry
plays no vital role in determining the form of the Planck
factor indicating that the overall spectrum does not get
affected even with the breaking of conformal symmetry.
However, the amplitude gets modified in contrast to the
case where there is conformal symmetry. In Eqgs. (57)
and (60), the frequency v is observed by a distant
observer. Therefore, this frequency v =v, can be

+(=2f12d, + [, + €

v
16e2w g, .2 +Eé’ (58)

2f.2d, + €*fL g, — €* i (d) — dug,))
166 o g/ Zf/ 5 :

Ldt) (59)

[
expressed in terms of locally observed frequency (v,)
as, Ve =\ f(r) ~ v/ (r=r ) f'(re) =55/} g
Substituting the form of v, in the Planck factors of
Egs. (56) and (60), we obtain the following form

1 1
4ny E 2av4 ’ (61)
eV €0 T

which is similar to the Planck factor for the case of a fixed
atom and an accelerating mirror in a flat spacetime back-
ground. This result implies that the effect of the accelerat-
ing mirror on the field modes of the atom are similar to
that of the gravitational effect of the black hole. Hence,
we observe that for a generic black hole geometry the
equivalence principle holds, and is independent of whether

025004-6



NEAR HORIZON ASPECTS OF ACCELERATION RADIATION OF ...

PHYS. REV. D 106, 025004 (2022)

there is conformal symmetry or not. The form of the
excitation probability in terms of the acceleration a and
locally observed frequency v, is given as follows:

P 272G%v ¢ . 3v,c%\/ gy ev, AN fLd f

T aw? 2aew 2af' ’w
ER2fL 2 AL = (g —4ud))
16wy, f.?
3ev ng{"[- IJC4V iﬁ-g-ﬁ-( 2f/2 + 2.1 )
g+ € J+9+
2a+/f . d . w 2aw
—|—g2 / //)[2 /Jrzg/++62 /J/rg+_52f+( _4ﬂd+)]
+9+ /205
1663w, 2 f",
1
AV 5 C ’ (62)
e2 a —1
where
K
U= —rrs (63)
2

In 4 dimensions, u takes the following form [for / = 0 and
f =0 as the rest mass of the photon is zero)]

K f//
1+ / / 2 8f/ 8g+ r+

H= (64)

Now from Eq. (39), we can write that (for £ = 0)

(Z_;y _ }‘{(_:;gz — g(r). (65)

In the r — oo limit, f(r — o0) = g(r - o) = 1.> Thus,
Eq. (65) reduces to the following form

<ZZ>2 =1 (66)

For ¢ = 1, we observe from Eq. (66) that % =0 (in the
r = oo limit). Hence, ¢ = 1 corresponds to the rest mass
energy of the atom at r = co. But since ¢ is a conserved
quantity, hence it corresponds to the rest mass energy of the
atom. From now on we shall consider the case ¢ = 1.
Using Eq. (64) and ¢ = 1, the probability in Eq. (62) takes
the following form

“Standard black hole solutions satisfy this condition.

_ 27G*v,c 1_31/002\/f’+g’+_1/0\02\/J£’+g’+ "

T aw? 2aw 2af’ *w
81 g +Af g +3f g =]
St 1

3u.etgl vt \/flLgl
2a\/f' ¢ @ 2aw
+f/ g// ) [Sf/%—gg- +4f/ 2.d+r+ +3fl4/-g{€-r+
I 641> r+g' 2 . 3

(21" 2, + 1 g

flgir P

(67)

Interestingly, even though the Planck factor remains un-
affected, the coefficient in front of the excitation probability
gets changed and has dependence on the acceleration term.
This is the consequence of taking terms beyond the near
horizon approximation in the analysis which breaks the
conformal symmetry. Note that the case ¢ > 1 corresponds
to the fact that the atom is not at rest at r = oo since from
Eq. (66), we see that >0atr=

V. GHS BLACK HOLE AND THE HBAR ENTROPY

In this section we will try to calculate the HBAR entropy
for the case of a GHS black hole with its metric given in
Egs. (1)-(3). The horizon radius for a GHS black hole is at
ry =29 e We now consider a set of two level atoms
falling 1nto the event horizon of the GHS black hole at a rate
%. Now if AN is the number of atoms falling in a time

interval At¢, then we can write

AN
— = 68
Az (68)
If 6p; is the change in the density matrix due to the jth atom,
then for AN number of atoms, the total change in the density
matrix is given by (assuming 6p; = dp; = p; V 1, )

Ap = Zap ;= ANSp

Ap
— =40 69
=~ p. (69)
Now if Toy. = APy and Iy = 2P, give the excitation
and absorption rates for a GHS black hole (with P,.,. and
Pabs describing the excitation and absorption probabilities)
then the Lindblad master equation reads [45]

s .
p= —%[pb*b + btbp — 2bpb']

r
=55 lpbb" + bb'p ~2bpb]. (70)

With respect to some arbitrary state |n), the expectation
value of Eq. (70) is given as follows:
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/}n,n = _rabs<n/)mn - (I’l + l)pn+1,n+1)
- Fexc((n + l)pn,n - npn—l,n—l)'

(71)

The steady state solution of Eq. (71) is given as
follows [24]:

with &, being the permittivity of free space. To obtain
Eq. (73), we have considered the following assumptions;
v<w, flc,dic,\/flle,\/dic <@, and e? < 1. The
von Neumann entropy and its rate of change for the system
are given by [19]

(74)

| R I
o= (12 (1-12). 72)
' Dabs Dabs Sp = _kBan,n lnpn,n’
where for a GHS black hole ’
1F~_ N (1 _ov ﬁ> o NI
abs w w c . . S
S, =—k wnNp, = —k e NP5 75
_smGyeho 100 3e?Q%  3cbe Py g B;p R n B;p P 75)
¢ @ | 2GMlwrey,  GMPw
11c°Q% 51c0e*h Q*y
8G* M o ne, T 256G MOwd el where in case of the rate of change, we have replaced p,, , by
6 ddo 6 0 the steady state solution pj . Using the form of pg, from
9¢ Se stys 3} (73)  Egs. (72) and (73), we obtain the analytical form of S, as
10246 MP oz e follows:
|
. . 8rvGM et 100 3e*hQ* 3cbe Py 11c50% 51cbe* Q%
S/)E_kBZ”pn.n - 3 +ln 1 ——+ 2Q T3 3 4Q3 - a776 Qz 2.2
o c w  2GM wrey G M w’ 8G’ M w’mey 256G"M°w’n ej
9cbet Qb
1024G5M8’(H3ﬂ'388:| )
Sﬂ-GMkBed’O IOkB 3kB€2(/)0 Q2 3kBC6€_2(/)“ llkBC6Q2 51k3C6€2{/)0Q4 9kBC6€4(/)0 Q6 ZL
=] - - - iy,
c? w  2GM’wrey  G*MPw®  8GMiwimey 256G*MOwinie] 1024GMPwiniel] ) 4~

where 71, is the flux due to photons generated from two-
level atoms falling in the event horizon of the black hole.
The total loss of energy due to emitted photons is given
as A", i = i ,¢2. If M is the mass of the black hole,
then the rate of change of mass can be expressed as
M= m, + Myem. Here, m, is the rate of change of the
rest mass of the black hole due to emitting photons [19].
The rate of change of area of the black hole due to the
emitted photons can be expressed as follows:

322G’ M,
= €
C4

A, 2o (77)

This result can be interpreted in the following way. Before
entering the event horizon (before contributing to the mass
of the black hole) the atom emits radiation. Hence, the
black hole entropy associated with HBAR radiation from
an atom and that associated with an atom can be separated
in time. Hence, we can say that when no atoms are falling in
the black hole, A, can be considered to be equal to the area

of the entire black hole. The final form of S » in terms of A »
can be written as follows:

_d [kgceo +5ch4e“/’0 1 6kBQZe3¢0A_%
Pdt| 4nG TP 2hw/aG T hwy/mey "
12c¢%kg/me0 _1  88c*kp\/mQ*e30 s
By 3 Ap’
hGwm 3hw’e
3 204](3\/7_[GQ2€7¢0A_% n 144k, \/mG* Q%! 10 5 '
Shw’elc? d hw’elc® b

(78)

If we now consider the near horizon approximation only
then the probability in Eq. (78) takes the form

d k3c3e_’/’0
S[, = E

3kgcte P 1
L A+ A). (79
4hG ”+2hw\/7_rG ”> (79)
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This is also a new result in our paper. Comparing Eq. (78)
with Eq. (79), we observe that the rate of change of the
entropy misses out important corrections in terms of the
area A, while considering conformal symmetry. Interest-
ingly, we observe that in Eq. (78) the third and fourth terms
are similar to that of quantum gravity corrections to the
HBAR entropy [24] observed for the case of a quantum
corrected black hole. We also observe that the coefficient of
the second term in Eq. (79) gets modified in Eq. (78) and
three additional higher-order corrections (in terms of area)
appear due to the consideration of the beyond near horizon
approximation.

VI. CONCLUSION

In this work, we have considered a two-level atom falling
into the event horizon of a large class of static spherically
symmetric black holes covered by a mirror to shield
infalling atoms from interacting with the Hawking
radiation. This set up is identical to that of a Boulware
vacuum [46]. For an external observer, the initial state of
the field appears vacuumlike due to the mirror. We
investigated the scalar field solution in the beyond near
horizon approximation which leads to neglecting con-
formal symmetry in the equations. The analysis is impor-
tant as it captures the effect of going beyond the near
horizon approximation. The HBAR entropy for a GHS
black hole in this context is also investigated. It is observed
that the Planck factor obtained in the excitation probability
does not get affected due to the beyond near horizon
approximation. However, we see significant modifications

in the coefficient of the transition probability. Interestingly,
we also find that the equivalence relation holds in the
case of such a large class of spherically symmetric and
static black hole geometries even when terms breaking the
conformal invariance are included in the analysis. It
indicates the fact that conformal invariance does not play
a vital role in the overall understanding of the equivalence
relation. For the next part of our analysis, we have tried to
motivate this large class of static and spherically symmetric
black hole geometries by considering the example of the
Garfinkle-Horowitz-Strominger black hole which arises in
low-energy string theory. We have calculated the HBAR
entropy for both the conformal case and the nonconformal
case. We observe that in the case of the beyond near horizon
approximation, the HBAR entropy consists of a term
similar to Bekenstein-Hawking entropy (multiplied with
an exponential term) along with square root, inverse square
root corrections and higher orders of inverse corrections in
terms of the area A,,. Surprisingly, the inverse square root
correction does not occur when we consider the conformal
symmetry case along with near horizon approximation. We
also observe a different coefficient for the square root
correction term in the HBAR entropy. It is to be noted that
this inverse square root correction is similar to a quantum
gravity correction in the HBAR entropy of a quantum
corrected black hole [24].
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