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We construct exact solutions of magnetically charged black holes in the vector-tensor Horndeski gravity
and discuss their main features. Unlike the analogous electric case, the field equations are linear in a simple
(quite standard) parametrization of the metric tensor, and they can be solved analytically even when a
cosmological constant is added. The solutions are presented in terms of hypergeometric functions, which
makes the analysis of the black hole properties relatively straightforward. Some of the aspects of these
black holes are quite ordinary, like the existence of extremal configurations with maximal magnetic charge
for a given mass or the existence of a mass with maximal temperature for a given charge, but others are
somewhat unexpected, like the existence of black holes with a repulsive gravitational field. We perform our
analysis for both signs of the nonminimal coupling constant and find black hole solutions in both cases but
with significant differences between them. The most prominent difference is the fact that the black holes for
the negative coupling constant have a spherical surface of curvature singularity rather than a single point.
On the other hand, the gravitational field produced around this kind of black holes is always attractive.
Also, for small enough magnetic charge and negative coupling constant, extremal black holes do not exist,
and all magnetic black holes have a single horizon. In addition, we study the trajectories around these
magnetic black holes for light as well as massive particles either neutral or electrically charged. Finally, we
compare the main features of these black holes with their electric counterparts, adding some aspects that
have not been discussed before, like temperature, particle trajectories, and light deflection by electrically
charged Horndesky black holes.
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I. INTRODUCTION

In the effort aimed to understand the dark matter and
dark energy problems of the Universe, numerous exten-
sions of general relativity (GR) have been studied in the last
few decades. Among these generalized gravities, the
extensions of the minimal Einstein-Hilbert Lagrangian
by scalar fields play an important role. With the main
objective of maintaining field equations of the second order
in field derivatives, thus avoiding the Ostrogradsky insta-
bility, the works of G. Horndeski [1] provoked a consid-
erable revival of interest in the last years with a vast range
of applications from cosmology to black hole (BH) physics.
A family of vector-tensor theories was also found by

Horndeski [2] as an answer to the analogous question:
What is the most general extension of the Einstein-Hilbert
Lagrangian by a vector field that analogously keeps the
field equation of second order with the additional con-
ditions that gauge invariance is still valid and such that the
electromagnetic equations reduce to Maxwell’s equation in
the absence of gravity? Unlike the scalar-tensor Horndeski
theory, which has a huge freedom, the vector-tensor theory
is essentially unique. It is characterized by a single
interaction term (which we call Horndeski term) between
the geometry and the vector field with a single coupling
constant. The action considered is of the form,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
R −

1

4
FμνFμν −

γκ

4
ðFμνFκλRμν

κλ

− 4FμκFνκRμ
ν þ FμνFμνRÞ

�
; ð1:1Þ

where Fμν is the electromagnetic field strength, and Rμν
κλ is

the Riemann tensor with Rμν
μλ ¼ Rν

λ and Rν
ν ¼ R. We use

κ ¼ 8πG, which we later take to be 1 by rescaling. γ is a
dimensionless parameter that fixes the strength of the
Horndeski nonminimal coupling. The last term Iðg; AÞ
is the nonminimal coupling term of the vector field to the
geometry introduced by Horndeski [2] as the only possible
interaction term that still keeps the field equations of
second order:

Iðg; AÞ ¼ 1

4
��Rμν

κλFκλFμν

¼ −
1

4
ðFμνFκλRμν

κλ − 4FμκFνκRμ
ν þ FμνFμνRÞ;

ð1:2Þ

where ��Rμν
κλ is the doubly dual Riemann tensor. Similarly,

we use the dual field strength �Fμν. Both are defined by
applying appropriately the Levi-Civita tensor,

ffiffiffiffiffiffi−gp
ϵκλμν.
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There are various ways to write down the field equations
derived from (1.1). We use the following form:

∇μðFμν − γκ��Rμν
κλFκλÞ ¼ 0 ð1:3Þ

Gμν þ κTðMaxÞ
μν − γκ2Hμν ¼ 0; ð1:4Þ

where TðMaxÞ
μν is the Maxwell standard contribution of the

energy-momentum tensor and the contribution from the
Horndeski term is

Hμν ¼
1

4
gμν��Rκλ

ρσFκλFρσ −
1

2
ð��Rλμ

ρσFλ
νþ��Rλν

ρσFλ
μÞFρσ

−Rρσ�Fρμ
�Fσνþð∇κ

�Fμ
λÞð∇λ

�Fν
κÞ: ð1:5Þ

In a sharp distinction with respect to the scalar-tensor
Horndeski theory, relatively little effort was invested in its
vector-tensor relative. The first studies of this theory were
naturally done in the static spherically symmetric case,
first by Horndeski himself [3] and then in more detail by
Muller-Hoissen and Sippel [4] who found that the electric
solutions contain deformations of the Reissner-Nordstrom
(RN) solutions, which may be described as Horndeski-
Reissner-Nordstrom (HRN) electrically charged black
holes. Some additional work clarifying open points fol-
lowed several years later [5]. Further work was done
recently in the context of a scalarized version of these
solutions [6].
In a parallel path, the cosmological aspects of this vector-

tensor theory were studied by several authors [7–9] and
others considered also the non-Abelian version [10,11].
The Horndeski nonminimal term (1.2) appears also,

alongside with several other coupling terms, in further
generalized vector-tensor theories [12,13] that break gauge
invariance such as generalized Proca theories [14].
Cosmological solutions [13] as well as spherically sym-
metric solutions and electric BHs [14,15] of these theories
were constructed. Some of the BH solutions were obtained
in a closed analytic form. In this context, it is useful to note
that although the generalized vector-tensor theories that
break gauge invariance apparently contain the vector-tensor
Horndeski theory, they cannot produce in a certain limit
(like the limit of vanishing mass of the generalized Proca
theories) the solutions of the gauge invariant vector-tensor
Horndeski theory.
In this paper, we return to the localized static spheri-

cally symmetric solutions, but now magnetically charged.
Only very little exists in the literature about the magnetic
counterpart of the electrostatic nonminimal BHs men-
tioned above. Perhaps the reason is the experience from
the pure Einstein-Maxwell system where the magnetic
black hole is essentially identical to the Reissner-
Nordstrom solution, although it is obvious that this should
not be the case since the duality symmetry is broken by the
Horndeski term Iðg; AÞ.

The first work about magnetically charged black holes
with the Horndeski nonminimal coupling (MHBH for
short) was a short study in a rather unknown paper by
Horndeski [16] that has accumulated 11 citations to date. In
addition, there are several more recent works [17,18] that
concentrate on the non-Abelian generalization of the
Horndeski vector-tensor theory usually containing a larger
family of nonminimal coupling terms that yield field
equations of order higher than 2. These papers present
self-gravitating magnetic monopoles of the Wu-Yang type
and magnetic BHs with further extensions like adding a
cosmological constant. Some exact solutions have been
found too [19], but they are solutions to some special cases
that do not include the Horndeski coupling.
Here, we revisit the Abelian theory and show that it

deserves further study. A significant part of the study here is
based on the finding that the field equations for the
magnetically charged Horndeski BHs can be casted as
two decoupled linear differential equations that can be
solved analytically.
After completion of this work, I became aware of

Ref. [20], which constructs and studies in the context of
the AdS=CFT correspondence, a general family of vector-
tensor theories with nonminimal coupling terms in arbitrary
number of dimensions that are still gauge-invariant and
produce second order field equations. These theories were
further extended to include also p-form gauge field
strengths. Black hole solutions of this large family of
theories were studied assuming from the outset the pres-
ence of a cosmological constant and extending the horizon
topologies beyond two-sphere to a two-torus and hyper-
bolic two-space. Additional papers followed this route of
general gauge invariant higher dimensional higher curva-
ture theories to various directions like providing consistent
Kaluza-Klein compactifications of Lovelock gravity using
magnetic monopole configurations to dress the internal
manifold of spacetime [21] or construct black hole sol-
utions and regular multihorizon black holes [22]. The
family of these theories has the Horndeski vector-tensor
theory of Eq. (1.1) as a special case, and the results of
Ref. [20] have some overlap with the present paper, in
particular, the explicit exact solution of the magnetic BHs
presented in the next sections and some of their properties.
These solutions appear in a different context and repre-
sentation in Sec. 4.3 of Ref. [20].
After presenting the MHBH solutions in Sec. II, we

discuss in Sec. III their main general characteristics with
respect to the ordinary RN solutions, like horizon pattern,
the relation among the BH mass, charge and horizon, the
temperature, and so on for γ > 0, and then in Sec. IV, for
γ < 0. The geometrical structure of these MHBHs space-
times will be analyzed in Secs. V and VII using timelike
and null geodesics. Light deflection will be studied in detail
in Sec. VII. In addition, the trajectories of charged particles
will be described briefly in Sec. VI.
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Although the basics of the electric counterparts of the
MHBHs have been known for a long time [4], there still
exists a gap to be filled in analogy to the studies of the
above mentioned sections. Section VIII will be therefore
dedicated to first obtaining (numerically) the electric BHs
and then presenting their other characteristics and compar-
ing to the magnetic type of solutions. In Sec. IX, we will
present particle trajectories and light deflection. Section X
will contain the conclusion.

II. THE MODEL: MAGNETIC SPHERICALLY
SYMETRIC SOLUTIONS

We are interested in magnetic spherically symmetric
solutions for the Einstein-Maxwell-Horndeski field equa-
tions (1.3)–(1.4) with (1.5).

A. Ansatz and field equations

In order to obtain static spherically symmetric solutions,
we will adopt a very popular parametrization of the metric,

ds2 ¼ fðrÞa2ðrÞdt2 − 1

fðrÞ dr
2 − r2dΩ2

2; ð2:1Þ

completed by a spherically symmetric magnetic field
derived from the vector potential Aμdxμ ¼Pð1− cosθÞdϕ.
Themagnetic functionPmust be constant sincewe insist on
spherical symmetry. In that case, P is just the magnetic
charge. Without loss of generality, we assume P > 0.
Incidentally, we note that there can be no magnetic charge
in the analogous spherically symmetric solutions of the
generalized vector-tensor theoriesmentioned above [14,15].
Equation (1.3) is thus satisfied trivially, but from Eq (1.4),

or (what is easier), using directly the Lagrangian
ffiffiffiffiffiffi−gp

L, one
finds after some elementary manipulations, the following
two decoupled linear equations:

ðr4 þ γκ2P2Þr a
0

a
þ 3γκ2P2 ¼ 0 ð2:2Þ

ðr4þ γκ2P2Þrf0 þ ðr4−6γκ2P2Þfþ κP2

2
r2−r4 ¼ 0: ð2:3Þ

There exists a third (second order) equation that is not
independent, and we do not present here.
Occasionally, we will use also the accumulated mass

function MðrÞ defined by fðrÞ ¼ 1–2MðrÞ=r.

B. Solutions of the field equations

The equation for the function aðrÞ is easily solved by

aðrÞ ¼
����1þ γκ2P2

r4

����
3=4

; ð2:4Þ

where the integration constant is taken such that aðrÞ → 1
asymptotically. The absolute value is added in order to take

care of the case γ < 0. The second equation is less trivial to
solve, and it is simpler to distinguish between two cases:
γ > 0 and γ < 0.

1. f ðrÞ for γ > 0

For γ > 0, we change variables such that z ¼ γκ2P2=r4

and get for fðzÞ the following linear and quite simple
equation:

4ðzþ 1Þzf0 þ ð6z − 1Þf − pz1=2 þ 1 ¼ 0; ð2:5Þ
where p ¼ P=2γ1=2. Notice that this equation contains a
single free parameter, p, which will be one of the character-
istics of the BH solutions. A second one will be an
integration constant which will determine their mass.
The solution of this equation can be written explicitly

and analytically in terms of the Gauss hypergeometric
functions Fða; b; c; zÞ as (see the Appendix)

fðzÞ ¼ 1

ð1þ zÞ7=4
�
−μz1=4 þ pz1=2F

�
−
3

4
;
1

4
;
5

4
;−z

�

þ F

�
−
3

4
;−

1

4
;
3

4
;−z

��
: ð2:6Þ

The solution is parametrized by the integration constant μ,
which is obviously related to the mass as we see shortly.
The dependence on the nonminimal coupling constant
γ is actually absorbed in the dimensionless parameters μ
and p. In terms of the dimensionless radial coordinate
x ¼ r=ðγ1=4 ffiffiffiffiffiffi

κP
p Þ ¼ z−1=4, the solution reads

fðxÞ ¼ 1

ð1þ 1=x4Þ7=4
�
−
μ

x
þ p
x2

F

�
−
3

4
;
1

4
;
5

4
;−

1

x4

�

þ F

�
−
3

4
;−

1

4
;
3

4
;−

1

x4

��
; ð2:7Þ

and the mass of the MHBH will be obtained from the
asymptotic behavior of fðrÞ:

fðrÞ¼ 1−
2M
r

þ κP2

2r2
−
2γκ2P2

r4
þ7γκ2P2M

2r5
−
4γκ3P4

5r6
þ�� � ;
ð2:8Þ

that is, the coefficient of the 1=r term is related to the
integration constant such that 2M ¼ μγ1=4

ffiffiffiffiffiffi
κP

p
. The

explicit form of fðrÞ is obtained trivially from (2.7):

fðrÞ ¼
�
1þ γκ2P2

r4

�
−7=4

�
F

�
−
3

4
;−

1

4
;
3

4
;−

γκ2P2

r4

�

−
2M
r

þ κP2

2r2
F

�
−
3

4
;
1

4
;
5

4
;−

γκ2P2

r4

��
: ð2:9Þ

As in the electric case, it depends on the two “hairs,”
mass and magnetic charge. Note also that taking γ ¼ 0 in
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the solution, it goes over to the magnetic Reissner-
Nordstrom solution, i.e., the first three terms in the
asymptotic expansion above. For P ¼ 0, the solution
reduces of course to Schwarzschild. Schwarzschild (S)
solution is also a solution of the full system (γ ≠ 0) if there
is no magnetic charge, while the RN solution is not a
solution in any circumstances. Actually, the solution (2.9)
is just a modification of the RN solution by the overall
prefactor ð1þ γκ2P2=r4Þ−7=4 and the hypergeometric func-
tions, which multiply the RN terms.

2. f ðrÞ for γ < 0

For γ< 0, one defines z ¼ jγjκ2P2=r4 and p ¼ P=2jγj1=2
and gets for fðzÞ:

4ð1 − zÞzf0 − ð1þ 6zÞf − pz1=2 þ 1 ¼ 0: ð2:10Þ

The solution is generally singular at z ¼ 1, and the branch
for 0 < z < 1 (which includes the asymptotic region since
r4 ∼ 1=z) is obtained similarly to the case γ > 0 above to be

fðzÞ ¼ 1

ð1 − zÞ7=4
�
−μz1=4 þ pz1=2F

�
−
3

4
;
1

4
;
5

4
; z

�

þ F

�
−
3

4
;−

1

4
;
3

4
; z

��
; ð2:11Þ

and fðxÞ (now x ¼ r=ðjγj1=4 ffiffiffiffiffiffi
κP

p Þ ¼ z−1=4) is

fðxÞ ¼ 1

ð1 − 1=x4Þ7=4
�
−
μ

x
þ p
x2

F

�
−
3

4
;
1

4
;
5

4
;
1

x4

�

þ F

�
−
3

4
;−

1

4
;
3

4
;
1

x4

��
; x > 1: ð2:12Þ

The asymptotic behavior is still given by Eq. (2.8) with
γ ↦ −jγj, and the same goes for the explicit form of fðrÞ,
which is still given by Eq. (2.9). However, there is an
important difference with respect to the γ > 0 solutions,
which is the singularity of Eq. (2.10) and consequently of
the generic solutions at zs ¼ xs ¼ 1 or rs ¼ jγj1=4 ffiffiffiffiffiffi

κP
p

.
This singularity has a significant effect on the solutions
since it is not a coordinate singularity but a “real” curvature
singularity at which the Ricci scalar and the two quadratic
invariants RμνRμν and RκλμνRκλμν all diverge. This means
that the γ < 0 BH solutions are defined outside a spherical
region of a circumferential radius of rs.

3. Adding cosmolgical constant

The cosmological constant modifies the field equations
in a very simple way such that only Eq. (2.3) gets modified
so the two basic Eqs. (2.2)–(2.3) become

ðr4 þ γκ2P2Þr a
0

a
þ 3γκ2P2 ¼ 0 ð2:13Þ

ðr4þ γκ2P2Þrf0 þ ðr4−6γκ2P2Þfþ κP2

2
r2−r4þΛ

2
r6¼ 0:

ð2:14Þ

Thus, only fðrÞ is modified, and the solution is obtained
along the same lines as before to be

fðrÞ ¼
�
1þ γκ2P2

r4

�
−7=4

�
F

�
−
3

4
;−

1

4
;
3

4
;−

γκ2P2

r4

�

−
2M
r

þ κP2

2r2
F

�
−
3

4
;
1

4
;
5

4
;−

γκ2P2

r4

�

−
Λr2

3
F

�
−
3

4
;−

3

4
;
1

4
;−

γκ2P2

r4

��
: ð2:15Þ

The last “cosmological” term of fðrÞ has generally the
ordinary behavior as for γ ¼ 0: Asymptotically, it increases
or decreases as �r2 according to the sign of Λ (or actually
of −Λ). Also, it vanishes at the origin as when the
Horndeski term is absent. Still there are differences, since
unlike the γ ¼ 0 case, it does not have a definite sign for all
r, so it may play a role in the horizon structure, i.e., the
zeroes of fðrÞ. Studying this system for nonvanishing
cosmological constant is outside the scope of this work.
From now on, we will focus on the asymptotically flat
solutions and defer the study of the effect of nonzero
cosmological constant to a future publication.

III. MAIN CHARACTERISTICS OF THE
SOLUTIONS: γ > 0

We start by inspection of the general structure of the
metric components of the solutions. Figure 1 shows profiles
of the metric components for the typical value γ ¼ 1 of the
coupling constant. The upper two panels of the figure show
the common pattern that is found throughout most of
parameter space where γ > 0. In these profile plots, we
rescale the radial coordinate by the length parameter rs, so
we actually use the dimensionless coordinate x ¼ r=rs. In
the next plots, we will rescale the radial coordinate, mass,
and temperature by

ffiffiffi
κ

p
only in order to identify more

clearly the role of each of the mass, magnetic charge, and
horizon separately. Unless ambiguity may occur, we will
use the same symbols for the unrescaled as well as rescaled
quantities of both kinds.
First we note that the function fðrÞ vanishes at the

origin, unlike the RN case. This is a direct result from
the modification of the RN solution by the hypergeometric
factors. It is obvious that away from the origin and
asymptotically, the behavior is similar to RN, but near
the origin, the behavior is modified drastically. A straight-
forward calculation yields the following expansion
near the origin: fðrÞ ¼ r2=8γκ − r4=2γðκP0Þ2 þ � � �. In
order to understand better the behavior near the origin,
we expand also the mass function MðrÞ and find
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MðrÞ ¼ r=2 − r3=ð16γκÞ þ � � �, which implies Mð0Þ ¼ 0.
So, it seems that these BHs do not have a point mass at
r ¼ 0. Still, the origin is a point of curvature singularity at
which the Ricci scalar and the two quadratic invariants
RμνRμν and RκλμνRκλμν all diverge. The reason for this
singularity is the diverging mass density, which behaves
near the origin like T0

0 ¼ 1=κr2 þ � � �.
Second, we turn to study the horizon structure of the

solutions. In addition to the zero at the origin, fðrÞ may
have two nodes for r > 0 or no nodes, and in between,
there is the special (“extremal”) case where the two nodes
degenerate to one. The metric component g00ðrÞ has similar
behavior to the corresponding RN metric, so generally, the
horizon structure is similar to RN. The nodeless solutions
violate cosmic censorship and will be usually discarded.
Figure 2 summarizes the general dependence of the points
where fðr0Þ ¼ 0 on the mass and magnetic charge. Note
that the function is doubly valued. The larger of the two
zeroes (when they exist) is of course the event horizon of
the black hole, which we will denote by rH. Otherwise, we
have naked singularities. The special value of r0 where the

two zeroes merge corresponds to the extremal BH. From
the fact that for an extremal BH, both fðrÞ and f0ðrÞ vanish
at r0, it can be deduced that the extremal BH radius is
determined by the magnetic charge as rext ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP2=2

p
as in

the RN case. Unlike the RN case, the extremal mass is not
equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP2=2

p
. It is smaller as seen, e.g., from the

extremal mass value cited in Fig. 1, which is smaller
than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP2=2

p
.

The simplest method to obtain all those results is to get
from the equation fðr0Þ ¼ 0 an explicit expression for
Mðγ; P; r0Þ:

Mðγ; P; r0Þ ¼
r0
2
F

�
−
3

4
;−

1

4
;
3

4
;−

γκ2P2

r40

�

þ κP2

4r0
F

�
−
3

4
;
1

4
;
5

4
;−

γκ2P2

r40

�
: ð3:1Þ

Differentiating Mðγ; P; r0Þ with respect to r0 [using (A5)]
in order to find the extremal point gives directly the linear

FIG. 1. Upper part: Profiles of g00ðrÞ and of fðrÞ ¼ −1=grrðrÞ for γ ¼ 1 and P ¼ 8 for several values of the dimensionless mass
parameter: 2M=rs ¼ μ ¼ 2; 3; 3.988 (for the extremal solution), 4.5, 5.5, 6.5. The mass increases in a “spectral order” from red to blue,
or lower curves correspond to larger mass. The two smaller mass naked singularity solutions are unphysical. Lower part: Profiles of
negative mass BHs, which appear for small P (see text). The μ values are μ ¼ −1.390 (extremal), −1.2;−1.0;−0.75;−0.5;−0.25, 0.
Note especially the decreasing g00ðrÞ beyond the maximum. The radial coordinate is rescaled as r=rs.
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relation rext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP2=2

p
(or xext ¼ p1=2). Substituting this

relation back in Eq. (3.1) yields the equation for the
extremal mass curve in the P-M plane:

Mextðγ; PÞ ¼
ffiffiffiffiffiffiffiffi
κP2

8

r �
F

�
−
3

4
;−

1

4
;
3

4
;−

4γ

P2

�

þ F

�
−
3

4
;
1

4
;
5

4
;−

4γ

P2

��
: ð3:2Þ

It is quite easy to see from this expression thatMextðγ; PÞ is
always (for γ > 0) smaller than the corresponding RN
value and that the difference decreases with increasing
magnetic charge.
We find it illuminating to add the other two sections of

the three-dimensional surface of Fig. 2, which are presented
below in Fig. 3.
A new feature of this Einstein-Maxwell-Horndeski

system is the existence of BH-like solutions with negative
mass as is obvious from the lower two panels of Fig. 1 and
from both parts of Fig. 3. Of course, M ¼ 0 RN or S
solutions exist too, but they have naked singularities. As
opposed to RN, in the present circumstances, if the
magnetic charge is small enough, the singularity is hidden
by the two horizons as seen also at the lower left corner of
Fig. 2—where it is obvious that a whole line in the P-r0
plane withM ¼ 0 exists. Moreover,M ¼ 0 is not a limiting

case, but it can be crossed, and a new type of solutions
appears that have the same horizon structure (inner and
outer) but presenting a negative mass. This is clearly
reflected in the g00ðrÞ metric component of Fig. 1, which
asymptotically decreases with r. So, these solutions have a
repulsive gravitational field. This of course has no analog in
the RN solution where the horizon structure is determined
by the mass and charge such that M should be not only
positive, but also larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP2=2

p
. In the present case,

there is an additional Horndeski contribution to the
extremal mass, and it is easy to see that it is negative
and its absolute value increases with γ.
The domain where negative BH masses are possible can

be obtained from Eq. (3.2) for the extremal mass by the
condition Mext < 0. This translates to a transcendental
algebraic equation in the sum of the two hypergeometric
functions, which gives the maximal γ-dependent value of P
where negative mass BHs are possible, to satisfy 4γ=P2 ¼
25.61190. This means that negative mass BHs can be found
for magnetic charges of 0 < P < 0.395193γ1=2. Note that
for any P in this interval, the BH masses may be negative,
but they are still bounded from below. P ¼ 0 is a singular
limit in the sense that it corresponds to the S case
where Mðr0Þ ¼ r0=2.
Next, we turn to the temperature of these black holes, for

which we adopt the conventional definition [23] in terms of
the surface gravity K: T ¼ K=2π. In the static spherically

FIG. 2. Left: Dependence of r0 on the mass and magnetic charge for γ ¼ 1. Right: Sections of the surface at several values ofM in even
intervals from M ¼ 0 to M ¼ 8. The mass values increase in a “spectral order” from red to violet. The radial coordinate and the mass
here are rescaled by

ffiffiffi
κ

p
.
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symmetric case with our parametrization, the temperature
is given by Tðγ; P; rHÞ ¼ aðrHÞf0ðrHÞ=ð4πÞ, and by using
the field equations, we find the explicit result,

Tðγ; P; rHÞ ¼
r2H − κP2=2

4πr2Hðr4H þ γκ2P2Þ1=4 : ð3:3Þ

First we note that the extremal BHs have zero temperature
as usual. We also can check that when the BH is not
magnetically charged, we get back the Bekenstein-Hawking
temperatureT ¼ 1=4πrH. More generally, we can learn how

the BH temperature depends on the mass and magnetic
charge from Fig. 4. The function Tðγ; P;MÞ cannot be
written down explicitly, so the best we can do is to use the
parametric representation ðMðγ; P; rHÞ; Tðγ; P; rHÞÞ with
rH as a parameter. The most prominent feature of all curves
is the existence of amaximal temperature, verymuch like the
behavior of the RN BH. However, while the maximal RN
temperature is inversely proportional to themagnetic charge,
in the presence of the Horndeski term, it is not exactly∼1=P
for all P, although the difference is quite small, and the
behavior becomes 1=P asymptotically.

FIG. 3. The two other sections of the surface in theM − P − r0 space of Fig. 2. Left: r0-M section for several values of P. Right: P-M
section for several values of r0. Note the negative mass region near the origin in both plots. The black dashed curve in the left panel (the
insert) corresponds to the S case P ¼ 0. The radial coordinate and the mass here are rescaled by

ffiffiffi
κ

p
.

FIG. 4. The BH temperature as a function of the BH mass for several values of the magnetic charge. All curves start at the extremal
BHs where T ¼ 0. The dashed line in the LHS panel corresponds to the S BH. The line in the RHS panel corresponds to Eq. (3.2).
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This brings us to the final point, which is the effect of
varying the nonminimal coupling parameter γ. It has of
course a decisive effect, but technically, it is quite simple to
understand since most of it is realized through a scaling
behavior, which originates from the fact that there are
actually two independent free parameters that determine
the solutions: μ and p. So, the effect of γ is done only
through these two parameters. One example of the scaling
behavior can be seen in Eq. (3.2) for the extremal mass
whereMextðγ; PÞ depends on γ through the ratio γ=P2. This
scaling behavior is not valid for vanishing magnetic charge,
but we may exclude this case in the present discussion since
we know already that P ¼ 0 gives the Schwarzschild (S)
solution for vanishing as well as for nonvanishing γ.
The same can be done for the temperature if we use the

radial coordinate ξ ¼ r=rext ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=κP2

p
. Then, we can

write the temperature as

Tðγ; P; ξHÞ ¼
ffiffiffi
2

p

4π
ffiffiffiffiffiffiffiffi
κP2

p ξ2H − 1

ξ2Hðξ4H þ 4γ=P2Þ1=4 : ð3:4Þ

So here too, most of the effect of increasing γ can be done
also by decreasing the magnetic field and keeping γ fixed—
of course, as long as it stays finite.

IV. MAIN CHARACTERISTICS OF THE
SOLUTIONS: γ < 0

The nature of the solutions for γ < 0 is quite different
from that of γ > 0, although some similarities do exist. One
similarity is the fact that the mass function is still given
by Eq. (3.1) and rext ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP2=2

p
still plays the role of the

horizon of the Extremal BHs, although the opposite sign
changes the behavior noticeably. As for other differences,
first we mention again the fact that the γ < 0 solutions are
well-defined only outside the singular sphere at r ¼ rs. A
direct consequence from this condition is that the horizon
size must always be larger than rs, so it seems that γ < 0

RN-like BH solutions (see below) are more constrained due
to the additional condition rext ≥ rs which in terms of P,
reads P=2jγj1=2 ¼ p ≥ 1.
Next, we present in Fig. 5 typical profiles for the same P

and jγj as in Fig. 1 and notice immediately that whereas the
γ > 0 BHs all have a RN-like behavior [two horizons and
g00ðrÞ → ∞ as r decreases], the γ < 0 ones are split
between RN-like behavior for small masses and S-like
behavior [single horizon and g00ðrÞ → −∞ as r decreases]
for large masses. Moreover, g00ðrÞ diverges on the singular
sphere r ¼ rs. In between, there exists a solution that seems
totally finite and regular for all r > 0. However, this
solution too suffers from the same curvature singularity
at r ¼ rs as the calculation of the curvature invariants
shows immediately. The “culprit” is of course the function
a2ðrÞ, which for γ < 0, is differentiable only once at r ¼ rs.
We also note that the extremal solution has its double zero
at the same point as for γ > 0, but the mass parameter is
higher. Indeed, in these two figures, the mass parameter
is close to μ ¼ 4, but it is a result of the large P behavior of
the function Mextðγ; PÞ in Eq. (3.2). The general pattern
is that for γ < 0, the extremal masses are also larger than
the RN bound of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP2=2

p
. This is in accord with the

previous observation that increasing γ tends to decrease
the BH mass.
The same function of (3.2) can give an additional view

on the fact that the RN-like solutions exist in a limited
domain in parameter space: First of all, we recall that
Mextðγ; PÞ is defined for RN-like solutions only. It says
nothing about S-like ones. Second, Mextðγ; PÞ is defined
(actually, is real) only for −4γ=P2 < 1, which for γ < 0, is
the same as p > 1. So extremal RN BHs can exist for
p > 1 only. The condition p < 1 is realized by the S-like
BHs. In other words, if p < 1, all BH solutions are
S-like. This points up to another special feature of these
S-like BHs: Since the horizon size cannot be arbitrarily
small, there is a lower bound on the mass of the S-like BHs
with a given P provided also that P < 2jγj1=2:

FIG. 5. Profiles of g00ðrÞ and of fðrÞ ¼ −1=grrðrÞ for γ ¼ −1 and P ¼ 8 and several values of the mass parameter: μ ¼ 2.5, 4.013
(the extremal solution), 4.5, 4.603 (the intermediate solution), 5, 6.
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MðSÞ
minðγ; PÞ ¼ Γ

�
7

4

�
jγj1=4

ffiffiffiffiffiffi
κP

p �
Γð3=4Þffiffiffi

π
p þ Γð5=4ÞP

4jγj1=2
�
;

P < 2jγj1=2: ð4:1Þ

This is the analog of the S-like BHs to the extremal mass
given by Eq. (3.2).
To return to p > 1, this is not a sufficient condition to

have RN-like solutions. The reason is more obvious from
Fig. 6, which presents the dependence of the BH mass and
magnetic charge on the zeroes r0 of the metric components.
Notice the “forbidden zone” bounded by the curvature
singularity. Inspecting the left-hand-side panel of Fig. 6, we
can see that above the p ¼ 1 line, the curves ofMðγ; P; r0Þ
develop a minimum (at a certain r0), but unlike the RN
case, where for each M, there are two values of r0, in the
present case, there is an additional upper bound, say
Minterðγ; PÞ, above which all BH solutions will have a
single zero. This Minterðγ; PÞ is the mass where the curve
Mðγ; P; r0Þ crosses the line of curvature singularity. For the
case depicted in Fig. 5 with p ¼ 4, the corresponding mass
parameter is μinter ¼ 4.603, which determines the inter-
mediate solution shown in the figure. So, RN-like solutions
exist only for masses Mextðγ; PÞ < M < Minterðγ; PÞ. If
M > Minterðγ; PÞ, there exist only S-like BHs, as is seen
clearly in Fig. 5.
Notice also in Fig. 6 the region of small M and P where

only one zero exists for eachM and P. This is the region of
p < 1 where all BHs are S-like. We did not include a figure

containing profiles corresponding to this case. They are
similar to those of the lower curves of Fig. 5.
Also obvious from these plots [and from direct study

of (3.1) for γ < 0] is that no negative mass BHs exist
for γ < 0.
Next, we move to the temperature, which is obtained

similarly to (3.3) as

Tðγ < 0; P; rHÞ ¼
r2H − κP2=2

4πr2Hðr4H − jγjκ2P2Þ1=4 : ð4:2Þ

Of course, in order to stay away from the singularity at
r ¼ rs, we have to assume rH > rs
We expect to find for the temperature two different types

of behavior corresponding to the two types of γ < 0 BH
solutions, and indeed, this is the case as demonstrated by
Fig. 7, which presents the mass dependence of the temper-
ature for several values of P. For large enough magnetic
charge, the temperature behaves similarly to the γ > 0 RN-
like case: It starts with TðrextÞ ¼ 0, rises to a maximum,
and then decreases monotonically, asymptotically to zero.
For the smaller values of P, no extremal BHs exist since the
BH solutions are S-like. Thus, the temperature is always
strictly positive and generally decreases with M. The
decrease is monotonic for small enough P, while some
“spikes” develop for higher values of P, which are still too
small to allow for extremal BHs, i.e., still p < 1. These
“spikes” are not singularities, but very narrow minima.
However, the temperature diverges as rH↓rs, or rather
as M↓Mðγ < 0; P; rsÞ.

FIG. 6. BH mass and magnetic charge versus r0 for γ ¼ −1 and several values of P and M, respectively. The line at the left in each
panel represents the curvature singularity, which is located at x ¼ r=ðγ1=4 ffiffiffiffiffiffi

κP
p Þ ¼ 1.
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By comparison with Fig. 4, we find that for the same
values of mass and charge, the temperatures of the γ < 0
RN-like BHs are very close to the γ > 0 ones but not
identical.

V. GEODESICS OF NEUTRAL PARTICLES

The trajectories xμðτÞ of test particles around the
magnetic BH are determined by the Lagrangian,

L ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fðrÞ_t2 − _r2=fðrÞ − r2ð_θ2 þ sin2 θ _ϕ2Þ

q

− qPð1 − cos θÞ _ϕ; ð5:1Þ

where τ is proper time and q the test charge.
First, we concentrate on the geodesic equations for

neutral particles (q ¼ 0; either timelike or null). In a static
spherically symmetric spacetime, the motion is planar, and
without loss of generality, the orbital plane can be taken as
θ ¼ π=2. The equations of motion may be reduced to the
two following first order equations, which we write for
the dimensionless radial coordinate xðτÞ ¼ rðτÞ=rs and the
azimuthal angle ϕðτÞ as

x2 _ϕ ¼ l; _x2 þ fðxÞ
�
ϵþ l2

x2

�
−

E2

a2ðxÞ ¼ 0: ð5:2Þ

The parameter ϵ takes the value 1 for timelike geodesics of
massive particles, but it may cover also null geodesics of
massless particles if ϵ ¼ 0 and an affine parameter is used
instead of proper time. The parameters l and E are the

rescaled conserved angular momentum and energy of the
particle. The two terms in the radial equation act as an
effective potential (we omit the factor of 2 from classical
mechanics) VeffðxÞ, which is very useful to classify the
possible orbits and trajectories:

VeffðxÞ ¼ fðxÞ
�
ϵþ l2

x2

�
−

E2

a2ðxÞ : ð5:3Þ

First, we notice that the energy (squared) does not appear
here as an additive constant but as a parameter in the
effective potential. The “effective energy” of the trajectories
is always zero. Still, E2 controls the large distance behavior
of the trajectories similarly to the more well-known
cases of S and RN where aðxÞ ¼ 1 since asymptotically,
VeffðxÞ → ϵ − E2. Thus, for E2 ≥ ϵ, there will be open
trajectories; i.e., they can reach x → ∞. If E2 < ϵ, the
motion is bounded by a maximal radial distance since the
radial velocity vanishes at some finite value of x. This last
condition cannot be realized for light (ϵ ¼ 0), so light rays
are open, except in the special case (if it exists) of circular
motion (_xðτÞ ¼ 0). These general two types do not exhaust
all possibilities. For that, one has to analyze the effective
potential in more detail.
The explicit form of VeffðxÞ is obtained by substitution

of Eq. (2.7) or (2.12) according to the sign of γ and
the rescaled version of (2.4) into (5.3). We will start with
γ > 0 and return to the γ < 0 trajectories at the end of
this section. An asymptotic expansion of VeffðxÞ supports
the large distance behavior, which was described above:
VeffðxÞ ¼ ϵ − E2 − ϵμ=xþ ðϵpþ l2Þ=x2 þ � � �. We also
notice that for small values of E and l, the effective
potential for particles (ϵ ¼ 1) is generally similar in shape
to that of fðxÞ, except near the origin where there is
similarity only for vanishing l. This may be more evident
from the expansion for small x: VeffðxÞ ¼ pl2=4þ
ðϵp − 2l2Þx2=4þ � � �. From this, we also see that
Veffð0Þ is a local maximum for null geodesics and for
particles with l2 > p=2 and a local minimum if l2 < p=2.
The classification of all the possible motions is straight-

forward by inspection of the curves of Veff and their
dependence on l and E. Figure 8 demonstrates the main
features of the effective potential by showing VeffðxÞ for
massive particles (ϵ ¼ 1) with some representative choices
of the parameters. Generally speaking, the number of
extremal points of VeffðxÞ is determined by l, while the
number of its zeroes is determined by E. Still, these two
factors are not completely decoupled, and E plays also a
role on the shape of VeffðxÞ. As mentioned above, the
character of the trajectories is determined mainly by
the asymptotic value of VeffðxÞ, which is 1 − E2, and by
the height of the centrifugal barrier, which appears for
sufficiently large l. If E2 > 1, the trajectories are open, i.e.,
can reach x → ∞. However, the open trajectories fall
further into two subfamilies: If the centrifugal barrier is

FIG. 7. The BH temperature as a function of the BH mass for
several values of the magnetic charge. Notice the two different
types of behavior: The RN-like curves start at the extremal BHs
where T ¼ 0, attain a maximum, and decrease. The others
correspond to the small P S-like BHs. The “spikes” are not
singularities, but they look like that because of resolution. The
dashed line corresponds to the Schwarzschild BH.
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high enough (large enough l), they are “hyperbolic”; i.e., a
test particle comes from x → ∞ and returns to x → ∞ after
reflection from the centrifugal barrier at the “periastron” at
x ¼ xp. If the centrifugal barrier is not high enough, the
trajectories will be infalling; i.e., the test particle will pass
over the centrifugal barrier and will disappear beyond the
horizon. If E2 < 1, the motion is bounded since the radial
velocity vanishes at some finite value of x. Again, the same
two possibilities appear: If the centrifugal barrier is high
enough, ordinary “elliptic” orbits exist. In the opposite case
there, will be no “periastron” and no bound states.
In order to analyze the detailed shape of VeffðxÞ, we

obtain an expression for V 0
effðxÞ, which we write in terms of

fðxÞ by use of its differential equations and the explicit
form of aðxÞ:

V 0
effðxÞ¼−

ðl2þ ϵx2Þðp−x2Þ
xðx4þ1Þ

−
fðxÞ
x3

�ðx4−6Þðl2þ ϵx2Þ
x4þ1

þ2l2

�
−

6E2x5

ðx4þ1Þ5=2 :

ð5:4Þ
The location of the zeroes of this expression cannot be
obtained by a general simple formula as a function of the
four parameters p, μ, E, and l for both values of ϵ. It may
be done indirectly from the implicit relation V 0

effðx⋆Þ ¼ 0

between these quantities. One direct path is to get E2 as a
function of p, μ, l, and the location of the extremal
point x⋆:

E2 ¼ 1

6
ðx4⋆ þ 1Þ3=2

�
ϵ

x2⋆
þ l2 − ϵp

x4⋆
−
pl2

x6⋆
−
fðx⋆Þ
x2⋆

×

�
ϵþ 3l2

x2⋆
−
6ϵ

x4⋆
−
4l2

x6⋆

��
: ð5:5Þ

Wewill limit our study to BH solutions; i.e., we exclude the
solutions where fðxÞ does not vanish for 0 < x < ∞. In
terms of the mass and magnetic charge, we exclude the
region below the line,

μextðpÞ¼p1=2

�
F

�
−
3

4
;−

1

4
;
3

4
;−

1

p2

�
þF

�
−
3

4
;
1

4
;
5

4
;−

1

p2

��

ð5:6Þ
which is the dimensionless form of Eq. (3.2). See also the
RHS of Fig. 3. Therefore, for a given BH characterized by
the two parameters p and μ, Eq. (5.5) becomes a relation
between the three other quantities, l, E, and x⋆, which, in
principle, can be used to give x⋆ for any trajectory
determined by fixed values of l and E. Of course, there
may be more than one extremal point and more than one
kind of extremum. In order to infer their nature, we
calculate the second derivative at the extremal point,
V 00
effðx⋆Þ, which we write as a ratio:

V 00
effðx⋆Þ ¼ Ξðx⋆Þ=ϒðx⋆Þ;
Ξðx⋆Þ ¼ 6E2x6ðð3ðx4⋆ þ 6Þx4⋆ þ 8Þfðx⋆Þ

− pð3x4⋆ þ 2Þx2⋆ þ x8⋆Þ
− 2ϵðx4⋆ þ 1Þ5=2ðx2⋆fðx⋆Þðpð3x4⋆ − 14Þ
þ ð12 − 5x4⋆Þx2⋆Þ þ 3ðx8⋆ þ 2x4⋆ þ 8Þf2ðx⋆Þ
þ 2x4⋆ðp − x2⋆Þ2Þ;

ϒðx⋆Þ ¼ x2⋆ðx4⋆ þ 1Þ7=2ðð3x4⋆ − 4Þfðx⋆Þ þ x2⋆ðp − x2⋆ÞÞ:
ð5:7Þ

The line V 00
effðx⋆Þ ¼ 0 separates between the minima

(V 00
effðx⋆Þ > 0) and maxima (V 00

effðx⋆Þ < 0) and is described
by the following relation at the E − x⋆ plane, which is
obtained directly from Eq. (5.7):

FIG. 8. The effective potential for particle trajectories around one of the γ > 0magnetic HBH solutions presented in Fig. 1 for E2 > 1

and E2 < 1, which correspond to unbounded or bounded trajectories, respectively. The rescaled angular momentum are l ¼ 5, 6.75, 7.5,
8.25, 9, 10. The inserts show a “zoom out” of the vicinity of the origin where VeffðxÞ tends to a constant as x → 0, unlike the RN case,
where it diverges. Notice that most of this domain lies within the event horizon, which for this case, is at xH ¼ 3.29.
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E2ðV 00
effðx⋆Þ ¼ 0Þ

¼ ϵðx4⋆ þ 1Þ5=2ð2x4⋆ðp − x2⋆Þ2 þ x2⋆ðpð3x4⋆ − 14Þ − x2⋆ð5x4⋆ − 12ÞÞfðx⋆Þ þ 3ðx8⋆ þ 2x4⋆ þ 8Þf2ðx⋆ÞÞ
3ð3ðx4⋆ þ 6Þx4⋆ þ 8Þx6⋆fðx⋆Þ þ 3x8⋆ðx6⋆ − pð3x4⋆ þ 2ÞÞ : ð5:8Þ

Figure 9 encapsulates what is going on. We plot the E − x⋆
contours of several of l for one of the BH solutions, which
appear in the previous sections. For a given l, there exists a
curve (single branched or double branched), which may be
crossed by the line of constant E once or in three points
and a degenerate possibility of two times exists as well.
These points represent the minima or maxima of VeffðxÞ,
which alternate such that the largest is always a minimum
if μ > 0 where VeffðxÞ is attractive. For the BH solutions
with μ < 0, the exterior extremum is a maximum, and
the gravitational field is accordingly repulsive. The line
E2ðx⋆Þ of Eq. (5.9) is the black thick line in the left panel
of Fig. 9.
This plot shows quite an involved structure, but we will

limit the present discussion to the trajectories, which are
always outside the event horizon, i.e., those which perform
radial oscillations around the most exterior minimum of
VeffðxÞ or make scattering trajectories with a minimal
distance from the BH. Positive mass MHBHs will allow
both kinds of trajectories for massive particles, but only the
“hyperbolic” ones for light. Similarly, negative mass
MHBHs will allow only “hyperbolic” trajectories. On

the other hand, Fig. 9 demonstrates also that above a
certain energy, all trajectories cross the event horizon.
An important special case is the case of circular orbits.

The circular orbits exist if VeffðxcÞ ¼ V 0
effðxcÞ ¼ 0 is

satisfied. These two equations may be solved explicitly
such that for particles (ϵ ¼ 1), we obtain the energy and
angular momentum as a function of the orbital radius xc,

E2
c ¼

2ðx4c þ 1Þ5=2f2ðxcÞ
x6cðð3x4c þ 2ÞfðxcÞ þ x2cðp − x2cÞÞ

;

l2
c ¼ −

x4cðx2cfðxcÞ þ p − x2cÞ
ð3x4c þ 2ÞfðxcÞ þ x2cðp − x2cÞ

; ð5:9Þ

provided the two following additional conditions are also
satisfied:

ð3x4cþ2ÞfðxcÞþx2cðp−x2cÞ> 0; x2cfðxcÞþp−x2c < 0:

ð5:10Þ

However, for photons (ϵ ¼ 0), the two equations for E2 and
l2 become homogeneous, so only their ratio can be

FIG. 9. The relation between the extremal locations of VeffðxÞ and E for several values of l. Left: ordinary MHBHs with the same l
values as in Fig. 8 (with one addition): l ¼ 0, 5, 6.75, 7.5, 8.25, 9, 10. Right: negative mass MHBH solutions with l ¼ 0.1, 2, 3, 4, 5, 6.
The curves correspond to both maxima and minima of VeffðxÞ. The maxima and minima alternate, but their nature can be inferred from
the fact that the most exterior one (largest x⋆) is always a minimum if μ > 0 and maximum if μ < 0. The black thick and dashed lines in
the left panel separate between the regions with V 00

effðx⋆Þ > 0 and V 00
effðx⋆Þ < 0. The shaded region indicates the event horizon. The

innermost extrema at x ¼ 0 are not shown.
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expressed in terms of xc and xc itself, which we designate
here: x0c should satisfy the additional condition,

ð3ðx0cÞ4 þ 2Þfðx0cÞ þ ðx0cÞ2ðp − ðx0cÞ2Þ ¼ 0: ð5:11Þ

As usual, these circular orbits are unstable.
The other light trajectories are obtained easily from the

effective potential for photons, i.e., Eq. (5.3) with ϵ ¼ 0.
The main difference with respect to particles is that VeffðxÞ
is asymptotically decreasing to the negative value of −E2,
while its only minimum is inside the horizon. Thus, for
photons, there are no closed (“bound”) orbits outside the
horizon. The general shape of VeffðxÞ is very similar to that
of the left panel of Fig. 8, which corresponds to open
trajectories.
Finally, we turn to the geodesics around the γ < 0

MHBHs for either massive particles or light. The main
new feature of these black holes is the appearance of
curvature singularity at r ¼ rs inside the horizon. On the
other hand, outside the horizon the metric tensor in this
case is quite similar to theM > 0 ones for γ > 0 and thus,
also the effective potential VeffðxÞ. The particle trajecto-
ries are determined by an effective potential, which looks
like that in Fig. 8, differing mainly in that VeffðxÞ does not
tend to a positive constant at the origin but diverges as
r → rs. Outside the horizon, the pattern is conventional:
The timelike geodesics are either closed for E < 1 or open
for E > 1. The geodesics of this second kind can be either
“hyperbolic” or absorbed by the BH after coming from
spatial infinity with small enough angular momentum.
For null geodesics, we also have a similar pattern as for

γ > 0: either unstable circular orbits, or more typically,
open trajectories.

VI. TRAJECTORIES OF CHARGED PARTICLES

Charged particles “feel” also the magnetic field of the
Horndeski magnetic BH, so they do not follow geodesics
but rather different trajectories that are described by
solutions of the equations of motion, which are derived
from the general Lagrangian (5.1) for q ≠ 0.
It is obvious that the additional magnetic force does not

allow planar trajectories. However, since the system is still
spherically symmetric, a conserved angular momentum still
exists with the following components:

J1 ¼ −mr2ð_θ sinϕþ _ϕ sin θ cos θ cosϕÞ þ qP sin θ cosϕ

J2 ¼ mr2ð_θ cosϕ − _ϕ sin θ cos θ sinϕÞ þ qP sin θ sinϕ

J3 ¼ mr2 _ϕsin2θ þ qP cos θ: ð6:1Þ

Since the three components are conserved, the axes may
be rotated such that J1 ¼ J2 ¼ 0 and only J3 is nonzero.
From this follows the constraint _θ ¼ 0, and also the

constant value of the polar angular coordinate is found
to be cos θ0 ¼ qP=J3.
The equations of motion turn out to be a slight modifi-

cation of Eqs. (5.2) for the same variables xðτÞ and ϕðτÞ:

x2 _ϕ¼J ; _x2þfðxÞ
�
ϵþJ 2sin2θ0

x2

�
−

E2

a2ðxÞ¼0; ð6:2Þ

where J is the rescaled total angular momentum.
So formally, one may obtain the radial component
of the motion of charged particles, xðτÞ by replacing l ↦
J sin θ0 in the solutions of Sec. V. However, the solutions
are obviously significantly different physically, since they
are not planar but confined to a conical-like surface whose
apex is at r ¼ 0. For example, the circular orbits discussed at
the end of Sec. V translate simply to the case of q ≠ 0.
However, these circular orbits do not have their center at
r ¼ 0, and xc is not the dimensionless coordinate radius but
the radial distance from the origin.

VII. LIGHT DEFLECTION

Frequently, it is the shape of particle trajectories around
BHs that is more interesting than the time dependence since
it usually used for calculating observable quantities like
light deflection and perihelion precession. The shape, xðϕÞ,
is determined by transforming the second (radial) equation
of (6.2) for xðτÞ into an equation for xðϕÞ using the first
equation of (6.2). This gives

ðx0Þ2þUðqÞ
eff ðxÞ¼ 0;

UðqÞ
eff ðxÞ¼

x4

J 2
VðqÞ
eff ðxÞ¼ fðxÞ

�
ϵx4

J 2
þ sin2θ0x2

�
−
E2

J 2

x4

a2ðxÞ ;

ð7:1Þ

where x0 ¼ dx=dϕ, and VðqÞ
eff ðxÞ is the effective potential for

charged particles appearing in (6.2).
Following the standard procedure, we will make

a further change of variables to obtain an equation for
sðϕÞ ¼ 1=xðϕÞ:

ðs0Þ2þWðqÞ
eff ðsÞ¼ 0;

WðqÞ
eff ðsÞ¼VðqÞ

eff ð1=sÞ=J 2

¼ fð1=sÞ
�

ϵ

J 2
þ sin2θ0s2

�
−

E2=J 2

a2ð1=sÞ :

ð7:2Þ

Here, we will study only null geodesics of neutral
particles (i.e., light rays), so we will use only UeffðxÞ ¼
Uðq¼0Þ

eff ðxÞ andWeffðsÞ ¼ Wðq¼0Þ
eff ðsÞ with θ ¼ π=2 and J ¼

l and later take ϵ ¼ 0.
In order to calculate the deflection of a neutral particle

trajectory by the MHBH, we need to calculate the angle
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2Δϕ between the outgoing asymptotical direction of a
“hyperbolic” trajectory and its asymptotic incoming direc-
tion. The deflection angle ψ is just given by ψ ¼ 2Δϕ − π.

The angle 2Δϕ is calculated simply as twice the angle
between the point of closest approach (“periastron”) and
the asymptotic outgoing (or incoming) direction:

Δϕ ¼
Z

sp

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Wðq¼0Þ

eff ðsÞ
q ¼

Z
sp

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1=spÞðϵ=l2 þ s2pÞ a

2ð1=spÞ
a2ð1=sÞ − fð1=sÞðϵ=l2 þ s2Þ

q ; ð7:3Þ

where sp¼1=xp corresponds to the point of closest ap-
proach located at the coordinate distance xðϕ¼0Þ¼xp. We
also expressed the energy parameter E in terms of the other
relevant parameters by using the equation WeffðspÞ ¼ 0.
In order to calculate Δϕ, we have to substitute in (7.3)

the explicit expressions for the MHBH metric functions
given in Eqs (2.4) and (2.9) [or rather their dimensionless
versions—see (2.7)]. However, it seems that expressing the
integral expression for Δϕ in terms of elementary functions
is not possible, not even for massless particles for which the
right-hand side of (7.3) simplifies considerably.
What is found to be possible is expressing the deflection

angle for massless particles (i.e., light; ϵ ¼ 0) as a series
expansion in powers of the dimensionless inverse “periastron”
distance sp ¼ 1=xp as can also be done for the S solution.
An elementary but lengthy calculation gives the follow-

ing expansion up to third order for the deflection angle for
light:

ψðμ;p;spÞ¼ 2μspþ
��

15π

16
−1

�
μ2−

3πp
4

�
s2p

þ
��

61

12
−
15π

16

�
μ3−

�
7−

3π

4

�
μp

�
s3pþ��� ;

ð7:4Þ

we notice that the p → 0 limit yields the usual schwarzs-
child result.
It is quite simple to integrateEq. (7.3) numerically (also for

ϵ ¼ 0) and to present sections of the three-variable function
ψðμ; p; spÞ. Figure 10 depicts a representative portion of this
function for γ > 0. The diverging behavior of the deflection
angle is another aspect of the existence of the photon sphere
around the MHBHs. For small angles, the behavior is very
well approximated by the expansion (7.4). The negative
deflection angles for the negative mass solutions are of
course a result of the gravitational repulsion in this case.
As before, the results for light deflection around γ < 0

MHBHs are very similar to the case of γ > 0. We also
found that the power expansion (7.4) for the deflection
angle does not depend on the sign of γ up to third order and
is valid as is for γ < 0 as well. A difference between the two
signs appears only in the fourth order. The only significant
difference is for small p, where there exist negative mass
BHs for γ > 0 but not for γ < 0. This means that the light
deflection by γ < 0 MHBHs is depicted to a very good
approximation by the left panel of Fig. 10 only.

VIII. COMPARISON WITH THE ELECTRIC
BLACK HOLES

The electric type of the vector-tensor Horndeski
black holes (EHBH) were constructed (numerically) and

FIG. 10. The dependence on the inverse of the “periastron” coordinate of light deflection angle from typical MHBHs with large (left)
and small (right) magnetic charges and several values of mass. γ > 0. The parameters include: left: p ¼ 4, μ ¼ 3.988 (extremal BH), 4.5,
5, 6, 7, 8, 9; Right: p ¼ 0.1, μ ¼ −1.390 (extremal), −1, −0.5, 0, 0.5, 1, 1.5. Notice that for negative mass, the deflection angles are
negative for large “periastron” (small sp).
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discussed already from several aspects [4–6]. Still, it is of
interest to compare them on the same basis with their
magnetic counterparts. In this section, we will present
briefly the EHBHs with adaptations to this context and
proceed further in studying the general structure of the
space of solutions and some concrete aspects like the
pattern of horizons and the related BH temperature.
The field equations of electrically charged (charge Q)

BH of the same theory are

ra0

a
−

γκ2Q2

ð2γκð1 − fÞ þ r2Þ2 ¼ 0; ð8:1Þ

rf0 þ f − 1þ κQ2

2ð2γκð1 − fÞ þ r2Þ ¼ 0; ð8:2Þ

with the additional “Maxwell” equation for the electrostatic
potential VðrÞ (or field E ¼ −V 0=a),

−
ðr2 þ 2γκð1 − fÞÞV 0

a
¼ Q: ð8:3Þ

Unlike the magnetic equations, these are nonlinear, and like
previous researchers, we were unable to find explicit
analytic solutions even in the very simple form, which is
obtained in terms of the mass function MðrÞ defined by
fðrÞ ¼ 1–2MðrÞ=r:

a0

a
−

γκ2Q2r
ð4γκMþ r3Þ2¼ 0; M0−

κQ2r
4ð4γκMþ r3Þ¼ 0: ð8:4Þ

If we rescale the variables by the natural length scale of the
system lel ¼ jγj1=4 ffiffiffiffiffiffi

κQ
p

such that x ¼ r=lel, we obtain for
aðxÞ and mðxÞ ¼ 4jγjκMðlelxÞ=l3

el the simple equations,

a0=a ¼ x=ð�mþ x3Þ2; ð�mþ x3Þm0 ¼ x; ð8:5Þ

where� correspond to both possible signs of γ. Indeed, the
explicit solution has avoided us, but still, solving themðxÞ–
equation numerically is almost trivial, and from the result
for mðxÞ, it is equally easy to solve the first equation for
aðxÞ. We notice also that the rescaled system (8.5)
contains no free parameters and is therefore “universal.”
The solutions mðxÞ, aðxÞ contain all the information about
the EHBH solutions and their features, which are obtained
by simple scaling. Recall that this scaling symmetry is
broken in the magnetic case where there are no “universal”
solutions as can be seen from the magnetic analogs of
Eqs. (8.5). Notice also that if one defines a rescaled
dimensionless field, ε ¼ jγj1=2κE, it may be expressed in
terms of the mass function simply as ε ¼ m0. However,
one should note that the metric functions themselves are
not universal. For example, the metric function fðrÞ is
written in terms of the rescaled dimensionless variables as
fðxÞ ¼ 1 − qmðxÞ=x, where q ¼ Q=2jγj1=2 is the charge
parameter defined in analogy to the magnetic parameter p.
Without loss of generality, we assume Q > 0.
The solutions mðxÞ and aðxÞ that correspond to asymp-

totically flat EHBHs may be characterized by the mass
parameter m ¼ mð∞Þ, but in practice, it may be more
convenient to do it either by the value ofmð0ÞwhenmðxÞ is
regular for all x ≥ 0, or at least defined for x ¼ 0, or if this
is not the case, by another boundary condition like the
coordinate x1 for which mðx1Þ ¼ 0, or the horizon xH
satisfying xH ¼ qmðxHÞ, etc. The second integration con-
stant related to aðxÞ is determined by the asymptotic
condition aðxÞ → 1 at infinity. Figure 11 presents all the
possible solutions of the mass function mðxÞ for both signs
of γ, which determine the two metric functions. For γ > 0,
we can identify three types of solutions. The first are

FIG. 11. All possible solutions of Eq. (8.5) for mðxÞ with both signs of γ. The γ > 0 BH solutions (right panel) correspond to the
family of the upper (black) curves and to those solutions of the lower-right (green) family with positive mð∞Þ. The γ < 0 BH solutions
(left panel) correspond to the (black) curves of the family of solutions, which are defined for all x ≥ 0 which also have a positivemð∞Þ.
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solutions that are regular for all x ≥ 0. These are the upper
(online black) curves in the figure, and they correspond
obviously to BH solutions. These solutions have a mass
that is bounded from below such that mð∞Þ ≥ 1.6543
where the lowest mass curve is also characterized by
mð0Þ ¼ 0. This is actually an intermediate solution
between this type and the second type of solutions
represented by the (green) partially double-valued curves
of the lower right-hand side of the plot. These mðxÞ
solutions are evidently singular at x ¼ xs—the point of
minimal x value. As long as mð∞Þ > 0 (but of course
mð∞Þ < 1.6543), these solutions may correspond to BHs
with a singularity on the spherical surface x ¼ xs. The
lower branches of these solutions and those curves that lie
entirely below the x axis are unphysical. The third type are
the negative mðxÞ (blue) curves with diverging mass
function. They diverge like mðxÞ ∼ −x3 and obviously
cannot correspond to BHs.
These EHBH solutions have the following power series

expansion near the origin:

mðxÞ ¼ m0 þ
x2

2m0

−
x4

8m3
0

−
x5

5m2
0

þ x6

16m5
0

þ 6x7

35m4
0

þ � � � ; m0 > 0

mðxÞ ¼ x −
x3

4
þ 3x5

32
−
9x7

256
þ � � � ; m0 ¼ 0: ð8:6Þ

For the singular solutions, we get the behavior near the
singularity as an expansion of the inverse function xðmÞ
around its minimum at m0 ¼ −x30:

xðmÞ ¼ x0 þ
ðmþ x30Þ2

2x0
þ ðmþ x30Þ3

2

þ ð3x40 − 1Þðmþ x30Þ4
8x30

þ � � � : ð8:7Þ

Asymptotically, all these solutions have the usual RN
behavior.
For γ < 0, there are only two different types of solutions:

The first are solutions that exist only in a finite interval of
the radial coordinate and obviously cannot correspond to
BHs. These are the blue curves of Fig. 11. The second are
monotonically increasing solutions defined for all x ≥ 0
similar to those of the γ > 0 case. However, unlike those,
the mass function of the γ < 0 solutions is never positive
definite. It is either negative for all x ≥ 0, or it starts with a
negative value of mð0Þ and changes sign so it becomes
positive with a finite mass parameter m ¼ mð∞Þ. This type
of solution with mð∞Þ > 0 may correspond to BH sol-
utions. They exist for a limited interval of mð0Þ values,
namely −1.2276 < mð0Þ < −0.5791. However, the mass
mð∞Þ is not bounded from above.

The behavior of the EHBH mass function mðxÞ near the
origin is given now by

mðxÞ ¼ m0 −
x2

2m0

−
x4

8m3
0

−
x5

5m2
0

−
x6

16m5
0

−
6x7

35m4
0

þ � � � ; m0 < 0: ð8:8Þ

Next, we discuss the metric functions grrðxÞ ¼ −1=fðxÞ
and g00ðxÞ ¼ fðxÞa2ðxÞ of these three types of EHBH
solutions, skipping aðxÞ, which is obtained very easily
when mðxÞ is at hand. As mentioned already, the metric
functions are not universal but depend also on the dimen-
sionless charge parameter q since fðxÞ ¼ 1 − qmðxÞ=x.
Therefore, the charge parameter q introduces an additional
structure to the space of solutions, most importantly, to the
BH horizon pattern. The existence of a horizon depends on
the existence of a solution to the equation x ¼ qmðxÞ, while
we notice thatmðxÞ is always monotonically increasing and
bounded for the BH candidate solutions. Thus, for the
positive definite mðxÞ solutions of γ > 0, there will be
always a single solution to the equation x ¼ qmðxÞ for any
finite value of the charge parameter q. That means a single
horizon for any mass in the range mð∞Þ > 1.6543. These
BHs will be S-like. For the other two kinds of mass curves,
one for each sign of γ, the equation x ¼ qmðxÞ may have
two solutions, or one, or none at all, according to the values
of q and mð∞Þ. This is the typical situation for RN-like
BHs, which exist for the lower mass range of 0 < mð∞Þ <
1.6543 for the γ > 0 EHBHs and all mð∞Þ > 0 for the
γ < 0 EHBHs. So, the bottom line is that all γ < 0 EHBHs
are RN-like, while for γ > 0, the mass parameter deter-
mines uniquely whether the BH is S-like or RN-like.
The metric functions of these three types of EHBH

solutions are shown in Figs. 12 (for γ > 0) and 13 (for
γ < 0) in which they are plotted for the representative value
q ¼ 4. We chose this specific value in analogy with the
magnetic case in order to make the comparison between the
electric and magnetic cases as clear and direct as possible.
For this end, we also characterize the solutions by the mass
parameter μ ¼ 2M=lel ¼ qmð∞Þ, which is defined in
analogy with the magnetic case. We can indeed notice
(as expected) that the profiles of the same μ and q ¼ p have
(when exist) very similar behavior far enough outside the
horizon. Few examples are obvious by comparing the pairs
of Figs. 12, 13 with Figs. 1, 5, respectively. We will now
summarize the main characteristics of the EHBHs for both
signs of γ in addition to what we have already seen.
γ>0. First, we notice from Fig. 12 that unlike the γ > 0

magnetic solutions where fð0Þ is always zero and g00ðxÞ
has mostly RN-like shape (upper part of Fig. 1), the metric
function fðxÞ of the γ > 0 electric solutions has RN-like
behavior for small values of the mass parameter and
“Schwarzschild-like” behavior for large mass values.
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The negative mass MHBHs do not have an electric
analog. For a given q as in Fig. 12, the BH mass is
bounded from below just as in the ordinary RN solutions.
In the specific case of q ¼ 4 that we plot, the mass bound is
μ ¼ qmð∞Þ ¼ 3.9622, which corresponds to the extremal
BH with a degenerate horizon. At the “boundary” between
the RN-like and S-like solutions, there is a single special
intermediate solution, regular for all x ≥ 0, with universal
mð∞Þ ¼ 1.6543 that corresponds to the mass profile
with mð0Þ ¼ 0 and m0ð0Þ ¼ 1, which also results fð0Þ ¼
1 − q and að0Þ ¼ 0. Therefore, we have in the figure
for this intermediate solution, fð0Þ ¼ −3 and g00ð0Þ ¼ 0.
Although the metric components of this solution are regular
at the origin, it is still a point of curvature singularity as can
be suspected from the fact that að0Þ ¼ 0 and seen explicitly
from the curvature invariants. Compare the similar solution
that exists in the magnetic case for γ < 0. See, e.g., Fig. 5.
As mentioned already, the S-like EHBHs can support

any finite value of the charge parameter q. However, the
smaller mass RN-like solutions need a charge parameter

above a certain minimum qminðmÞ, which depends on its
mass. It is quite easy to see that there is a minimal value of
qminðmÞ, which is obtained from the slope of the inter-
mediate solution curve at x ¼ 0: qminðmÞ > m0

intð0Þ ¼ 1. In
other words, for q < 1, the γ > 0 EHBHs will be all S-like.
Note, however, that the relation between the actual mass,
charge, and horizon size, M, Q, and rH, is not directly
reflected from the relation between the corresponding
rescaled parameters since the rescaling involves the charge
Q. We will turn to the actual relations shortly.
Another new feature of the RN-like EHBHs is the

appearance of a curvature singularity, which these solutions
“inherit” from the mðxÞ singularity at x ¼ xs, so these
solutions are defined only for x > xs, with xs decreasing
with mð∞Þ as can be seen from the fðxÞ profiles of Fig. 12
or from the (green) mass profiles of Fig. 11. Notice also that
this is a somewhat uncommon kind of singularity: As is
obvious from Fig. 11 [or from inspection of Eq. (8.5)], it is
the derivative m0ðxÞ, which is singular, while the mass
functionmðxsÞ itself is finite. Accordingly, the nature of the

FIG. 12. Profiles of g00ðxÞ and of fðxÞ for EHBHs with γ > 0, q ¼ 4 and several values of the mass parameter: μ ¼ qmð∞Þ ¼ 3.962
(extremal),4.75, 5.5, 6, 6.617 [intermediate, mð∞Þ ¼ 1.654], 7, 7.5, 8.

FIG. 13. Profiles of g00ðxÞ and of fðxÞ for EHBHs with γ < 0, q ¼ 4 and several values of the mass parameter starting from the
extremal solution: μ ¼ qmð∞Þ ¼ 4.037, 4.75, 5.5, 6, 6.5, 7, 7.5, 8.
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singularity of fðxÞ is similar: Its derivative will diverge as
x↓xs, but fðxsÞ will be finite. This feature is not seen in
Fig. 12 since the value of fðxsÞ is too high for the figure
frame. We have also checked that the Ricci scalar diverges
at the singular point.
γ<0. The γ < 0 EHBH solutions are all RN-like, and

they all differ from their γ > 0 counterparts in that they are
all singular only at the origin. Their general behavior is
more similar to that of the ordinary RN solutions: Their
mass is bounded from below (by μ ¼ qmð∞Þ ¼ 4.0372 for
the present q ¼ 4) but unbounded from above. For a given
mass, EHBHs will exist only above a minimal qminðmÞ as
for γ > 0. We also notice that as the mass increases, að0Þ
becomes vanishingly small inside the event horizon and so
does g00ðxÞ, but fðxÞ keeps its RN-like behavior.
An additional angle of comparison between the electric

and the magnetic case is to compare the asymptotic
behavior of the metric components. For the MHBHs, it
was obtained in Eq. (2.8) directly from the explicit solution.
In the electric case, we have to use directly the field
equations to find the asymptotic behavior of fðrÞ:

fðrÞ ¼ 1 −
2M
r

þ κQ2

2r2
−
γκ2Q2M

2r5
þ γκ3Q4

10r6
þ � � � ð8:9Þ

The behavior is identical in both cases up to the terms of
second order, but beyond that, noticeable differences
appear, which again, reflect the explicitly broken duality
symmetry of this theory.
Finally, we will obtain for both signs of γ the BHmassM

and temperature T versus the actual charge Q and the
horizon coordinate rH as we did for the MHBHs.
Regarding the mass, since we do not have explicit analytic
solutions, we cannot present the full dependence by a
function like Mðγ; Q; rHÞ in analogy with the magnetic
case [see (3.1)], but we will be content with plotting several
sections of M versus rH for certain values of Q. Figure 14
shows these sections for both signs of γ. TheMðrHÞ curves

are noticeably different from their magnetic counterparts
for γ > 0:MðrHÞ does not diverge as rH → 0, but rather on
the contrary. Moreover, if we plot the rescaled quantities for
γ > 0, we will see that all curves merge at the same point at
xH ¼ 0 with the (universal) mass parameter of the inter-
mediate solution mð∞Þ ¼ 1.6543. This mass parameter is
the minimal for all q ≤ 1 EHBHs (Q ≤ 2 in Fig. 14), which
are all S-like. For q > 1 (Q > 2 in Fig. 14), the curves
develop a lower minimum as happens for the RN solutions.
The MðrHÞ curves with γ < 0 also differ significantly
from those of the magnetic case. Unlike those, the inner
horizon is not bounded by the origin, but by a certain value
rHmin, which depends on Q. The mass curve diverges for
rH↓rHmin and also as usual for rH → ∞. Also as usual, for
any fixedQ, there is a minimal mass that corresponds to the
extremal BH solution, which has a maximal charge to
mass ratio.
For the temperature, we can obtain an “almost analytic”

expression for the rH and Q dependence using Eq. (8.2):

Tðγ; Q; rHÞ ¼
aðrHÞf0ðrHÞ

4π
¼ aðrHÞðr2H þ 2γκ − κQ2=2Þ

4πrHðr2H þ 2γκÞ ;

ð8:10Þ

but with aðrHÞ obtained from the numerical analysis. Thus,
we will present the mass dependence of the BH temperature
for several values of the charge Q in Fig. 15. Since all the
γ < 0 BHs are RN-like, the TðMÞ curves take the ordinary
shape. Notice that on first sight, for γ < 0, the temperature
may diverge as rH →

ffiffiffiffiffiffiffiffiffiffiffi
−2γκ

p
. However, this cannot happen

since it is obvious that rext, for which the numerator of
Eq. (8.10) vanishes, is always larger than

ffiffiffiffiffiffiffiffiffiffiffi
−2γκ

p
.

The γ > 0 curves, which cross theM axis, i.e., start with
a minimal mass and T ¼ 0, are indeed quite similar to the
γ < 0 ones, but there is a difference: These curves
correspond only in their lower mass part to RN-like
BHs, but they continuously deform and change to S-like

FIG. 14. The mass M of EHBHs as a function of the horizon size for several values of the charge Q. Left: γ < 0; Right: γ > 0.
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BHs as seen in Fig. 12. These curves correspond to soutions
with q ≥ 1. The other kind of γ > 0 curves with q < 1
(which are all S-like as mentioned already) do not cross the
M axis, although some of the larger q values may start
rising from a point close to the M axis and then decrease
further with M. The other curves of this branch decrease
monotonically with M starting from a point of nonzero
minimal mass and maximal temperature. The reason of this
is of course the charge Q which forces the EHBH mass
away from zero.

IX. PARTICLE TRAJECTORIES AND LIGHT
DEFLECTION—ELECTRIC CASE

The trajectories of test particles around the electric BH
are determined by the Lagrangian,

L¼−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fðrÞ_t2− _r2=fðrÞ−r2ð_θ2þsin2θ _ϕ2Þ

q
−q0VðrÞ_t;

ð9:1Þ

where q0 is the test charge (we cannot use q, which is taken
already for q ¼ Q=2jγj1=2).
In a static spherically symmetric spacetime, the motion is

planar, and without loss of generality, the orbital plane can
be taken as θ ¼ π=2. The equations of motion may be
reduced to the two following first order equations, which
we write for the dimensionless radial coordinate xðτÞ ¼
rðτÞ=lel and the azimuthal angle ϕðτÞ as

x2 _ϕ¼l; _x2þfðxÞ
�
ϵþl2

x2

�
−
ðE−q2vðxÞÞ2

a2ðxÞ ¼0; ð9:2Þ

where q2 is the dimensionless product of the intercating
charges Q and q0, and vðxÞ is the dimensionless EHBH
potential.

In order to understand the motion of test particles around
EHBHs, we will plot for a couple of representative BHs the
effective potential, which can be read off directly from
Eq. (9.2), although the specific metric functions have to be
substituted numerically. We will concentrate on neutral
particles only. Then we will turn to light rays and light
deflection around EHBHs. Figure 16 presents the main
features of the effective potential by choosing two EHBHs,
one of each of the two types with γ > 0: S-like and
RN-like, which possesses a spherical surface of curvature
singularity. Unlike Fig. 8, we present here only the curves
for open trajectories where E > 1. For each BH, the
effective potential curves are demonstrated for several l
values, and we notice that they exhibit outside the horizon a
similar structure to that we met in the magnetic case. This is
not surprising in light of the similarity (outside the horizon)
of the metric components in MHBHs and EHBHs of the
same μ parameter and q ¼ p. The structure inside the
horizon is significantly different in both cases as is evident
from looking at Figs. 16 and 8. There are some subtleties of
the effective potential inside the horizon, but we will not
discuss them here.
We turn now to the issue of light deflection. Although we

do not have the explicit EHBHmetric components, it is still
possible to get an analytic expression in the form of an
expansion in powers of the inverse periastron distance. The
expansion up to third order for the deflection angle for light
is completely analogous to that in the magnetic case of (7.4)
with the only replacement p ↦ q:

ψðμ; q; spÞ ¼ 2μsp þ
��

15π

16
− 1

�
μ2 −

3πq
4

�
s2p

þ
��

61

12
−
15π

16

�
μ3 −

�
7−

3π

4

�
μq

�
s3p þ � � � :

ð9:3Þ

FIG. 15. The temperature T of EHBHs as a function of the mass M for several values of the charge Q. Left: γ < 0; Right: γ > 0. For
Q ≥ 2, the curves for both signs of γ are quite similar in shape and value. For Q < 2, there is a sharp difference. Notice that the γ > 0
curve for Q ¼ 1.5 almost merges with the lower part of the Q ¼ 1 curve.
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The parameter μ is the dimensionless mass parameter,
which is related to the asymptotic value of the mass
function mðxÞ, which we used in this and a previous
section by μ ¼ qmð∞Þ. As in the magnetic case, there is no
dependence on the sign of γ up to third order.
Notwithstanding the identical power series of the light

deflection angle in the electric and magnetic case, this
phenomenon does not extend to the full domain. Actually,
the similarity breaks already at the fourth order of the
expansion of the deflection angle. A similar difference is
also seen in the asymptotic expansion of the effective
potential magnetic versus the electric HBHs. Still, quanti-
tatively, the differences are usually very small in many
circumstances as seen, for instance, by a comparison of the
numerically obtained ψðμ; q; spÞ for the electric case with
Eq. (7.3) for the magnetic case. For example, the analogous
figure to the left panel of Fig. 10 for the electric case (i.e.,
a EHBH with q ¼ 4) looks very almost identical, with the
only difference that the mass parameter of the extremal
EHBH with q ¼ 4 is a little smaller and is μ ¼ 3.962, so
the corresponding curve is different from that of the μ ¼
3.988 of the extremal MHBH. However, the ψðμ; q; spÞ
curve of the nonextremal EHBH with μ ¼ 3.988 is almost
identical to that of the extremal MHBH with the same μ
value. On the other hand, we notice that the right panel of
Fig. 10 has no electric analog. In short, in most cases,
where for a given μ, there exist HBHs with q ¼ p, they
both produce very similar light deflections. Therefore,
there is no need to add new plots of ψðμ; q; spÞ for the
electric case. This near symmetry between the electric and
magnetic cases may be considered somewhat surprising in
a theory that lacks the duality symmetry. However, as
mentioned already, it is broken at the order of s4p in
ψðμ; q; spÞ, as is of course expected from the difference

between the asymptotic expansions of fðrÞ in the two
cases. The symmetry between positive and negative γ is
also broken at the same order.

X. CONCLUSION

In this paper, we constructed the magnetically
charged black hole solution of the Einstein-Maxwell
system with an additional nonminimal coupling between
the vector field and the gravitational field of the form,
��Rκλ

μνFκλFμν ∼ �Fκλ�FμνRκλμν, and performed a detailed
comparison to their electric counterparts. Unlike the analo-
gous electric case, the field equations become linear, and
they can be solved analytically in terms of hypergeometric
functions and other elementary functions. These solutions
describe new kinds of black holes. Some of the solutions
are similar to the ordinary RN solutions, but others have
various exotic properties. Some may have repulsive gravi-
tational field around them, while others have a spherical
curvature singularity rather than a pointlike. We have
calculated their mass-charge-horizon relations, their tem-
perature behavior, and other characteristics. We found a
significant difference between positive and negative γ. For
γ > 0, all BHs are RN-like, i.e., g00ðrÞ → ∞ as r → 0. On
the other hand, for γ < 0, all BH solutions have a spherical
surface of curvature singularity, but they are divided into
two subclasses: RN-like and S-like. This difference is
reflected by their temperature dependence on their masses:
The temperature of an RN-like BH starts at zero in an
extremal solution, increases with M until it reaches its
maximum, and then decreases. The S-like BHs have a
temperature with similar decreasing behavior for large M,
but the temperature is not bounded from above but diverges
for a minimal (nonzero) value of the mass given by

FIG. 16. The effective potential for particle trajectories with rescaled particle energy of E ¼ 1.01 around two of the γ > 0 electric HBH
solutions presented in Fig. 12. Left: RN-like EHBH with μ ¼ 4.75, curvature singularity at xs ¼ 1.4939 and event horizon at
xH ¼ 3.6635. The curves correspond to the following values of rescaled angular momentum: l ¼ 6.75, 7.5, 8.25, 9, 10, 11. The insert
shows a “zoom out” of the vicinity of the curvature singularity where VeffðxÞ diverges to −∞. Notice that this domain lies within the
event horizon. Right: S-like EHBH with μ ¼ 7 and event horizon at xH ¼ 6.3734. The l values are l ¼ 11, 12.5, 14, 15, 16, 17.
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Eq. (4.1). We also studied extensively the trajectories of
point particles around these BHs—charged, neutral, and
photons. Next, we moved to the electrically charged BHs in
order to compare them to the magnetic ones. First, we were
able to reduce the field equations to a very simple universal
system (without free parameters) of two decoupled first
order equations for the dimensionless mass function mðxÞ
and the metric function aðxÞ. Although this system still
cannot be solved analytically, it is simple enough that
plenty of general conclusions can be drawn directly and
intuitively. Yet, the field equations can be readily solved
(numerically), thus enabling us to identify again the
existence of S-like and RN-like solutions and the domains
in parameter space where each of them exist. Incidentally,
we could show that there are no negative mass EHBHs
unlike the magnetic case. Consequently, we were able to
obtain the relation between the BH mass, charge, and
horizon size, the properties of the temperature function
Tðγ; Q;MÞ, and compare systematically the electric with
the magnetic BHs. As done for the MHBHs, we analyzed
particle trajectories around the EHBHs and light deflection.
We calculated the deflection angle in both cases as a power
series in 1=rp up to third order and found them to be
identical. We found further that differences start to appear
in fourth order.
Still, further analysis of these systems is in order. Some

of the immediate directions include: studying more sys-
tematically the negative mass MHBHs for γ > 0 and the
properties of the spherical singularity of the BH solutions
for γ < 0, studying the thermodynamics of the magnetic
[20] and electric BHs, generalizing to the non-Abelian case
and coupling scalar fields, and discussing scalarization.
Another direction of study is the question of whether the
fact that the field equations become linear in the magnetic
case enables one to superpose these elementary solutions to
construct multicenter solutions and other richer structures.
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APPENDIX: SOLVING EQUATION (2.5)

The equation (2.5) is

4ðzþ 1Þzf0 þ ð6z − 1Þf − pz1=2 þ 1 ¼ 0: ðA1Þ

This is a linear inhomogeneous ordinary differential equa-
tion. The standard procedure to solve this equation is to
obtain the general solution of the homogeneous equation.
This is a trivial matter of a direct integration:

f0ðzÞ ¼ c1
z1=4

ð1þ zÞ7=4 : ðA2Þ

Next, we replace the integration constant c1 by a function
uðzÞ, so the solution is the product fðzÞ ¼ f0ðzÞuðzÞ.
Consequently, the function uðzÞ must solve

4ðzþ 1Þzf0ðzÞu0 − pz1=2 þ 1 ¼ 0: ðA3Þ

The solution for uðzÞ is again obtained by direct integra-
tion, which is expressed in terms of two hypergeometric
functions:

uðzÞ ¼ pz1=4F

�
−
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;
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4
;
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4
;−z

�

þ 1

z1=4
F

�
−
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1
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;
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�
− μ; ðA4Þ

where μ is the integration constant. The integration is
performed by the following identity for hypergeometric
functions:

Z
ð1þ zÞαzβdz ¼ zβþ1

β þ 1
Fð−α; β þ 1; β þ 2;−zÞ; ðA5Þ

which is obtained in a straightforward way from the
standard properties of the hypergeometric functions (see,
e.g., Abramovitz and Stegun [24]). The function fðzÞ that
solves Eq. (2.5) is just a product of the two functions in
(A2) and (A4):

fðzÞ ¼ z1=4

ð1þ zÞ7=4
�
pz1=4F
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