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We establish the correspondence between the classical and quantum butterfly effects in nonlinear vector
mechanics with the broken OðNÞ symmetry. On one hand, we analytically calculate the out-of-time-
ordered correlation functions and the quantum Lyapunov exponent using the augmented Schwinger-
Keldysh technique in the large-N limit. On the other hand, we numerically estimate the classical Lyapunov
exponent in the high-temperature limit, where the classical chaotic behavior emerges. In both cases,

Lyapunov exponents approximately coincide and scale as κ ≈ 1.3
ffiffiffiffiffiffi
λT4

p
=N with temperature T, number of

degrees of freedom N, and coupling constant λ.
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I. INTRODUCTION

In a classical chaotic system, a small perturbation in
initial conditions leads to an exponential divergence of
trajectories, kδzðtÞk ∼ eκcltkδzð0Þk. Here, δz denotes the
distance between two trajectories in a phase space with
respect to a norm k · k, and the positive real number κcl is
called the maximal Lyapunov exponent. Such a sensitivity
to initial conditions is broadly known as the butterfly effect.
This effect occurs in numerous classical dynamical sys-
tems, lays the foundation for the classical thermodynamics
and hydrodynamics, and has been extensively studied since
its discovery in 1963 [1–4].
On the contrary, quantum chaos and the quantum

butterfly effect are more subtle and less studied than their
classical counterparts because the uncertainty principle
prohibits infinitesimal shifts of trajectories and makes it
impossible to define the quantum Lyapunov exponent
directly. Instead, one introduces alternative diagnostics that
are well defined in the quantum case and distinguish
integrable and chaotic systems in the semiclassical limit.
The oldest and most famous example of such a diagnostic is
the statistics of energy level spacings [4–8]. There are also
definitions of quantum chaos that rely on the calculation of
dynamical entropy [9,10], decoherence [11], entanglement

[12,13], out-of-time-ordered correlation functions [14–17],
spectral form factor [18–21], Krylov complexity [22–28],
and Hilbert-space geometry [29,30]. Furthermore, various
diagnostics of quantum chaos are believed to be related to
each other and form the “web of diagnostics” [31,32].
Among this set of approaches to quantum chaos, the out-

of-time-ordered correlation function (OTOC) is probably
the most prominent and useful diagnostic. Unlike other
diagnostics, OTOC naturally generalizes the definitions of
the classical Lyapunov exponent and butterfly effect to a
quantum case. The OTOC is defined as an expectation
value of the squared commutator, coincides with the
squared Poisson bracket, and reflects the exponential
divergence of trajectories in the semiclassical limit ℏ → 0,

CijðtÞ ¼ −h½q̂iðtÞ; p̂jð0Þ�2i ≈ ℏ2fqiðtÞ; pjð0Þg2

¼ ℏ2

���� ∂qiðtÞ
∂qjð0Þ

����2 ≈ ℏ2
kδzðtÞk2
kδzð0Þk2 ≈ ℏ2e2κt: ð1:1Þ

Here, we assume that, in the classical limit, the system is
described by generalized coordinates qi and canonical
momenta pi, i ¼ 1;…; N [so that z ¼ ðq;pÞ], which
become operators q̂i and p̂i upon quantization. The angle
brackets h� � �i denote the expectation value over a suitable
initial ensemble, e.g., over the thermal one.1 So, using
Eq. (1.1), we can introduce the quantum Lyapunov expo-
nent similar to its classical counterpart
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1In general, both classical and quantum Lyapunov exponents
may differ in different points of the phase space, so averaging
over an initial ensemble is necessary to define a universal
diagnostic of chaos, cf. Sec. III B.
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1

κq
≪ t ≪

1

κq
log

1

ℏ
;

ð1:2Þ

and define “quantum chaotic systems” as systems with
κq > 0. In the semiclassical limit, quantum and classical
Lyapunov exponents are expected to coincide [33,34],
κcl ≈ κq as ℏ → 0. Note that in quantum chaotic systems,
correlations between qiðtÞ and pjð0Þ are gradually lost in
time [15], so we expect the OTOC to approach a constant
value at the timescale t� ∼ 1

κ log
1
ℏ and thus restrict the times

in (1.2) to t ≪ t�. This timescale is called the scrambling
time2 and goes to infinity as ℏ → 0. Furthermore, the
scrambling time has a universal lower bound that is
saturated for quantum theories on the black hole back-
ground or corresponding holographic duals [15,40] and
resolves the no-cloning paradox [41,42].
Thus, due to the close relation to quantum chaos and

scrambling, OTOCs have received great attention from
the high-energy and condensed-matter physics commun-
ities and have been estimated in a large variety of
models. To the moment, such correlation functions were
calculated in the Sachdev-Ye-Kitaev model and Jackiw-
Teitelboim gravity [43–48], three-dimensional black hole
in anti–de Sitter space [49–52], two-dimensional con-
formal field theories [53–55], de Sitter space [56,57],
weakly coupled matrix field theory [58,59], nonlinear
sigma model [60], and many other quantum many-body
systems [61–68]. Moreover, OTOCs were experimentally
measured with ion traps [69] and nuclear magnetic
resonance platforms [70] (see also a recent pedagogical
review [71]).
Nevertheless, there are few examples of systems where

both classical and quantum Lyapunov exponents were
calculated and compared [72–79], so the putative relation
between these exponents remains relatively poorly under-
stood. Therefore, it is useful to consider another tractable
model, where the correspondence between the classical and
quantum butterfly effects can be directly checked. As an
example of such a model, we propose the following simple
vector mechanics:

S ¼
Z

dt

�XN
i¼1

�
1

2
_ϕi
_ϕi −

m2

2
ϕiϕi

�
−

λ

4N

X
i≠j

ϕiϕiϕjϕj

�
;

ð1:3Þ

where we assume the large-N limit, N ≫ 1, and introduce
the ‘t Hooft coupling λ for convenience.3 In addition, we
assume the system to be thermal with an inverse temper-
ature4 β ¼ 1=T. In what follows, we will also employ the
high-temperature limit βm ≪ 1 and βm ≪ λ=m3, in which
many calculations significantly simplify. Moreover, we will
show that, in this limit, both classical and quantum
Lyapunov exponents are positive and approximately equal
to each other.
We emphasize that the model (1.3) does not contain

self-interaction terms of the form
P

i ϕ
4
i . We exclude

these interactions to break down the OðNÞ symmetry
and avoid the integrability. In fact, it is easy to see that
the OðNÞ-symmetric model has exactly N independent
conserved quantities (energy H and N − 1 Casimir oper-
ators, L2

k ¼
Pkþ1

j¼2

Pj−1
i¼1 Lij, where k ¼ 1;…; N − 1, Lij ¼

ϕiπj − πiϕj are the angular momenta, and πi are the
canonical momenta), so it is classically integrable.
Moreover, this model straightforwardly reduces to a single
quartic oscillator, for which the equations of motion are
explicitly integrated using elliptic functions. On the con-
trary, the deformed OðNÞ model (1.3) possesses a much
richer dynamics due to the sophisticated form of its
nonlinear potential, as we will show in the main part of
the paper.
The paper is organized as follows. In Sec. II, we

analytically calculate the leading contribution to the quan-
tum Lyapunov exponent in the OðNÞ-symmetric and full
nonsymmetric versions of the model (1.3). In the former
case, quantum Lyapunov exponent is zero, while in
the latter case it is small but positive. Moreover, in the
large-N and high-temperature limit, this exponent acquires
a relatively simple form, κq ≈ 1.3

ffiffiffiffiffiffi
λT4

p
=N. In Sec. III, we

numerically calculate the classical Lyapunov exponent
in the full model (1.3). This exponent also approxima-
tely scales as κcl ≈ 1.3

ffiffiffiffiffiffi
λT4

p
=N in the large-N and high-

temperature limit, which supports the correspondence
between the quantum and classical chaotic behavior. In
Sec. IV, we discuss the results and conclude. In addition, in
Appendixes A–C, we discuss various technical details
regarding the calculation of OTOCs in the augmented
Schwinger-Keldysh diagrammatic technique.
In this paper, we assume the Plank constant ℏ ¼ 1 and

the Boltzmann constant kB ¼ 1 if not stated otherwise.

2This is essentially a simplified analog of the Ehrenfest time tE,
at which the semiclassical description of a chaotic system breaks
down [35–39]. In a quantized classically chaotic system, Ehren-
fest time is proportional to tE ∼ 1

K log
1
ℏ, where K ¼Pi κ

þ
i is the

Kolmogorov-Sinai entropy and κþi are positive Lyapunov ex-
ponents.

3Note that we eliminate the true mass scale M (i.e., masses of
oscillators) via the rescaling ϕi →

ffiffiffiffiffi
M

p
ϕi, t → Mt, λ → M2λ.

Keeping in mind the similarity of the model (1.3) and its higher-
dimensional analogs [60], we also call the frequency m the
(0þ 1)-dimensional “mass.”

4In the classical and large-N limit, the temperature is approx-
imately equal to the energy per degree of freedom, β ∼ N=E,
where E is the total energy of the system. For details, see
Sec. III B.
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II. QUANTUM CHAOS

In this section, we analyze the quantumchaotic behavior of
the model (1.3) using the methods of (0þ 1)-dimensional
quantum field theory. In other words, we consider the quartic
terms as a small perturbation and sum the leading perturbative
corrections to the OTOCs using the augmented Schwinger-
Keldysh diagrammatic technique on the twofold Keldysh
contour [80,81]. A brief introduction to this technique and
derivation of the key identities are presented in Appendix A.
For convenience, we explicitly separate theOðNÞ-symmetric
and -nonsymmetric interactions,

S ¼
Z

dt

�XN
i¼1

�
1

2
_ϕ2
i −

m2

2
ϕ2
i

�

−
λ

4N

XN
i;j¼1

ϕ2
iϕ

2
j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

symmetric

þ λ

4N

XN
i¼1

ϕ4
i|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nonsymmetric

�
: ð2:1Þ

In the large-N limit, nonsymmetric terms provide only the
subleading (1=N at most) corrections to correlation functions
from the OðNÞ-symmetric model. Nevertheless, these terms
are crucial for the development of the quantum chaotic
behavior.
As a measure of quantum chaos, we consider the regu-

larized5 average square of the commutator of quantum fields
ϕi and ϕj:

CðtÞ ¼ 1

N2

XN
i;j¼1

Cijðt; t; 0; 0Þ; ð2:2Þ

where

Cijðt1;t2;t3;t4Þ¼ trfρ1=2½ϕiðt1Þ;ϕjðt3Þ�†ρ1=2½ϕiðt2Þ;ϕjðt4Þ�g
¼−hϕi;ucðt1Þϕi;dcðt2Þϕj;uqðt3Þϕj;dqðt4Þi:

ð2:3Þ
In the last line, we assume the thermal initial distribution
with an inverse temperature β and free Hamiltonian H0,

ρ ¼ e−βH0=tr½e−βH0 �, turn on the coupling constant λ adia-
batically after themoment t0 < 0, and rewrite the correlator in
terms of the augmented Schwinger-Keldysh technique on the
twofold contour; seeAppendixA 1 for a detailed derivationof
Eq. (2.3) and Fig. 9 for the definition of the twofold contour.
In this notation, angle brackets denote the correlation function
(in the interaction picture) ordered along theKeldysh contour,
and indices uc, uq, dc, and dq denote the classical and
quantumcomponents of the field on the upper and lower folds
of the contour, respectively [see Fig. 9 and Eq. (A7)]. At the
tree level, the OTOC (2.3) simply reduces to the product of
two retarded propagators,

Cijðt1; t2; t3; t4Þ ¼ GR
0;ijðt1; t3ÞGR

0;ijðt2; t4Þ

¼ θðt13Þθðt24Þ
sin ðmt13Þ

m
sin ðmt24Þ

m
δij;

ð2:4Þ
where we denote tab ¼ ta − tb and substitute the explicit
expression for the retarded propagator. Note that the regular-
ized square of the commutator in the free theory is evidently
nonchaotic: it oscillates with frequencym and always remains
finite. At the same time, in an interacting theory, this correlator
receives loop corrections,which can sum into an exponentially
growing expression. Such loop corrections are calculated
using the Schwinger-Keldysh technique with eight vertices
(Fig. 1) and four propagators that connect classical and
quantum components on different folds of the Keldysh
contour (all other two-point correlators are identically zero),

iGR
ijðt1; t2Þ ¼ hϕi;ucðt1Þϕj;uqðt2Þi ¼ hϕi;dcðt1Þϕj;dqðt2Þi;

iGA
ijðt1; t2Þ ¼ hϕi;uqðt1Þϕj;ucðt2Þi ¼ hϕi;dqðt1Þϕj;dcðt2Þi;

iGK
ijðt1; t2Þ ¼ hϕi;ucðt1Þϕj;ucðt2Þi ¼ hϕi;dcðt1Þϕj;dcðt2Þi;

iGW
ij ðt1; t2Þ ¼ hϕi;ucðt1Þϕj;dcðt2Þi ¼ hϕi;dcðt1Þϕj;ucðt2Þi:

ð2:5Þ
At the tree level, these propagators have the following form
(see Appendixes A 2 and A 3):

iGR
0;ijðt1; t2Þ ¼ iGR

0 ðt1; t2Þδij; iGR
0 ðt1; t2Þ ¼ −iθðt12Þ

sin ðmt12Þ
m

;

iGA
0;ijðt1; t2Þ ¼ iGA

0 ðt1; t2Þδij; iGA
0 ðt1; t2Þ ¼ iθð−t12Þ

sin ðmt12Þ
m

;

iGK
0;ijðt1; t2Þ ¼ iGK

0 ðt1; t2Þδij; iGK
0 ðt1; t2Þ ¼

1

2
coth

βm
2

cos ðmt12Þ
m

;

iGW
0;ijðt1; t2Þ ¼ iGW

0 ðt1; t2Þδij; iGW
0 ðt1; t2Þ ¼

eβm=2

eβm − 1

cos ðmt12Þ
m

: ð2:6Þ

5We employ the standard approach toOTOC regularization, i.e., uniformly smear the thermal distribution between the two commutators.
In quantummechanics, this regularization is not necessary because all correlation functions always remain finite. Furthermore, it is easy to
show that the high-temperature behavior of OTOCs and the quantum Lyapunov exponent does not depend on the regularization. However,
we prefer to work with symmetrically regularized OTOCs because they have a clearer physical meaning [82,83].
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Note that the retarded and advanced propagators are related
by a simple permutation of their points: GA

ijðt1; t2Þ ¼
GR

ijðt2; t1Þ. This relation straightforwardly follows from
the definition of the propagators and holds both at the tree
and loop levels.
Moreover, in the stationary situation and thermal equi-

librium, all four real-time propagators (2.5) are unambig-
uously restored from a single imaginary-time (Matsubara)
propagator using the analytic continuation procedure and
the fluctuation-dissipation theorem, see Appendix A 3.
For simplicity, we restrict ourselves to such situations.
However, the calculations in the Schwinger-Keldysh
technique, including the calculations of this section, are
easily extended to arbitrary initial states and nonstationary
Hamiltonians, e.g., see [84–87].
Finally, note that the commutator (2.2) is not a direct

analog of sensitivity from the classical version of the
model (1.3). Strictly speaking, the quantum Lyapunov
exponent should be inferred from the following expectation
value, which involves both the coordinate ϕj and the

canonical momentum πi ¼ _ϕi:

cðtÞ ¼ 1

N2

XN
i;j¼1

∂t1∂t2Cijðt1; t2; 0; 0Þjt1¼t2¼t: ð2:7Þ

However, if the commutator (2.3) grows exponentially
before the averaging, Cij ∼ eκðt1þt2−t3−t4Þ, both quantum
Lyapunov exponents calculated from (2.2) and (2.7) coin-
cide with κ. Hence, these averaged correlators have the
same qualitative behavior and both can be considered as a
quantum analog of the Poisson bracket (1.1) and classical
sensitivity.

A. Resummed propagators and vertices

Let us sum the leading-order Oð1Þ loop corrections to
propagators and vertices in the model (1.3) on the twofold
Keldysh contour. We remind the reader that, in this order,
the nonsymmetric vertices are negligible, so the calcula-
tions in the full and OðNÞ-symmetric models approxi-
mately coincide.
First of all, consider loop corrections to propagators. To

the leading order in 1=N, these corrections are restricted to
the so-called tadpole (or cactus) diagrams (Fig. 2), which
simply shift the tree-level mass. This can be inferred
directly from the system of Dyson-Schwinger equations
on the Oð1Þ resummed propagators [we do not show the
equation on the advanced propagator, which is easily
reproduced from the identity GAðt1; t2Þ ¼ GRðt2; t1Þ],

GRðt1; t2Þ ¼ GR
0 ðt1; t2Þ þ iλ

Z
∞

t0

dtGR
0 ðt1; tÞGKðt; tÞGRðt; t2Þ;

GKðt1; t2Þ ¼ GK
0 ðt1; t2Þ þ iλ

Z
∞

t0

dt½GR
0 ðt1; tÞGKðt; tÞGKðt; t2Þ þGK

0 ðt1; tÞGKðt; tÞGAðt; t2Þ�;

GWðt1; t2Þ ¼ GW
0 ðt1; t2Þ þ iλ

Z
∞

t0

dt½GR
0 ðt1; tÞGKðt; tÞGWðt; t2Þ þ GW

0 ðt1; tÞGKðt; tÞGAðt; t2Þ�: ð2:8Þ

FIG. 1. Vertices and corresponding numerical factors in the augmented Schwinger-Keldysh diagrammatic technique of the model
(1.3). The solid and dashed lines correspond to the classical and quantum components; the black and white points correspond to
vertices on the upper and lower folds of the Keldysh contour (Fig. 9); the round and diamond points correspond toOðNÞ-symmetric and
-nonsymmetric vertices.

NIKITA KOLGANOV and DMITRII A. TRUNIN PHYS. REV. D 106, 025003 (2022)

025003-4



Applying the operator ∂
2
t1 þm2 to these equations and

keeping in mind that the tree-level and resummed propa-
gators have the same structure, we obtain the relation
between the bare (m) and resummed (m̃) masses,

m̃2

m2
¼ 1þ λ

2m3

m
m̃
coth

�
βm
2

m̃
m

�
: ð2:9Þ

In general, this transcendental equation has a single real
positive solution that depends on βm and λ=m3 in a complex
way. However, we can approximately solve it in the low-
ðβm ≫ 1Þ or high-temperature ðβm ≪ 1 and βm ≪ λ=m3)
limits. In the first case, the resummed mass is fully deter-
mined by the coupling constant; moreover, it approximately
coincides with the bare mass when λ=m3 ≪ 1. In the second
case, the resummedmass is proportional to the quartic root of
the coupling constant and temperature, m̃ ≈

ffiffiffiffiffiffiffiffi
λ=β4

p
≫ m.

Therefore, in the high-temperature limit, temperature sets the
only reasonable energy scale (in this case, the resummed
mass is usually called thermal). Roughly speaking, this
happens because, in this limit, the potential energy stored
in nonlinear terms exceeds the energy stored in quadratic
terms (see the discussion in Sec. IV).
Note that Eq. (2.9) also straightforwardly follows from

the Dyson-Schwinger equation in the Matsubara technique,

GðiωnÞ ¼ G0ðiωnÞ −
λ

β

X
ωk

G0ðiωnÞGðiωkÞGðiωnÞ; ð2:10Þ

hence,

G−1ðiωnÞ ¼ G−1
0 ðiωnÞ þ

λ

β

X
ωk

GðiωkÞ: ð2:11Þ

Substituting the explicit form of the bare and resummed
propagators, we reproduce the equation on the Oð1Þ
resummed mass,

ω2
n þ m̃2 ¼ ω2

n þm2 þ λ

β

X
ωk

1

ω2
k þ m̃2

¼ ω2
n þm2

þ λ

2m̃
coth

βm̃
2

: ð2:12Þ

We remind the reader that the correspondence between the
real- and imaginary-time propagators holds only for the
thermal state (see Appendix A 3).
We also emphasize that the state of the full interacting

theory (1.3) is different from the initial thermal state, which
is defined with respect to the noninteracting Hamiltonian.
However, in the leading order in 1=N, this difference
manifests itself in a mere shift of the mass in the one-
particle distribution function n ¼ ha†i aii ¼ 1=ðeβm̃ − 1Þ
(no sum). Hence, in the large-N limit, the state of the full
interacting theory approximately coincides with a true
thermal state. From the quantum mechanical point of view,
this means that, in the large-N limit, the energy levels of the
full Hamiltonian are shifted when the interactions are
adiabatically turned on, but the crossing of the adjacent
levels is excluded, and the degeneracy of each level is
approximately conserved.6

Now let us sum the leading-order corrections to the
vertices, which are given by the bubble chain diagrams
(Fig. 3). The corresponding Dyson-Schwinger equation has
the following form:

Bðt1; t2Þ ¼ δðt1 − t2Þ þ 2iλ
Z

∞

t0

dt3GRðt1; t3ÞGKðt1; t3Þ

× Bðt3; t2Þ; ð2:13Þ

where B denotes the resummed chain of Oð1Þ corrections
to the vertex and GK;R;A denote the Oð1Þ resummed
propagators (2.8). For brevity, we suppress the external
legs and the original numerical factor of the tree-level
vertex [which corresponds to the Dirac delta function
in Eq. (2.13)].
We also note that, after the summation, new types of

vertices appear in the same order in 1=N. However, all these
vertices are derived from the resummed chain (2.13) by
adding a single appropriate bubble (compare with [84]).
Moreover, such new vertices do not appear in the pertur-
bative expansion of the resummed four-point correlator
(2.3) due to causality reasons (see Secs. II B and II C).

FIG. 2. An example of the Dyson-Schwinger equation on the propagators in the model (1.3), which sums the leading-order corrections
to the retarded propagator. The thin and bold lines correspond to the tree-level and resummed propagators, respectively. The equations
on the other three propagators have the same structure.

6In fact, the degeneracy is lifted only in the 1=N order and only
due to the nonsymmetric interactions.
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To solve Eq. (2.13), we propose the following ansatz,
which is inspired by the structure of the single bubble:

Bðt1; t2Þ ¼ δðt12Þ − νm̃θðt12Þ sin ðμm̃t12Þ; ð2:14Þ
where μ and ν are real positive constants to be determined.
Substituting this ansatz into Eq. (2.13), collecting the terms
proportional to different oscillating functions and using the
identity (2.9), we obtain the following relations for μ and ν:

μ2 ¼ 6 − 2
m2

m̃2
; ν ¼ μ −

4

μ
: ð2:15Þ

In thehigh-temperature limit,where theOð1Þ resummedmass
substantially exceeds the tree-level mass m̃ ≈

ffiffiffiffiffiffiffiffi
λ=β4

p
≫ m,

these relations are additionally simplified,

μ ¼
ffiffiffi
6

p
; ν ¼

ffiffiffi
2

3

r
: ð2:16Þ

Thus, in this limit, the resummed bubble chain has the
following form:

Bðt1; t2Þ ¼ δðt12Þ −
ffiffiffi
2

3

r
m̃θðt12Þ sin ð

ffiffiffi
6

p
m̃t12Þ: ð2:17Þ

Note that, essentially, the bubble chain (2.13) is nothing
but the resummed retarded propagator of theLagrange field in
the OðNÞ-symmetric model after the Hubbard-Stratonovich
transformation (see Appendix B for the details). However,
we prefer to work with the original model (1.3) because
it offers a clear setup for the calculation of real-time
propagators.
First, it allows us to define the initial quantum state with

respect to the free (Gaussian) Hamiltonian and then to turn
on the coupling constant adiabatically, which is necessary
to ensure the validity of Wick’s theorem [87–90]. In the
theory after the Hubbard-Stratonovich transformation, this
approach can potentially lead to a 0=0 indeterminacy, so it
should be used carefully.
Second, the calculations after the Hubbard-Stratonovich

transformation require a careful specification of the initial
quantum state of the Lagrange field. The explicit form of
this state is obscure, since it forbids any classical-classical
correlations but allows nontrivial classical-quantum ones.
In particular, it cannot be a thermal state, so the fluctuation-
dissipation theorem does not work for the propagators
of the Lagrange field. In terms of the straightforward

technique (Fig. 1), this means that there is no simple
relation between the bubble chain (2.13), which fully lies
on one fold, and the bubble chain that connects differ-
ent folds.
Finally, the full nonsymmetric model (1.3) cannot be

rewritten using a single Lagrange field; in fact, one needs to
introduce at least N þ 1 auxiliary fields to eliminate all
quartic interaction terms. Thus, the calculations after the
Hubbard-Stratonovich transformation become even less
simple and transparent than before. Because of this reason,
in the following subsections, we will employ the original
diagrammatic technique (Fig. 1) with the Oð1Þ resummed
propagators and vertices.

B. Absence of quantum chaos
in the OðNÞ-symmetric model

In this subsection, we sum the leading corrections to the
averaged correlator (2.2) and show that the resummed
expression does not grow exponentially. To do this, we first
consider the correlator (2.3) before the averaging. Keeping
in mind the group structure of the vertices and propagators
in the OðNÞ-symmetric version of the model (1.3), we
straightforwardly show that the most general expression for
this correlator has the following form:

Cijðt1; t2; t3; t4Þ ¼ δijFðt1; t2; t3; t4Þ þ
1

N
Hðt1; t2; t3; t4Þ;

ð2:18Þ
where we use the identities δijδij ¼ δij (no sum), δiiδjj ¼ 1

(no sum), and introduce the factor 1=N for convenience.
Substituting this expression into the Bethe-Salpeter equation
on the four-point correlation function (2.3) and keeping only
the leading (proportional to 1=N) contribution to its kernel,
we obtain the system of integral equations on F and H,

F12;34 ¼ GR
13G

R
24 −

8λ2

N

Z
dt5dt6dt7dt8GR

15G
R
26B57B68

×GW
78G

W
78F56;34;

H12;34 ¼ −
8λ2

N

Z
dt5dt6dt7dt8GR

15G
R
26B57B68GW

78G
W
78H56;34

−
4λ2

N

Z
dt5dt6dt7dt8GR

15G
R
26G

W
56B57B68

×GW
78ðF78;34 þH78;34Þ; ð2:19Þ

FIG. 3. An example of the Dyson-Schwinger equation that sums the leading-order loop corrections to one of the vertices in the model
(1.3). The dark gray loop denotes the resummed “bubble chain.” The equations that sum the leading-order corrections to other vertices
have the same structure.
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where the integrations go from t0 to infinity (however,
the retarded propagators contain Heaviside theta functions
that narrow the integration limits) and we introduce a short
notation for the arguments of functions, fðt1; t2;…; tnÞ≡
f12���n. Furthermore, we do not need to solve these equations
separately if we want to estimate the averaged correlator.
Indeed, after the averaging over all fields, we readily
establish the identity

C12;34 ¼
1

N
ðF12;34 þH12;34Þ: ð2:20Þ

Hence, the equation that sums the leading-order correc-
tions to the averaged correlator has the following form
(this equation describes the so-called ladder diagrams,
see Fig. 4):

C12;34 ¼
1

N
GR

13G
R
24

−
8λ2

N

Z
dt5dt6dt7dt8GR

15G
R
26B57B68GW

78G
W
78C56;34

−
4λ2

N

Z
dt5dt6dt7dt8GR

15G
R
26G

W
56B57B68GW

78C78;34:

ð2:21Þ

Now, let us suppose that the resummed correlator exponen-
tially grows with the average time, C12;34 ∼ e2κt, where
t ¼ 1

2
ðt1 þ t2 − t3 − t4Þ. Substituting this ansatz into

Eq. (2.21), taking all integrals and keeping only the leading
exponentially growing terms, we establish the equation on
the would-be Lyapunov exponent κ,

1 ≈
64

N
w2λ2

m̃6

1

μ4
1

ð1þ κ2

m̃2Þ2

þ 4

N
w2λ2

m̃6

5þ κ2

m̃2

ððμþ 1Þ2 þ κ2

m̃2Þððμ − 1Þ2 þ κ2

m̃2Þð1þ κ2

m̃2Þ
;

ð2:22Þ

where we introduce a short notation for the dimension-
less prefactor of the Wightman propagator, w ¼ eβm̃=2=
ðeβm̃ − 1Þ. In what follows, it is also convenient to combine
this prefactor, coupling constant λ, and resummed mass m̃
into another dimensionless quantity α ¼ wλ=m̃3. In the high-
temperature limit, this quantity is close to unity: α ≈ 1 when
βm ≪ 1 and βm ≪ λ=m3.
However, the solutions to Eq. (2.22) are pure imaginary

for arbitrary μ and w, i.e., for arbitrary temperatures and
parameters of the model

κ1;2 ≈�im̃

�
1þ 4

μ2
αffiffiffiffi
N

p −
4ð3μ2 − 8Þ
μ4ðμ2 − 4Þ

α2

N

�
;

κ3;4 ≈�im̃

�
μ − 1þ 2μ − μ2 þ 4

2μ2ð2 − 3μþ μ2Þ
α2

N

�
;

κ5;6 ≈�im̃

�
μþ 1þ 2μþ μ2 − 4

2μ2ð2þ 3μþ μ2Þ
α2

N

�
; ð2:23Þ

where we neglect the Oð1=N2Þ terms that cannot be
restored from the approximate Eq. (2.21). Furthermore,
in the large-N limit, the corrections to the right-hand side of
Eq. (2.22) are suppressed by the powers of 1=N; hence,
these corrections cannot substantially affect the behavior of
exponents (2.23). In other words, solutions to the full
Eq. (2.22), which contains all powers in 1=N, are also pure
imaginary in this limit.
Thus, the resummed average correlator (2.2) in the

OðNÞ-symmetric model cannot exponentially grow with
time. Instead, it reduces to a sum of oscillating func-
tions, with the leading contribution provided by oscil-
lations at the frequency ω ≈ m̃. This is consistent with
the integrability of the OðNÞ-symmetric model at the
classical level.

C. Quantum chaos in the full nonsymmetric model

However, the series of ladder diagrams (Fig. 4) is not the
only series that contributes to the averaged correlator (2.2)
in the full nonsymmetric model (1.3). The leading non-
symmetric contribution to the kernel of the Bethe-Salpeter
equation on C12;34 is constructed from the diagrams from
Fig. 4 by replacing a single OðNÞ-symmetric vertex (round
point) by the corresponding nonsymmetric one (diamond
point from Fig. 1). In this section, we will show that
summation of such diagrams results in an exponential
growth of C12;34, which indicates the quantum chaotic
behavior of model (1.3).
Since two equivalent diagrams7 in the model (1.3) have

essentially the same kinematics, the only difference
between these diagrams is manifested in the total
numerical factor. This factor consists of combinatorial
factor, signs of vertices, and number of closed cycles
(the latter determine the total power of 1=N). For
example, consider a bubble chain diagram with n bubbles
and nþ 1 symmetric vertices. Replacing one of its
vertices with a nonsymmetric one, we gain an additional
factor of −3ðnþ 1Þ=N, which consists of the combina-
torial factor (6ðnþ 1Þ=2), different sign of the nonsym-
metric vertex (−1), and different number of cycles
(Nn−1=Nn). Of course, these additional factors affect
the summation of bubble chain diagrams, so the entire

7That is, diagrams that have the same edge structure,
but contain different number of symmetric and nonsymmetric
vertices.
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resummed bubble chain with one nonsymmetric vertex
has a slightly different form comparing to (2.14),

B̃12 ¼ −
3

N

Z
dt3B13B32

¼ −
3

N
δ12 þ

3

N
ðμ2 − 4Þð3μ2 þ 4Þ

2μ3
θðt12Þm̃ sin ðμm̃t12Þ

þ 3

N
ðμ2 − 4Þ2

2μ2
θðt12Þt12 cos ðμm̃t12Þ: ð2:24Þ

Therefore, the equation that sums the leading nonsym-
metric contributions to C12;34 is slightly different from
Eq. (2.21),

Cnonsymm
12;34 ¼ 1

N
GR

13G
R
24 −

8λ2

N

Z
dt5dt6dt7dt8GR

15

×GR
26ðB̃57B68 þ B57B̃68ÞGW

78G
W
78C

nonsymm
56;34

−
4λ2

N

Z
dt5dt6dt7dt8GR

15G
R
26

×GW
56ðB̃57B68 þ B57B̃68ÞGW

78C
nonsymm
78;34 :

ð2:25Þ

Similar to the previous subsection, we search for expo-
nentially growing solutions to this equation,
Cnonsymm
12;34 ∼ e2κt, t ¼ 1

2
ðt1 þ t2 − t3 − t4Þ. Substituting this

ansatz into Eq. (2.25), we obtain an analog of Eq. (2.22),

1 ≈ −
1536

N2

w2λ2

m̃6

1

μ6
1

ð1þ κ2

m̃2Þ2
−
24

N2

w2λ2

m̃6

×
ð5þ κ2

m̃2Þð3μ2 − 3þ ðμ2 þ 6Þκ2 þ κ4Þ
ð1þ κ2

m̃2Þððμþ 1Þ2 þ κ2

m̃2Þ2ððμ − 1Þ2 þ κ2

m̃2Þ2
; ð2:26Þ

where we again neglect the terms of higher orders in
1=N. However, due to the negative sign of the right-hand
side, some solutions to this equation have a positive real
part (we remind the reader that, for convenience, we
introduced a dimensionless quantity α ¼ wλ=m̃3),

κ1;2;3;4 ≈�im̃� 8
ffiffiffi
6

p

μ3
α

N
m̃;

κ5;6;7;8 ≈�iðμ − 1Þm̃�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðμþ 2Þð2μ − μ2 þ 4Þ

4μ3ðμ − 1Þ

s
α

N
m̃;

κ9;10;11;12 ≈�iðμþ 1Þm̃�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðμ − 2Þð2μþ μ2 − 4Þ

4μ3ðμþ 1Þ

s
α

N
m̃:

ð2:27Þ

Hence, the averaged commutator (2.2) does exponen-
tially grow with time in the nonsymmetric model (1.3).
The maximal exponent of this growth—the quantum
Lyapunov exponent κq—is small but finite at finite N,

κq ≈
8
ffiffiffi
6

p

μ3
αm̃
N

: ð2:28Þ

In the high-temperature limit, where μ ≈
ffiffiffi
6

p
and α ≈ 1,

this exponent scales as a quartic root of the temperature,

κhighq ≈
4

3

1

N

ffiffiffi
λ

β
4

s
: ð2:29Þ

In the low-temperature limit, the correlations between the
different folds of the Keldysh contour are suppressed [see
Eq. (2.6)], so the maximal Lyapunov exponent is expo-
nentially small in inverse temperature,

κlowq ≈
ffiffiffi
6

p

N
λ

m3
m exp

�
−
βm
2

�
; ð2:30Þ

where we additionally assume λ=m3 ≪ 1 for simplicity.
At intermediate temperatures, the quantum Lyapunov
exponent smoothly interpolates between these values,
with smaller coupling constants corresponding to
smoother transitions (Fig. 5). The transition between
the chaotic, Eq. (2.29) and nonchaotic, Eq. (2.30) behav-
ior occurs at temperatures βm ∼min ½1; λ=m3�.
Finally, note that, in higher-dimensional quantum field

theories, one should also take into account thermalization

FIG. 4. A diagrammatic representation of the Bethe-Salpeter equation that sums the leading-order corrections to the averaged
correlator (2.2). The lines denote the resummed tadpole diagrams from Fig. 2. The dark gray loops denote the resummed bubble chain
diagrams from Fig. 3. The light gray block denotes the resummed four-point correlator (2.2).

NIKITA KOLGANOV and DMITRII A. TRUNIN PHYS. REV. D 106, 025003 (2022)

025003-8



processes that lead to an exponential damping of correla-
tion functions and modify the quantum Lyapunov exponent
(e.g., see [58–60]). However, we emphasize that this does
not apply to the model (1.3). In fact, the inverse dissipation
time in this model is zero (or at least smaller than
Γ ∼ m̃=N2) because this model has a finite number of
degrees of freedom and thus cannot thermalize in a
conventional sense, see Appendix C. Hence, the resummed
correlator (2.2) does not suffer from an additional expo-
nential damping, and approximation (2.28) is indeed
1=N exact.

III. CLASSICAL CHAOS

In this section, we calculate the classical Lyapunov
exponent of the model (1.3) and establish a qualitative
correspondence with its quantum counterpart (2.29).

A. General method

Before proceeding to a specific model, let us briefly
discuss the notion of the classical Lyapunov exponent and
provide the method for its calculation.
Consider an arbitrary dynamical system defined by the

Hamiltonian H and the corresponding Hamilton’s equa-
tions,

�
_xi
_pi

�
¼
 

∂H
∂pi

− ∂H
∂xi

!
: ð3:1Þ

For convenience, we rewrite it in terms of the phase-space
coordinates zI ¼ ðxi; piÞ as

_zI ¼ πIJ
∂H
∂zJ

; π ¼
�

0 1

−1 0

�
; ð3:2Þ

where πIJ has a meaning of the Poisson bivector in
Darboux coordinates.
As we discussed in the Introduction, the classical

Lyapunov exponent is broadly defined by the response
to a perturbation of initial conditions, which grows expo-
nentially with time. To define it more formally, consider a
solution of Hamilton’s equations as a function of the initial
condition z0I, namely, zI ¼ zIðt; z0Þ. We are interested in
the large-time behavior of the sensitivity

ΦIJðt; z0Þ ¼
∂zIðt; z0Þ
∂z0J

; ð3:3Þ

which represents the deviation of trajectories under small
perturbations of initial conditions. DifferentiatingΦ in time
and using Hamilton’s equations, we get the following
differential equation:

_ΦIJ ¼ πIK
∂
2H

∂zK∂zL
ΦLJ; ð3:4Þ

with the initial condition ΦIJð0; z0Þ ¼ δIJ. The maximal
singular value σmaxðtÞ of the matrix ΦIJ gives the maximal
deviation of trajectories at a given time. Thus, expecting
that σmaxðtÞ ∼ eκt for a chaotic system, we define the
classical Lyapunov exponent as

κ ¼ lim
t→∞

1

t
log σmaxðtÞ: ð3:5Þ

Hence, to find the classical Lyapunov exponent, one should
solve the following system of ordinary differential equa-
tions on the variables zI and ΦIJ:

_zI ¼ πIJ
∂H
∂zJ

; ð3:6Þ

_ΦIJ ¼ πIK
∂
2H

∂zK∂zL
ΦLJ: ð3:7Þ

B. Relation to thermal Lyapunov exponent

It is worth noting that Lyapunov exponent (3.5) explic-
itly depends on initial conditions, so it cannot be considered
a universal quantity. To eliminate this dependence and
relate the Lyapunov exponent to other universal quantities
(e.g., temperature or total energy), it should be somehow
averaged over the initial conditions. For example, we can
consider a Gibbs ensemble with an inverse temperature β or
a microcanonical ensemble with a total energy E,

h…iβ ¼
Z

d2Nz0e−βHðz0Þð…Þ;

h…iE ¼
Z

d2Nz0δðHðz0Þ − EÞð…Þ; ð3:8Þ

10−8 10−6 10−4 0.01 1 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 5. An explicit temperature dependence of the quantum
Lyapunov exponent κq for different values of the ‘t Hooft
coupling constant: λ ¼ 100 (red), λ ¼ 1 (blue), and λ ¼ 0.01
(orange). For convenience, the Lyapunov exponent is divided
by m̃=N.
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and define the classical Lyapunov exponent as an ensemble
average of (3.5),

κ̄ ¼ lim
t→∞

1

t
hlog σmaxðtÞi: ð3:9Þ

Note that we can also consider the following classical
correlation function:

CclðtÞ ¼ hΦIJðtÞΦJIðtÞi; ð3:10Þ

which is nothing but the classical limit of the OTOC from
Sec. II in the Wigner quantization picture. Therefore, the
Lyapunov exponent κ can be alternatively defined as the
leading growth rate of CclðtÞ ∼ expð2κtÞ. However, this
definition misses some important features of the classical
chaos, so the definition (3.9) is preferable (see the dis-
cussion in Sec. IV).
There is one more issue concerning the definition (3.10)

from the perspective of numerical computations. Suppose
we have a sample of Lyapunov exponents fκng numerically
calculated for a fixed energy or temperature but different
initial conditions. Then, the numerical estimation of (3.9)
gives the average Lyapunov exponent κ̄ ∼ 1

n

P
i κi, whereas

(3.10) extracts the maximal one. Indeed, CclðtÞ ∼
P

i e
2κit,

so κmax ¼ 1
2t logCclðtÞ → max κi as t → ∞. Both κ̄ and κmax

are expected to have the same order and qualitative
behavior (cf. Figs. 6 and 7), but the calculations of κmax
usually require larger samples of initial conditions and
produce larger errors due to a thin-tailed form of fκng
distribution. Because of this reason, we use the definition
(3.9) to determine the general features of the classical
Lyapunov exponent, such as its dependence on E and N.
It may be difficult to calculate the thermodynamic

Lyapunov exponent (3.9) even numerically. However, in

some cases, it can be estimated by the microcanonical
one. Namely, if the thermodynamic average saturates in a
small vicinity of the phase-space subset that corresponds
to a shell with a fixed energy E, then the microcanonical
average with that energy will be close to the thermodynamic

(a) (b)

FIG. 6. Numerically calculated classical Lyapunov exponent κ̃ ∼ 3.4=N1.1 for T̃ ¼ 100. Vertical bars and violins represent the
distribution of numerically calculated Lyapunov exponent for a fixed N and energy Ẽ ¼ T̃N. (a) is plotted in logarithmic scale and fitted
by a linear curve to highlight the power-law dependence of κ̃ on N. (b) The same as (a), but in linear coordinates. For comparison, we
also plot the analytically calculated quantum Lyapunov exponent from Sec. II. Note that this exponent approximately coincides with the
upper edge of the classical distribution, i.e., with κmax, as expected. We also emphasize that κ̄ and κmax have approximately the same
order and qualitative behavior.

FIG. 7. Dependence of the numerically calculated classical
Lyapunov exponent on energy for N ¼ 10 (blue line), N ¼ 20
(orange line), and N ¼ 30 (green line). Thick dotted lines show
the corresponding quantum Lyapunov exponents (2.28). Vertical
bars and violins represent the distribution of numerically calcu-
lated exponents for a fixed energy Ẽ ¼ T̃N. The results are
plotted in logarithmic scale and fitted by a linear curve to
highlight the power-law dependence of κ̃ on Ẽ. For N ¼ 20
and N ¼ 30, the numerically calculated power-law dependence
κ̃cl ∝ Ẽ0.26 is close to the analytical one κ̃q ∝ Ẽ1=4 [cf. Eq. (2.29)].
For lower N ¼ 10, the discrepancy between the classical and
quantum exponents is observed, though expected. Note that the
quantum exponents approximately coincide with the upper edges
of the corresponding classical distributions, i.e., with κmax, as
expected. We also emphasize that κ̄ and κmax have approximately
the same order and qualitative behavior in all three cases.
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one, i.e., h…iE ≃ h…iβ. More precisely, the condition for
this approximate identity is

ΔE ≪ Ē; ð3:11Þ

where

Ē ¼ hHiβ; ΔE2 ¼ hðH − ĒÞ2iβ: ð3:12Þ

As we will see in short, for the model (1.3), this condition is
satisfied in the large-N limit.
To find Ē and ΔE, we evaluate the classical partition

function Z as

ZðβÞ ¼
Z

dNϕdNπ exp½−βHðϕ; πÞ�;

Hðϕ; πÞ ¼
X
i

�
1

2
π2i þ

m2

2
ϕ2
i

�
þ λ

4N

X
i≠j

ϕ2
iϕ

2
j ; ð3:13Þ

and use the standard formulas for energy averages
Ē ¼ −∂β logZðβÞ and ΔE2 ¼ ∂

2
β logZðβÞ. Similar to the

quantum case (see Sec. II), in the leading order in 1=N, the
full Hamiltonian Hðϕ; πÞ approximately coincides with
the Hamiltonian of the OðNÞ-symmetric model. In turn,
the partition function of the latter model can be easily
calculated in the large-N limit using the saddle point
approximation in hyperspherical coordinates,

ZOðNÞðβÞ ¼
2

ΓðN
2
Þ
�
2Nπ2m2

βλ

�
N=2
Z

∞

0

dr exp

	
−N

×

�
βm3

λ

�
1

2
r2 þ 1

4
r4
�
−
N − 1

N
log r

�

;

ð3:14Þ

logZðβÞ≃C−
3

4
N logβ; as N ≫ 1; β≪

λ

m4
: ð3:15Þ

Hence,

Ē ≃
3

4
NT; ΔE2 ≃

3

4
NT2; ð3:16Þ

where T ¼ β−1 is temperature and ΔE=Ē ¼ Oð1= ffiffiffiffi
N

p Þ
goes to zero in the large-N limit, as needed. Note that
E ¼ 3

4
NT, instead of the naively expected E ¼ NT. This is

because the theory does not tend to any local field theory as
N → ∞, so its effective number of local degrees of freedom
differs from N.

C. Classical Lyapunov exponents

To perform the numerical computations of the classical
Lyapunov exponent in the model (1.3), we first rescale the
coordinate xi, momentum pi, time t̃, and energy Ẽ using the
corresponding dimensionful combinations of m and λ,

½ϕ�¼
�
mffiffiffi
λ

p
�
; ½ _ϕ�¼

�
m2ffiffiffi
λ

p
�
; ½t�¼

�
1

m

�
; ½E�¼

�
m4

λ

�
; ð3:17Þ

so the action (1.3) reads

S ¼ m3

λ

Z
dt̃

�X
i

�
1

2
_x2i −

1

2
x2i

�
−

1

4N

X
i≠j

x2i x
2
j

�
: ð3:18Þ

Assuming that, for a fixed energy E, Lyapunov exponents
weakly depend on initial conditions (this fact can be
clarified from the plots), we expect the dimensionless
Lyapunov exponent κ̃ to depend only on the number of
degrees of freedom N and the dimensionless energy Ẽ, i.e.,
κ̃ ¼ κ̃NðẼÞ. Therefore, the dimensionful Lyapunov expo-
nent κ can be recovered from the dimensionless κ̃ as

κNðE; λ; mÞ ¼ mκ̃NðλE=m4Þ: ð3:19Þ

To calculate κ̃ ¼ κ̃NðẼÞ, we numerically solve the system
(3.6) and (3.7) for the action (3.18), which acquires the
following explicit form:

_xi ¼ pi; _pi ¼ −xi −
1

N
xi
X
j≠i

x2j ; ð3:20Þ

_Φ ¼
� 0 δkl

−δij − 1
N ð2xixj þ

P
l
x2l δij − 3x2jδijÞ 0

�
·Φ:

ð3:21Þ

With the aim of later comparison with the quantum
Lyapunov exponent (2.28), we are mainly interested in
two features of its classical counterpart κ̃. The first is the
dependence on the number of degrees of freedom for a
fixed “temperature” (energy per degree of freedom), while
the second is the dependence on Ẽ for a fixed N.
Let us begin with the first feature; namely, we fix

T̃ ¼ Ẽ=N and find the κ̃ for each N in some range.
Here, T̃ ¼ Ẽ=N is the dimensionless temperature, up to
the factor 4=3 [cf. Eq. (3.16)]. More specifically, our
strategy is as follows:
(1) Generate a huge number of initial conditions for

each N in some range, with the energy Ẽ ¼ T̃N.
(2) Solve the system (3.20) and (3.21) numerically for

each initial condition generated.8

(3) Find the Lyapunov exponent from numerical sol-
ution for Φ using the formula (3.5) and average over
initial conditions for each N.

8We use the fourth-order Runge-Kutta method for the numeri-
cal integration. Symplectic integration schemes were not used,
since (3.21) is not of Hamiltonian form. Energy drift (energy
nonconservation due to numerical integration artifacts) was
controlled to be less than 1=1000 of the initial energy.
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(4) Fit the numerical results by a curve κNðT̃NÞ¼ϰ=Nγ ,
where ϰ and γ are unknown.9

The result for T̃ ¼ 100 is presented in Fig. 6 and shows that
κ̃NðT̃NÞ ∝ 1=N, i.e., γ ≃ 1 with a good accuracy.
Similarly, we examine the energy dependence of the

classical Lyapunov exponent for a fixed number of
degrees of freedom N. The technique of the numerical
experiment is similar to the previous one and consists of
the following steps. First, we generate a huge number of
initial conditions corresponding to some energy Ẽ and
numerically calculate κ̃ for each of them. Then, we repeat
the procedure for energies in some range. Expecting the
power-law dependence on Ẽ [cf. Eq. (2.29)], we fit the
numerical results by a curve κ̃ ¼ ϰ0Ẽγ0 with coefficients
ϰ0 and γ0 to be determined. The results are shown in
Fig. 7 and agree with the corresponding dependence of
quantum Lyapunov exponent (2.29), i.e., κ̃ ∝ Ẽ1=4. A
slight deviation from this power-law dependence will be
explained below.
Finally, inspired by a good qualitative coincidence of

the quantum and classical Lyapunov exponents, we
propose a numerical experiment that determines the
power-law dependence on T̃ (or corresponding energy
Ẽ ¼ NT̃) and N simultaneously. Namely, we take the
following ansatz:

κ̃ ¼ ϰ̃T̃γ1=Nγ2 ; i:e:; log κ̃ ¼ γ1 log T̃ − γ2 logNþ log ϰ̃;

ð3:22Þ

and determine γ1, γ2, and ϰ̃ using linear regression for
the Lyapunov exponents numerically calculated for a
huge number of pairs ðT̃; NÞ. We use the described
procedure for the same range of Ẽ and N as in Figs. 6
and 7 and find the following estimates for the unknown
coefficients:

γ1 ¼ 0.28� 0.02; γ2 ¼ 1.18� 0.05; ϰ̃¼ 1.29� 0.22;

ð3:23Þ

so we observe a slight deviation from the expected
power-law dependence (2.29). There are two reasons for
this mismatch. The first reason is the finite energy
corrections to the power law (2.29). Indeed, Eq. (2.29)
is obtained from Eq. (2.28) in the high-temperature
(i.e., high-energy) limit. For the classical Lyapunov
exponent, the same behavior is expected in the same
limit for the dimensional reasons (see the discussion in
Sec. IV). We can partially control this finite energy effect
by expanding (2.28) in the powers of β (i.e., inverse

powers of energy) in the high-temperature and semi-
classical limit10:

κ ¼ 4

3

1

N

�
λ

β

�1
4

�
1 −

1

4

ffiffiffiffiffiffiffiffiffi
βm4

λ

r
−
13

96

βm4

λ
þ 91

3456

�
βm4

λ

�3
2

−
1

16
ℏ2λ

1
2β

3
2 þ…

�
: ð3:24Þ

If we try to fit the energy dependence (3.24) with a
simple power law for relatively small energies, we will get
a power slightly exceeding the expected γ1 ¼ 0.25. The
correct power is reproduced only for sufficiently large
energies, where the subleading corrections are negligible.
Unfortunately, such energies are elusive for usual numeri-
cal integration schemes in the large-N limit.
The second reason for the mismatch of (2.29) and the

numerical results (3.23) is the finite N corrections. Indeed,
the result (2.29) was obtained in the leading order in 1=N
expansion, so it might have the subleading correction terms.
For the values of N used in the numerical experiment
(N ∼ 10–30), the order of the finiteN correction is expected
to be about 10%, which is comparable to the deviation of γ2
from unity. The impact of the finiteN correction can be seen,
for instance, in Fig. 7, wherewe found a good coincidence of
the power-law dependence on energy κ̃ ∼ Ẽ1=4 for N ¼ 20
and N ¼ 30, whereas for the smaller value of N, namely
N ¼ 10, we observe a slight deviation from this behavior.

D. Analogy to billiards

In addition to quantitative signatures of chaos, one may
wonder the qualitative one. The qualitative argument is as
follows. First of all, let us discuss regions of constant
energy in the phase space. For vanishing momenta, i.e., for
turning points, surfaces of constant energy have the top-
ology of SN−1. However, the properties of these surfaces are
different for high and low energies. For low energies, the
quartic term in the potential is subdominant, and the surface
has the form of a slightly deformed Euclidean sphere
embedded in N-dimensional configurational space. On the
contrary, for high energies, constant energy surface has
the form of an N-dimensional “morning star” (see Fig. 8).
The distinctive feature of the latter is the presence of con-
cave regions that appear at energies E > Econ ¼ 3Nm4=2λ.
Therefore, we can make an analogy to Sinai billiards that
exhibit a chaotic behavior in the presence of concave walls
(or convex obstacles), see [3,91–93]. In our case, the role of
walls is played by surfaces of constant energy that become

9More accurately, we use the linear fit in the logarithmic
coordinates: log κ̃N ¼ −γ logN þ log ϰ, where −γ is the slope
and log ϰ is the intercept.

10Note that the last term in the square brackets is nothing but
the leading genuine quantum correction to the classical Lyapunov
exponent. This contribution has the same power in β as the
previous term in the expansion (so these terms can be confused if
one sets ℏ ¼ 1), but clearly vanishes in the semiclassical limit
ℏ → 0. In contrast, the preceding terms of the expansion are the
purely classical finite temperature corrections to (2.29).
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concave for high energies. Note that, in the N ¼ 2 version
of the model (1.3), chaotic behavior disappears exactly at
such energies, compare with [73].

IV. DISCUSSION AND CONCLUSION

In this paper, we considered classical and quantum
butterfly effects, i.e., calculated classical and quantum
Lyapunov exponents in a simple vector model (1.3).
In the quantum case, we resummed the leading non-
symmetric contributions to the average square of the
commutator (2.2) using the augmented Schwinger-
Keldysh technique on a symmetric twofold Keldysh
contour and assuming the large-N limit. We established
the exponential growth of (2.2) at early periods of
evolution, where this correlator is far from the satura-
tion and ladder diagrams dominate its perturbative
expansion. The quantum Lyapunov exponent, which
determines the early time growth of (2.2), is approx-
imately equal to κq ≈ 1.3

ffiffiffiffiffiffi
λT4

p
=N in the high-temperature

limit (βm ≪ 1 and βm ≪ λ=m3) and exponentially sup-
pressed, κq ∼ e−βm=N, in the low-temperature limit
(βm ≫ 1). In the classical case, we calculated the
Lyapunov exponent numerically solving the equa-
tions of motion for a fixed temperature and number
of degrees of freedom in some range. As a result,
we established the high-temperature behavior κcl ≈
ð1.3� 0.2ÞðλTÞ0.28�0.02=N1.18�0.05, which qualitatively
coincides with the behavior of the quantum Lyapunov
exponent. This coincidence supports the use of
OTOCs as a diagnostic of quantum chaos in quantum

many-body systems with a large number of degrees of
freedom.11

In fact, the qualitative energy dependence of Lyapunov
exponents is easily restored from dimensional grounds
[73,94]. On one hand, for high energies, we can neglect the
quadratic term in the Hamiltonian of the model (1.3),

Hhigh ≈
XN
i¼1

1

2
π2i þ

λ

4N

X
i≠j

ϕ2
iϕ

2
j : ð4:1Þ

This pruned Hamiltonian is invariant under the following
scale transformations:

t → α−1t; ϕi → αϕi; H → α4H; ð4:2Þ

with an arbitrary positive constant α. Since the Lyapunov
exponent has the dimension of inverse time, this invariance
implies the high-temperature dependence κ ∼

ffiffiffiffi
E4

p
. On

the other hand, for energies smaller than E ∼ Nℏm, the
quartic interaction term is negligible, so the system
becomes approximately free. From the classical point of
view, positive Lyapunov exponents vanish for such small
energies due to the Kolmogorov-Arnold-Moser theorem
[95–97]. From the quantum mechanical point of view,
Lyapunov exponents are also heavily suppressed in this
limit because it implies the vanishing correlations between
different folds of the Keldysh contour [cf. Eq. (2.6)].

(a) (b)

FIG. 8. (a) Constant (potential) energy curve for N ¼ 2 and E < Econ (blue line), E ¼ Econ (orange line), E > Econ (green line).
(b) Constant energy surface for N ¼ 3 and E ≫ Econ. All the quantities are dimensionless [cf. (3.17) and (3.18)].

11In our model, the high-temperature limit is essentially the
semiclassical limit, which is easy to see after the restoration of
dimensional constants: ℏm ≪ kBT ∼ E=N.
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We emphasize that OTOCs should be used with caution
in systems with unstable fixed points, e.g., see [74–78]. In
such systems, the quantum Lyapunov exponent is deter-
mined by the exponential divergence of trajectories near the
unstable points, which does not necessarily imply chaos.
This is a consequence of a slight difference in the definition
of classical and quantum Lyapunov exponents: the κcl is
defined as the phase-space average of the log of sensitivity,
whereas the κq is defined as the log of the phase-space
average of sensitivity. Nevertheless, the potential of the
model (1.3) does not have any unstable fixed points—as we
pointed out in Sec. III D, it rather models an N-dimensional
Sinai billiard with soft concave walls. Hence, the OTOCs
correctly describe the chaotic behavior of this system.
The analysis of this paper can be extended in several

possible directions. First, it is interesting to calculate the
OTOCs for nonthermal initial states, e.g., the eigenstates
of the free Hamiltonian or the coherent states that corre-
spond to some classical solutions in the model (1.3). In
particular, the analytical calculations in the latter case might
shed additional light on the correspondence between the
classical and quantum Lyapunov exponents. In addition, it
is interesting to study the relationship between the scram-
bling and delocalization of coherent states [98,99].
Second, it is promising to study other diagnostics of

quantum chaos in our system, e.g., the Lanczos coefficients
andKrylov complexity [22–28]. Because of the simplicity of
the model (1.3), these quantities should also be amenable
to analytical calculations. For this reason, we expect this
convenient example to help us understand the relationship
between different diagnostics of quantum chaos. Moreover,
such a relationship would provide us with an extra toolkit. In
particular, it is interesting to check how the geometric
approach of [28], which was developed for the calculation
of Krylov complexity, explains the emergence of quantum
chaos after the breaking of the continuous OðNÞ symmetry
down to the discrete group of symmetries of the model (1.3).
Third, the developed method may be applied to various

nonstationary quantum systems, e.g., the generalization of
the model (1.3) with an external force fðtÞ and Markovian
dissipation,

H ¼ 1

2

XN
i¼1

½π2i þm2ϕ2
i � þ

λ

4N

XN
i;j¼1

ϕ2
iϕ

2
j þ

XN
i¼1

fiðtÞϕi;

∂tρ ¼ −i½H; ρ� þ Γ
XN
i¼1

�
aiρa

†
i −

1

2
a†i aiρ −

1

2
ρa†i ai

�
;

ð4:3Þ
where ρ denotes the density matrix of the system and Γ
determines the dissipation rate. Since this model resembles
the large-N generalization of the Duffing oscillator, we
expect it to exhibit quantum and classical chaos for some
parameters of the model and driving forces. We will
consider this model elsewhere.

Finally, note that the model (1.3) is very similar to some
spatially reduced string and gauge models [94,100–110]. In
particular, the N ¼ 3 variant of (1.3) is nothing but a
spatially reduced SUð2Þ Yang-Mills model [100], which is
known to possess a nonzero classical Lyapunov exponent
κ ∼

ffiffiffiffi
E4

p
, see [94,101–103]. Besides, the model (1.3) is very

similar to the model of a strongly coupled phonon fluid
[111,112], where the OðNÞ symmetry is broken in a
slightly different way. Because of these reasons, we expect
our analysis to provide useful insights into the physics of
these complex models.
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APPENDIX A: SCHWINGER-KELDYSH
TECHNIQUE ON A TWOFOLD CONTOUR

1. Basic rules

In the main body of the paper, we need to calculate the
following regularized correlation functions:

C̃ðt1; t2; t3; t4Þ ¼ tr½Uð∞; t0Þρ1=2U†ð∞; t0Þϕðt1Þϕðt2Þ
×Uð∞; t0Þρ1=2U†ð∞; t0Þϕðt3Þϕðt4Þ�;

ðA1Þ
where ρ is the density matrix at the moment t0 and
Uðt; t0Þ ¼ T exp ½−i R tt0 Hintðt0Þdt0� is the evolution oper-
ator in the interaction picture. In this section, we consider
the OðNÞ-symmetric version of the model (1.3) and
suppress the group indices of ϕ for brevity. The generali-
zation to the full nonsymmetric model is straightforward.
Expanding the evolution operators in the powers of λ and

using Wick’s theorem,12 we straightforwardly rewrite these
complex correlation functions as products of two-point corre-
lators time ordered along the twofold Keldysh contour C
(Fig. 9). The main motivation to introduce this contour is an
unambiguous specification of the operator ordering in an
arbitrary four-point correlator (A1), which is achieved by
assigning the operators to the appropriate branches of the
contour. So, the correlator can be conveniently rewritten as
follows:

12We remind the reader that this theorem works only if we
assume that the initial Hamiltonian is Gaussian. Otherwise, more
complex correlations (e.g., double correlations that appear when
ha†1a†2a1a2i ≠ ha†1a1iha†2a2i) should be taken into account, and
the diagrammatic technique should be augmented with corre-
sponding correlation blocks [87–90].

NIKITA KOLGANOV and DMITRII A. TRUNIN PHYS. REV. D 106, 025003 (2022)

025003-14



C̃ðt1; t2; t3; t4Þ ¼ tr

�
T Cρϕuþðt1Þϕu−ðt2Þϕdþðt3Þϕd−ðt4Þ

× exp
�
−i
Z
C
Hintðt0Þdt0

��
≡ hϕuþðt1Þϕu−ðt2Þϕdþðt3Þϕd−ðt4Þi: ðA2Þ

Essentially, the “minus” (“plus”) branches are generated by the
forward (backward) time evolution, i.e., by the operators

Uð†Þð∞; t0Þ. Therefore, in this notation,weobtain fourdifferent
interaction vertices [we remind the reader that we consider the
OðNÞ-symmetric model with a quartic interaction],

�i
λ

4N

Z
∞

t0

ϕ4
u�ðt0Þdt0; �i

λ

4N

Z
∞

t0

ϕ4
d�ðt0Þdt0; ðA3Þ

and 16 propagators, Gα;βðt; t0Þ≡ −ihϕαðtÞϕβðt0Þi, which are
conveniently collected in a 4 × 4 matrix,

Gðt; t0Þ ¼

0
BBB@

Gu−;u−ðt; t0Þ Gu−;uþðt; t0Þ Gu−;d−ðt; t0Þ Gu−;dþðt; t0Þ
Guþ;u−ðt; t0Þ Guþ;uþðt; t0Þ Guþ;d−ðt; t0Þ Guþ;dþðt; t0Þ
Gd−;u−ðt; t0Þ Gd−;uþðt; t0Þ Gd−;d−ðt; t0Þ Gd−;dþðt; t0Þ
Gd−;u−ðt; t0Þ Gd−;uþðt; t0Þ Gd−;d−ðt; t0Þ Gd−;dþðt; t0Þ

1
CCCA: ðA4Þ

However, this cumbersome notation can be significantly simplified because almost all propagators are linearly dependent.
Indeed, keeping in mind that empty forward and backward branches cancel each other [simply put, U†ð∞; tÞUð∞; tÞ ¼ 1]
and that contour C is invariant under the cyclic permutation of the upper and bottom folds, one can easily infer the following
relations (arguments of propagators are suppressed for brevity):

Gu−;u− ¼ Gd−;d−; Gu−;uþ ¼ Gd−;dþ; Guþ;u− ¼ Gdþ;d−; Guþ;uþ ¼ Gdþ;dþ;

Gu−;d− ¼ Gu−;dþ ¼ Guþ;d− ¼ Guþ;dþ ¼ Gd−;u− ¼ Gd−;uþ ¼ Gdþ;u− ¼ Gdþ;uþ: ðA5Þ

Moreover, the propagators on the same fold are also dependent,

Gu−;uþ þGuþ;uþ ¼ Gu−;uþ þ Guþ;u−; Gd−;dþ þGdþ;dþ ¼ Gd−;dþ þGdþ;d−: ðA6Þ

Hence, it is convenient to rotate from the � components to the so-called classical and quantum ones,�
ϕuc

ϕuq

�
¼ R

�
ϕu−

ϕuþ

�
;

�
ϕdc

ϕdq

�
¼ R

�
ϕd−

ϕdþ

�
; R ¼

� 1
2

1
2

1 −1

�
; ðA7Þ

and introduce four linearly independent propagators instead of 16 dependent ones,

GRðt; t0Þ ¼ −ihϕucðtÞϕuqðt0Þi ¼ −ihϕdcðtÞϕdqðt0Þi;
GAðt; t0Þ ¼ −ihϕuqðtÞϕucðt0Þi ¼ −ihϕdqðtÞϕdcðt0Þi;
GKðt; t0Þ ¼ −ihϕucðtÞϕucðt0Þi ¼ −ihϕdcðtÞϕdcðt0Þi;
GWðt; t0Þ ¼ −ihϕucðtÞϕdcðt0Þi ¼ −ihϕdcðtÞϕucðt0Þi: ðA8Þ

FIG. 9. Twofold (left) and conventional (right) Keldysh contour C for a thermal system. Horizontal lines denote the evolution in real
time, vertical lines denote the evolution in imaginary time, and dotted lines denote the identification of points t ¼ t0 and t ¼ t0 − iβ.
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We refer to these correlators as retarded, advanced, Keldysh, and Wightman propagators, respectively. Note that the
quantum-quantum correlators between any folds and classical-quantum correlators between different folds are zero due to
identities (A5), e.g.,

−ihϕucðtÞϕdqðt0Þi ¼ Gu−;d−ðt; t0Þ þ Guþ;d−ðt; t0Þ − Gu−;dþðt; t0Þ − Guþ;dþðt; t0Þ ¼ 0: ðA9Þ
This significantly restricts the number of diagrams in the perturbative expansion of (A1).
Substituting the rotated fields into (A2) and regrouping the integrals in the exponential function, we also obtain the

vertices in the “cq” notation,

− i
λ

N

Z
∞

t0

ϕ3
ucðt0Þϕuqðt0Þdt0; −i

λ

4N

Z
∞

t0

ϕucðt0Þϕ3
uqðt0Þdt0;

− i
λ

N

Z
∞

t0

ϕ3
dcðt0Þϕdqðt0Þdt0; −i

λ

4N

Z
∞

t0

ϕdcðt0Þϕ3
dqðt0Þdt0: ðA10Þ

Finally, let us write down the expectation value of the squared commutator (2.3) in the cq notation (we assume that t1 > t3
and t2 > t4),

Cðt1; t2; t3; t4Þ ¼ −trfUð∞; t0Þρ1=2U†ð∞; t0Þ½ϕðt1Þ;ϕðt3Þ�Uð∞; t0Þρ1=2U†ð∞; t0Þ½ϕðt2Þ;ϕðt4Þ�g
¼ −hϕuþðt1Þϕu−ðt3Þϕdþðt2Þϕd−ðt4Þi − hϕu−ðt1Þϕuþðt3Þϕd−ðt2Þϕdþðt4Þi
þ hϕuþðt1Þϕu−ðt3Þϕd−ðt2Þϕdþðt4Þi þ hϕu−ðt1Þϕuþðt3Þϕdþðt2Þϕd−ðt4Þi

¼ −hϕucðt1Þϕuqðt3Þϕdcðt2Þϕdqðt4Þi: ðA11Þ
Here, we use the identity U†ð∞; tÞUð∞; tÞ to cut the folds at times t1 and t2 and move the operators ϕðt1Þ and ϕðt2Þ
between the − and þ branches of the corresponding folds. In the zeroth order, this correlator is just a product of two bare
retarded propagators (all other contractions are zero),

Cðt1; t2; t3; t4Þ ¼ −hϕucðt1Þϕuqðt3Þϕdcðt2Þϕdqðt4Þiλ¼0

¼ −hϕucðt1Þϕuqðt3Þiλ¼0
hϕdcðt2Þϕdqðt4Þiλ¼0

¼ GR
0 ðt1; t3ÞGR

0 ðt2; t4Þ: ðA12Þ
At nonzero λ, corrections to this expression are described by the augmented Schwinger-Keldysh technique on the twofold
contour C. The rules of this technique follow from Eqs. (A8) and (A10), see Fig. 10. More details on the derivation and
applications of the generalized Schwinger-Keldysh technique can be found in [80,81].

FIG. 10. Propagators and vertices in the augmented Schwinger-Keldysh diagrammatic technique of the OðNÞ-symmetric model on a
twofold contour. The solid and dashed lines correspond to the classical and quantum components; the black and white dots correspond to
the fields on the upper and lower folds; the group indices are suppressed for brevity. Note that the full nonsymmetric model (1.3)
contains twice more interaction vertices (cf. Fig. 1).
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2. Bare propagators

Now let us determine the tree-level propagators in the
quantized model (1.3). First of all, we remind the reader
that the quantized field is decomposed as follows:

ϕiðtÞ ¼ aifðtÞ þ a†i f
�ðtÞ: ðA13Þ

Here, the creation and annihilation operators satisfy the
commutation relations ½ai; a†j � ¼ δij, and the mode func-
tion fðtÞ ¼ 1ffiffiffiffiffi

2m
p e−imt solves the classical equation of

motion and ensures the canonical commutation relations
½ϕjðtÞ; πkðtÞ� ¼ iδjk (note that the canonical momentum

πi ¼ _ϕi). The Hamiltonian at the initial moment t0, where
interactions are turned off, also has a simple form,

Hðt0Þ ¼ Hfreeðt0Þ ¼ m

�
a†i ai þ

N
2

�
: ðA14Þ

Hence, the initial density matrix, which describes a thermal
system at the inverse temperature β, is as follows:

ρ¼ 1

Z
e−βHðt0Þ; where Z¼ tr½e−βHðt0Þ� ¼ e−βmN=2

1− e−βm
: ðA15Þ

Using these relations, we readily calculate the following
traces:

tr½ρa†i aj� ¼
1

eβm − 1
δij; tr½ρa†i aj� ¼

eβm

eβm − 1
δij;

tr½ρ1=2a†i ρ1=2aj� ¼
eβm=2

eβm − 1
δij: ðA16Þ

Finally, rewriting the cq propagators (A8) through the �
propagators (A4), keeping in mind the ordering of operators
in the� propagators and substituting the explicit form of the
mode function fðtÞ, we obtain the bare two-point correlation
functions (2.6).
We emphasize that the tree-level retarded and advanced

propagators do not depend on the inverse temperature. The
dependence disappears because these propagators are
expressed through the commutator of two fields, which
is a c number. Please also note that, in the limit βm ≫ 1,
i.e., at very low temperatures, the Wightman propagator is
exponentially suppressed. In other words, in this limit,
correlations between the different folds are negligible.

3. Relation to Matsubara propagators

In general, calculations in the Schwinger-Keldysh tech-
nique are lengthy and tedious due to the large number of
possible diagrams (e.g., the two-loop correction to the
Keldysh propagator in the λϕ4 model, Fig. 10, already
involves seven different diagrams). However, these calcu-
lations are redundant if initial quantum state is thermal. In
this case, the exact propagators (A8) are derived from the

Matsubara propagators using the analytic continuation
procedure. In this subsection, we briefly review the
Matsubara technique and reproduce propagators (2.6).
Essentially, the Matsubara technique describes the evo-

lution of a system in the imaginary time τ ¼ it,

hT τϕiðτ1Þ � � �ϕjðτ2Þiτ≡
tr½T τϕiðτ1Þ� � �ϕjðτ2ÞUðβÞe−βHfree �

tr½UðβÞe−βHfree � :

ðA17Þ
Here, T τ denotes the time ordering in the imaginary time, β
is the inverse temperature, Hfree is the unperturbed
Hamiltonian, and UðτÞ ¼ T τ exp ½−

R
τ
0 Hintðτ0Þdτ0� is the

evolution operator in the interaction picture. Similar to the
real-time technique described in Sec. A 1, we can rewrite
many-point correlation functions as the products of two-
point correlators,

GijðτÞ ¼ −hT τϕiðτÞϕjð0Þiτ: ðA18Þ

However, note that the evolution in the imaginary time is
restricted to the interval 0 < τ < β; moreover, the states of
the system at the moments τ ¼ 0 and τ ¼ β coincide. This
implies the periodic boundary conditions on the correlation
functions,

Gijðτ þ βÞ ¼ GijðτÞ: ðA19Þ
These conditions mean that the frequency in the Fourier-
transformed propagator takes only discrete values,

GijðτÞ ¼
1

β

X
ωn

GijðiωnÞe−iωnτ; where ωn ¼
2πn
β

; n ∈ Z:

ðA20Þ
Hence, the frequency-space formulation of the Matsubara
technique contains the sums over the loop frequencies
(1β
P

ωn
). Otherwise, this diagrammatic technique is very

similar to the Feynman one.
Furthermore, the imaginary- and real-time [Eq. (A8)]

propagators are related via the analytic continuation of the
frequency [113–115],

GRðωÞ¼−Gðiωn →ωþ i0Þ;GAðωÞ¼−Gðiωn →ω− i0Þ;

GKðωÞ¼ 1

2
coth

βω

2
½GRðωÞ−GAðωÞ�;

GWðωÞ¼ 1

2
csch

βω

2
½GRðωÞ−GAðωÞ�: ðA21Þ

Here, we denote cschðxÞ ¼ 1= sinhðxÞ for brevity. The rela-
tion between the Keldysh, retarded, and advanced propa-
gators is usually referred to as the fluctuation-dissipation
theorem. The derivation of the relation for the Wightman
propagator on a twofold contour can be found, e.g., in
Appendix C of [60].
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Let us derive the tree-level propagators (2.6) from the
Euclidean version of the model (1.3),

SE ¼
Z

β

0

dτ0
�
1

2
_ϕ2
i þ

m2

2
ϕ2
i þ

λ

4N
ðϕ2

iϕ
2
j − ϕ4

i Þ
�
: ðA22Þ

It is straightforward to see that, in this model, the bare
propagator has the following form:

G0;ijðiωnÞ ¼ G0ðiωnÞδij; G0ðiωnÞ ¼
1

ω2
n þm2

: ðA23Þ

Hence, the bare real-time propagators are

iGR
0 ðtÞ ¼

Z
∞

−∞

i
ðωþ i0Þ2 −m2

e−iωt
dω
2π

¼ −iθðtÞ sin ðmtÞ
m

;

iGA
0 ðtÞ ¼

Z
∞

−∞

i
ðω − i0Þ2 −m2

e−iωt
dω
2π

¼ iθð−tÞ sin ðmtÞ
m

;

iGK
0 ðtÞ ¼

Z
∞

−∞

1

2
coth

�
βω

2

�
π

m
½δðω −mÞ − δðωþmÞ�e−iωt

×
dω
2π

¼ 1

2
coth

βm
2

cos ðmtÞ
m

;

iGW
0 ðtÞ ¼

Z
∞

−∞

1

2
csch

�
βω

2

�
π

m
½δðω −mÞ − δðωþmÞ�e−iωt

×
dω
2π

¼ eβm=2

eβm − 1

cos ðmtÞ
m

: ðA24Þ

This reproduces identities (2.6) with t ¼ t1 − t2.
Finally, we emphasize that similar relations also hold for

the exact imaginary- and real-time two-point correlation
functions. Nevertheless, this correspondence cannot be
straightforwardly extended to OTOCs, which depend on
times from different folds of the Keldysh contour, i.e.,
describe a mixed evolution in both imaginary and real times.

APPENDIX B: THE RIGHT WAY TO
INTRODUCE LAGRANGE FIELDS

A conventional approach to solve the OðNÞ model is to
do the Hubbard-Stratonovich transformation and introduce
the Lagrange field σðtÞ, e.g., see [116–119]. The starting
point of this approach is the Euclidean path integral
representation of the partition function,

Z ¼
Z

Dϕi exp

�
−
Z

β

0

dτ

�
1

2
_ϕ2
i þ

m2

2
ϕ2
i þ

λ

4N
ϕ2
iϕ

2
j

��

→
Z

DϕiDσ exp

�
−
Z

β

0

dτ

�
1

2
_ϕ2
i þ

m2

2
ϕ2
i

−
1ffiffiffiffi
N

p σϕ2
i −

1

λ
σ2
��

: ðB1Þ

Note that these integrals differ by a constant factor, which is
insignificant for calculating correlation functions. So, using

this representation, we find the tree-level Matsubara propa-
gator of the Lagrange field,

D0ðiωnÞ ¼ −
λ

2
: ðB2Þ

Taking in mind the diagrammatic rules that follow from
(B1), we also straightforwardly derive the Dyson-
Schwinger equations,

G−1ðiωnÞ ¼ G−1
0 ðiωnÞ −

2

β

X
ωk

D0ð0ÞGðiωkÞ þO
�
1

N

�
;

D−1ðiωnÞ ¼ D−1
0 ðiωnÞ −

2

β

X
ωk

GðiωkÞGðiωnþkÞ þO
�
1

N

�
;

ðB3Þ
and calculate the leading-order resummed Matsubara
propagators of the fields ϕi and σ,

GðiωnÞ ¼
1

ω2
n þ m̃2

;

DðiωnÞ ¼ −
λ

2
þ λðm̃2 −m2Þ
ω2
n þ 6m̃2 − 2m2

≈ −
λ

2
þ λm̃2

ω2
n þ 6m̃2

:

ðB4Þ
Here, we use the group structure of ϕϕ propagators
GijðiωnÞ¼GðiωnÞδij and neglect the subleading Oð1=NÞ
corrections to the propagators. The resummed mass m̃ is
again determined by Eq. (2.9). The approximate identity in
(B4) is established in the high-temperature limit, βm ≪ 1

and βm ≪ λ=m3.
Since we need the real-time propagators to estimate the

resummed four-point correlator (2.2), we analytically con-
tinue Matsubara propagators (B4) to real frequencies and
do a Fourier transform,

iGRðtÞ ¼ −iθðtÞ sin ðm̃tÞ
m̃

;

iDRðtÞ ¼ i
λ

2
δðtÞ − i

λ

2

�
μ −

4

μ

�
m̃θðtÞ sin ðμm̃tÞ; ðB5Þ

where μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − 2m2=m̃2

p
. These propagators coincide

with retarded propagators (2.8) and (2.14) calculated in
the initial model (1.3) [note that, in the leading order in
1=N, this model coincides with the OðNÞ-symmetric one].
Furthermore, using the fluctuation-dissipation theorem and
its analog for Wightman propagators, Eq. (A21), we restore
the correct Oð1Þ resummed Keldysh and Wightman ϕϕ
propagators,

iGKðtÞ ¼ 1

2
coth

βm̃
2

cos ðm̃tÞ
m̃

;

iGWðtÞ ¼ eβm̃=2

eβm̃ − 1

cos ðm̃tÞ
m̃

: ðB6Þ
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So it is tempting to assume that the Lagrange field
thermalizes and apply the fluctuation-dissipation theorem
to σσ propagators as well [60],

iDKðtÞ ¼ λ

2

1

2
coth

βμm̃
2

�
μ −

4

μ

�
m̃ cos ðμm̃tÞ;

iDWðtÞ ¼ λ

2

eβμm̃=2

eβμm̃ − 1

�
μ −

4

μ

�
m̃ cos ðμm̃tÞ: ðB7Þ

However, this approach is misleading because the initial
state of the Lagrange field is not thermal; moreover, it does

not thermalize due to the properties of the model (1.3) (see
Appendix C). To restore the correct initial state of the
Lagrange field, we consider the real-time partition function
of the OðNÞ-symmetric model [90,120–122],

Z ¼
Z

DφiDπiW½φi; πi�

×
Z
i:c:

Dϕi;cðtÞDϕi;qðtÞeiSK ½ϕi;cðtÞ;ϕi;qðtÞ�; ðB8Þ

where SK denotes the Keldysh action after the Keldysh
rotation,

SK½ϕi;cðtÞ;ϕi;qðtÞ� ¼ −
Z

∞

t0

�
ϕi;qð∂2t þm2Þϕi;c þ

λ

N
ϕi;cϕi;cϕj;cϕj;q þ

λ

4N
ϕi;cϕi;qϕj;qϕj;q

�
; ðB9Þ

W½φi; πi� denotes the Wigner function, which is related to the initial value of the density matrix,

W½φi; πi� ¼
Z

Dαieiαiπi
�
φi þ

1

2
αijρðt0Þjφi −

1

2
αi

�
; ðB10Þ

and the integral with “i:c:.” means the initial values for the classical fields, ϕi;cðt0Þ ¼ φi, _ϕi;cðt0Þ ¼ πi, whereas the initial
values for the quantum fields are not fixed. Similar to the Euclidean case (B1), we introduce the two-component Lagrange
field to get rid of the quartic interaction term,

Z ¼
Z

DφiDπiDσ0W½φi; πi�
Z
i:c:

Dϕi;cðtÞDϕi;qðtÞDσcðtÞDσqðtÞeiS̃K ½ϕi;cðtÞ;ϕi;qðtÞ;σcðtÞ;σqðtÞ�; ðB11Þ

where the transformed Keldysh action is as follows:

S̃K ¼ −
Z

∞

t0

�
ϕi;qð∂2t þm2Þϕi;c −

2

λ
σcσq −

1ffiffiffiffi
N

p σcϕi;cϕi;q −
1ffiffiffiffi
N

p σqϕi;cϕi;c −
1

4
ffiffiffiffi
N

p σqϕi;qϕi;q

�
; ðB12Þ

and the classical Lagrange field satisfies the initial condition σcðt0Þ ¼ σ0. Note that the canonical momentum of this field is
ill-defined. Moreover, the full Wigner function in the transformed theory, which incorporates both ϕi and σ, coincides with
the Wigner function (B10) before the transformation. Hence, the Lagrange field cannot possess any initial quantum
correlations,

W½ϕi; πi; σ0� ¼
Z

Dαieiαiπi
��

φi þ 1
2
αi

σ0

�
T
����
�
ρðt0Þ 0

0 0

�����
�
φi − 1

2
αi

σ0

��
¼ W½ϕi; πi�: ðB13Þ

The absence of initial correlations means that the tree-level
Keldysh and Wightman13 propagators of the Lagrange field
are zero,

DK
0 ðtÞ ¼ 0; DW

0 ðtÞ ¼ 0: ðB14Þ
At the same time, the tree-level retarded and advanced
propagators do not depend on the initial state and can be
safely derived from the Euclidean model.

Finally, taking into account all these observations, we
restore the correct Oð1Þ resummed Keldysh and Wightman
propagators in the OðNÞ-symmetric model,

iDKðtÞ ¼ iDWðtÞ ¼ 1

2μ4
λ2

m̃2

�
csch

βm̃
2

�
2

: ðB15Þ

Obviously, these propagators do not coincide with the naive
ones (B7).

APPENDIX C: THE SUBLEADING CORRECTION
TO THE SELF-ENERGY

In this appendix, we calculate the 1=N correction to the
self-energy of the ϕϕ propagator and show that it does

13For simplicity, in this appendix, we restrict ourselves to
the standard onefold Keldysh contour (right picture in Fig. 9).
However, our reasoning is straightforwardly extended to the
case of a twofold contour (left picture in Fig. 9). Such an
extension additionally establishes the absence of initial correla-
tions between different folds.
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not contain imaginary contributions. As was explained in
Appendix A 3, we can safely use the Matsubara technique
for this purpose. So, in these notations, the Dyson-
Schwinger equation on the Oð1=NÞ resummed propagator
G̃ðiωnÞ has the following form:

G̃ðiωnÞ ¼ GðiωnÞ þ GðiωnÞΣðiωnÞG̃ðiωnÞ; ðC1Þ

where GðiωnÞ denotes the Oð1Þ resummed propagator and
ΣðiωnÞ denotes the 1=N contribution to the self-energy. For
convenience, we separate the terms that correspond to
different diagrams (see Fig. 11),

ΣðiωnÞ ¼ ΣsðiωnÞ þ ΣnðiωnÞ þ ΣtðiωnÞ: ðC2Þ

Here, ΣsðiωnÞ describes the nonlocal “sunset” contribution,

ΣsðiωnÞ ¼
2

N
λ2

β2
X
ωk;ωl

1

ðωn þ ωkÞ2 þ m̃2

1

ðωk þ ωlÞ2 þ m̃2

×
1

ω2
l þ m̃2

BðiωkÞ

≈
1

N
2

3

ð7ω2
n þ 25m̃2Þm̃4

ω4
n þ 14ω2

nm̃2 þ 25m̃4
; ðC3Þ

ΣnðiωnÞ corresponds to the tadpole contribution with an
OðNÞ-nonsymmetric vertex,

ΣnðiωnÞ ¼
3

N
λ

β

X
ωk

1

ω2
k þ m̃2

¼ 3

N
λ

2m̃
coth

βm̃
2

≈
1

N
3m̃2;

ðC4Þ

and ΣtðiωnÞ incorporates the 1=N corrections to the tadpole
diagrams,

ΣtðiωnÞ ¼ −
λ

β

X
ωk

BðiωkÞΣsðiωkÞ
ðω2

k þ m̃2Þ2 −
λ

β

X
ωk

BðiωkÞΣnðiωkÞ
ðω2

k þ m̃2Þ2

≈ −
1

N
22

9
m̃2: ðC5Þ

For convenience, we introduce the resummed chain of
bubble diagrams BðiωnÞ, which is calculated similar to its
real-time counterpart,

BðiωnÞ ¼ 1 −
λ

β

X
ωk

1

ω2
k þ m̃2

1

ðωn þ ωkÞ2 þ m̃2
BðiωnÞ

¼ 1 −
λ
m̃ coth

βm̃
2

ω2
n þ 4m̃2 þ λ

m̃ coth
βm̃
2

≈
ω2
n þ 4m̃2

ω2
n þ 6m̃2

: ðC6Þ

Note that the approximate identities in Eqs. (C3)–(C6) are
valid only in the high-temperature limit, where m̃ ≈

ffiffiffiffiffiffiffiffi
λ=β4

p
.

The self-energies (C3)–(C5) are also straightforwardly
calculated for arbitrary parameters of the model, but we
do not reproduce here these general expressions due to their
bulkiness.
Thus, the Oð1=NÞ resummed Matsubara propagator in

the high-temperature limit has the following form:

G̃ðiωnÞ ¼
1

GðiωnÞ − ΣðiωnÞ
≈

1

ω2
n þ ð1 − 5

9NÞm̃2 − 1
N
2
3

ð7ω2
nþ25m̃2Þm̃4

ω4
nþ14ω2

nm̃2þ25m̃4

: ðC7Þ

Analytically continuing this expression to real frequencies,
we obtain the Oð1=NÞ resummed retarded propagator,

iG̃RðωÞ

≈
i

ðωþ i0Þ2 − ð1 − 5
9NÞm̃2 − m̃4

N
2
3

7ðωþi0Þ2−25m̃2

ðωþi0Þ4−14ðωþi0Þ2m̃2þ25m̃4

:

ðC8Þ

We emphasize that the retarded self-energy ΣRðωÞ ¼
Σðiωn → ωþ i0Þ does not contain any imaginary contri-
butions. Hence, all six poles of the resummed retarded
propagator are purely real,

FIG. 11. Contributions to the self-energy in the 1=N order in Matsubara technique. The lines correspond to the Oð1Þ resummed
tadpoles diagrams; the shaded loops correspond to the Oð1Þ resummed chain of bubble diagrams (C6).
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ω1;2 ≈�m̃

�
1 −

7

9

1

N

�
;

ω3;4 ≈�m̃

�
1.4495þ 0.2194

N

�
;

ω5;6 ≈�m̃

�
3.4538þ 0.0698

N

�
; ðC9Þ

where we neglect the 1=N2 terms that can be estimated only
in higher orders of the 1=N expansion.
Therefore, the 1=N correction to the self-energy does not

imply a conventional thermalization. In other words, the
inverse dissipation time (which is proportional to the
imaginary part of the retarded self-energy) in the quantum

mechanical model (1.3) cannot be larger than Γ ∼ m̃=N2. In
fact, we expect that, for a finite N, this time is exactly zero
because quantum mechanical systems with a finite number
of degrees of freedom cannot thermalize at all.14 This is a
crucial difference between the quantum mechanics and
quantum field theory; e.g., compare the calculations of this
appendix with the model [60].
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