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In this paper the motion of charged and uncharged test particles in the rotating nonlinearly charged black
hole (BH) is examined. Its asymptotics can be de Sitter or anti–de Sitter, depending on the value of the
nonlinear parameter; consequently this BH can present one, two or three horizons, the third one being the
cosmological horizon in the de Sitter case. Angular and radial test particle motions are analyzed and
compared with its linear electromagnetic counterpart, the Kerr-Newman black hole (KN-BH). Several
differences arise with the KN-BH, namely, the equatorial asymmetry is enhanced by the nonlinear
electrodynamics field and for charged particles the access to one of the poles is forbidden; besides, a second
circular orbit in the neighborhood of the external horizon appears, and the presence of the nonlinear
electromagnetic field increases the curvature producing bounded orbits closer to the horizon.
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I. INTRODUCTION

The recent improvement in astrophysical observations as
well as the direct gravitational wave detection by LIGO [1],
Advanced LIGO and Advanced Virgo [2] has lead to the
assembly of catalogs of black holes that have stimulated the
study of test particle motion in the neighborhood of
compact objects. Astrophysical compact objects are rotat-
ing and therefore in the context of the Einstein exact
solutions there is a great interest in stationary solutions
since, within some approximation, they resemble astro-
physical black holes (BHs) or compact objects.
Moreover, some compact objects can possess strong

magnetic fields in their vicinity and these fields can be
described by nonlinear electrodynamics (NLE). Recently
was presented, for static spherically symmetric metrics the
general exact solution of Einstein equations coupled to
NLE [3], with an arbitrary structural metric function,
which, via a pair of independent Einstein equations, allows
one to derive the single associated field tensor component
E, and the Lagrangian-Hamiltonian field function L-H,
which determines the entire solution, should it be singular
or regular. Also, a number of Einstein-NLE static solutions
have been derived so far, both singular and regular;
however the challenge of determining a NLE stationary
solution has been elusive. This was accomplished recently

and a stationary solution of the coupled Einstein-NLE
equations was presented in Refs. [4,5]. These first exact
solutions describe a rotating black hole endowed with mass,
angular momentum, an electromagnetic nonlinear param-
eter and cosmological constant; they fulfill a set of four
generalized “Maxwell equations” for the electrodynamics
fields Fμν and Pμν and two independent Einstein-NLE
equations related with the two independent eigenvalues of
the NLE energy-momentum tensor. The NLE is determined
by a Lagrangian function LðF;GÞ constructed from the two
electromagnetic invariants F and G.
We do not claim that these solutions represent in a

feasible way real astrophysical objects, but neutron stars
and gravastars are characterized by generating strong
magnetic fields, then these kind of exact solutions of the
Einstein-NLE equations can give insight in the search of
interesting properties of BHs as well as can be useful as test
beds of BH numerical simulations.
In this paper, we examine the rotating axisymmetric

solution of the Einstein equations coupled with NLE that
was recently presented in Ref. [4] and with a cosmological
constant in Ref. [5]. This solution is characterized by five
physical parameters, namely, the gravitational mass m,
electric and magnetic charges f1, g1 (comprised in F0), the
NLE parameter β and the angular momentum a. The
existence of horizons allows a BH interpretation; however
the solution is not asymptotically flat due to the NLE field
that renders a de Sitter or anti–de Sitter (AdS) asymptotics.
The solution has the Kerr-Newman limit when the NLE
parameter vanishes, β ¼ 0, with the Kerr-Newman (KN)
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electric charge being Q2
e ¼ F0. For charged test particles

the angular and radial motions are analyzed and compared
with its linear electromagnetic counterpart, the Kerr-
Newman black hole (KN-BH). Several differences arise
in the motion of charged test particles, namely, the
equatorial symmetry is not preserved and the access to
one of the poles is forbidden and a second circular orbit can
appear in the neighborhood of the external horizon; the
allowed regions for the bounded test particle motion are
illustrated in a series of plots varying the parameters of the
system.
The paper is organized as follows. In the next section a

brief review of NLE is presented. In Sec. III the stationary
NLE BH is introduced and its horizons are analyzed. In
Sec. IV the motion equations are derived; for charged and
uncharged test particles, we analyze trajectories in both, θ
motion and r motion. Some comments on birefringence are
presented in Sec. V and final remarks are given in Sec. VI.

II. NONLINEAR ELECTRODYNAMICS

For completeness, we include the basic features of NLE.
This theory is constructed from a Lagrangian function
L ¼ LðF;GÞ that depends on the electromagnetic invariant
F and pseudoscalar G

F ¼ 1

4
FμνFμν; G ¼ 1

4
⋆FμνFμν; ð1Þ

where the dual field tensor ⋆Fμν is defined by

⋆Fμν≔
1

2

ffiffiffiffiffiffi
−g

p
ϵμναβFαβ; ⋆Fαβ ¼−

1

2
ffiffiffiffiffiffi−gp ϵαβμνFμν: ð2Þ

For coupled NLE with Einstein equations the correspond-
ing energy-momentum tensor Tμν can be derived from the
variation of the matter Lagrangian LM with respect to gμν.
In NLE one uses for the Maxwell limit the Lagrangian
functionLMaxðNLE;FÞ ¼ FαβFαβ=4, insteadof the standard
Maxwell Lagrangian function LMaxðFÞ ¼ −F; thus, to
obtain the Maxwell limit, one has to use the Lagrangian
function LM ¼ −LðNLE;F;GÞ. Therefore, accomplishing
the variations, one arrives at

−Tμν ¼ Lgμν − LFFμσFν
σ − LGFμσ⋆Fν

σ

≕Lgμν − FμσPν
σ; ð3Þ

where we have introduced the new field tensor Pμν, which
one identifies as the Pμν field tensor of Plebański [6], or the
pkl-field tensor of Born-Infeld [7]. Fμν andPμν are related to
each other by

Pμν ¼ 2
∂L
∂Fμν ¼ LFFμν þ LG

⋆Fμν;

Fμν ¼ 2
∂H
∂Pμν ¼ HPPμν þHQ

⋆Pμν: ð4Þ

To the antisymmetric field Pμν there are associated its
dual field tensor ⋆Pμν and the invariants P and Q,

⋆Pμν ≔¼ 1

2

ffiffiffiffiffiffi
−g

p
ϵμναβPαβ; ⋆Pαβ ¼ −

1

2
ffiffiffiffiffiffi−gp ϵαβμνPμν;

P ¼ 1

4
PμνPμν; Q ¼ 1

4
⋆PμνPμν: ð5Þ

The structure function HðP;QÞ, associated with the
Lagrangian function LðF;GÞ, can be determined by a
Legendre transformation

LðF;GÞ ¼ 1

2
FμνPμν −HðP;QÞ: ð6Þ

The electrodynamics is determined through the
“Faraday-Maxwell” electromagnetic field equations, which
in vacuum are

⋆Fμν
;ν ¼ 0 → ð ffiffiffiffiffiffi

−g
p ⋆FμνÞ;ν ¼ 0;

Pμν
;ν ¼ 0 → ½ ffiffiffiffiffiffi

−g
p

LFFμν þ ffiffiffiffiffiffi
−g

p
LG

⋆Fμν�;ν ¼ 0; ð7Þ

which can be written by means of a closed 2-form dω ¼ 0,

ω ¼ 1

2
ðFμν þ ⋆PμνÞdxμ ∧ dxν ¼ 1

2
ðFab þ ⋆PabÞea ∧ eb;

since Fμν and ⋆Pμν are curls.
In nonlinear electrodynamics, the energy-momentum

tensor Tμ
ν, Eq. (3), allows for two different pairs of

eigenvalues fλ; λ;Λ0;Λ0g. One can show that a similar
property, i.e., two pairs of different eigenvalues, is shared
by the field tensors Fμν and Pμν, although their eigenvalues
are different. Moreover, the NLE Tμ

ν possesses a nonzero
trace

−T∶ ¼ −Tμ
μ ¼ 4ðL − LFF − LGGÞ: ð8Þ

On the other hand, taking into account the relation
Fμσ⋆Fνσ ¼ Gδμν , one determines the traceless NLE
energy-momentum tensor ϒμν to be

ϒμ
ν∶ ¼ Tμ

ν −
T
4
δμν ¼ LFðFμσFνσ − FδμνÞ: ð9Þ

The rotating NLE BH is an exact solution of Eq. (7)
coupled with Einstein equations, Gμν ¼ κTμν, and we
present the line element in the next section.
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III. THE STATIONARY NLE BH

The NLE BH reported in Ref. [4] is a stationary
axisymmetric solution of the Einstein equations coupled
with NLE, characterized by five physical parameters,
namely, the gravitational mass m, electric and magnetic
charges f1, g1 (comprised in F0), the NLE parameter β and
the angular momentum a; the Kerr-like line element is
given by

ds2 ¼ ρ2dθ2 þ a2sin2θ
ρ2

�
dt −

r2 þ a2

a
dϕ

�
2

þ ρ2

QðrÞ dr
2

−
QðrÞ
ρ2

½dt − asin2θdϕ�2; ð10Þ

ρ2 ¼ r2 þ a2 cos2 θ; ð11Þ

QðrÞ ¼ κF0

2
ð1 − βr2Þ2 − 2mrþ r2 þ a2: ð12Þ

See Ref. [4] for details on the derivation of this solution.
The contravariant metric components that will be used in

the Hamilton-Jacobi equation of the test particle are

gtt ¼ −
1

ρ2QðrÞ ½ðr
2 þ a2Þ2 − a2sin2θQðrÞ�; ð13Þ

grr ¼ QðrÞ
ρ2

; ð14Þ

gθθ ¼ 1

ρ2
; ð15Þ

gϕϕ ¼ QðrÞ − a2 sin2 θ
QðrÞρ2 sin2 θ ; ð16Þ

gtϕ ¼ a
ρ2QðrÞ ½QðrÞ − ðr2 þ a2Þ�: ð17Þ

A. Horizons

The horizons are given by the roots of the polynomial
QðrÞ ¼ 0, i.e., by the real positive solutions of

κF0β
2

2
r4 þ ð1 − κF0βÞr2 − 2mrþ κF0

2
þ a2 ¼ 0: ð18Þ

In general there may be four roots [8] depending on the
value of β and the sign of the parameter F0, which also
defines the asymptotics of the solution (see Fig. 1). We
analyze the two cases of F0 being positive or negative.
(1) Case F0 > 0. In this case the asymptotic behavior is

anti–de Sitter, and the electromagnetic field mimics
a cosmological constant given by

Λ ¼ −
3

2
κF0β

2: ð19Þ

There are two values of r, rcrit1;2 and two of β, βcrit1;2,
for which there is only one real root of QðrÞ. These
values are determined from Qðrcrit; βcritÞ ¼ 0 and
∂rQðrcrit; βcritÞ ¼ 0:

κF0β
2

2
r4þð1−κF0βÞr2−2mrþκF0

2
þa2¼0;

2κF0β
2r3þ2ð1−κF0βÞr−2m¼0: ð20Þ

From the second expression the values of β can be
obtained

β1;2 ¼
κF0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κF0½4ðm − rÞrþ κF0�

p
2κr2F0

: ð21Þ

Substituting these values into the first expression,
we arrive at a quadratic equation for r which can be
solved using the Cardano-Ferrari method. For the
different values obtained from β, the following
cases occur:
(a) β < βcrit1 . There are no real roots.
(b) β ¼ βcrit1 . A degenerate real positive root.
(c) βcrit1 < β < βcrit2 . Two real positive roots.
(d) β ¼ βcrit2 . A degenerate real positive root.
(e) β > βcrit2 . There are no real roots.
Examples of all these cases are illustrated in

Fig. 2. The corresponding Carter-Penrose diagram
of the black hole spacetime (two horizons) is shown
in Fig. 3.

FIG. 1. The two possible asymptotics of the stationary NLE BH
are shown; depending on the sign of F0 the asymptotics of the
solution is different. For F0 > 0 there are inner and outer (event)
horizons and the asymptotics is AdS,while forF0 < 0 the solution
presents three horizons—inner, outer and cosmological—and the
asymptotics is de Sitter. In these plots the fixed parameters are
m ¼ 1, β ¼ 0.5, a ¼ 0.9 and F0 ¼ �0.8.
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(2) Case F0 < 0. In this case the asymptotic behavior is
de Sitter, and the electromagnetic field acting as a
cosmological constant is given by

Λ ¼ −
3

2
κF0β

2: ð22Þ
There are three positive real roots that represent an
inner horizon, an outer horizon (event horizon), and
a cosmological horizon, cf. Fig. 1.

In Figs. 1 and 2 the generic behavior of QðrÞ is shown.
Note that at the origin, Qðr ¼ 0Þ, the metric function is
finite; however, and this cannot be illustrated in a one-
dimensional plot, the ring singularity, characteristic of the
KN metric, persists in the stationary NLE-BH and occurs
when simultaneously r ¼ 0 and θ ¼ π=2, i.e., when
ρ2 ¼ r2 þ a2 cos2 θ ¼ 0.

B. The ring singularity

In Ref. [9], it is analyzed the rotating Kerr-like spacetime
and the conditions for the regularity of their second order
polynomial invariants in the Riemann tensor. It was shown
that the regularity of a Petrov type D spacetime coupled to a
non-null electromagnetic field is determined by the finite-
ness of three invariant functions, namely the eigenvalue of
the Weyl conformal tensor, the eigenvalue of the traceless
Ricci tensor and the curvature scalar, ½Ψ2; S; R� [10]. These
invariants, for the Petrov type D solutions, are related to the
Kretschmann quadratic Riemannian invariant by

K ¼ RμνρσRμνρσ ¼ 48Ψ2Ψ�
2 þ 8S2 þ 1

6
R2: ð23Þ

For the metric (10) these invariants ½Ψ2; S; R� are given by

12ρ6Ψ2 ¼ ða cos θ − irÞ2f−12mðrþ ia cos θÞ
þ 6κF0ð1 − β2r2a2 cos2 θÞ
þ κF0β½2ða2 cos2 θ − r2Þ − 8ira cos θ�g;

2ρ4S ¼ κF0ð1þ β½−a2 cos2 θð1 − 3βr2Þ þ r2�Þ;
ρ2R ¼ 2κF0βð1 − 3βr2Þ: ð24Þ

Substituting these into Eq. (23), we obtain explicitly the
Kretschmann invariant,

K ¼ 48
m2

ρ6
− 48

Q2
emr
ρ8

þ 14
Q4

e

ρ8

þ 16
Q2

eβmr
ρ8

½−3x2ð1 − βr2Þ þ r2�

þ 4Q4
eβ

ρ8
½ðx2 − r2Þ þ βðr4 þ x4 þ r2x2Þ�

þ 2β3Q4
er2

ρ8
½3βr2ðr4 þ 2r2x2 þ 6x4Þ

− 2ðr4 − 3r2x2 þ 6x4Þ�; ð25Þ

FIG. 2. The horizons for different values of β are shown. For
β < βcrit1 ðβ > βcrit2 Þ there are no horizons. For β ¼ βcrit1 ðβ ¼ βcrit2 Þ
there is a single degenerate double root, which corresponds to the
extreme case with one horizon at rcrit1 ≈ 1.15ðrcrit2 ≈ 0.59Þ. For
βcrit1 < β < βcrit2 there are two horizons. In this plot, we fix
the parameters as m ¼ 1, a ¼ 0.9, F0 ¼ 0.8, βcrit1 ≈ 0.26, and
βcrit2 ≈ 3.54.

FIG. 3. The Penrose-Carter diagram of the rotating black hole
with nonlinear electrodynamics. The dashed lines represent the
ring singularity similarly to the Kerr-Newman BH.
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wherewe have taken κF0 ¼ Q2
e as theBHelectric charge and

x ¼ a cos θ. From the expression for the Kretschmann
invariant, we see how the introduction of the NLE field
affects the curvature. Assuming β > 0 the curvature is larger
than that of KN, which corresponds to the first three terms.
Accordingly, we shall see that for the rotating NLE BH the
bounded orbits are closer to the horizon than for KN.
Moreover, the divergence of the Kretschmann invariant

points to a real physical singularity at ρ ¼ 0. We see from
the previous expression that the divergence of the
Stationary NLE BH is of the same order as in KN, K ≈
ρ−8 and the inclusion of the NLE field into the Kerr-like
metric does not introduce any singularity, apart from the
characteristic ring singularity of the Kerr family, at ρ ¼ 0,
where the curvature invariant K diverges. Since, ρ2 ¼
a2 cos2 θ þ r2 vanishes when simultaneously r ¼ 0 and
θ ¼ π=2, and recalling that r ¼ 0 is not a point in space but
a disc of radius a2, such that the set of points of the
singularity is actually the ring at edge of r ¼ 0. This can be
seen more clearly in ellipsoidal coordinates; see Ref. [11]
or Ref. [12] for details.

C. Maximal extension

The maximal extension for the spacetime (10) in the case
when there are two horizons (βcrit1 < β < βcrit2 ) can be
obtained in a similar way to the case of the solution of
Kerr-Newman [11,13]. We perform a transformation to
Kerr coordinates ðr; θ; u�;ψ�Þ, where

du� ¼ dt� r2 þ a2

QðrÞ dr; dψ� ¼ dϕ� a
QðrÞ dr: ð26Þ

The metric takes the form

ds2 ¼ ½ðr2 þ a2Þ2 −Qa2 sin2 θ�
ρ2

sin2 θdψ2
�

−
ðQ − a2 sin2 θÞ

ρ2
du2�

−
2aða2 þ r2 −QÞ

ρ2
sin2 θdu�dψ�

þ ρ2dθ2 � 2du�dr ∓ 2a sin2 θdrdψ�: ð27Þ

The maximal analytic extension is built up by a combi-
nation of the previous extensions as in the Kerr-Newman
case. The global structure will be very similar to Kerr-
Newman. Figure 3 shows the conformal structure of the
solution (10). Three regions are permitted for the test
particle movement, the regions I represent the regions
asymptotically AdS which is r > rþ. Regions II
(r− < r < rþ) contain the trapped closed surfaces and
finally regions III contain the ring singularity.

D. Electromagnetic fields

The electromagnetic potential Aμ can be written as a
linear combination of two terms, A1ðθÞ depending only on
θ and A2ðrÞ depending only on r,

ρ2At ¼ f1a cos θ½1þ βa2 cos2 θ� þ g1rð1 − βr2Þ
¼ A1ðθÞ þ A2ðrÞ;

ρ2Aϕ ¼ −
a2 þ r2

a
A1ðθÞ − a sin2 θA2ðrÞ; ð28Þ

and Aθ ¼ 0 ¼ Ar; the electromagnetic fields can be
derived from them, being the nonvanishing components
Fθt; Frt; Fθϕ; Frϕ. Asymptotically, at infinity, the electro-
magnetic fields behave as anti–de Sitter if F0 > 0 or as
de Sitter if F0 < 0. However, if we assume physically
reasonable energy conditions, there are the constraints that
β > 0 and F0 > 0 (see Ref. [4] for details on the energy
conditions of this solution).

IV. MOTION OF CHARGED TEST PARTICLES
IN THE STATIONARY NLE BH

Let us consider a charged test particle in the vicinity of the
stationary NLE-BH; the test particle is characterized by a
4-velocityuμ ¼ dxμ=dτ,massμ andchargeq,with τ beingan
affine parameter. Since the spacetime is axisymmetric and
stationary, associated with the existence of two Killing
vectors, there are two conserved quantities, the energy E
and the angular momentum Lz, related to the 4-velocity as

−E ¼ μut þ qAt; Lz ¼ μuϕ þ qAϕ: ð29Þ

It is then straightforward to determine ut ¼ dt=dτ ¼ _t
and uϕ ¼ dϕ=dτ ¼ _ϕ; we define the functions JðθÞ and
TðrÞ, which involve the test particle parameters, as

JðθÞ ¼ aL̃z − a2 sin2 θẼþ q̃A1ðθÞ;
TðrÞ ¼ −aL̃z þ ða2 þ r2ÞẼþ q̃A2ðrÞ; ð30Þ

where the tilde denotes the parameter per unit mass of the
test particle, x̃ ¼ x=μ. In terms of JðθÞ and TðrÞ, dt=dτ ¼ _t
and dϕ=dτ ¼ _ϕ can be written as

ρ2_t ¼ JðθÞ þ r2 þ a2

QðrÞ TðrÞ;

ρ2 _ϕ ¼ JðθÞ
a sin2 θ

þ aTðrÞ
QðrÞ : ð31Þ

Using the Hamilton-Jacobi method, we can determine
the remaining components of the test particle 4-velocity, _r
and _θ, in the stationary NLE BH. It turns out that the
Hamilton-Jacobi equations are separable in the “r” and “θ”
coordinates; this fact making manifest that a fourth
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conserved quantity K exists in the Kerr-like spacetimes
[14] that is the projection of the Killing tensor (also known
as the Stäckel-Killing tensor), K ¼ Kμν _xμ _xν.
The action is written as

S ¼ St þ Sr þ Sθ þ Sϕ −
1

2
μ2τ: ð32Þ

Based on the mentioned symmetries, some components of
the action can be written as

St ¼ −Et; Sϕ ¼ Lzϕ: ð33Þ

Then the Hamilton-Jacobi equation is,

gμνpμpν ¼ gμν½∂μS − qAμ�½∂νS − qAν� ¼ −μ2; ð34Þ

where q is the charge of the test particle and Aμ are the
electromagnetic potential components (28). Extending the
sum in metric components, results in

gttð∂tSt − qAtÞ2 þ grrð∂rSrÞ2 þ gθθð∂θSθÞ2
þ gϕϕð∂ϕSϕ − qAϕÞ2 ð35Þ

þ2gtϕð∂tSt − qAtÞð∂ϕSϕ − qAϕÞ ¼ −μ2: ð36Þ

Substituting Eq. (33), we have the equation

gttð−E−qAtÞ2þgrrð∂rSrÞ2þgθθð∂θSθÞ2þgϕϕðLz−qAϕÞ2
þ2gtϕð−E−qAtÞðLz−qAϕÞ¼−μ2; ð37Þ

Substituting the contravariant components gμν, Eqs. (13)–
(17) into Eq. (37), we have

QðrÞð∂rSrÞ2 −
1

QðrÞTðrÞ
2 þ μ2r2

¼ −K

¼ −ð∂θSθÞ2 −
1

a2 sin2 θ
JðθÞ2 − μ2a2 cos2 θ: ð38Þ

By separating variables, we end up with two equations,
one depending on θ, the θ part, and the other one depending
only on r, the r part, with K being the (Carter) separation
constant:

ð∂θSθÞ2 ¼ K −
1

a2 sin2 θ
JðθÞ2 − μ2a2 cos2 θ; ð39Þ

QðrÞð∂rSrÞ2 ¼
1

QðrÞTðrÞ
2 − μ2r2 − K: ð40Þ

It is known that ∂μSμ ¼ pμ þ qAμ ¼ gμνpν þ qAμ; pν ¼
m _xν and since Ar ¼ 0 ¼ Aθ, then ð∂θSθÞ defines the motion
in θ by the equation

ðρ2 _θÞ2 ¼ ΘðθÞ
¼ K̃ − a2 cos2 θ

−
1

a2 sin2 θ
½aL̃z − a2 sin2 θẼþ q̃A1ðθÞ�2; ð41Þ

where K̃ ¼ K=μ2.
Equation (41) is still coupled because the factor ρ2ðr; θÞ

arises on the left-hand side of the equation. To decouple it
completely, we use the orbital parameter λ related with the
proper time τ, also known as the Mino time and defined in
Ref. [15], as

dλ
dτ

¼ 1

ρ2
; τ ¼

Z
λ

0

ρ2dλ: ð42Þ

Note that the motion equations can be decoupled without
introducing the Mino time [13], but using the Mino time
decouples the radial and colatitudinal equations of motion
in a simpler way. We present the forthcoming analysis
in terms of functions dependent on the Mino time. The
θ-motion equation can be written as

dθ
dλ

¼
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
: ð43Þ

The r part of the movement, from Eq. (38), is determined
by the equation�

dr
dλ

�
2

¼ TðrÞ2 −QðrÞðK̃ þ r2Þ ¼ RðrÞ: ð44Þ

For the massless particle motion, we must take the limit
μ ¼ 0 in Eqs. (39)–(40). Recall that massless test particle
trajectories are not the trajectories followed by light rays,
since in NLE the latter are governed by the null geodesics
of an effective optical metric [16], which is determined
from the NLE Lagrangian.

A. θ motion

Let us now consider the θ motion. From Eq. (41), we
have a restriction for Θ: that is Θ ≥ 0 which is a general
condition to guarantee motion in θ.
First of all, we list some general properties of the θ

motion. From Eq. (41) note that the θ motion depends on
the electromagnetic potential A1ðθÞ ¼ f1a cos θð1þ
βa2 cos2 θÞ related to the magnetic charge of the BH and
it has influence only over a charged test particle since it
appears as the term A1q̃; then uncharged particles are not
affected by the NLE field in their θ motion and it occurs
qualitatively the same as in the Kerr-Newman geometry.
Note also that the θ motion does not depend on the metric
function QðrÞ. Moreover there are some symmetries
evident from Eq. (41):
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(i) Since the allowed regions for the θ motion demand
that Θ ≥ 0, the Carter constant K must be positive
since the subtracting terms in Eq. (41) are positive;
then to have an allowed region requires a larger K
than in the KN case (β ¼ 0).

(ii) A simultaneous change of sign of Lz and E is
equivalent to a reflection on the equatorial plane:
Θj−Lz;−EðθÞ ¼ ΘjLz;Eðπ − θÞ.

(iii) The movement in the equatorial plane, θ ¼ π=2 and
A1 ¼ 0, is not allowed for arbitrary values of
ðE;Lz; aÞ but it may occur if K̃ − ðaẼ − eLzÞ2 ≥ 0,
i.e., the Carter constant should be K ≥ ðaE − LzÞ2.

(iv) A change of sign in qA1 is equivalent to a reflection
over the equatorial plane, Θj−qf1ðθÞ ¼ Θjqf1ðπ − θÞ.

(v) One of the poles cannot be reached by test particles;
which one is unreachable, θ ¼ 0 or θ ¼ π, depends
on the sign of the product of the BHmagnetic charge
and the test particle charge f1q. If q̃f1 > 0 then the
test particle cannot reach θ ¼ 0, while if q̃f1 < 0
then θ ¼ π is unreachable. Moreover in any case the
test particle angular momentum Lz cannot be arbi-
trary (see Fig. 7), but it must hold that

ðq̃A1ðθ ¼ 0; πÞ þ aL̃zÞ ¼ 0:

Then Lz ¼ −qA1ðθ ¼ 0; πÞ=a or Lz ¼ 0 ¼ q.
Apart from the previous generalities, to examine the

allowed regions for the motion in θ in terms of the BH and
test particle parameters, we proceed to a change of variable
from θ to x as follows:

x ¼ cos θ; ð45Þ

with the range −1 ≤ x ≤ 1; the new variable x in terms of
the old variable θ is

_x ¼ −_θ sin θ; _x ¼ −
ffiffiffiffi
Θ

p
sin θ: ð46Þ

Then Eq. (41) in terms of x, renders a sixth-degree
polynomial,

ΘðxÞ ¼ −x6a2q2β2f21 − x52a3βEf1q

þ x4a2ð1 − E2 − 2βq2f21Þ
þ x32aqf1½−Eþ aβðaE − LzÞ�
þ x2½−K − f21q

2 − a2 þ 2aEðaE − LzÞ�
þ x2qf1ðaE − LzÞ − a2ðaE − LzÞ2 þ K; ð47Þ

where the tilde ˜ has been omitted, and the condition that
Θ ≥ 0 defines the regions where the θ movement is
available. The previous equation can be written as

Θ ¼ −x3βa2qf1½βf1qx3 þ 2aEx2 þ 2f1qx − 2ðaE − LzÞ�
þ x4a2ð1 − E2Þ − x32aqf1E

þ x2½−K − f21q
2 − a2 þ 2aEðaE − LzÞ�

þ x2qf1ðaE − LzÞ − a2ðaE − LzÞ2 þ K; ð48Þ

where we have separated the nonlinear contribution in the
first term; note that the nonlinear parameter appears
combined as a2βf1q and in general, we expect this term
to be small since a is restricted to be less than the BH mass,
as well as the magnetic (electric) BH charge; while the
reduced test particle charge q̃ ¼ q=m cannot be large, then
the NLE effect in the θ motion is not very significant. In
Figs. 4–8, we show the allowed regions, ΘðθÞ ≥ 0 when
varying the parameters K̃; β; a; L̃z, and Ẽ. Recall that the
BH parameters are the mass, m, magnetic charge f1,
electric charge, g1, and electromagnetic nonlinear param-
eter β, while the test particle parameters are the mass, μ,
electric charge q, energy, Ẽ, the angular momentum
projection onto the z axis, L̃z, and the Carter constant
K. The latter is associated with the total angular momen-
tum: the total angular momentum of the test particle is not
conserved and varies with θ, but the total angular momen-
tum (BH angular momentum plus test particle angular
momentum) must be conserved, so there is an exchange of
angular momentum between the BH and the test particle,
analogous to the KN case.

FIG. 4. The available regions for the bounded orbits in θmotion
are shown for three values of the Carter constant K. The regions
Θ ≥ 0 are the ones allowed for the motion of test particles and K
must be large enough to make Θ ≥ 0; from top to bottom K
decreases as K ¼ 10, 8, and 5. In this plot, we fix the parameters
as m ¼ 1; a ¼ 0.8; β ¼ 5; f1 ¼ 0.5 (BH magnetic charge),
q̃ ¼ 0.3; Ẽ ¼ 4; L̃z ¼ 0.5. Note that for these fixed parameters,
if K̃ ¼ 5 there are two disconnected regions Θ > 0, one above
and the other below the equatorial plane where the test particle is
allowed to move in bounded orbits, and there is a region not
available for the test particle motion around the equatorial plane,
−0.5 < cos θ < 0.45. Also note that the regions are not sym-
metrical with respect to the equatorial plane and that the allowed
region does not include θ ¼ 0 (cos θ ¼ 1).

MOTION OF THE CHARGED TEST PARTICLE IN THE … PHYS. REV. D 106, 024056 (2022)

024056-7



From the plots, we see that depending on the values of
the parameters the bounded movement in θ occurs in three
types of regions: (i) the whole range 0 ≤ θ ≤ π, excepting
one of the poles; (ii) in a strip defined by θmin < θ < θmax;
(iii) two disconnected regions, one above and the other
below the equatorial plane, θ1 < θ < θ2 and θ3 < θ < θ4
where θi are positive real roots of ΘðθiÞ ¼ 0, with general
features described at the beginning of this section; in all
cases one of the poles is unreachable. The movement in θ is
determined by the BH magnetic charge, while the BH

electric charge does not have any influence on this motion.
Equation (41) for the linear (KN) limit obtained with β ¼ 0
is a fourth-order polynomial given by

Θ ¼ x4ð1 − E2Þ − x32qf1E

þ x2½−K − f21q
2 − a2 þ 2aEðaE − LzÞ�

þ x2aqf1ðaE − LzÞ − a2ððaE − LzÞ2 − KÞ; ð49Þ
which has been thoroughly studied by Hackmann in
Ref. [17].

FIG. 7. The available regions for the bounded orbits in θ
motion, Θ ≥ 0, are shown for different values of the test particle
angular momentum L̃z. The allowed regions decrease their θ
range as Lz increases, for fixed values of the rest of the
parameters; note that for large values of Lz the motion is
constrained to a region near the equatorial plane. In this plot,
we fix the parameters as m ¼ 1; a ¼ 0.8; f1 ¼ 0.5 (BH magnetic
charge), β ¼ 2; Ẽ ¼ 3; q̃ ¼ 0.3; K̃ ¼ 8.

FIG. 8. The available regions for the bounded orbits in θmotion
are shown for different values of the test particle energy Ẽ.
The motion is allowed almost in the whole θ range, with the
exception of the pole at θ ¼ 0; varying Ẽ changes the value of
dθ=dλ at the equatorial plane (θ ¼ π=2), such that increasing Ẽ
decreases the angular velocity of the test particle, dθ=dλ in the
equatorial plane and its vicinity. In this plot, we fix the parameters
as m ¼ 1; a ¼ 0.8; q̃ ¼ 0.3; f1 ¼ 0.5 (BH magnetic charge),
β ¼ 5; L̃z ¼ 0.5; K̃ ¼ 8.

FIG. 6. The available regions for the bounded orbits in θmotion
are shown for three values of the BH angular momentum, from
top to bottom a ¼ 0.1, 0.5, and 0.9. For small values of a the
motion is allowed almost in the whole θ range, and increasing a
restricts the allowed region; see that for a ¼ 0.9 the allowed
region splits into two regions one of them above and the other
below the equatorial plane. In this plot, we fix the parameters
as m ¼ 1; f1 ¼ 0.5 (BH magnetic charge), q̃ ¼ 0.3, β ¼ 2;
Ẽ ¼ 3; L̃z ¼ 0.5; K ¼ 8.

FIG. 5. The available regions for the bounded orbits in θ motion
are shown for three values of the nonlinear parameter β, from top to
bottom β ¼ 0, 1.8, and 3.5; for fixed parameters the allowed
regions are not very different from the KN-BH (β ¼ 0); the
situation is not different with a negative β. Note that even for
β ¼ 0 the allowed regions are not symmetrical respect to the
equatorial plane (θ ¼ π=2) and as β increases the asymmetry in
enhanced. In this plot, we fix the parameters as m ¼ 1; f1 ¼ 0.5
(BHmagnetic charge),a ¼ 0.9; q̃ ¼ 0.3, K̃ ¼ 8; Ẽ ¼ 3; L̃z ¼ 0.5.
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B. r motion

The equation for the motion in r is Eq. (44), _r2 ¼ RðrÞ,
with RðrÞ given by,

RðrÞ ¼ TðrÞ − ðr2 þ K̃ÞQðrÞ
¼ ½q̃A2ðrÞ − aL̃z þ Ẽðr2 þ a2Þ�2 − ðr2 þ K̃ÞQðrÞ;

and the NLE contribution is through the parameter β in the
electromagnetic potential A2ðrÞ ¼ g1rð1 − βr2Þ and the
metric function QðrÞ¼κF0ð1−βr2Þ2=2−2mrþr2þa2; in
what follows we omit the tilde x̃ and fix κ ¼ 1. The turning
points, where _r ¼ 0, are given by the roots of R ¼ 0 and
since QðrÞ is a fourth-order polynomial, R is a sixth-order
polynomial in r, given by

RðrÞ ¼ β2ðg21q2 − F0Þr6 − 2βEg1qr5 þ ½E2 − 1 − β2F0K þ 2βðF0 − g21q
2Þ�r4 þ ½2mþ 2g1qðEþ aβðLz − aEÞ�r3

þ ½g21q2 þ 2aEðaE − LzÞ − Kð1 − 2βF0Þ − a2 − F0�r2 þ ðK2mþ 2ag1qðaE − LzÞÞr
þ a2ðaE − LzÞ2 − Kða2 þ F0Þ: ð50Þ

The previous Eq. (50) with β ¼ 0, making F0 ¼ Q2
e and

g1 ¼ Qe, where Qe is the BH electric charge, we recover
the KN case

RKNðrÞ ¼ ðE2 − 1Þr4 þ ½2mþ 2QeqE�r3
þ ½Q2

eðq2 − 1Þ þ 2aEðaE − LzÞ − K − a2�r2
þ ðK2mþ 2aQeqðaE − LzÞÞr
þ a2ðaE − LzÞ2 − Kða2 þQ2

eÞ; ð51Þ

which is a fourth-degree polynomial. Then RKNðrÞ ¼ 0
has two real roots, one positive and one negative and two
complex conjugate roots. One of the differences observed
in the stationary NLE BH is that, for the same fixed
parameters,R ¼ 0 has four real roots, two positive and two
negative, in addition to two complex conjugate roots. The
two positive roots are the turning points and the radius that
delimit the region of bounded orbits. This region could be
connected to a more efficient creation of an accretion disk
around the BH. Therefore the stationary NLE is a BH that
will more easily capture test particles, then pointing to a
more efficient creation of an accretion disk around the BH.
One of the positive roots is in the interior of the BH, and the
larger radius of the turning points defines the region of the
bounded orbits. Geodesics of the KN spacetime were
analyzed in Ref. [17]; see also Ref. [18].
In the next subsection, we describe how Eq. (44) can be

integrated.

C. Solution in terms of hyperelliptic functions

The radial coordinate in Eq. (44) can be integrated as

λ ¼
Z

drffiffiffiffiffiffiffiffiffiffi
RðrÞp : ð52Þ

If we knew a zero of Rðr0Þ ¼ 0 (which might be a
circular orbit radius or a turning point), then we could

reduce the degree of R by substituting r ↦ 1=xþ r0. The
resulting fifth-degree polynomial, Rx, is given by

Rx ¼
X5
j¼0

aj
a5

xj; aj ¼
ð�1Þj
ð6 − jÞ!

dð6−jÞR
drð6−jÞ

����
r0

: ð53Þ

This leads to the hyperelliptic differential equation of the
first kind,

x
dx
dλ

¼ E
ffiffiffiffiffiffiffiffiffiffiffi
a5Rx

p
: ð54Þ

The equations involving hyperelliptic Riemann surfaces
of genus 2 and one relevant degree of freedom are
integrated in the framework of the Jacobi inversion prob-
lem, using a reduction to the θ divisor (Jacobi theta
function) on the Jacobi variety, i.e., to the set of zeros of
the θ function. The explicit solutions are given in terms of
the Kleinian σ functions and their derivatives; therefore the
solution for rðλÞ is given by

rðλÞ ¼ ∓ σ2
σ1

�
fðτ − τ00Þ
τ − τ00

�
þ r0; ð55Þ

where σi; i ¼ 1, 2 are the derivatives of the
Kleinian σ function and f describes the θ divisor, i.e.,
σððfðzÞ; zÞtÞ ¼ 0. The same procedure can be applied to
the equation for the θ motion which is also a sixth-degree
polynomial in x ¼ cos θ. This method applied to
particle motion in general relativity was introduced in
Refs. [19–21]. Therefore, in principle, the analytic solu-
tions can be determined; however in this contribution we
will content ourselves with a qualitative description of the
possible test particle bounded orbits.

D. Effective potential

Equation (50) is a quadratic equation in E, which can be
written in terms of two effective potentials Veff� as
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RðrÞ ¼ ðE − VeffþÞðE − Veff−Þ;

Veff� ¼ 1

ðr2 þ a2Þ fðaLz − qA2ðrÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrÞðK þ r2Þ

q
g:

The positive square root is the one that corresponds to a
4-momentum pointing toward the future. Since Veff− can be
negative then a region exists from which energy can be
extracted by a Penrose process; that region is called the
effective ergoregion [22]. For a stationary charged BH the
energy extraction can be at the expense of electromagnetic
energy or rotational energy. In Figs. 9–10, we plot the
effective potentials for positive and negative F0, and for
different values of β, respectively. The available regions for
the motion of the test particle are the regions above and
below the curves; maxima and minima can be seen, which
indicates that there are both unstable and stable circular
orbits (where V 0

eff ¼ 0).

E. Circular orbits

The spherical orbits are defined by R ¼ 0 and R0 ¼ 0.
This last condition is given by

R0 ¼ 6β2ðg1q2 −F0Þr5 − 10βEg1qr4

þ 4½E2 − 1− β2F0Kþ 2βðF0 − g21q
2Þ�r3

þ 3½2mþ 2g1qðEþ aβðLz − aEÞ�r2
þ 2½g21q2 þ 2aEðaE−LzÞ−K − a2 − ð1− 2βKÞF0�r
þ ðK2mþ 2ag1qðaE−LzÞÞ ¼ 0: ð56Þ

From the two conditions, R ¼ 0 and R0 ¼ 0, we can
derive the condition for the circular orbits as

4ðqA0
2 þ 2rEÞ2QðrÞðr2 þ KÞ

− ð2rQðrÞ þQðrÞ0ðr2 þ K2ÞÞ2 ¼ 0; ð57Þ

where f0 ¼ dfðrÞ=dr. Numerical solutions can be found
for this equation, showing that indeed circular orbits can
exist in the vicinity of this black hole. In Figs. 11 and 12,
we show the radius of the circular orbits rc for fixed

FIG. 11. The curve shows F0 (related to the BH charge) as a
function of the radius of the circular orbits rc. In this plot, we fix
the parameters as m ¼ 1; a ¼ 0.9; q̃ ¼ 0.3; g1 ¼ 0.5 (BH electric
charge), β ¼ 0.3; L̃z ¼ 0.5; K̃ ¼ 40. There are values of F0 > 0
that allow two circular orbits while none exist for F0 > 0.43.

FIG. 9. The curves show the effective potentials Veff� for
F0 ¼ −0.2, 0.2. The area between the curves is forbidden for the
motion of the test particle. Note that Veff− can be negative; then
the possibility exists of energy extraction by means of the Penrose
process. In this plot, we fix the parameters as m ¼ 1;
a ¼ 0.9; q̃ ¼ 0.3; g1 ¼ 0.5 (BH magnetic charge), β ¼ 0.3;
L̃z ¼ 0.5; K̃ ¼ 40.

FIG. 10. The effective potentials Veff� are shown for three
different values of β. The area between the curves is forbidden for
the movement of the test particle. In this plot, we fix the
parameters as m ¼ 1; a ¼ 0.9; q̃ ¼ 0.3; g1 ¼ 0.5 (BH magnetic
charge), F0 ¼ 0.2; L̃z ¼ 0.5; K̃ ¼ 40. There exist both maxima
and minima then unstable and stable circular orbits occur; as β
increases no minima occur, then no circular orbits are present for
β > 0.5, for the chosen values of parameters in this plot.
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parameters and varying β and F0. Note that there are two
possible circular orbits for most of the ranges, indicating
that unstable and stable circular orbits may occur, in
agreement with the effective potential shape. Moreover,
the circular orbits of the stationary NLE-BH have a greater
radius than the KN one.

F. Bounded orbit regions, R ≥ 0

In Fig. 13 the generic behavior of R is illustrated for the
KN (β ¼ 0) and for the stationary NLE BH (β ¼ 0.5). For a
qualitative description of the test particle motion, we have
explored the regions in which bounded orbits can occur,
R ≥ 0, by varying the parameters. Moreover, R ¼ _r2 ¼ 0
at the turning points and the effect of varying the param-
eters modifies the position of the turning points: if the
turning point is closer to the horizon, then the region with
bounded orbits is smaller, and vice versa. In Figs. 14–19,
we explore the allowed regions (only the regions of interest
r ≥ 0 are shown), first varying the test particle parameters
L̃z, Ẽ and q̃:

(i) Increasing L̃z the turning point is closer to the
horizon, then the allowed region for bounded orbits,
RðrÞ ≥ 0 is smaller; see Fig. 14.

(ii) As Ẽ increases the allowed region RðrÞ is enlarged
and the turning point is farther from the horizon.
For Ẽ < 1 that the test particle cannot stay in the

forbidden regions in the vicinity of the black hole,
i.e., R < 0; see Fig. 15. In the absence of positive
real roots the orbits are of transit type: the particle
starts at �∞, comes to a point of closest approach,
r ¼ ro and then goes back to infinity.

(iii) As q̃ decreases the allowed region RðrÞ is enlarged
since the turning point is farther from the horizon.
The maximum allowed region is for the uncharged
test particle, q̃ ¼ 0; see Fig. 16.

FIG. 12. The curve shows the NLE parameter β as a function
of the radius of the circular orbits rc. In this plot, we fix the
parameters as m ¼ 1; a ¼ 0.9; q̃ ¼ 0.3; g1 ¼ 0.5 (BH electric
charge), F0 ¼ 0.2; L̃z ¼ 0.5; K̃ ¼ 40. Note that there are two
circular orbits for β in the range 0.14 < β < 0.43 and there are no
circular orbits for β > 0.43. In the case KN, β ¼ 0, there is only
one circular orbit.

FIG. 13. The generic behavior of the function R is illustrated
for the (continuous) KN (β ¼ 0) and for the (dashed) stationary
NLE BH (β ¼ 0.5). For the KN BHR ¼ 0 has two real roots, one
positive and one negative, while the stationary NLE BH R ¼ 0
has four real roots, two positive and two negative, in addition to
the two complex conjugate roots. The two positive roots are the
turning points and the radius that delimit the region of bounded
orbitsz. This region is related to the BH capacity of growing
an accretion disk. In this plot the parameters are fixed as
m ¼ 1, L̃z ¼ 0.5, q̃ ¼ 0.3, K̃ ¼ 4, a ¼ 0.9, F0 ¼ 0.36, g1 ¼ 0.6,
E ¼ 1.5.

FIG. 14. The allowed regions for bounded orbits, R ≥ 0, are
shown for different values of the test particle angular momentum,
from top to bottom L̃z ¼ −0.5, 0.1, 1, and 4; the allowed region
decreases as L̃z increases. The rest of the parameters are fixed
as m ¼ 1, Ẽ ¼ 2, q̃ ¼ 0.3, K̃ ¼ 4, m ¼ 1, a ¼ 0.9, β ¼ 0.5,
F0 ¼ 0.36, g1 ¼ 0.6.
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Now by varying the black hole parameters a, Q, β, we
obtain the following behaviors:

(i) As a increases the allowed region RðrÞ is enlarged
and the turning point is farther from the horizon;
regions are not very different when varying a;
see Fig. 17.

(ii) Increasing the BH charge, g1 ¼ Qe, makes the
turning point be nearer the horizon and the allowed
region RðrÞ becomes smaller. For the uncharged
(Kerr) BH, Qe ¼ 0 there are not positive real roots,
then the orbits are of transit type; see Fig. 18.

(iii) As β decreases the allowed region RðrÞ is enlarged
or the turning point is farther from the horizon. For
the linear electromagnetic case, β ¼ 0 there are not

positive real roots, then the orbits are of transit type;
see Fig. 19.

G. ϕ motion

We first note that the possibility exists for a test particle
coming with a certain angular momentum, that it reverses
its motion; i.e., it may happen that _ϕ ¼ 0, the equation that
determine the corresponding θ angle is

PðxÞQðrÞ þ ða2 − x2ÞTðrÞ ¼ 0; ð58Þ

where x ¼ a cos θ that is a third-degree polynomial.
Otherwise the motion resembles the KN one.

FIG. 15. It is shown R as a function of r; the allowed regions
for bounded orbits, R ≥ 0, are shown for different values of the
test particle energy, from top to bottom Ẽ ¼ 2, 1.5, and 1; the
allowed region increases as E augments; note that for E < 1 no
bounded orbits are possible. The rest of the parameters are
fixed as m ¼ 1, L̃z ¼ 0.5, q̃ ¼ 0.3, K̃ ¼ 4, a ¼ 0.9, β ¼ 0.5,
F0 ¼ 0.36, g1 ¼ 0.6.

FIG. 16. The regions allowed for a bounded test particle
motion, R ≥ 0, are shown for different values of the test particle
charge q̃ ¼ q=m. The rest of the parameters are fixed as m ¼ 1,
E ¼ 2.5, L̃z ¼ 0.3, K̃ ¼ 4, M ¼ 1, a ¼ 0.9, β ¼ 0.5, F0 ¼ 0.36,
g1 ¼ 0.6. The uncharged particle has the largest allowed region.

FIG. 17. The allowed regions for bounded orbits, R ≥ 0, are
shown for different values of the BH angular momentum. From
top to bottom a ¼ 0.9, 0.5, 0.3, and 0.1; as a decreases the
allowed region gets smaller but the reduction is not substantial.
The rest of the parameters are fixed as m ¼ 1, Ẽ ¼ 2.5, q̃ ¼ 0.1,
L̃z ¼ 0.5, β ¼ 0.5, F0 ¼ 0.36, g1 ¼ 0.6.

FIG. 18. It is shownR as a function of r, for different values of
the BH electric charge g1 ¼ Qe ¼ 0.1, 0.5, 0.6, and 0.8; the
allowed regions for bounded orbits, R ≥ 0, decrease as Qe
increases; for the uncharged BH (not shown in this plot) there
are not test particle bounded orbits. The rest of the parameters are
fixed as m ¼ 1, Ẽ ¼ 2.5, q̃ ¼ 0.1, L̃z ¼ 0.5, K̃ ¼ 4, a ¼ 0.9,
β ¼ 0.5, F0 ¼ 0.36.
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V. BIREFRINGENCE

To consider the massless particles motion, we must take
the limit μ ¼ 0 in Eqs. (39)–(40). Recall that massless test
particle trajectories are not the trajectories followed by light
rays, since in NLE these are governed by the null geodesics
of an effective optical metric [16], which is determined by
the NLE Lagrangian. In fact birefringence occurs in non-
linear electrodynamics with the exception of the Born-
Infeld (BI) theory [16]; the propagation of signals in BI
theory was studied in Ref. [23].
Given a Lagrangian depending on the two electromag-

netic invariants F and G, LðF;GÞ, there are two effective
optical metrics γð1;2Þμν given in terms of derivatives of the
Lagrangian respect F and G; these are,

γð1Þμν ¼ ðLF − 2LGGFÞgμν − 4LGGF
μ
:λF

λν;

γð2Þμν ¼ LFgμν − 4LFFF
μ
:λF

λν; ð59Þ

where gμν is the spacetime metric, in our case the stationary
NLE-BH. For Maxwell electrodynamics, LðFÞ ¼ F,
γð1Þμν ¼ γð2Þμν ¼ gμν and birefringence does not occur.
Therefore in the spacetime of the stationary NLE-BH
birefringence will take place and we can determine the
two effective optical metrics from Eq. (59) by means of the
chain rule, since we know the derivatives of the Lagrangian
with respect to the coordinates r and θ. Although straight-
forward, the procedure is cumbersome; for instance the
expression for LFF becomes

LFF¼2
L;rθ

F;rF;θ
−

F;rθ

F;rF;θ

�
L;θ

F;θ
þL;r

F;r

�
þ 1

F2
;r

�
L;rr−

L;rF;rr

F;r

�
þ 1

ðF;θÞ2
�
L;θθ−

L;θF;θθ

F;θ

�
: ð60Þ

The rest of the derivatives, LF, LGG, can be determined
analogously since, we do know the Lagrangian and the
electromagnetic invariants as functions of ðr; θÞ.
Undoubtedly it would be interesting to determine the

light trajectories in this metric; however we leave it for
future research.

VI. CONCLUSIONS

We have studied the properties of the stationary axisym-
metric nonlinear electromagnetic spacetime that general-
izes the Kerr-Newman BH. The solution possesses mass,
rotation, electric and magnetic charges and three parame-
ters associated with the NLE: β of the electromagnetic
potentials and F0,G0 related to the BH electric and
magnetic charges. From the analysis, we conclude the
following.
The sign of the nonlinear parameter F0 determines the

asymptotics of the spacetime: de Sitter if F0 < 0 and anti–
de Sitter when F0 > 0. While the value of β determines
the number of horizons, being then two critical values β1
and β2, for which there is only one horizon; if β < β1 no
horizons occur as well as if β > β2; and for β1 < β < β2 the
BH presents two horizons; in addition, if F0 < 0 there is
the cosmological horizon.
From the Kretschmann invariant, we see that the intro-

duction of the NLE field affects the curvature. Assuming
β > 0 and F0 > 0 (in agreement with physically reasonable
energy conditions) the stationary NLE BH curvature is
larger than that of KN; accordingly, the bounded orbits are
closer to the horizon for the rotating NLE BH than for KN.
For the motion of a charged test particle, the Hamilton-

Jacobi equations turn out to be separable, and likewise for
the Kerr-Newman case, and in principle analytic solutions
can be derived for the geodesic equations for θ and r,
related to a sixth-degree polynomial. We did not follow that
path and instead described the regions allowed for the
bounded motion of a charged test particle by varying the
parameters; the allowed regions are illustrated in the plots
for ΘðθÞ ≥ 0 andRðrÞ ≥ 0. Among the effects of the intro-
duction of the NLE field are the shrinking of the regions
allowed for test particle bounded orbits. The allowed
regions in terms of θ are defined by the positive real roots
of ΘðθÞ ¼ 0, and there are three possible cases: (i) the
whole range 0 < θ < π, except one of the poles; (ii) a strip
defined by a θmin < θ < θmax; (iii) two disconnected
regions, one above and the other below the equatorial
plane; in all cases one of the poles is unreachable. The
relative signs of the magnetic charge and the charge of the
test particle determine which one of the poles is unreach-
able: if q̃f1 > 0 then the test particle cannot reach θ ¼ 0,
while if q̃f1 < 0 then θ ¼ π is unreachable.
For the radial motion circular orbits appear in agreement

with the shape of the effective potential that presents
maxima and minima. There is also the possibility of energy
extraction since the effective potentials have regions of

FIG. 19. The allowed regions for bounded orbits, R ≥ 0, are
shown for different values of the nonlinear electromagnetic
parameter β, from top to bottom β ¼ 0, 0.5, 0.8, and 1; increasing
β decreases the allowed regionR > 0. The rest of the parameters
are fixed as m ¼ 1, Ẽ ¼ 2.5, q̃ ¼ 0.1, L̃z ¼ 0.5, K̃ ¼ 4; a ¼ 0.9,
F0 ¼ 0.36, g1 ¼ 0.6. For β ¼ 0 there are no bounded orbits.
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negative values. In general the r motion is qualitatively the
same as in KN spacetime but some differences arise: the
NLE parameter modifies the number of bound orbits and
there exists a second circular orbit outside the horizon. The
regions allowed for the test particle bounded orbits are
closer to the horizon if the NLE parameter β increases and
are larger for the uncharged BH (Kerr case). Augmenting
the BH charge, the test particle charge or the nonlinear
parameter β results in a smaller radius for the turning points
that delimits the regions of bounded orbits; as a conse-
quence, the stationary NLE BH may increase its accretion
disk more easily.
The birefringence effect takes place in this spacetime and

it is explained how to obtain the effective optical metrics
that determine light trajectories in this NLE spacetime.
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APPENDIX: ROOTS

The metric function representing a rotating charged
black hole with nonlinear electrodynamics in a Kerr-like
spacetime is

QðrÞ ¼ κF0

2
ð1 − βr2Þ2 − 2mrþ r2 þ a2; ðA1Þ

which we rewrite as follows as:

QðrÞ ¼ A1r4 þ A2r2 þ A3rþ A4; ðA2Þ

where Ai are the coefficients defined as

A1 ¼
κF0β

2

2
; A2 ¼ 1 − κF0β;

A3 ¼ −2m; A4 ¼
κF0

2
þ a2: ðA3Þ

According to the Cardano-Ferrari method it is possible to
determine analytical expressions for a fourth-degree poly-
nomial. The roots of Eq. (A2) are

r1;2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2A2

3A1

þ B

s
∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
4A2

3A1

− B −
2A3

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 2A2

3A1
þ B

qvuut ;

ðA4Þ
and

r3;4 ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2A2

3A1

þB

s
∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
4A2

3A1

−Bþ 2A3

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 2A2

3A1
þB

qvuut ;

ðA5Þ
where B is defined as

B ¼ 21=3ðA2
2 þ 12A1A4Þ
3A1A

þ A
3ð2Þ1=3A1

; ðA6Þ

and we define A as

A3¼2A3
2þ27A1A2

3−72A1A2A4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4ðA2

2þ12A1A4Þ3þð2A3
2þ27A1A2

3−72A1A2A4Þ2
q
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