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The near horizon aspects (and beyond) of a black hole metric, which belongs to a large class of static
spherically symmetric black holes, is considered here. It has been realized recently that an atom falling into a
black hole leads to the generation of acceleration radiation through virtual transitions. In recent studies it has
been argued that this acceleration radiation can be understood from the near horizon physics of the black hole.
The near horizon approximation leads to conformal symmetry in the problem.We go beyond the near horizon
approximation in our analysis. This breaks the conformal symmetry associated with the near horizon physics
of the black hole geometry. We observe that even without the consideration of the conformal symmetry,
the modified equivalence relation holds. Further, our analysis reveals that the probability of virtual transition
retains its Planck-like form with the amplitude getting modified due to the beyond near horizon
approximation. For the next part of our analysis, we have observed the horizon brightened acceleration
radiation entropy (HBAR) for a Garfinkle-Horowitz-Strominger black hole. We observe that the HBAR
entropy misses out on quantum gravitylike corrections while considering the conformal case. However, such
corrections emerge when the conformal symmetry gets broken in the beyond near horizon analysis.
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I. INTRODUCTION

With the advent of general theory of relativity [1,2], the
concept of the black hole arose as an exact solution to the
nonlinear field equations of general relativity. Stephen
Hawking, in his papers [3–5], showed that a black hole
emits radiation while considering quantum effects in curved
spacetime. The efforts to unite gravity, geometry, and
thermodynamics led to seminal works like black hole
thermodynamics [3–7], Hawking radiation [3–5], particle
emission from black holes [8–10], theUnruh effect [11], and
acceleration radiation [12–24]. The Hawking radiation from
a black hole can be directly related to the Unruh effect which
is nothing but the detection of particles by an accelerated
detector in an inertial vacuum. In recent times, there has been
an upsurge in the efforts to analytically explain the combined
effects of quantumoptics and black hole physics [19,24–26].
In this scenario, the two-level atom behaves as a detector. In
several recent works, it has been shown that an atom falling
into a black hole with an arbitrary metric feels the effect of
thermal radiation similar to that of Hawking radiation
[19,24]. The entropy of radiation emitted in this process
is termed as horizon brightened acceleration radiation

entropy (HBAR) which is a tool to understand the relation
between atom optics and general relativity as mentioned
above [19]. A few works have also focused on the effects of
conformal symmetry in analyzing the near horizon aspects
of a black hole [20–23,27,28]. In theseworks, themain focus
is on the near horizon aspects of a generalized D-dimen-
sional Schwarzschild black hole and its relation with
Hawking radiation in case of the existence of conformal
symmetry. In this work, we consider a large class of
D-dimensional static spherically symmetric black hole
spacetimes and study the near horizon aspects (and beyond)
of acceleration radiation of an atom falling into this geo-
metrical setup. In particular, we go beyond the near horizon
(NH) expansion of the black hole metric and study its
consequences in the acceleration radiation of the atom. The
results that we obtain are important in its own right because
they capture the beyond near horizon aspects of the black
hole in the problem of virtual transition and HBAR entropy.
A generalized spacetime geometry arises in case of low-

energy string theory [29,30] which are quantum gravity
theories that combine all the fundamental forces of nature
into one single unified theory.1 The Garfinkle-Horowitz-
Strominger (GHS) black hole is a solution of a low-energy
string theoretic action [34–36]. It reads
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1Other attempts to combine gravity with quantum mechanics
are loop quantum gravity [31,32] and noncommutative geo-
metry [33].
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ds2 ¼ −fðrÞdt2 þ gðrÞ−1dr2 þ r2dΩ2: ð1Þ

The analytical forms of fðrÞ and gðrÞ reads

fðrÞ ¼
�
1 −

2Meϕ0

r

��
1 −

Q2e3ϕ0

Mr

�−1
; ð2Þ

gðrÞ ¼
�
1 −

2Meϕ0

r

��
1 −

Q2e3ϕ0

Mr

�
; ð3Þ

where ϕ0 is the asymptotic constant value of the dilaton
field.
Inspired by the earlier works in this field and the

previously discussed generic black model (GHS black
hole), we have considered here a D-dimensional static
spherically symmetric black hole metric. Our aim is to
calculate the excitation probability of a virtual transition
due to an atom falling into the event horizon of such a
D-dimensional static spherically symmetric black hole. Our
next goal is to check for the equivalence principle for such a
scenario with and without the consideration of conformal
symmetry. The conformal symmetry in the near horizon
avatar of the Klein-Gordon equation can be broken by
keeping higher-order terms in the near horizon expansion
of the metric. We shall look precisely into the role played
by the higher-order terms. There were several attempts
to give an alternative explanation of the equivalence
principle [37–42] along with the recent consideration
of generalized uncertainty relation for an atom-mirror
system [43]. It was observed in [19] that an atom falling
into a black hole emits a similar spectrum to that of a mirror
which is accelerating uniformly with respect to a fixed
atom.Wewill investigate this modified equivalence relation
in the most general setup possible. For the next part of our
work, we will calculate the transition and absorption rates
for the GHS black hole geometry from the analytical
expressions derived for the generic metric with an event
horizon at r ¼ rþ such that fðrþÞ ¼ gðrþÞ ¼ 0. Using the
density matrix formalism from atom optics, we shall
calculate the horizon brightened acceleration radiation
(HBAR) entropy for the GHS black hole.
The paper is organized as follows. In Sec. I we provide a

basic description of the near horizon approximation and
obtained the Rindler form of the static spherically sym-
metric black hole geometry. In Sec. II we have found a
solution to the covariant Klein-Gordon field equation with
and without considering conformal symmetry. In Sec. III
we have obtained the transition probabilities due to virtual
transition for an atom falling into the event horizon of a
static spherically symmetric black hole metric. In Sec. IV
we obtained the HBAR entropy for the GHS black hole.
We conclude in Sec. V.

II. THE GENERALIZED AND STATIC BLACK
HOLE GEOMETRY AND THE BASIC

FORMALISM

The metric describing a large class of static spherically
symmetric black holes is given as follows (in natural units)

ds2 ¼ −fðrÞdt2 þ gðrÞ−1dr2 þ r2dΩ2
D−2; ð4Þ

where D is the number of spacetime dimensions with the
condition D ≥ 4. Here, rþ is the horizon radius such that

fðrþÞ ¼ gðrþÞ ¼ 0: ð5Þ

Under a near horizon expansion [keeping terms upto first
order in ðr − rþÞ], fðrÞ and gðrÞ [satisfying Eq. (5)] takes
the following form

fðrÞ ≅ ðr − rþÞf0ðrþÞ; gðrÞ ≅ ðr − rþÞg0ðrþÞ; ð6Þ

where 0 denotes derivative with respect to r. Note that while
writing the covariant Klein-Gordon equation, we will use
higher-order corrections in the near horizon approximation.
We now define a transformation of coordinates as follows:

ρ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ
g0ðrþÞ

r
: ð7Þ

Using Eqs. (6) and (7) in Eq. (4), we obtain the following
form of the metric

ds2 ¼ −
ρ2f0ðrþÞg0ðrþÞ

4
dt2 þ dρ2 þ r2dΩ2

D−2: ð8Þ

This particular form of the metric given in Eq. (1.9) is also
known as the Rindler form of the metric in D-spacetime
dimensions. Following earlier literature [24], we can
compute the uniform acceleration corresponding to curves
of constant ρ as follows:

a ¼ 1

ρ
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðrþÞ
r − rþ

s
: ð9Þ

We shall use this acceleration to check for the validity of the
modified equivalence relation in this generic setup.

III. SOLUTION OF THE COVARIANT
KLEIN-GORDON FIELD EQUATION

The covariant Klein-Gordon quantum field equation for
a scalar field with rest mass m0 reads

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ −m2

0Ψ ¼ 0; ð10Þ
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where the mode expansion of the scalar field Ψ reads

Ψðt; r;ΩÞ ¼
X
n;l;m

½bnlmψnlmðt; r;ΩÞ þ H:c:� ð11Þ

with bnlm being the field annihilation operator. We can now
use a separation of variables for ψnlm as follows:

ψnlm ¼ ζðrÞunlðrÞYlmðΩÞe−iνnlt ð12Þ

with νnl being the frequency of the scalar mode and YlmðΩÞ
being the spherical harmonics. Note that ψnlm satisfies the
classical Klein-Gordon field equation. We take a form of
ζðrÞ as follows:

ζðrÞ ¼ exp

�
−
1

2

Z
dr

�
f0ðrÞ
2fðrÞ þ

g0ðrÞ
2gðrÞ þ

D − 2

r

��

¼ ðfðrÞgðrÞÞ−1
4r−ðD2−1Þ: ð13Þ

Equation (10) can be recast in the following form,

−
∂
2
tΨ

fðrÞ þ
�
D − 2

r
þ ∂rfðrÞ

2fðrÞ þ ∂rgðrÞ
2gðrÞ

�
gðrÞ∂rΨ

þ gðrÞ∂2rΨþ 1

r2
ΔD−2

Γ Ψ −m2Ψ ¼ 0; ð14Þ

where Γ is the metric on the unit (D − 2)-dimensional
sphere, SD−2. Using Eqs. (12) and (13) in Eq. (14), we
obtain the following radial equation

u00nlðrÞ þ
�
−
�
f00ðrÞ
4fðrÞ þ

g00ðrÞ
4gðrÞ þ

D− 2

4r

�
g0ðrÞ
gðrÞ þ

f0ðrÞ
fðrÞ

��

þ
�

ν2nl
fðrÞgðrÞ þ

3

8

�
g02ðrÞ
2g2ðrÞ þ

f02ðrÞ
2f2ðrÞ−

f0ðrÞg0ðrÞ
3fðrÞgðrÞ

��

−
αþ r2β
r2gðrÞ þ

��
1

gðrÞ− 1

� ðD− 3Þ2
4r2

þ 1

4r2

��
unlðrÞ ¼ 0;

ð15Þ

where β ¼ m2
0 and α ¼ ðlþ D−3

2
Þ2. We shall now carry out

our analysis by going beyond the near horizon (beyond
NH) approximation. The forms of fðrÞ and its higher-order
derivatives in this beyond NH formalism are given by

fðrÞ ≅ ðr − rþÞf0ðrþÞ þ
ðr − rþÞ2

2
f00ðrþÞ þOððr − rþÞ3Þ;

ð16Þ

f0ðrÞ ∼ f0ðrþÞ þ ðr − rþÞf00ðrþÞ; ð17Þ

f00ðrÞ ∼ f00ðrþÞ: ð18Þ

gðrÞ, g0ðrÞ, and g00ðrÞ has similar structure to that of fðrÞ,
f0ðrÞ, and f00ðrÞ. For notational simplicity we will be
using r − rþ ¼ y, unlðrÞ ¼ u, νnl ¼ ν, f0ðrþÞ ¼ f0þ, and
f00ðrþÞ ¼ f00þ [similarly for g0ðrþÞ and g00ðrþÞ]. In this
beyond near horizon approximation Eq. (15) takes the
following form

u00 þ
�

ν2

f0þg0þ
þ 1

4

�
u
y2

−
��

ν2

f0þg0þ
þ 1

4

��
f00þ
2f0þ

þ g00þ
2g0þ

�

þ ðD − 2Þ
2rþ

þ αþ r2þβ
r2þg0þ

−
ðD − 3Þ2
4g0þr2þ

�
u
y
¼ 0: ð19Þ

We can rewrite Eq. (19) in a more simpler form as follows:

y2u00 − κyuþ
�

ν2

f0þg0þ
þ 1

4

�
u ¼ 0: ð20Þ

The form of κ in the above equation is given as

κ ¼
�

ν2

f0þg0þ
þ 1

4

��
f00þ
2f0þ

þ g00þ
2g0þ

�
þ ðD − 2Þ

2rþ

þ αþ r2þβ
r2þg0þ

−
ðD − 3Þ2
4g0þr2þ

: ð21Þ

With the general form of the equation in hand, we can now
proceed to obtain the solution of the radial equation. As
r − rþ ¼ y is a very small quantity, Oð 1y2Þ term is the most

dominant term in Eq. (19). If we neglect the Oð1yÞ term in
Eq. (19), we obtain the following equation

y2u00ðyÞ þ
�

ν2

f0þg0þ
þ 1

4

�
uðyÞ ¼ 0: ð22Þ

This equation has an interesting property. It exhibits an
asymptotic conformal symmetry. This can be seen by
taking an ansatz of the form

uðyÞ ¼ yq: ð23Þ

Putting this ansatz back in Eq. (22), we obtain a quadratic
equation in q given as

q2 − qþ ν2

f0þg0þ
þ 1

4
¼ 0: ð24Þ

Solving the above equation, we obtain the analytical form
of q as

q ¼ 1

2
� i

νffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p : ð25Þ
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The solution of Eq. (22) can be recast in the following form

uðyÞ ¼ y
1
2
�i νffiffiffiffiffiffiffi

f0þg0þ
p

: ð26Þ

The outgoing part of the solution in Eq. (26) is given as

uðyÞ ¼ y
1
2
þi νffiffiffiffiffiffiffi

f0þg0þ
p

: ð27Þ

The fact that scaling solutions are allowed for Eq. (22)
validates the conformal symmetry in the problem. Further,
from Eq. (22), we can observe that the near horizon physics
corresponds to a one-dimensional effective Hamiltonian

H ¼ p2
y −

λ

y2
; ð28Þ

where λ ¼ ð ν2

f0þg
0
þ
þ 1

4
Þ > 0. This is the representation

of the well-known long-range conformal quantum
mechanics [44].
The position and time dependent part of the solution,

therefore is given by

ψðr; tÞ ¼ e−iνtζðrÞuðrÞ ¼ Ke−iνty
i νffiffiffiffiffiffiffi

f0þg0þ
p

ð29Þ

with K ¼ r
D
2
−1

þ ðf0þg0þÞ−1
4. We will now investigate the case

where we now include the Oð1=yÞ term in Eq. (20). Note
that the ansatz in Eq. (23) will not go through now since
Eq. (20) does not have the conformal symmetry. We
assume a solution of the form given by

uðyÞ ¼
X∞
l¼0

Alysþl; ð30Þ

where s is a constant. Now substituting Eq. (30) back in
Eq. (20), we get the following relation

X∞
j¼0

Ajyjþs

�
ðsþ jÞðsþ j − 1Þ − κyþ ν2

f0þg0þ
þ 1

4

�
¼ 0:

ð31Þ

We will now compare the coefficients for equal powers
of y. Equating the coefficient of the ys term to zero, we get
the following quadratic equation for s

s2 − sþ ν2

f0þg0þ
þ 1

4
¼ 0; ð32Þ

which has a solution given by

s ¼ 1

2
� i

νffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p : ð33Þ

The higher-order equations in y yield a recursion relation
among the coefficients as follows:

An¼
κAn−1

ðnþsÞðnþs−1Þþ ν2

f0þg
0
þ
þ 1

4

; fn¼1;2;3;…g: ð34Þ

For s ¼ 1
2
þ iνffiffiffiffiffiffiffiffi

f0þg
0
þ

p , the generalized form of the coefficient

An with arbitrary value of n is given as

An¼
κnA0

n!
Q

n
l¼1

�
lþ i 2νffiffiffiffiffiffiffiffi

f0þg
0
þ

p
�¼

κnA0Γ
�
1þ i 2νffiffiffiffiffiffiffiffi

f0þg
0
þ

p
�

n!Γ
�
nþ1þ i 2νffiffiffiffiffiffiffiffi

f0þg
0
þ

p
� : ð35Þ

For simplicity we will be using, A0 ¼ 1. Neglecting higher-
order terms, the solution in Eq. (30) takes the following
form

uðyÞ ¼ y
1
2
þi νffiffiffiffiffiffiffi

f0þg0þ
p X∞

n¼0

ynκnΓ
�
1þ i 2νffiffiffiffiffiffiffiffi

f0þg
0
þ

p
�

n!Γ
�
nþ 1þ i 2νffiffiffiffiffiffiffiffi

f0þg
0
þ

p
� : ð36Þ

Therefore, the position- and time-dependent part of the
classical scalar field solution takes the following form

ψκðr; tÞ ∼ e−iνty
i νffiffiffiffiffiffiffi

f0þg0þ
p X∞

n¼0

ynκnΓ
�
1þ i 2νffiffiffiffiffiffiffiffi

f0þg
0
þ

p
�

n!Γ
�
nþ 1þ i 2νffiffiffiffiffiffiffiffi

f0þg
0
þ

p
� : ð37Þ

In the next section we will compute the transition prob-
ability due to virtual transition for an atom falling into the
event horizon of a black hole which belongs to a large class
of static spherically symmetric geometries.

IV. CALCULATING THE TRANSITION
PROBABILITIES

To calculate the transition probability, we need the
atom trajectory at first. We will simplify our calculations
by restricting to a four-dimensional case. In terms of the
Killing vectors ϱ ¼ ∂t, ς ¼ ∂ϕ and spacetime velocity u,
we can define two conserved quantities as follows:

E
m

¼ −ϱ · u ¼ fðrÞ dt
dτ

;
L
m

¼ ς · u ¼ r2
dϕ
dτ

; ð38Þ

where ℯ ¼ E
m is the relativistic energy per unit rest mass of

the atom and l ¼ L
m is the angular momentum per unit

rest mass of the atom. In terms of the above conserved
quantities, the spacetime geometry [Eq. (4) for D ¼ 4] can
be recast in the following form
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1 ¼ fðrÞ
�
dt
dτ

�
2

−
1

gðrÞ
�
dr
dτ

�
2

−
l2

r2�
1þ l2

r2

�
¼ ℯ2

fðrÞ −
1

gðrÞ
�
dr
dτ

�
2

dτ ¼ −

ffiffiffiffiffiffiffiffiffi
fðrÞ
gðrÞ

s
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℯ2 − fðrÞð1þ l2

r2Þ
q

⇒ τðrÞ ¼ −
Z ffiffiffiffiffiffiffiffiffi

fðrÞ
gðrÞ

s
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℯ2 − fðrÞð1þ l2

r2Þ
q : ð39Þ

Using this relation in Eq. (38), we can obtain the form of
tðrÞ as follows:

ℯ ¼ fðrÞ dt
dτ

dt ¼ −
ℯffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞgðrÞp drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℯ2 − fðrÞð1þ l2

r2Þ
q

⇒ tðrÞ ¼ −
Z

ℯffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℯ2 − fðrÞð1þ l2

r2Þ
q : ð40Þ

The proper time τ and twhich give the atom trajectories can
therefore be written as follows:

τðrÞ ¼ −
Z

1

ℯ

ffiffiffiffiffiffiffiffiffi
fðrÞ
gðrÞ

s
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fðrÞ
ℯ2 ð1þ l2

r2Þ
q ; ð41Þ

tðrÞ ¼ −
Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fðrÞ
ℯ2 ð1þ l2

r2Þ
q : ð42Þ

Applying the beyond near horizon approximation along
with the consideration l ¼ 0, we will now calculate the
atom trajectories up to OðyÞ. The forms of τ and t up to
OðyÞ are given by

τ ¼ −
1

ℯ

ffiffiffiffiffiffi
f0þ
g0þ

s
yþ C1; ð43Þ

t ¼ −
1ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
�
ln yþ y

�
f0þ
2ℯ2

−
1

4

�
f00þ
f0þ

þ g00þ
g0þ

���
þ C2;

ð44Þ

where C1 and C2 are integration constants. We will at first
calculate the transition probability for the case when the
Oð1=yÞ term is kept in the analysis. The atom field
interaction Hamiltonian has the form given as follows:

ĤI ¼ ℏG½b̂νψνðtðrÞ; rðτÞÞ þ H:c:�½ξ̂e−iϖτ þ H:c:� ð45Þ

where G is the atom-field coupling constant, b̂ν is the
photon annihilation operator, ϖ is the atom transition
frequency and ξ̂ is given by jgihej with jei and jgi denoting
the excited and ground states of the two-level atom. The
transition probability concerning Eq. (29) reads

Pκ ¼
1

ℏ2

				
Z

dτh1ν; ejĤIj0ν; gi
				
2

¼ G2

				
Z

dτψ�
κðr; tÞeiϖτ

				
2

: ð46Þ

We observe that the contribution to the transition proba-
bility in Eq. (46) is due to the counter-rotating terms in
Eq. (45). To proceed further, we make a simple change
in variables as given by y ¼ ℯx

ϖ, where x; ν ≪ ϖ [19].
Substituting the form of ψκðr; tÞ from Eq. (37) in the above
equation, we get

Pκ ≅
G2

ϖ2

						
ffiffiffiffiffiffi
f0þ
g0þ

s Z
∞

0

�
1þ κℯx

ϖ
�
1 − 2iνffiffiffiffiffiffiffiffi

f0þg
0
þ

p
�

þ ℯx
ϖ

�
f0þ
2ℯ2

þ 1

4

�
f00þ
f0þ

−
g00þ
g0þ

���
x
− 2iνffiffiffiffiffiffiffi

f0þg0þ
p

× e
−ix

h ffiffiffiffi
f0þ
g0þ

q
þℯν

ϖ
1ffiffiffiffiffiffiffi
f0þg0þ

p
�

f0þ
2ℯ2

−1
4

�
f00þ
f0þ

þg00þ
g0þ

��i						
2

: ð47Þ

We shall now make another change of variables as
follows:

xf0þ ¼ χ
ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
: ð48Þ

Using Eq. (48) in Eq. (47), we obtain the form of the
probability as follows:

Pκ ¼
G2

ϖ2

				
Z

dχ

�
1þ ℯχ

ϖ

ffiffiffiffiffiffi
g0þ
f0þ

s �
μþ f0þ

2ℯ2
þ 1

4

�
f00þ
f0þ

−
g00þ
g0þ

��

þ 2iℯμνχ
ϖf0þ

�
e
−iχ

�
1þ νℯ

ϖf0þ

�
f0þ
2ℯ−

1
4

�
f00þ
f0þ

þg00þ
g0þ

���
χ
− 2iνffiffiffiffiffiffiffi

f0þg0þ
p 				

2

;

ð49Þ

where μ ¼ κ

1þ 4ν2

f0þg0þ

.

To obtain the final form of the probability, we will
introduce a change of variables given by

ζ ¼ χB; ð50Þ
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where

B ¼
�
1þ νℯ

ϖf0þ

�
f0þ
2ℯ

−
1

4

�
f00þ
f0þ

þ g00þ
g0þ

���
: ð51Þ

Using the coordinate transformation in Eq. (50), we obtain
the final form of the excitation probability as

Pκ ¼
G2

B2ϖ2

				
Z

∞

0

dζe−iζζ
− 2iνffiffiffiffiffiffiffi

f0þg0þ
p �

1þ ℯζ
Bϖ

ffiffiffiffiffiffi
g0þ
f0þ

s �
μþ f0þ

2ℯ2

þ 1

4

�
f00þ
f0þ

−
g00þ
g0þ

��
þ 2iℯμνζ

Bϖf0þ

�				
2

: ð52Þ

Next we will use another quantity given by

γ ¼ μþ f0þ
2ℯ2

þ 1

4

�
f00þ
f0þ

−
g00þ
g0þ

�
: ð53Þ

As ν ≪ ϖ, we will keep only up to Oð νϖÞ terms in our
calculation. Hence, we can express 1

B as

1

B
≅
�
1 −

νℯ
ϖf0þ

�
f0þ
2ℯ

−
1

4

�
f00þ
f0þ

þ g00þ
g0þ

���
: ð54Þ

Up to Oð νϖÞ, 1
B2 can similarly be expressed as

1

B2
≅ 1 −

2νℯ
ϖf0þ

�
f0þ
2ℯ

−
1

4

�
f00þ
f0þ

þ g00þ
g0þ

��
: ð55Þ

Using the form of γ in Eq. (4), we can express the final form
of the probability in a much simpler form given by

Pκ¼
G2

ϖ2B2

				
Z

∞

0

dζ

�
1þℯζγ

Bϖ

ffiffiffiffiffiffi
g0þ
f0þ

s
þ2iℯμνζ

Bϖf0þ

�
e−iζζ

− 2iνffiffiffiffiffiffiffi
f0þg0þ

p 				
2

:

ð56Þ

The final form of the probability in Eq. (56) takes the
following form

Pκ ≅
4πG2νffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
B2ϖ2

�
1 −

4γνℯ
f0þϖB

þ g0þℯ2γ2

f0þϖ2B2
þ 4νℯμ
Bf0þϖ

�

×
1

e
4πνffiffiffiffiffiffiffi
f0þg0þ

p
− 1

; ð57Þ

where we have neglected Oð ν2
ϖ2Þ order quantities in the

parenthesis of the amplitude factor (as ν ≪ ϖ). We observe
that in Eq. (56) the probability has Planck like factor which
is independent of κ. In Eq. (57), the term in the parenthesis
can be expressed in the following form

1 −
4γνℯ
f0þϖB

þ g0þℯ2γ2

f0þϖ2B2
þ 4νℯμ
Bf0þϖ

≅ 1 −
3ν

ℯϖ
þ ½2f0þ2g0þ þ ℯ2f00þg0þ − ℯ2f0þðg00þ − 4μg0þÞ�2

16ℯ2ϖ2g0þf0þ3
þ ν

ϖ
k; ð58Þ

where

k ¼ ℯð−f00þg0þ þ 3f0þg00þÞ
2f0þ2g0þ

þ ð−2f0þ2g0þ þ ℯ2f00þg0þ þ ℯ2f0þg00þÞ
½2f0þ2g0þ þ ℯ2f00þg0þ − ℯ2f0þðg00þ − 4μg0þÞ�2

16ℯ3ϖ2g0þ2f0þ5
: ð59Þ

If one neglects the μ term and the beyond NH approxi-
mation, the probability in Eq. (57) takes the form

Pκ¼0;NH ≅
4πG2νffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
ϖ2

�
1 −

3ν

ℯϖ
þ f0þg0þ
4ℯ2ϖ2

�
1

e
4πνffiffiffiffiffiffiffi
f0þg0þ

p
− 1

:

ð60Þ

From Eq. (57), we observe that the conformal symmetry
plays no vital role in determining the form of the Planck
factor indicating that the overall spectrum does not get
affected even with the breaking of conformal symmetry.
However, the amplitude gets modified in contrast to the
case where there is conformal symmetry. In Eqs. (57)
and (60), the frequency ν is observed by a distant
observer. Therefore, this frequency ν ¼ ν∞ can be

expressed in terms of locally observed frequency (νo)
as, ν∞ ¼ νo

ffiffiffiffiffiffiffiffiffi
fðrÞp

∼ νo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞf0ðrþÞ

p ¼ νo
2a

ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
.

Substituting the form of ν∞ in the Planck factors of
Eqs. (56) and (60), we obtain the following form

1

e
4πνffiffiffiffiffiffiffi
f0þg0þ

p
− 1

≅
1

e
2πνo
a − 1

; ð61Þ

which is similar to the Planck factor for the case of a fixed
atom and an accelerating mirror in a flat spacetime back-
ground. This result implies that the effect of the accelerat-
ing mirror on the field modes of the atom are similar to
that of the gravitational effect of the black hole. Hence,
we observe that for a generic black hole geometry the
equivalence principle holds, and is independent of whether
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there is conformal symmetry or not. The form of the
excitation probability in terms of the acceleration a and
locally observed frequency νo is given as follows:

Pκ¼
2πG2νoc
aϖ2

�
1−

3νoc2
ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
2aℯϖ

−
ℯνoc2

ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
f00þ

2af0þ2ϖ

þc2½2f0þ2g0þþℯ2f00þg0þ−ℯ2f0þðg00þ−4μg0þÞ�2
16ℯ2ϖ2g0þf0þ3

þ 3ℯνoc2g00þ
2a

ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
ϖ
þνc4

ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
2aϖ

ð−2f0þ2g0þþℯ2f00þg0þ

þℯ2f0þg00þÞ
½2f0þ2g0þþℯ2f00þg0þ−ℯ2f0þðg00þ−4μg0þÞ�2

16ℯ3ϖ2g0þ2f0þ5

�

×
1

e
2πνoc

a −1
; ð62Þ

where

μ ¼ κ

1þ ν2oc2

a2

: ð63Þ

In 4 dimensions, μ takes the following form [for l ¼ 0 and
β ¼ 0 as the rest mass of the photon is zero)]

μ ¼ κ

1þ 4ν2

f0þg
0
þc

2

≅
f00þ
8f0þ

þ g00þ
8g0þ

þ 1

rþ
: ð64Þ

Now from Eq. (39), we can write that (for l ¼ 0)

�
dr
dτ

�
2

¼ gðrÞ
fðrÞℯ

2 − gðrÞ: ð65Þ

In the r → ∞ limit, fðr → ∞Þ ¼ gðr → ∞Þ ¼ 1.2 Thus,
Eq. (65) reduces to the following form

�
dr
dτ

�
2

¼ ℯ2 − 1: ð66Þ

For ℯ ¼ 1, we observe from Eq. (66) that dr
dτ ¼ 0 (in the

r ¼ ∞ limit). Hence, ℯ ¼ 1 corresponds to the rest mass
energy of the atom at r ¼ ∞. But since ℯ is a conserved
quantity, hence it corresponds to the rest mass energy of the
atom. From now on we shall consider the case ℯ ¼ 1.
Using Eq. (64) and ℯ ¼ 1, the probability in Eq. (62) takes
the following form

Pκ¼
2πG2νoc
aϖ2

�
1−

3νoc2
ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
2aϖ

−
νoc2

ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
f00þ

2af0þ2ϖ

þc2½8f0þg0þþ4f0þ2g0þrþþ3f00þg0þrþ−f0þg00þrþ�2
64ϖ2r2þg0þf0þ3

þ 3νoc2g00þ
2a

ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
ϖ
þνc4

ffiffiffiffiffiffiffiffiffiffiffi
f0þg0þ

p
2aϖ

ð−2f0þ2g0þþf00þg0þ

þf0þg00þÞ
½8f0þg0þþ4f0þ2g0þrþþ3f00þg0þrþ−f0þg00þrþ�2

64ϖ2r2þg0þ2f0þ5

�

×
1

e
2πνoc

a −1
: ð67Þ

Interestingly, even though the Planck factor remains un-
affected, the coefficient in front of the excitation probability
gets changed and has dependence on the acceleration term.
This is the consequence of taking terms beyond the near
horizon approximation in the analysis which breaks the
conformal symmetry. Note that the case ℯ > 1 corresponds
to the fact that the atom is not at rest at r ¼ ∞ since from
Eq. (66), we see that dr

dτ > 0 at r ¼ ∞.

V. GHS BLACK HOLE AND THE HBAR ENTROPY

In this section we will try to calculate the HBAR entropy
for the case of a GHS black hole with its metric given in
Eqs. (1)–(3). The horizon radius for a GHS black hole is at
rþ ¼ 2GM

c2 eϕ0 . We now consider a set of two level atoms
falling into the event horizon of the GHS black hole at a rate
k. Now if ΔN is the number of atoms falling in a time
interval Δt, then we can write

ΔN
Δt

¼ k: ð68Þ

If δρj is the change in the density matrix due to the jth atom,
then forΔN number of atoms, the total change in the density
matrix is given by (assuming δρi ¼ δρj ¼ δρ; ∀ i; j)

Δρ ¼
X
j

δρj ¼ ΔNδρ

⇒
Δρ
Δt

¼ kδρ: ð69Þ

Now if Γexc ¼ kPexc and Γabs ¼ kPabs give the excitation
and absorption rates for a GHS black hole (with Pexc and
Pabs describing the excitation and absorption probabilities)
then the Lindblad master equation reads [45]

_ρ ¼ −
Γabs

2
½ρb†bþ b†bρ − 2bρb†�

−
Γexc

2
½ρbb† þ bb†ρ − 2b†ρb�: ð70Þ

With respect to some arbitrary state jni, the expectation
value of Eq. (70) is given as follows:2Standard black hole solutions satisfy this condition.
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_ρn;n ¼ −Γabsðnρn;n − ðnþ 1Þρnþ1;nþ1Þ
− Γexcððnþ 1Þρn;n − nρn−1;n−1Þ: ð71Þ

The steady state solution of Eq. (71) is given as
follows [24]:

ρSn;n ¼
�
Γexc

Γabs

�
n
�
1 −

Γexc

Γabs

�
; ð72Þ

where for a GHS black hole

Γexc

Γabs
≅
�
1 −

6ν

ϖ
þ 2ν

ϖ
k
�
e
− 4πν

c
ffiffiffiffiffiffiffi
f0þg0þ

p

≅ e−
8πνGMeϕ0

c3

�
1 −

10ν

ϖ
þ 3e2ϕ0Q2ν

2GM2ϖπε0
−
3c6e−2ϕ0ν

G2M2ϖ3

þ 11c6Q2ν

8G3M4ϖ3πε0
−

51c6e2ϕ0Q4ν

256G4M6ϖ3π2ε20

þ 9c6e4ϕ0Q6ν

1024G5M8ϖ3π3ε30

�
ð73Þ

with ε0 being the permittivity of free space. To obtain
Eq. (73), we have considered the following assumptions;
ν ≪ ϖ, f0þc; g0þc;

ffiffiffiffiffiffi
f00þ

p
c;

ffiffiffiffiffiffi
g00þ

p
c ≪ ϖ, and eϕ0 ≪ 1. The

von Neumann entropy and its rate of change for the system
are given by [19]

Sρ ¼ −kB
X
n;ν

ρn;n ln ρn;n; ð74Þ

_Sρ ¼ −kB
X
n;ν

_ρn;n ln ρn;n ≅ −kB
X
n;ν

_ρn;n ln ρSn;n; ð75Þ

where in case of the rate of change, we have replaced ρn;n by
the steady state solution ρSn;n. Using the form of ρSn;n from
Eqs. (72) and (73), we obtain the analytical form of Sρ as
follows:

_Sρ≅−kB
X
n;ν

n_ρn;n

�
−
8πνGMeϕ0

c3
þ ln

�
1−

10ν

ϖ
þ 3e2ϕ0Q2ν

2GM2ϖπε0
−
3c6e−2ϕ0ν

G2M2ϖ3
þ 11c6Q2ν

8G3M4ϖ3πε0
−

51c6e2ϕ0Q4ν

256G4M6ϖ3π2ε20

þ 9c6e4ϕ0Q6ν

1024G5M8ϖ3π3ε30

��

≅
�
8πGMkBeϕ0

c3
þ10kB

ϖ
−

3kBe2ϕ0Q2

2GM2ϖπε0
þ3kBc6e−2ϕ0

G2M2ϖ3
−

11kBc6Q2

8G3M4ϖ3πε0
þ 51kBc6e2ϕ0Q4

256G4M6ϖ3π2ε20
−

9kBc6e4ϕ0Q6

1024G5M8ϖ3π3ε30

��X
ν

_̄nνν;

ð76Þ

where n̄ν is the flux due to photons generated from two-
level atoms falling in the event horizon of the black hole.
The total loss of energy due to emitted photons is given
as ℏ

P
ν
_̄nνν ¼ _mpc2. If M is the mass of the black hole,

then the rate of change of mass can be expressed as
_M ¼ _mp þ _matom. Here, _mp is the rate of change of the
rest mass of the black hole due to emitting photons [19].
The rate of change of area of the black hole due to the
emitted photons can be expressed as follows:

_Ap ¼ 32πG2M _mp

c4
e2ϕ0 : ð77Þ

This result can be interpreted in the following way. Before
entering the event horizon (before contributing to the mass
of the black hole) the atom emits radiation. Hence, the
black hole entropy associated with HBAR radiation from
an atom and that associated with an atom can be separated
in time. Hence, we can say that when no atoms are falling in
the black hole, Ap can be considered to be equal to the area

of the entire black hole. The final form of _Sρ in terms of Ap

can be written as follows:

_Sρ ¼
d
dt

�
kBc3e−ϕ0

4ℏG
Ap þ

5kBc4e−ϕ0

2ℏϖ
ffiffiffi
π

p
G
A

1
2
p þ 6kBQ2e3ϕ0

ℏϖ
ffiffiffi
π

p
ε0

A
−1
2

p

−
12c6kB

ffiffiffi
π

p
e−ϕ0

ℏGϖ3
A
−1
2

p þ 88c2kB
ffiffiffi
π

p
Q2e3ϕ0

3ℏϖ3ε0
A
−3
2

p

−
204kB

ffiffiffi
π

p
GQ2e7ϕ0

5ℏϖ3ε20c
2

A
−5
2

p þ 144kb
ffiffiffi
π

p
G2Q6e11ϕ0

ℏϖ3ε30c
6

A
−7
2

p

�
:

ð78Þ

If we now consider the near horizon approximation only
then the probability in Eq. (78) takes the form

_Sρ ¼
d
dt

�
kBc3e−ϕ0

4ℏG
Ap þ

3kBc4e−ϕ0

2ℏϖ
ffiffiffi
π

p
G
A

1
2
p

�
: ð79Þ
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This is also a new result in our paper. Comparing Eq. (78)
with Eq. (79), we observe that the rate of change of the
entropy misses out important corrections in terms of the
area Ap while considering conformal symmetry. Interest-
ingly, we observe that in Eq. (78) the third and fourth terms
are similar to that of quantum gravity corrections to the
HBAR entropy [24] observed for the case of a quantum
corrected black hole. We also observe that the coefficient of
the second term in Eq. (79) gets modified in Eq. (78) and
three additional higher-order corrections (in terms of area)
appear due to the consideration of the beyond near horizon
approximation.

VI. CONCLUSION

In this work, we have considered a two-level atom falling
into the event horizon of a large class of static spherically
symmetric black holes covered by a mirror to shield
infalling atoms from interacting with the Hawking
radiation. This set up is identical to that of a Boulware
vacuum [46]. For an external observer, the initial state of
the field appears vacuumlike due to the mirror. We
investigated the scalar field solution in the beyond near
horizon approximation which leads to neglecting con-
formal symmetry in the equations. The analysis is impor-
tant as it captures the effect of going beyond the near
horizon approximation. The HBAR entropy for a GHS
black hole in this context is also investigated. It is observed
that the Planck factor obtained in the excitation probability
does not get affected due to the beyond near horizon
approximation. However, we see significant modifications

in the coefficient of the transition probability. Interestingly,
we also find that the equivalence relation holds in the
case of such a large class of spherically symmetric and
static black hole geometries even when terms breaking the
conformal invariance are included in the analysis. It
indicates the fact that conformal invariance does not play
a vital role in the overall understanding of the equivalence
relation. For the next part of our analysis, we have tried to
motivate this large class of static and spherically symmetric
black hole geometries by considering the example of the
Garfinkle-Horowitz-Strominger black hole which arises in
low-energy string theory. We have calculated the HBAR
entropy for both the conformal case and the nonconformal
case. We observe that in the case of the beyond near horizon
approximation, the HBAR entropy consists of a term
similar to Bekenstein-Hawking entropy (multiplied with
an exponential term) along with square root, inverse square
root corrections and higher orders of inverse corrections in
terms of the area Ap. Surprisingly, the inverse square root
correction does not occur when we consider the conformal
symmetry case along with near horizon approximation. We
also observe a different coefficient for the square root
correction term in the HBAR entropy. It is to be noted that
this inverse square root correction is similar to a quantum
gravity correction in the HBAR entropy of a quantum
corrected black hole [24].
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