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In this work, we explore the effects of a quantum quench on the entanglement measures of a two-body
coupled oscillator system having quartic interaction. We use the invariant operator method, under a
perturbative framework, for computing the ground state of this system. We give the analytical expressions
for the total and reduced density matrix of the system having non-Gaussian, quartic interaction terms.
Using this reduced density matrix, we show the analytical calculation of two entanglement measures viz.,
Von Neumann entanglement entropy using replica trick and Renyi entanglement entropy. Further, we give a
numerical estimate of these entanglement measures with respect to the dimensionless parameter ðt=δtÞ and
show its behavior in the three regimes, i.e., late time behavior, around the quench point and the early time
behavior. We comment on the variation of these entanglement measures for different orders of coupling
strength. The variation of Renyi entropy of different orders has also been discussed.
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I. INTRODUCTION

In recent years, the most important works in theoretical
physics have been studied by blending the ideas of
quantum many-body physics, quantum information theory
and quantum field theory. The amalgamation of these
branches of physics have been reviewed in [1–7]. These
works mostly focus on studying the dynamical properties
of quantum entanglement in time-dependent systems
[8–17]. This dynamical entanglement can be characterized
by computing von Neumann entanglement entropy and
Renyi entanglement entropy. The traditional way of com-
puting these entanglement measures involves constructing
the reduced density matrix using the eigenstates of the
time-dependent Hamiltonian.

One of the ways to compute the eigenstates of such time-
dependent Hamiltonians is by constructing the Lewis-
Resenfield invariant operator and this is often termed as
invariant operator representation of the wave function [18].
Some works following this approach to compute the time-
dependent eigenstates are [19–23]. Evolution of such
time-dependent quantum states can be studied as a solution
to the Ermakov-Milne-Pinney equation [24–26]. The
invariant operator method is generalized for perturbed
theories by computing time-independent perturbative cor-
rections [27], considering adiabatic evolution [28,29] of the
parameters.
For unperturbed Hamiltonians or free theories, the

reduced density matrix once computed represents the
Gaussian states. Entanglement can then be computed using
these Gaussian states [30–32,32]. Computing vonNeumann
entropy for these Gaussian states employs the use of
correlation functions defined using the framework of quan-
tum field theory [33].
Entanglement in interacting theories has been studied

using replica trick [34] in [35]. On the other hand, the
perturbed entanglement entropy is computed using the
path-integral approach in [36].
Most of the recent works in many-body physics have

been about contemplating the behavior of entanglement
for a system having a time-dependent parameter in
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Hamiltonian. This time-dependent parameter can be varied
quickly or slowly and hence the process is termed as a
“quantum quench.” Some of the most important works for
studying entanglement-properties of extended systems
undergoing a quantum quench are [37–46]. These quantum
quenches can be thought of as protocols driving the system
out-of-equilibrium [47–49]. These local equilibrium can
then be analyzed in quenched systems by using reduced
density matrix. In recent years, effects of quantum
quenches have even been studied experimentally using
cold atom systems [50–59]. Studying the effect of quantum
quench in the case of interacting theories or perturbed
theories is of prime importance [60].
In recent years, the study of coupled oscillators has been

an area of active research. This is primarily due to the
extensive use of such models in studying quantum and
nonlinear physics [61–65], molecular chemistry [66–68]
and biophysics [69–71]. Especially, in quantum physics,
analyzing entanglement of coupled oscillators is of prime
importance [72–76].
Motivated by the discussion given above, in this work

we consider a toy model with a Hamiltonian of two
coupled oscillators having quartic self-coupling term.
The Hamiltonian for this system consists of a time-
dependent quench profile. The eigenstates for this time-
dependent Hamiltonian are computed using invariant oper-
ator method, in a perturbative framework. Further, the
reduced density matrix (with quartic interaction terms) is
constructed using time-independent perturbation theory.
The dynamical von Neumann entropy and Renyi entropy
are then derived using appropriate formulas for the
obtained reduced density matrix. We comment on the
behavior of these entanglement measures by varying the
relevant parameters.
The organization of the paper is as follows:
(i) We start our discussion by providing an overview of

the quench protocol and Hamiltonian of the system
in Sec. II.

(ii) In Sec. III, the expression for eigenstates of the time-
dependent Hamiltonian is computed using invariant-
operator representation of wave function. Further,
the expression for first order time-independent
correction to the ground state of the Hamiltonian
is also approximated in this section.

(iii) In Sec. IV, we use the ground state wave function
with perturbative correction to compute the expres-
sion for reduced density matrix, with quartic inter-
action terms. von Neumann entanglement entropy is
then computed by performing the replica trick over
this reduced density matrix. Further, we show the
analytically computed expression for Renyi entan-
glement entropy.

(iv) In Sec. V, we numerically evaluate the respective
entanglement measures and plot themwith respect to
the dimensionless parameter ðt=δtÞ. We comment on

the parametric variation of these entanglement
measures for each of the chosen three regimes.

(v) Section VI summarizes the conclusions we draw
from the obtained results of this work with some
interesting future prospects of our present work.

II. THE SETUP AND THE QUENCH PROTOCOL

In this section we begin by discretizing the Hamiltonian
for a scalar field theory with ϕ4 interaction term on a lattice.
We show that the Hamiltonian then represents a family of
infinite anharmonic oscillators with quartic couplings. In
this article, we study a system of two coupled oscillators
having quartic perturbation. Furthermore, we use normal
mode basis to decouple the Hamiltonian so that we can
compute the eigenstates for this system in a much simpler
way, in upcoming section. Also, we mention the time-
dependent quench profile chosen as the frequency of this
Hamiltonian.
The Hamiltonian for a scalar field theory with a λ̂ϕ4

interaction is given by [77],

H¼1

2

Z
dd−1x

�
πðxÞ2þð∇ϕðxÞÞ2þm2ϕðxÞ2þ λ̂

12
ϕðxÞ4

�
:

ð1Þ

Here d is the space-time dimensions. We assume that the
coupling λ̂ ≪ 1, so that we can work in a perturbative
framework. This theory can be discretized on a d − 1
dimensional lattice, which is characterized by lattice
spacing, δ. It can be shown that, the discretized
Hamiltonian becomes,

H ¼ 1

2

X
n⃗

�
πðn⃗Þ2
δd−1

þ δd−1
�
1

δ2
X
i

ðϕðn⃗Þ − ϕðn⃗ − x̂iÞÞ2

þm2ϕðn⃗Þ2 þ λ̂

12
ϕðn⃗Þ4

��
: ð2Þ

Here n⃗ denotes the spatial location of the points on lattice
and x̂i represent the unit vectors along the lattice. Further,
we introduce the following substitutions to simplify the
form of the Hamiltonian:

X̂ðn⃗Þ ¼ δd=2ϕðn⃗Þ; P̂ðn⃗Þ ¼ πðn⃗Þ=δd=2;

M ¼ 1

δ
; ω ¼ m;

η ¼ 1

δ
; λ ¼ λ̂

24
δ−d; ð3Þ

where ω represents the frequency of individual oscillators
and η denotes intermass coupling. After these substitutions
we get,
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H¼
X
n⃗

�
P̂ðn⃗Þ2
2M

þ1

2
M

�
ω2X̂ðn⃗Þ2þη2

X
i

ðX̂ðn⃗Þ−X̂ðn⃗− x̂iÞÞ2

þ2λX̂ðn⃗Þ4
��

: ð4Þ

The above Hamiltonian, in Eq. (4) represents a family of
infinite coupled anharmonic oscillators. In this work we
focus on the system representing two coupled oscillators
and compute the entanglement for this system. Setting
M ¼ 1, for simplicity, Eq. (4) can be specialized for case of
two coupled oscillators,

H ¼ 1

2
½p2

1 þ p2
2 þ ω2ðx21 þ x22Þ þ η2ðx1 − x2Þ2

þ 2fλðx41 þ x42Þg�: ð5Þ

Here xi and pi, for i ¼ 1, 2 denote the canonical coor-
dinates of the respective oscillator following the standard
commutation relation ½xi; pj� ¼ iδij, while λ denotes the
coupling coefficient of ϕ4 interaction term.
The eigenstates of the above Hamiltonian Eq. (5), can

easily be computed using normal coordinates defined as,

X1 ¼ ðx1 þ x2Þ=
ffiffiffi
2

p

X2 ¼ ðx1 − x2Þ=
ffiffiffi
2

p

P1 ¼ ðp1 þ p2Þ=
ffiffiffi
2

p

P2 ¼ ðp1 − p2Þ=
ffiffiffi
2

p
: ð6Þ

The unperturbed part of Hamiltonian when written using
these normal coordinates decouples. One can then show
that the total Hamiltonian of Eq. (5) in normal coordinates
takes the following form:

H ¼
X2
i¼1

Hi þHp;

where,

HiðTÞ ¼
1

2
ðPi

2 þ ω2
i ðTÞXi

2Þ; ð7Þ

denotes the unperturbed and decoupled Hamiltonian for
each of the two oscillators. On the other hand the perturbed
Hamiltonian is given by,

Hp ¼ λV ¼ λðx41 þ x42Þ
¼ λðX4

1 þ X4
2 þ 6X2

1X
2
2Þ: ð8Þ

This enables us to use λϕ4 time-independent perturbation
theory and compute the eigenstates of the total Hamiltonian
of Eq. (5).

We now consider the frequency ω in, Eq. (5) as a time-
dependent quench profile. One of the most common
quench profiles used in literature [78,79] is given by:

ω2ðt=δtÞ ¼ ω2
0

�
tanh2

�
t
δt

��
: ð9Þ

Here ω0 can be interpreted as a free parameter and δt is the
quench parameter or the quench rate. The quench profile
chosen here is such that it admits an exact solution for the
mode functions given in [79] and the quench profile attains
a constant value at late and early times. The dynamical
process due to this profile happens in the ½−δt; δt� time
window. We will set t=δt ¼ T and ω0 ¼ 1. The respective
frequencies in normal mode basis take the following form,

ω1 ¼ ωðTÞ and ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ðTÞ þ 4η2

q
; ð10Þ

where ωðTÞ is the quench profile Eq. (9).
Note that the unperturbed Hamiltonian of Eq. (7) is now

time-dependent while the perturbed Hamiltonian of Eq. (8)
acts as time-independent ϕ4 coupling applied on the two
harmonic oscillators. In Sec. III, we show the analytical
computation of ground state, Ψ0;0 of the total Hamiltonian
of two coupled anharmonic oscillators having λϕ4 pertur-
bation. This ground state is used to derive the analytical
expressions of the respective entanglement measures
in Sec. IV.

III. CONSTRUCTING WAVE FUNCTION
FOR A ϕ4 QUENCH MODEL

In this section our prime objective is to construct thewave
function approximated to first order in coupling constant λ.
In Sec. III A we compute the eigenstates of decoupled and
unperturbedHamiltonian Eq. (7). These eigenstates are then
used to construct the ground state of perturbed Hamiltonian
Eq. (8), approximated to first perturbative order, in
Sec. III B. Finally we compute the total wave function as
ground state of total Hamiltonian Eq. (5).

A. Eigenstates and eigenvalues for unperturbed
Hamiltonian

As, the unperturbed Hamiltonian Eq. (7) decouples in the
normal mode basis, the eigenstates for the unperturbed
Hamiltonian are just the product of the eigenstates of
respective oscillators in the normal-mode basis:

ψ ð0Þ
n1;n2ðX1; X2; TÞ ¼ ψn1ðX1; TÞψn2ðX2; TÞ: ð11Þ

Since the unperturbed Hamiltonian consists of a time-
dependent frequency scale, we now use a prescription often
termed as the invariant representation in the literature [80],
to get the unperturbed eigenstates.
We begin the invariant representation by listing the

auxiliary equations. The solutions to these equations can
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then be used to compute the coupled wave function. The
auxiliary equations can be written as:

σ̈j − σj _γj þ ω2
jðTÞσj ¼ 0

σjγ̈j þ 2_σj _γj ¼ 0: ð12Þ

Here, j ¼ 1; 2 and σjðTÞ and γjðTÞ are time-dependent
factors for each of the two coupled oscillators. Also,
_γj ¼ ∂Tγj, _σj ¼ ∂Tσj and σ̈j ¼ ∂

2
Tσj. The subscript j

denotes the oscillator for which the respective parameter
is mentioned. The computation of explicit values of σðTÞ
and γðTÞ is discussed in Appendix A. Note that we have
suppressed the time-dependence throughout this section.
Next, we define the creation ða†jÞ and annihilation ðajÞ
operators given by,

aj ¼
1ffiffiffiffiffiffiffi
2 _γj

p �
_γj

�
1 − i

_σj
σj _γj

�
Xj þ iPj

�

a†j ¼
1ffiffiffiffiffiffiffi
2 _γj

p �
_γj

�
1þ i

_σj
σj _γj

�
Xj − iPj

�
: ð13Þ

Here, j ¼ 1; 2. One can show that these operators satisfy
the commutation relation ½ai; a†j � ¼ δij. The creation and
annihilation operators can be used to define invariant
operator for the respective decoupled Hamiltonian,

Ij ¼ Ωj

�
a†jaj þ

1

2

�
: ð14Þ

Here, j ¼ 1; 2. On the other hand,Ωj ¼ σ2j _γj, is an invariant
quantity with respect to time. The construction of this
invariant operator Eq. (14) has been briefly outlined in
Appendix B. The invariant operator has its own spectrum
and eigenstates. The eigenstates of invariant operator can be
used to formulate the wave functions for each decoupled
Hamiltonian. The outline of the same is given in Appendix B.
Using equation (B4) for n1, n2 ¼ 0, one can show that the
ground state of unperturbed Hamiltonian is given by,

ψ ð0Þ
0;0 ¼

ffiffiffiffiffiffiffiffiffi
g1g2
π

r
exp

�
−i

γ1 þ γ2
2

�

× exp

�
−
1

2
ðg21ð1 − idÞX2

1 þ g22ð1 − ifÞX2
2Þ
�
: ð15Þ

where, the coefficients g1, g2, d, and f are given by,

g1¼
ffiffiffiffiffi
_γ1

p
; g2¼

ffiffiffiffiffi
_γ2

p
; d¼ _σ1

_γ1σ1
; f¼ _σ2

_γ2σ2
: ð16Þ

Next we emphasize that the eigenvalues of the unperturbed
decoupledHamiltonians inEq. (7)will have a timedependent
factor [27]. These eigenvalues for each of the decoupled
Hamiltonians are given as:

hψnj jHijψnji ¼ WjðTÞ
�
nj þ

1

2

�
; ð17Þ

where, j ¼ 1, 2. HereWjðTÞ is the time-dependent factor for
each oscillator given by,

WjðTÞ ¼
_γj
2

�
_σi þ σ2iω

2
i þ σ2i _γi

σ2i _γi
2

�
; ð18Þ

where j ¼ 1, 2.Using the above eigenvalues one canwrite the
energy eigenvalue for the unperturbed state of two coupled
oscillators, Eq. (B4) as:

hψ ð0Þ
n1;n2 jHjψ ð0Þ

n1;n2i ¼ W1ðTÞ
�
n1 þ

1

2

�
þW2ðTÞ

�
n2 þ

1

2

�
:

ð19Þ

B. Ground state of two coupled oscillators with first
order-ϕ4 perturbation

Using time-independent perturbation theory, one can
show that the first order perturbative correction to the
ground state of two-coupled oscillators is,

ψ ð1Þ
0;0 ¼

X
ðn1;n2Þ≠ð0;0Þ

hψ ð0Þ
n1;n2 jVjψ ð0Þ

0;0i × ψ ð0Þ
n1;n2 :

hψ ð0Þ
0;0jHjψ ð0Þ

0;0i − hψ ð0Þ
n1;n2 jHjψ ð0Þ

n1;n2i
ð20Þ

Using the form of perturbed Hamiltonian Eq. (8) and the
time dependent eigenvalues Eq. (19), the above expression
when evaluated becomes,

ψ ð1Þ
0;0 ¼ −

3ðg21 þ g22Þψ ð0Þ
0;2

4
ffiffiffi
2

p
hg21g

2
2

−
3ψ ð0Þ

0;4

8
ffiffiffi
2

p
hg22

−
3ðg21 þ g22Þψ ð0Þ

2;0

4
ffiffiffi
2

p
gg21g

2
2

−
3ψ ð0Þ

2;2

2ð2gþ 2hÞ2g21g22
−

3ψ ð0Þ
4;0

8
ffiffiffi
2

p
gg21

: ð21Þ

Here,

g ¼
�

_σ1 þ σ21ω
2
1 þ Ω1 _γ1

Ω1

�
;

h ¼
�

_σ2 þ σ22ω
2
2 þ Ω2 _γ2

Ω2

�
: ð22Þ

The explicit formof the first order correction can be computed
using the expression of unperturbed eigenstates, Eq. (B4).
The total wave function for ground state of total Hamiltonian
Eq. (5), corrected to first order of time-independent λϕ4

perturbation, is given by: Ψ0;0 ¼ ψ ð0Þ
0;0 þ λψ ð1Þ

0;0. Using
Eq. (15) and Eq. (21) while approximating, the coupling
constant λ ≪ 1 we can express the final form of the wave
function in normal mode basis as:
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Ψ0;0ðX1;X2Þ¼
�
g21g

2
2

π2

�1
4

e−i
ðγ1þγ2Þ

2 exp

�
−
1

2
ð1− idÞg21X2

1−
1

2
ð1− ifÞg22X2

2þλðA1þA2X2
1þA3X2

2þA4X4
1þA5X4

2þA6X2
1X

2
2Þ
�
:

ð23Þ

The coefficients Ai for i ¼ 1 to i ¼ 6 are mentioned in a
table given in Appendix D. The above wave function
Eq. (23) represents the ground state of total Hamiltonian in
Eq. (5), of the system of two coupled oscillators with λϕ4

perturbation. We take note of the fact that all variables,
aside from the coordinates, X1, X2 and coupling constant, λ
in the wave function, Eq. (23) are functions of timescale T.
The wave function is then dependent on both t and δt. This
explicit time dependence can be evaluated by computing σi
and γi, shown in Appendix A.

IV. ANALYTICAL CALCULATION OF
ENTANGLEMENT MEASURES

In the previous Secs. II and III, we computed the ground
state wave function for a system of two coupled bosonic
oscillators with a ϕ4 first-order perturbative correction for
Hamiltonian having a quenched frequency-profile. In this
section our prime objective is to show the analytical steps to
calculate entanglement measures, viz., von Neumann
entanglement entropy and Renyi entropy.
In Sec. IVA reduced density matrix for the system of two

coupled oscillators is constructed using the wave function

Eq. (23). To compute von Neumann entropy using replica
trick [34,35] as well as Renyi entropy, the trace of reduced
density matrix should be evaluated, this is shown in
Sec. IV B. Finally using the appropriate formulas we show
the computation of the respective entanglement measures in
Sec. IV C.

A. Density matrix for perturbed wave function

We begin by transforming the wave function ΨðX1; X2Þ
given in Eq. (23) to Ψðx1; x2Þ, i.e., we transform the normal
coordinates back to space-time coordinates using Eq. (6).
We mention four new symbols:

P ¼ 1

2
ð1 − idÞg21; P� ¼ 1

2
ð1þ idÞg21

Q ¼ 1

2
ð1 − ifÞg22; Q� ¼ 1

2
ð1þ ifÞg21: ð24Þ

The wave function in spacetime coordinates is then
represented by:

Ψðx1; x2Þ ¼
�
g21g

2
2

π2

�1
4

e−iðγ1þγ2Þ=2 exp
�
−
P
2
ðx21 þ x22 þ 2x1x2Þ −

Q
2
ðx21 þ x22 − 2x1x2Þ þ λ

�
A1 þ

A2

2
ðx21 þ x22 þ 2x1x2Þ

þ A3

2
ðx21 þ x22 − 2x1x2Þ þ

A4

4
ðx41 þ x42 þ 4x31x2 þ 4x1x32 þ 6x21x

2
2Þ

þ A5

4
ðx41 þ x42 − 4x31x2 − 4x1x32 þ 6x21x

2
2Þ þ

A6

4
ðx41 þ x42 − 2x21x

2
2Þ
��

: ð25Þ

The complex conjugate of the above given wave function is denoted byΨ�ðx01; x02Þ. Using the conjugate of the wave function
in Eq. (25), we can construct the total density matrix for the system of two oscillators by ρðx1; x2; x01; x02Þ ¼
Ψðx1; x2ÞΨ�ðx01; x02Þ. One can easily show that the density matrix is given as:

ρðx1;x2;x01;x02Þ¼
�
g1g2
π

�
exp

�
−
P
2
ðx21þx22þ2x1x2Þ−

P�

2
ðx021 þx022 þ2x01x

0
2Þ−

Q
2
ðx21þx22−2x1x2Þ−

Q�

2
ðx021 þx022 −2x01x

0
2Þ

þλ

�
2A1þ

A2

2
ðx21þx021 þx22þx022 þ2x1x2þ2x01x

0
2Þþ

A3

2
ðx21þx021 þx22þx022 −2x1x2−2x01x

0
2Þ

þA4

4
ðx41þx041 þx42þx042 þ4x31x2þ4x031 x

0
2þ4x1x32þ4x01x

03
2 þ6x21x

2
2þ6x021 x

02
2 Þ

þA5

4
ðx41þx041 þx42þx042 −4x31x2−4x031 x

0
2−4x1x32−4x01x

03
2 þ6x21x

2
2þ6x021 x

02
2 Þ

þA6

4
ðx41þx041 þx42þx042 −2x21x

2
2−2x021 x

02
2 Þ
��

: ð26Þ

The reduced density matrix can be computed using total density matrix, shown in Eq. (26) by tracing over the coordinates of
second oscillator, i.e., by setting x02 ¼ x2 and computing ρðx1; x01; x2Þ. The reduced density matrix can then be evaluated as:
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ρðx1; x01Þ ¼
Z

∞

−∞
ρðx1; x01; x2Þdx2: ð27Þ

We mention the final form of the reduced density matrix which can be used to calculate the entanglement measures as:

ρðx1;x01Þ¼N

�
g1g2
π

� ffiffiffiffi
π

A

r
exp

�
ð2λA1þλα0Þþ

�
−ðPþQÞ

2
þðQ−PÞ2

4A
þλα1

�
x21þ

�
−ðP�þQ�Þ

2
þðQ�−P�Þ2

4A
þλα2

�
x021

þ
�ðQ−PÞðQ�−P�Þ

2A
þλα3

�
x1x01þλ½α4x41þα5x041 þα6x31x

0
1þα7x1x031 þα8x21x

02
1 �
�
: ð28Þ

Here N is the normalization factor, while,

A ¼
�
g21 þ g22

2

�
B ¼ ððQ − PÞx1 þ ðQ� − P�Þx01Þ: ð29Þ

The values of coefficients, αi for i ¼ 0 to i ¼ 8, are listed in
Appendix D.

B. Computing the value of trðρnÞ
In this subsection we outline analytical steps to compute

the expression for trðρnÞ where ρ is the reduced density
matrix of Eq. (28). The reduced density matrix, given by
Eq. (28) is clearly representing a non-Gaussian state. The

calculation of entanglement entropy for such a non-
Gaussian state is shown in [35]. We follow a similar
method and modify the same derivation to compute entropy
for the state representing Eq. (28).
According to the definition of trace, considering that

xnþ1 ¼ x1, one can write:

trðρnÞ ¼
Z

dx1dx2 � � �dxnρðx1; x2Þρðx2; x3Þ � � � ρðxn; x1Þ;

ð30Þ

where, ρðxi; xiþ1Þ, for i ¼ 1 to n, represents the reduced
density matrix given in Eq. (28). The product of density
matrices in Eq. (30), when evaluated gives:

trðρnÞ¼Nn

�
g1g2
π

�
n
� ffiffiffiffi

π

A

r �
n
enð2λA1þλα0Þ

Z
dnxexp

��
−ðPþP�þQþQ�Þ

2
þðQ−PÞ2þðQ�−P�Þ2

4A
þλðα1þα2Þ

�Xn
i¼1

x2i

þ
�ðQ−PÞðQ�−P�Þ

2A
þλα3

�Xn
i¼1

xixiþ1þλ

�
ðα4þα5Þ

Xn
i¼1

x4i þðα6x3i−1þα7x3iþ1Þ
Xn
i¼1

xiþα8
Xn
i¼1

x2i
Xn
i¼1

x2iþ1

��
: ð31Þ

We modify the above expression by using new coefficients β1; β2…β7 tabulated in Appendix D. Note that each βi for
i ¼ 1 to 7 is evaluated by substituting P, Q, A, and B defined in Eq. (24) and Eq. (29). One can then show that,

trðρnÞ ¼ Nn

�
g1g2
π

�
n
� ffiffiffiffi

π

A

r �
n
enð2λA1þλα0Þ

Z
dnx

�
exp

�
ðβ1 þ λβ2Þ

Xn
i¼1

x2i þ ðβ3 þ λβ4Þ
Xn
i¼1

xixiþ1

�

× exp

�
λ

�
β5

Xn
i¼1

x4i þ ðα6x3i−1 þ α7x3iþ1Þ
Xn
i¼1

xi þ β6
Xn
i¼1

x2i
Xn
i¼1

x2iþ1

���
: ð32Þ

The integral in the above Eq. (32) can be solved using the steps shown in Appendix C.
To evaluate normalization factor N one needs to set trðρðx1; x01ÞÞ ¼ 1 for the reduced density matrix in Eq. (28). Using μ

and ξ defined in Appendix C the normalization factor is given by,

Nn ¼
�
g1g2
π

�
−n
� ffiffiffiffi

π

A

r �
−n
e−nð2λA1þλα0Þ

�
β

π

�n
2j1 − μjn

�
1 −

3λðβ5 þ β6 þ β7Þ
4β2ð1 − μÞ4

�
n
: ð33Þ
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Substituting (33) and Eq. (C8) in Eq. (C12) from Appendix C, one can obtain the final value of trace of nth order of the
reduced density matrix of Eq. (28), as:

trðρnÞ ¼ j1 − μjn
j1 − μnj

�
1 −

3λðβ5 þ β6 þ β7Þ
4ξ2ð1 − μÞ4

�
n
f1þ nλ½3β5ðM−1

11 Þ2 þ β6ðM−1
11 Þ2 þ 2ðM−1

12 Þ2 þ 3β7ðM−1
11M

−1
12 Þ�g: ð34Þ

C. Entanglement measures

In this subsection we compute the two entanglement measures, viz., von Neumann entanglement entropy and Renyi
entropy using the respective formulas for the reduced density matrix of Eq. (28).
The von Neumann entanglement entropy for a given density matrix ρ is computed as, SVN ¼ −trðρ ln ρÞ. As we know the

explicit n− dependence of trðρnÞ from Eq. (34), we instead use replica trick often given as [34],

SVN ¼ −lim
n→1

∂

∂n
trðρnÞ: ð35Þ

Substituting the respective values of matrix inverses of, Eq. (C13) in Eq. (34) one can show that the von Neumann entropy is
given by,

SVN ¼ −
μ ln μþ ð1 − μÞ lnð1 − μÞ

ð1 − μÞ þ λ

�
3μ ln μ

ξ2ðμþ 1Þðμ − 1Þ5 β5 þ
ln μð1þ μþ μ2Þ
ξ2ðμþ 1Þðμ − 1Þ5 β6 þ

3 ln μð1þ μÞ
4ξ2ðμ − 1Þ5 β7

�
: ð36Þ

Using Eq. (C2), the above expression for von Neumann entropy can be approximated to first order in coupling constant λ as,

SVN ¼ −
C1 lnC1 þ ð1 − C1Þ lnð1 − C1Þ

ð1 − C1Þ
þ λ

�
−
C1C2 lnC1

ð1 − C1Þ2
−
C2 lnC1

ð1 − C1Þ
þ 3C1 lnC1

C2
3ðC1 þ 1ÞðC1 − 1Þ5 β5

þ lnC1ð1þ C1 þ C2
1Þ

C2
3ðC1 þ 1ÞðC1 − 1Þ5 β6 þ

3 lnC1ð1þ C1Þ
4C2

3ðC1 − 1Þ5 β7

�
: ð37Þ

The Renyi entropy of order n can be evaluated using,

SR ¼ 1

1 − n
ln½trðρnÞ�: ð38Þ

Substituting the respective values of matrix inverses, Eq. (C13) in Eq. (34) while using Eq. (C2) one can show that the Renyi
entropy is given by,

SR ¼ 1

1 − n

�
n lnð1 − C2 − λC3Þ − lnð1 − ðC2 þ λÞnÞ þ nλ

��
−

3

4C2
3ð1 − C1Þ4

þ ðC2n
1 − 1Þ2

4C2
3ð1 − Cn

1Þ4ðC2
1 − 1Þ2

�
β5

þ
�
−

3

4C2
3ð1 − C1Þ4

þ ðC2n
1 − 1Þ2

4C2
3ð1 − Cn

1Þ4ðC2
1 − 1Þ2 þ 2

ðCn
1 þ C2

1Þ2
4C2

1C
2
3ðC2

1 − 1Þ2ðCn
1 − 1Þ2

�
β6

þ
�
−

3

4C2
3ð1 − C1Þ4

þ 3ðC2n
1 − 1ÞðCn

1 þ C2
1

4C1C2
3ð1 − Cn

1Þ2ðC2
1 − 1Þ2ðCn

1 − 1Þ
�
β7

��
: ð39Þ

Note that the coefficients Ci for i ¼ 1, 2, 3, 4 in Eq. (37) and Eq. (39) arise due to the analytical steps shown in Appendix C.
These coefficients are tabulated in Appendix D.
Using the values of von Neumann entropy, Eq. (37) and Renyi entropy, Eq. (39) one can verify, using first order

approximation in coupling constant λ,

lim
n→1

SR ¼ SVN:

Note that the final formulas of von Neumann as well as Renyi entropies depend on βi for i ¼ 1; 2…7. These coefficients βi,
given in the table of IV B depend on timescale t and δt. Entanglement measures therefore depend on these timescales. We
check this time-dependence by computing numerical values of both entanglement measures in section V.
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V. NUMERICAL RESULTS

In this section we numerically evaluate von Neumann
and Renyi entanglement entropy measures computed for
the quench setup of two coupled oscillators using Eq. (37)
and Eq. (39). As mentioned before each factor in the
derived formulas for entanglement measures explicitly
depends on σiðt; δtÞ and γiðt; δtÞ. The values of σiðt; δtÞ
and γiðt; δtÞ are computed by solving auxiliary equations,
shown in, Eq. (12) which is outlined in Appendix A.
Analytically solving the differential equation of Eq. (A1), is
very complicated and hence we set some initial conditions
to numerically evaluate the solution to this equation.
We begin by considering the coupling coefficient

in the Hamiltonian of the coupled oscillators, Eq. (5) as
η ¼ 0.5. We further set the invariant quantities in
Eq. (14) as, Ω1 ¼ Ω2 ¼ 1. To obtain the constants A, B,
and C mentioned in Eq. (A4) we first compute σiðt; δtÞ and
γiðt; δtÞ at t → 0. Next we, set dðt → 0Þ ¼ fðt → 0Þ ¼ 0,
defined in, Eq. (16) and σið0; δtÞ ¼ 1.
Using these initial conditions we obtain values of A, B,

and C which can be inserted in Eq. (A4). ρiðt; δtÞ and
γiðt; δtÞ are then used to get numerical values of von
Neumann and Renyi entanglement entropies, for the
aforementioned initial conditions. Using the numerical
values of SVN and SR, we parametrize four different plots
for a chosen timescale. We have varied the dimensionless

parameter ðt=δtÞ from 0.1 to 0.7 in steps of 0.05. The ratio
is then plotted on the x-axis of the respective figures. We
term the value of ðt=δtÞ ¼ 1 as the “quench point”
represented by a red dotted line in all the respective figures.
Using the values of ðt=δtÞ we divide all the plots in three
different regions. The first region shaded as red, is marked
for values of ðt=δtÞ < 0.8. This region shows the “early-
time behavior” of the respective entanglement measures,
when the quench rate δt is varied in a way so as to keep
ðt=δtÞ ≪ 1. The next region, shaded as yellow is marked by
two equal intervals to the right as well as left of quench
point, precisely for values of ðt=δtÞ between 0.8 and 1.2.
This region represents the values of entanglement measures
for ðt=δtÞ ≈ 1 and hence is termed as the region “around the
quench point.” The last region shaded as blue is marked for
values of ðt=δtÞ > 1.2. This region shows the “late-time
behavior” of the respective entanglement measures, when
the quench rate δt is varied in a way so as to
keep ðt=δtÞ ≫ 1.
In Fig. 1 we have plotted the von Neumann (V-N)

entropy for two coupled oscillators having quartic self-
coupling with respect to the dimensionless parameter ðt=δtÞ
for different orders of λ. We observe that the computed
values of V-N entropy are negative for the chosen timescale
for λ > 10−5. We begin by plotting the values of V-N
entropy by decreasing the order of λ, starting from

FIG. 1. Variation of the Von Neumann entropy (SVN) with respect to the dimensionless parameter (t=δt) for different orders of the
coupling constant λ for two coupled oscillators with quartic perturbation.

SAYANTAN CHOUDHURY et al. PHYS. REV. D 106, 025002 (2022)

025002-8



λ ¼ 10−5. We see that for λ ¼ 10−5 initially the V-N
entropy grows for very small values of ðt=δtÞ < 0.6. It
can therefore be inferred from the plot that V-N entropy (for
λ ¼ 10−5) increases in most of the region covering the
early-time behavior, shaded as blue. Further, in the range
0.6 < ðt=δtÞ < 2.2 the entropy decreases gradually. Thus,
the whole region near to the quench-point, shaded as
yellow, shows a decreasing value of V-N entropy. After
ðt=δtÞ > 2.2 the V-N entropy increases monotonically and
shows a thermalizing behavior for large values of ðt=δtÞ.
Most of the late-time behavior therefore, shows thermal-
izing behavior of V-N entropy.
In case of λ ¼ 10−6 and λ ¼ 10−7 we observe from the

plot in Fig. 1, that there is a decrease in von Neumann
entropy up to ðt=δtÞ < 2.6. Hence, the whole early-time
behavior region as well as the region around the quench
point, shaded as red and yellow respectively, show a
decreasing trend in V-N entropy. This trend is in contrast
to the same for λ ¼ 10−5. When we move further toward
larger values of the dimensionless parameter ðt=δtÞ we
again see a thermalizing behavior for both the coupling
constants. This region is shaded as blue and shows trend
similar to that of λ ¼ 10−5. Another observation which we
can make from this graph is that as we decrease the order of
the coupling constant λ the von Neumann entropy
increases.

In Fig. 2 we have plotted the Renyi entropies for two
coupled oscillators having quartic self-coupling with
respect to the dimensionless parameter ðt=δtÞ for different
orders of λ. We observe that the computed values of Renyi
entropy are negative for the chosen timescale for λ > 10−4.
We begin by plotting the values of Renyi entropy by
decreasing the order of coupling constant, starting from
λ ¼ 10−4. We see that for λ ¼ 10−4, initially the Renyi
entropy grows for very small value of ðt=δtÞ < 0.8. Hence,
the early time-behavior of the system shows an increasing
trend in values of Renyi entropy, shaded by red color.
Further, in the range 0.8 < ðt=δtÞ < 2.2 the entropy
decreases gradually. The region around the quench point,
shaded as yellow, shows decreasing trend in Renyi entropy.
After ðt=δtÞ > 2.2 the Renyi entropy increases monoton-
ically and shows a thermalizing behavior for large values of
ðt=δtÞ. Most of the late-time behavior of the system shows
the thermalization trend in Renyi entropy. This region is
shaded by blue color. This behavior is similar to that of V-N
entropy for λ ¼ 10−5 shown in Fig. 1.
In case of λ ¼ 10−5 and λ ¼ 10−6 we observe from the

graph that there is a decrease in Renyi entropy up to
ðt=δtÞ < 2.6. Hence, the early-time behavior as well as
behavior of the system around the quench point results in
decreasing values of Renyi entropy, shaded as red and
yellow respectively in the Fig. 2. This trend is in contrast to

FIG. 2. Variation of the Renyi entropy (SR) for n ¼ 2, with respect to the dimensionless parameter (t=δt) for different orders of the
coupling constant λ for two coupled oscillators with quartic perturbation.
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FIG. 3. Variation of the Renyi entropy (SR) for λ ¼ 10−4, with respect to the dimensionless parameter (t=δt) for different values of n
for two coupled oscillators with quartic perturbation.

FIG. 4. Variation of the Renyi entropy (SR) for λ ¼ 10−5, with respect to the dimensionless parameter (t=δt) for different values of n
for two coupled oscillators with quartic perturbation.
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that of λ ¼ 10−4. When we move further toward larger
values of the dimensionless parameter ðt=δtÞwe again see a
thermalizing behavior for both the coupling constants. The
late-time behavior of the system is, mostly characterized by
thermalization of Renyi entropy. This is shown by blue
region in Fig. 2. This behavior is similar to that of V-N
entropy for λ ¼ 10−6; 10−7 in Fig. 1. Another observation
whichwe canmake from this graph is that aswe decrease the
order of the coupling constant λ the Renyi entropy increases.
Hence, as we are decreasing the order of λ the plots of

von Neumann entropy and that of Renyi entropy show a
similar behavior with respect to each other, given that the
order of λ in the case of von Neumann entropy is one lower
than that in Renyi entropy.
In the Fig. 3 we have plotted the Renyi entropies for two

coupled oscillators having quartic self-couplingwith respect
to the dimensionless parameter ðt=δtÞ for different orders of
Renyi entropy, i.e., for different values of n, set at λ ¼ 10−4.
The early time behavior shows an increasing trend in the
value of Renyi entropy for the chosen values of n ¼ 2, 3, 4.
The entropy then decreases covering the region around the
quench. Most of the late time behavior of the system shows
thermalizing nature of Renyi entropy. It is clear that this
scaling behavior is retained for large value of n ¼ 100.
Figure 4 shows parametric variation for different orders

of Renyi entropy, i.e., for different values of n, set at
λ ¼ 10−5. The early time behavior as well as the behavior
of system near the quench point, shows a decreasing trend
in values of Renyi entropy. Most of the late-time behavior is
characterized again by thermalization of Renyi entropy for
chosen values of n ¼ 2, 3, 4. Again, this scaling behavior is
retained for large value of n ¼ 100.

VI. CONCLUSION

The concluding remarks of this work are appended
below pointwise:

(i) Focusing on a system of two coupled oscillators
with quartic perturbation, we have derived analytical
expressions of von Neumann entanglement entropy
and Renyi entropy, undergoing a quantum quench.

(ii) First we have computed the expression for eigen-
states of unperturbed Hamiltonian using invariant
operator method. Using this expression we have
approximated the first order λϕ4 correction for the
total Hamiltonian of the system. Since the Hamil-
tonian is time-dependent due to the chosen quench
profile as the frequency of the oscillators, it is quite
evident that the total Hamiltonian can be quantized
by using solutions to the Ermakov-Milne-Pinney
equation. The ground state of the total Hamiltonian
of the system, having ϕ4 interaction term, is then
used to derive analytical expressions for the respec-
tive entanglement measure.

(iii) Nextwehavementioned the reduced densitymatrix for
the ground state of the above described system of
coupled oscillators. This reduced density matrix,
clearly represents non-Gaussian state due to presence
of quartic interaction terms. We deal with this non-
Gaussian terms by constructing a quartic tensor and
computing the trace of nth order of reduced density
matrix.

(iv) Finally, we employ the use of replica trick for
computing von Neumann entanglement entropy.
Further, Renyi entropy was computed using the
standard formula, depending on the reduced density
matrix. The analytical expression for these entan-
glement measures is time-dependent as all the
coefficients in the respective expression depend
on solutions of Ermakov-Milne-Pinney equation.

(v) Using the numerically evaluated values of von
Neumann entropy and Renyi entropy we studied
the variation of these entanglement measures with
respect to the dimensionless parameter ðt=δtÞ speci-
fying three regions: early-time behavior, the behavior
around the quench point and the late-time behavior.

(vi) From these numerical results, we find that both von
Neumann entropy and Renyi entropy delicately de-
pend on the order of coupling constant λ. Evidently
there exists a respective threshold order of λ beyond
which λ if increased, we do not get positive values of
both vonNeumann andRenyi entanglement entropies,
for chosen values of ðt=δtÞ. For the respective thresh-
old order of λ we observe same scaling behavior in
both von Neumann entropy and Renyi entropy. This
scaling behavior can be characterized by a trend of
increasing values of the entanglement measure for
early timeswhile in the region around the quench point
the behavior shows a decreasing trend in these values.

(vii) As the order of λ is decreased below the respective
threshold order we get another scaling behavior of
both von Neumann and Renyi entropies. This
scaling behavior can be characterized by a trend
of decreasing values of the respective entanglement
measure for both early-times and around the quench
point regions. Both scaling behaviors show thermal-
izing behavior of the respective entanglement mea-
sures at very late times.

(viii) It is quite clear from the plots that as we decrease the
order of λ the value of both entanglement measures
increases.

(ix) Also, for a given order of coupling constant λ von
Neumann entropy thermalizes at higher values
compared to that of Renyi entropy.

(x) Next we find that for a particular order of λwe obtain
same scaling behavior for different orders of the
Renyi entropy. However, the value of Renyi entropy
decreases as we increase the order of Renyi
entropy.The particular scaling behavior is retained
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even for the case of very high order of Renyi
entropy.

Future prospects:
(i) In the present article, we have analyzed the effects of

quantum quench on the entanglement entropy for a
system consisting of two coupled oscillators with
quartic perturbation. Of course, this study of en-
tanglement entropy and quantum quench can be
generalized to that of N-coupled oscillators. For
N → ∞, in the continuous limit, it would be
interesting to explore the effects of quantum quench
on entanglement in the context of interacting field
theory.

(ii) One of the latest developments in research in the
field of high energy physics is, the study of circuit
complexity [81–87]. There are some works which
are focused on relating the complexity with quantum
entanglement [79,88–91]. The study of the same
might turn out to be intriguing in the case of
interacting quenched field theories.

(iii) Hence, it would be interesting to explore the con-
nection between quantum circuit complexity and
entanglement and check its consistency with the CA
and CV [92–95] proposal.
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APPENDIX A: COMPUTING EXPLICIT
NUMERICAL VALUES OF σiðTÞ AND γiðTÞ

Using auxiliary conditions given by Eq. (12) we briefly
show the steps to compute σ1 and γ1. We begin by
rearranging Eq. (12) for one of the oscillators,

σ̈1 þ ω2
1ðTÞσ1 ¼

Ω1

σ31
: ðA1Þ

The above second order differential equation is often
termed as, Ermakov-Milne–Pinney equation [24–26].
This equation can be solved numerically to obtain
σ1ðTÞ. Since T ¼ ðt=δtÞ, the solution will clearly be
function of both t and δt. We assume that the form of
solution of the above equation gives us a linear combina-
tion,

σ1ðt; δtÞ ¼ c1z1ðt; δtÞ þ c2z2ðt; δtÞ: ðA2Þ

Here, c1 and c2 are numerical constants, while z1 and z2 are
treated as two complex-valued solutions of Eq. (A1). We
will consider only z1 as one of the solutions. Using the form
of quench profile Eq. (9), the computed value of one of the
solutions is,

z1ðt; δtÞ ¼ ½e2t
δt�−1

2
ðiδtÞ½e2t

δt þ 1�12ð
ffiffiffiffiffiffiffiffiffiffi
1−4δt2

p
þ1Þ

2F1

�
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4δt2

p
þ 1Þ; 1

2
ð−2iδtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4δt2

p
þ 1Þ; 1 − iδt;−e2t

δt

�
: ðA3Þ

Here, 2F1 represents the hypergeometric function. Since z1
is complex valued we can write, z1 ¼ y1 þ iy2 such that y1
and y2 are now two real-linearly independent equations. We
give an outline of steps shown in [96] for numerical
solution of Eq. (A1) using these linearly independent
equations. This solution is guaranteed to be of the form,

σ1ðt;δtÞ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ay21ðt;δtÞtþ2By1ðt;δtÞy2ðt;δtÞþCy22ðt;δtÞ

q
�:

ðA4Þ

The next step is to determine the constants in Eq. (A4).
These are fixed by setting the condition AC − B2 ¼ Ω2

1.
These steps give us the explicit value of σ1ðt; δtÞ. One can
repeat these steps by inserting the respective parameters (of
second oscillator) to find σ2ðt; δtÞ. Since, Ωi ¼ σ2i _γi, the
explicit value of γi is computed by using value of Eq. (A4),

γiðt; δtÞ ¼
Z

t

0

Ωi

σ2i ðt; δtÞ
dt ðA5Þ

Inserting the values of σiðt; δtÞ and γiðt; δtÞ it is clear that
the wave function, in Eq. (23) becomes a function of both t
and δt. Note that we conceal this functional dependence in
all the sections until the entropy is numerically evaluated in
Sec. V.

APPENDIX B: AN OUTLINE OF INVARIANT
OPERATOR REPRESENTATION

In Sec. III we defined Ij as an operator in Eq. (14). We
outline in this appendix a few important steps for con-
structing this operator and the way to find eigenstates of
this operator. Note that the subscript j ¼ 1, 2 represent the
parameters described for the oscillators having spatial
coordinates: X1 and X2 respectively.
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The operator Ij is constructed such that it satisfies [18],

∂Ij
∂T

þ 1

i
½Ij; Hj�; ðB1Þ

where Hj for j ¼ 1, 2 represents the respective decoupled
Hamiltonian for each oscillator (7). One can show that
the operator given in Eq. (14) satisfies the above condition.
It is assumed that the invariant Ij is one of a complete set

of commuting observables for respective Hj. This guaran-
tees that there is a complete set of eigenstates for each Ij
defined in Eq. (14). We refer to u0j for j ¼ 1, 2 as the
ground state for the spectrum of the respective invariant
operator. These ground states of the respective invariant
operators can be determined using the condition, aju0j ¼ 0

where aj is the respective annihilation operator Eq. (13).
When evaluated, the expression for ground state of the
invariant operator Ij is given by,

u0j ¼
�
_γj
π

�
1=4

exp

�
−

_γj
2
ð−i _σjσj _γjÞX2

j

�
: ðB2Þ

Using the ground states and the respective creation oper-
ators a†j one can then show that, the nth eigenstate of the
invariant-operator Ij is given by,

unj ¼
1ffiffiffiffiffi
n!

p ða†jÞnu0j ¼
�

1

2njnj!

��
_γj
π

�
1=4

× exp

�
_γj

�
1 −

i _σj
σj _γj

�
X2
j

�
Hnj

h ffiffiffiffi
_γj

q
Xj

i
: ðB3Þ

Here, j ¼ 1, 2 and Hnj represents the Hermite polynomial
of order nj. Using the eigenstates of invariant operator (B3),
one can compute the wave functions of the decoupled
Hamiltonians [80]. It can be shown that the computed wave
functions take the form: ψnj ¼ eiαnj unj , as solutions to
Schrodinger’s equations for respective Hj, where
αnj ¼ −ð1=2þ njÞ; for j ¼ 1, 2. The eigenstates for
unperturbed Hamiltonian for the coupled oscillator system

can further be computed as ψ ð0Þ
n1;n2 ¼ ψn1 × ψn2 .

Using Eq. (B3) one can then show that,

ψ ð0Þ
n1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_γ1
2 _γ1

2

2n1þn2n1!n2!π

s
exp

�
−i

ð2n1 þ 1Þγ1 þ ð2n2 þ 1Þγ2
2

�
exp

�
−
1

2
_γ1

�
−

i _σ1
_γ1σ1

�
X2
1 −

1

2
_γ2

�
−

i _σ2
_γ2σ2

�
X2
2

�

×Hn1 ½
ffiffiffiffiffi
_γ1

p
X1�Hn2 ½

ffiffiffiffiffi
_γ2

p
X2�: ðB4Þ

This equation (B4) represents the eigenstates for the
unperturbed Hamiltonian of two coupled oscillators having
a quenched frequency profile. In III B we compute the first
order time-independent correction to the ground state of
above equation.

APPENDIX C: COMPUTING INTEGRALS
IN trðρnÞ

In the integral of Eq. (32) we have separated both
Gaussian and non-Guassian parts. In this appendix we
give detailed outline of solving both Gaussian and non-
Gaussian contributions and finally combine them to com-
pute the integral in (32).
The Gaussian part of the integrand can be parametrized

by considering a quadratic coefficient matrix similar to the
case in [35]. Using the values of βi for i ¼ 1 to i ¼ 7
defined in Sec. IV B, this coefficient matrix is defined as:

Mij ¼ −2ðβ1 þ λβ2Þδij − ðβ3 þ λβ4Þðδijþ1 þ δiþ1
j Þ: ðC1Þ

We further modify the above defined matrix by introducing
two new symbols μ and ξ. We choose these variables so that
they satisfy,

ξð1þ μ2Þ ¼ −ðβ1 þ λβ2Þ
2ξμ ¼ β3 þ λβ4: ðC2Þ

We consider the following explicit solution of these
equations, approximated to first order in λ:

μ ¼ C1 þ λC2

ξ ¼ C3 þ λC4: ðC3Þ

The values of newly defined coefficients C1; C2…C4 are
tabulated in Appendix D. Using matrix Mij defined in
Eq. (C1), one can recover the Gaussian part of Eq. (32) as
shown below,

exp

�
−
1

2
xiMijxj

�
¼ exp

�
ðβ1 þ λβ2Þ

Xn
i¼1

x2i

þ ðβ3 þ λβ4Þ
Xn
i¼1

xixiþ1

�
: ðC4Þ

Moving on to the non-Guassian part in Eq. (32), we further
define a quartic tensor as:
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Tijkl ¼ λ½β5δijδjkδkl þ ðα7δk−1l þ α6δ
kþ1
l Þδijδjk þ β6δijδ

jþ1
k δkl�: ðC5Þ

Using Eq. (C5), one can recover the remaining part of Eq. (32) as shown below,

exp½xixjxkxlTijkl� ¼ exp

�
λ

�
β5

Xn
i¼1

x4i þ ðα6x3i−1 þ α7x3iþ1Þ
Xn
i¼1

xi þ β6
Xn
i¼1

x2i
Xn
i¼1

x2iþ1

��
: ðC6Þ

Using the expression shown in Eq. (C4) and the non-Gaussian contribution from Eq. (C6), one can parametrize the
integrand in Eq. (32), as shown below:

trðρnÞ ¼ Nn

�
g1g2
π

�
n
� ffiffiffiffi

π

A

r �
n
enð2λA1þλα0Þ

Z
dnx exp

�
−
1

2
xiMijxj

�X∞
p¼0

1

i!
ðxixjxkxlTijklÞp: ðC7Þ

Further, we define a Gaussian partition function, Z0, given by,

Z0 ¼
Z

dnx exp

�
−
1

2
xiMijxj

�
¼

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn
detM

r
¼

	 ffiffi
π
ξ

q 

n

j1 − μnj ; ðC8Þ

where detM denotes the determinant of matrixMij of Eq. (C1). Using the above partition function the summed over tensor
in Eq. (C7) can be transformed to a correlator as shown below retaining the form of perturbative expansion,

trðρnÞ ¼ Nn

�
g1g2
π

�
n
� ffiffiffiffi

π

A

r �
n
enð2λA1þλα0ÞZ0

X∞
p¼0

1

p!
hhxi1xj1xk1xl1…xipxjpxkpxlpiiTi1j1k1l!…Tipjpkplp : ðC9Þ

We simplify the above expression in Eq. (C9) using a generating functional J, as shown below,

ZðJÞ ¼ 1

Z0

Z
dnx exp

�
−
1

2
xiMijxj þ Jixi

�
¼ exp

�
1

2
JiM−1

ij Jj

�
: ðC10Þ

As shown in [35], correlator of Eq. (C9) computed using the above Eq. (C10) then becomes,

hhxi1…xi2mii ¼
δ2m

δJi1…δJi2m
ZðJÞ

����
J¼0

¼ 1

2mm!

X
σ∈SG

ðM−1Þiσð1Þσð2Þ…ðM−1Þiσð2n−1Þσð2nÞ : ðC11Þ

Here G is the quotient group which can be defined to reduce the sum significantly. Note that for a 4m point correlator
function the chosen quotient group gives rise to three different permutations. A more detailed discussion about finding the
quotient group G can be found in [35].
Using the value of quartic tensor from Eq. (C4) and the correlator from Eq. (C11), one can simplify Eq. (C9) as,

trðρnÞ ¼ NnZ0

�
g1g2
π

�
n
� ffiffiffiffi

π

A

r �
n
enð2λA1þλα0Þf1þ nλ½ð3β5 þ β6ÞðM−1

11 Þ2 þ 3β7M−1
11M

−1
12 þ 2β6ðM−1

12 Þ2�g: ðC12Þ

One can check that the matrix inverses are [35],

M−1
11 ¼ ðμ2n − 1Þ

2ð1 − μnÞ2ξðμ2 − 1Þ ; M−1
12 ¼ ðμn þ μ2Þ

2μξðμ2 − 1Þðμn − 1Þ : ðC13Þ

APPENDIX D: TABULATED VALUES OF COEFFICIENTS

In this appendix, the values of various coefficients we have used in some steps to compute the analytical expression of
entanglement measures, are tabulated in respective tables.

SAYANTAN CHOUDHURY et al. PHYS. REV. D 106, 025002 (2022)

025002-14



(i) We begin by listing the values of Ai for i ¼ 1; 2…6 in Eq. (23) of Sec. III B in the table given below.

(ii) Next, we tabulate the values of coefficients αi for i ¼ 1; 2…8 in Eq. (28) of Sec. IVA.

(iii) The values of βi for i ¼ 1; 2…7 in Eq. (32) of Sec. IV B are tabulated in the below given table.

βi Coefficient of βi

β1 −Aþ ðg2
2
−g2

1
Þ2−ðdg2

1
−fg2

2
Þ2

8A

β2 A2 þ A3 þ 3A4þ3A5−A6

2A þ ðA2−A3

2A Þðg22 − g21Þ þ 3ðA4−A5Þðg22−g21Þ
4A2 þ ½3ðA4þA5þA6Þ

16A3 þ A2þA3

8A2 �½ðg22 − g21Þ2 − ðdg21 − fg22Þ2�
β3 ðg2

2
−g2

1
Þ2þðdg2

1
−fg2

2
Þ2

8A

β4 ½A2−A3

2A þ 3ðA4−A5Þ
4A2 �½g22 − g21� þ ½ðA2þA3Þ

8A2 þ 3ðA4þA5þA6Þ
16A3 �½ðg22 − g21Þ2 þ ðdg21 − fg22Þ2�

β5 A4þA5þA6

2
þ ðA4−A5Þðg22−g21Þ

2A þ 3A4þ3A5−A6

16A2 ½ðg22 − g21Þ2 − ðdg21 − fg22Þ2� þ A4−A5

64A3 ½2ðg22 − g21Þ3 − 6ðg22 − g21Þðdg21 − fg22Þ2�
þ A4þA5þA6

512A4 ½2ðg22 − g21Þ4 þ 2ðdg21 − fg22Þ4 − 12ðg22 − g21Þ2ðdg21 − fg22Þ2�
β6 ð3A4þ3A5−A6

16A2 Þ½ðg22 − g21Þ2 − ðdg21 − fg22Þ2� þ ð3ðA4−A5Þ
32A3 Þ½ðg22 − g21Þ3 þ ðg22 − g21Þðdg21 − fg22Þ2� þ ð6ðA4þA5þA6Þ

512A4 Þ½ðg22 − g21Þ4
þðdg21 − fg22Þ4 þ 2ðg22 − g21Þ2ðdg21 − fg22Þ2�

β7 ðA4−A5Þðg22−g21Þ
2A þ ð3A4þ3A5−A6

8A2 Þ½ðg22 − g21Þ2 þ ðdg21 − fg22Þ� þ ðA4−A5

32A3 Þ½ðg22 − g21Þ3� þ ðA4þA5þA6

64A4 Þ½ðg22 − g21Þ4 − ðdg21 − fg22Þ4�

Ai Coefficient of Ai

A1 3
16

	
− 8σ2

1
σ2
2

σ2
1
ω2
1
þσ2

2
ω2

2þ _σ1þ _σ2þ 1

σ2
1

þ 1

σ2
2

þ 3σ4
1
þ4σ2

2
σ2
1

σ2
1
ω2
1
þ _σ1þ 1

σ2
1

þ 3σ4
2
þ4σ2

1
σ2
2

σ2
2
ω2
2
þ _σ2þ 1

σ2
2



A2 3

4
σ21

	
4σ2

2

σ2
1
ω2
1
þσ2

2
ω2
2
þ _σ1þ _σ2þ 1

σ2
1

þ 1

σ2
2

− σ2
1
þ2σ2

2

σ2
1
ω2
1
þ _σ1þ 1

σ2
2



A3 or 3σ2

1
σ2
2

σ2
1
ω2
1
þσ2

2
ω2
2
þ _σ1þ _σ2þ 1

σ2
1

þ 1

σ2
2

− 3ðσ4
2
þ2σ2

1
σ2
2
Þ

4ðσ2
2
ω2
2
þ _σ2þ 1

σ2
2

Þ

A4 − σ4
1

4ðσ2
1
ω2
1
þ _σ1þ 1

σ2
1

Þ

A5 − σ4
2

4ðσ2
2
ω2
2
þ _σ2þ 1

σ2
2

Þ;

A6 − 6σ2
1
σ2
2

σ2
1
ω2
1
þσ2

2
ω2
2
þ _σ1þ _σ2þ 1

σ2
1

þ 1

σ2
2

;

αi Coefficient of αi

α0 ðA2þA3Þ
2A þ 3ðA4þA5þA6Þ

8A2

α1 ðA2þA3Þ
2

þ ð3A4þ3A5−A6Þ
4A þ ðA2−A3ÞðQ−PÞ

2A þ ðA2þA3ÞðQ−PÞ2
4A2 þ 3ðA4−A5ÞðQ−PÞ

4A2 þ 3ðA4þA5þA6Þ
8A3 ðQ − PÞ2

α2 ðA2þA3Þ
2

þ ð3A4þ3A5−A6Þ
4A þ ðA2−A3ÞðQ�−P�Þ

2A þ ðA2þA3ÞðQ�−P�Þ2
4A2 þ 3ðA4−A5ÞðQ�−P�Þ

4A2 þ 3ðA4þA5þA6Þ
8A3 ðQ� − P�Þ2

α3 ðA2−A3Þ
2A ðQþQ� − P − P�Þ þ ðA2þA3ÞðQ−PÞðQ�−P�Þ

2A2 þ 3ðA4−A5ÞðQþQ�−P−P�Þ
4A2

þ 3ðA4þA5þA6ÞðQ−PÞðQ�−P�Þ
4A3

α4 ðA4þA5þA6Þ
4

þ ðA4−A5ÞðQ−PÞ
2A þ ð3A4þA5−A6ÞðQ−PÞ2

8A2 þ ðA4−A5ÞðQ−PÞ3
8A3 þ ðA4þA5þA6ÞðQ−PÞ4

32A4

α5 ðA4þA5þA6Þ
4

þ ðA4−A5ÞðQ�−P�Þ
2A þ ð3A4þA5−A6ÞðQ�−P�Þ2

8A2 þ ðA4−A5ÞðQ�−P�Þ3
8A3 þ ðA4þA5þA6ÞðQ�−P�Þ4

32A4

α6 ðA4−A5ÞðQ�−P�Þ
2A þ ð3A4þ3A5−A6ÞðQ−PÞðQ�−p�Þ

4A2 þ ðA4−A5Þ½3ðQ−PÞ2ðQ�−P�ÞþðQ−PÞ3
8A3 þ ðA4þA5þA6ÞðQ−PÞ3ðQ�−P�Þ

8A4

α7 ðA4−A5ÞðQ−PÞ
2A þ ð3A4þ3A5−A6ÞðQ−PÞðQ�−p�Þ

4A2 þ ðA4−A5Þ½3ðQ−PÞðQ�−P�Þ2þðQ�−P�Þ3
8A3 þ ðA4þA5þA6ÞðQ−PÞðQ�−P�Þ3

8A4

α8 ð3A4þ3A5−A6Þ½ðQ�−P�Þ2þðQ−PÞ2�
8A2 þ ðA4−A5Þ½3ðQ−PÞ2ðQ�−P�Þþ3ðQ−PÞðQ�−P�Þ2�

8A3 þ ðA4þA5þA6Þ6ðQ−PÞ2ðQ�−P�Þ2
32A4
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(iv) The last table, given below contains values of Ci for i ¼ 1, 2, 3, 4 in Eq. (C3) of Appendix C.
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