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We present a unified description of the matter and dark energy epochs using a class of scalar-torsion
theories. We provide a Hamiltonian description, and by applying Noether’s theorem and requiring the field
equations to admit linear-in-momentum conservation laws, we obtain two specific classes of scalar-field
potentials. First, we extract analytic solutions and perform a detailed dynamical analysis. We show that the
system possesses critical points that correspond to scaling solutions in which the effective, total equation-
of-state parameter is close to zero and points in which it is equal to the value —1; the equation of state of the
cosmological constant. Therefore, during evolution, the Universe remains for sufficiently long at the epoch
corresponding to dust-matter domination, while at later times it enters the accelerated epoch and eventually
results in the de Sitter phase. Finally, in contrast to other unified scenarios, such as Chaplygin gas-based
models and Horndeski-based constructions, the present scenario is free from instabilities and pathologies at

the perturbative level.
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I. INTRODUCTION

According to detailed observations of different origins, the
Universe has entered a period of accelerated expansion in
the recent cosmological past. The simplest explanation is the
cosmological constant; nevertheless, the corresponding
problem, as well as the possibility of a dynamical nature,
led to two main classes for its description. The first is to
maintain general relativity and introduce the concept of dark
energy, which accounts for all forms of new, exotic sectors
that can be sources of acceleration [1,2]. The second is to
attribute the new degrees of freedom to modifications of the
gravitational interaction [3-5], namely to extended theories
that have general relativity as a limit but which in general
have a richer structure. Additionally, there are cumulative
pieces of evidence that most of the Universe’s matter content
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is in the form of cold dark matter (CDM) [6-8]. Although
most cosmologists believe that dark matter should corre-
spond to some particle beyond the Standard Model, the
fact that it has not been directly detected in the accelerators
led to the investigation of many models in which dark
matter can have, partially or completely, gravitational
origin [9—-12]. Modified theories of gravity may arise by
extending the Einstein-Hilbert action in a suitable way,
such as in F(R) [13] and F(G) [14,15] gravity, in Lovelock
construction [16,17], in Horndeski gravity [18], in gener-
alized Galileon theories [19,20], etc. Nevertheless, one can
construct gravitational modifications starting from the
equivalent torsional formulation of gravity [21,22] and
build theories such as F(T) gravity [23-25], F(T,T)
gravity [26], F(T, B) gravity [27], etc. In this framework
one can also introduce scalar fields, i.e., constructing
scalar-torsion theories [28], allowing for nonminimal
[28-33] or derivative [34] couplings with torsion, or more
general constructions [35-43], than can even be the tele-
parallel version of Horndeski theories [44—47], or allow for
a nonminimal scalar-torsion coupling with a boundary
term and fermion-torsion coupling. Recently, in [48-50] a
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detailed study of the teleparallel dark energy in the light of
Noether point symmetries was performed. In [51,52], the
onset of cosmic acceleration from matter-dominated era
ending to a de Sitter phase, was studied in the framework
of coupled quintessence-torsion model in teleparallel
gravity. Late-time acceleration driven by shift-symmetric
Galileon in the presence of torsion was investigated in
[53]. Moreover, scalar fields or modified gravity models
can be used at galactic scales for the dark matter explan-
ation [54,55].

On the other hand, a large amount of research has been
devoted to obtaining a unified description of the Universe,
namely introducing a single component that can behave as
dust matter at early and intermediate times, and as the
acceleration source at late times. The typical example of
such classes is the Chaplygin gas cosmology [56-58], in
which one introduces by hand an exotic fluid with a
peculiar equation-of-state parameter that is close to zero
at early times; it is progressively increasing, acquiring a
value around —0.7 today, as it is required by the observed
total equation of state of the Universe at present, and finally
in the future results to —1, i.e., to de Sitter phase. Similarly,
one can apply generalized Galileons/Horndeski theories
[18-20] and require the extra scalar field to describe both
the matter and dark-energy sectors in a unified way [59].
However, although the generalized Chaplygin gas can
indeed describe the evolution of the Universe at the
background level [60,61], it may lead to perturbative
instabilities [62], which then require the introduction of
extra mechanisms to cure them, such as small entropy
perturbations [63,64] or baryonic matter that can improve
the behavior of the matter power spectrum [65-67].
Similarly, in Horndeski-based theories of dark-sector uni-
fication, perturbative instabilities related to the sound-speed
square may arise too [59,68-70]. In [71-74] were for-
mulate actions with DE-DM unification.

In this work, we want to present a unified description
of the matter and dark energy epochs, using not a
peculiar, exotic fluid, but a class of scalar-torsion theories.
Although such constructions are usually applied for the
description of only the dark energy sector, in this work, we
apply the Noether symmetry approach to constructing
suitable models giving rise to an effective cosmic fluid
whose equation-of-state behaves as the pressureless mat-
ter at early times and as dark energy at late ones. As we
will see, the unified description can indeed be obtained,
and this is achieved without the presence of instabilities at
the perturbative level.

The outline of the paper is the following. In Sec. II, we
briefly review the scalar-torsion theories of gravity, and in
Sec. III, we present their Hamiltonian description, focusing
on the conservation laws. Then, in Sec. IV we extract
analytic solutions, investigating the asymptotic dynamics
by applying the dynamical system analysis. Finally, in
Sec. V we discuss our results and presents our conclusions.

II. SCALAR-TORSION THEORIES

In the torsional formulation of gravity one uses the tetrad
fields e,(x*), which form an orthonormal basis at a
manifold point x*. In a coordinate basis they are expressed
as e, = efga,,, and the spacetime metric is

G (X) = napep (x)ef(x), (1)

with 5,5 = diag(—1,1,1,1) and where Greek and Latin
indices are used to denote coordinate and tangent space,
respectively. Moreover, one introduces the Weitzenbock

WA
. _ l A .
connection I, = ¢} d,ey, and hence the corresponding

torsion tensor reads as

wi

—T,, =¢i (0,el —0,e). (2)

i
Tuv = Fvu (7 veu

On can construct the torsion scalar by its contraction as

1 1
T =TT+ 5T, =T, T, (3)

D vup
which is then used as the Lagrangian of teleparallel gravity.
In particular, writing the action

1 4
S—16ﬂG/dxeT, (4)

with e = det(ef) = \/=g and G the gravitational constant,
and performing variation in terms of the tetrads leads to the
same equations of general relativity, and that is why the
theory at hand is named teleparallel equivalent of general
relativity (TEGR).

One can add a scalar field ¢ to the above framework,
resulting to the scalar-torsion theories of gravity. As it has
been extensively discussed, although TEGR is equivalent
with general relativity, f(7) is different than f(R) gravity,
and similarly scalar-torsion theories are in general different
than scalar-tensor (i.e., scalar-curvature) gravity, due to the
different structure of curvature and torsion tensors [23]. The
simplest scalar-torsion action is [28]

5= / el + EPOT + 0,000 — 2V(B).  (5)

with V(¢) the potential of the scalar field, & the coupling
parameter, and where for simplicity we use units where
87G = 1.

We consider a spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) background metric with line
element

ds* = —di* + a*(1)  (dx® +dy* + d7?). (6)
Hence, the two Friedmann equations become
3H2 = /)¢, (7)

—2H -3H* = P,, (8)
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with H :g the Hubble function and where the effective

energy density and pressure for the scalar field are written
as [28]

Py = 58+ V(D) ~ 36, (9)

Py =30~ V(§) + AEHD) + EQH + 3P (10)

Additionally, variation of (5) leads to the Klein-Gordon
equation

¢ +3Hep + 6EHP + V 4(¢p) =0, (11)
which can be re-written equivalently as
py+3H(p, +P,) =0. (12)

Finally, note that we can introduce the equation-of-sate
parameter for the scalar field as

P
19

Wetr = —. (13)
e Py

We close this section by presenting the minisuperspace
description of the above theory. In particular, we start
by rewriting the FLRW line element adding the lapse
function, namely

ds* = =N*(t)dr* + a*(1)(dx* + dy* + dz*).  (14)

Then, the field equations follow from the variation of the
pointlike Lagrangian

L(N,a,d,p,d)
:% —3(1+§¢2)ad2+%“3¢2 ~NaV(g).  (15)

Specifically, the first Friedmann (constraint) equation (7) is
obtained from the Euler-Lagrange equation % =0, while
the second Friedmann equation (8) is provided by the
Euler-Lagrange equations with respect to the scale factor a,

%3—4 - ‘;—5 = 0. Finally, the scalar field equation arises from
d oL _ of

diog " 4= 0. As usual, in all the above equations one can

set N(r) = 1 after the derivations.

ITII. HAMILTONIAN DESCRIPTION AND
CONSERVATION LAWS

We continue by introducing a rescaled scalar field y(7)
defined as ¢ = %Esinh(\/c_—?q/). In the new variables, the

point-like Lagrangian (15) becomes

L(N,a,a,y,y)

:%coshZ(ﬁw) <—3ad2+%a3l[/2> —a*NV(y). (16)

Hence, the field equations become
1
cost? (B (=387 + 302 ) + V() =0, (17

: 2 L., . Vi)
2H +3H? + 2y +4/EH tanh(/Ew )yr oo \/Ew)_o’

(18)
V/+3Hy -+ /Etanh(y/Ey) (4 + 6H?) +%:O’
(19

where H = d/(aN), and we set N(t) =1 in the end.
Therefore, the energy density and pressure for the scalar
field are defined as

1., V(y)
S =Y, 20
Pv =3V cosh?(v/&y) (20)
1. . Vw)
P, =~y + 4y/&H tanh -——F, (21
1"78 2’// + \/E an (\/EW)W COShz(\/El//) ( )
while the equation-of-state parameter becomes
P
Weir = . (22)
74

Since y is just the rescaled ¢, the physical properties of the
scenario are the same as the initial scalar-torsion theory.
The cosmological equations (17)—(20) form an autono-
mous dynamical system described by the pointlike
Lagrangian (16), where Eq. (17) can be seen as the energy
conservation law for the Euler-Lagrange equations (18)
and (19). For the Lagrangian function (16) we define the

generalized momenta by p; = 3—5, where ¢' € {a,y},
pi € {pa. py}, namely
h2
Po = —6a cosh*(véy) d, (23)
N
cosh? (&) .
p, =W 5, (24)

Hence, we can introduce the Hamiltonian function
H = p,d + p,y — L, which is written as

N <P5/ p>

H= o2 (VEp) \2a? 1 Za) +a@NV(y).  (25)
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Note that dH/dt = 0, and as expected the first Friedmann
(constraint) equation (17) becomes H(N,a,y, p,, py,) =0.
Thus, we have the evolution equations for (d,y) as given
by Egs. (23) and (24) Additionally, Hamilton’s equations

pi = 0 ” where q € {Cl ll/} Pi € {Pa, pv,} lead to
1. 1 3Py, P2 32V(y) 26)
N =57~ —-3a ,

NPT cosh?(v/&y) \2 a* 12a% v

L R (VR (R
iy =SSO (P2 - v ). (20

a’ 6a

To proceed with the derivation of analytic solutions for
the Hamiltonian system [Eqs. (23), (24), (26), and (27)] we
have to investigate the integrability properties of the
system. Indeed, the Hamiltonian function (25) is a con-
servation law for the dynamical system. Thus, we must find
the potential functions V(y) for which the dynamical
system admits other conservation laws.

We are interested in studying the existence of conserva-
tion laws in the field equations that are linear in momentum.
Specifically, we apply Noether’s theorem to constraint
the function V(y), for the field equations to possess
Noetherian first integrals. This approach has been widely
applied in the literature, with many interesting results
[75-91]. Concerning teleparallel and torsional gravity,
Noether’s symmetry approach was applied in [92-96].
Moreover, as has been discussed in [97], the application
of Noether’s conditions for the constraint of the scalar-field
potential is a geometric selection rule since there exists a
relation between Noether symmetries and the collineations
of the minisuperspace for the field equations. In the
following, we omit the calculations for the derivation of
Noether symmetries and the approach that we follow can be
found in detail in [98].

In summary, we find two nonzero scalar field potentials,
for which the field equations admit linear-in-momentum
conservation laws, and we separately present them in the
following subsections.

A. Potential V4 (¢) =V cosh~2(\/Ey)

According to the Noether analysis, the first potential
function that we extractis V,(¢p) = Vocosh=2(\/&y). Thus,
we find that the field equations admit the Noether sym-
metries which provide the linear first integrals

X! :;13 [a cosh <‘fw> 9, —\/6sinh (?w) a,,,} . (28)

X2= —% {a sinh (%61,/) d,+V/6cosh <\/76w> aw} . (29)

a

X3 =9 (30)

W

These Noether symmetries form the three-dimensional
Lie algebra {X' X2, X3}, with nonzero commutators
(X', X3 = v6X2, [X2,X%] = —/6X". Moreover, the cor-
responding linear-in-momentum conservation laws are
derived as

Il(a’l//’pwpy/)

1 6 6

—3 {a cosh <\g_1//> Pa— V/6sinh ({W) PW} ) (31)
Iy(a.y.pa-Py)

:% {a sinh <?l//) p.—V/6cosh (?W) Pw} . (32)

IS(avl//7pa’pl//) :px//~ (33)
For these functions we calculate {I4,H} ~H, which
becomes {/4,H} ~0, since the dynamical system is con-
strained [84—86].

B. Potential VB (¢) = V()e - ecosh _2(\/&//)

The second potential function that we extract, in which
the field equations admit a linear first integral, is
Vi(p) = Voe ™ cosh™2(\/&), which in the limit 1 =0
recovers the potential of the previous subsection. The
Noether symmetries of the field equations are

1 -
y!l = —6a\/5’1 e Vo (aa, 4 9,,), (34)
1 —3)-3 1
Y2 = ——a @V (g9 —9,), 35
7 ( v) (35)
Y3 =aid, +9,. (36)

Furthermore, the nonzero commutators of the Noether
symmetries {Y', Y2, ¥*} are [Y!,¥?] = v6(£ — 1)¥? and
[¥2,¥?] = —V/6(% — 1)Y'. Therefore, the corresponding
Noetherian first integrals are

A-3 _1

1 =
Q)l (a’ Y, Pas pw) = 760\/5 - 6_7(\/6_1)'//(61])“ —+ pl//)’ (37)

1 s,
®2(a’w»pava):_76a AV W (ap,~p,). (38)

(D3(Cl,1//,Pa,Py/>:a/1pa+6py/- (39)
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IV. ANALYTIC SOLUTIONS AND
ASYMPTOTIC DYNAMICS

In this section, we will extract analytic solutions for the
Liouville integrable scalar-field potentials. It is essential to
mention here that these potential functions admit more
conservation laws from the degrees of freedom of the
Hamiltonian system, namely the scalar field potentials are
superintegrable. As we observe, for the above two scalar-
field potentials, the cosmological field equations admit
three vector fields as additional Noether symmetries ele-
ments, for each potential, which forms the same algebra.
Consequently, potentials V,(¢) and Vz(¢p) admit as
Noether symmetries the same Lie algebra but in a different
representation.

The solution approach that we shall follow is summa-
rized in the following steps [98]: First, we define the normal
coordinates; then, as a second step, we apply the canonical
transformations, and we write the Hamilton-Jacobi equa-
tion. Finally, from the action arising from the Hamilton-
Jacobi equation, we reduce the field equations into a system
of two first-order differential equations. In general, this is
considered to be the general solution for the scenario at
hand. Nevertheless, if it is feasible we will also provide a
closed-form solution.

A. Potential V,(¢) = Vycosh~2(/Ey)

For the scalar-field potential V4(¢), Noether symmetry
X3 is already in normal coordinates. Hence, from (25)
and (33) we result to the Hamilton-Jacobi equations

o P () o o

FS(()‘;;"’)] — I, (41)

Therefore, the corresponding action is calculated as

S(a’ l//) = 131// —+ / 61%61_2 + 1204610 + So, (42)

which implies that the field equations are reduced to the
following system

1.  6\6Ba"+ 124 @3)

NT T T cosh?(v&y)
- I

N = ot (VEp) #4)

The solution of the above equations is expressed in terms
of the elliptic integral

(45)

( ) 13/ da

a)=—— .
v 6. J6I2a™* + 12a?
For small values of a, we derive y(a) ~wya’, and thus

L —6,/613a7% + 12(1 — \/Epya®), which leads to

By
" Na
~ /612076 + 12(1 - \/El,/oaﬁ) ~ /612475, (46)

As we deduce, the early-time solution is approximated by
that of a stiff fluid. On the other hand, for large values of
the scale factor we have y(a) ~yolna, yy~ I3, which
implies that

H(a)

_Lla_ v, 47)

H(a) "~ Na

Hence, the late-time solution is that of an ideal gas.

B. Potential Vz(¢p) = Voe *cosh~2(\/Ey)
For the potential Vz(¢p) we apply the canonical trans-
formation a = { (A — u), and the pointlike Lagrangian (16)
becomes

£(N? u, M,l//,l/})
1
= mcosh2 (\/EII/) [14'2 — 2y +(,12 _ 6)1/}2]&“‘/’—“)
+ NVoer e Moot (/& ). (48)

Hence, the Hamiltonian function (25) reads

Nerlw—u) 1[(/12 6)p2 11 ] Voot
- < — — — e ,
COSh2<\/El//) 2 Pu PuPy T Py 0
(49)
where
i = ) (50)
= — (U — s
Pu 6N Y
| . )
Py :67N[(/1 _6)1//_2”]’ (51)
with N = N[cosh?(y/Ey)e:®~1)], namely
1. )
= (6= P)p, iy (52
1.
Y = Py = AP (53)
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Additionally, the conservation law @5 becomes ®; = p,,.
Hence, from the Hamilton-Jacobi equation

PO L) P P o

S (u, y)]?
+ {y] —2Vpe M =0, (54)
u

and the constraint equation

<as (;‘u’ v) ) — @y =0, (55)

it follows that

S(u,y)

1
= MCI)3 +5/ |:\/8V0€_AW - 3(133(12 - 8) —ﬂq)3:| dl//+ So.

(56)

From the this action we calculate p, = ®3 and p, =

: [\/SVOe_’h” —3D3(2* -8) - /1(133] . Thus, this results in

the reduced system

1 -
ﬁu = —E |:/1\/8V06 Wy _ 3(13%(/12 - 8) + (12 - 12)(1)3:| s
(57)
I —

In the special case where ®; = 0 or e™* dominates, the
above system is simplified as

1 1 / 1 1 /
S —A o — —A
ﬁu = 3 (/1 8V0€ W), Nl// = 3 ( 8V0€ W),
(59)

which leads to ‘é—"; :% or u = Ay. However, in that case

a(f) =4 (Ay —u) =0, and therefore such solutions
describe the very early Universe. On the other hand, in

the limit where e™ — 0, the reduced system [Egs. (57)
and (58)] becomes

For this system, real solutions exist when 1> — 8 < 0, and
in this case we find %u =U,, A%lp = U,, which yields

)
W= gu

C. Dynamical system analysis

We continue our analysis by studying the general
evolution of the cosmological field equations, with the
superintegrable scalar-field potentials given above. The
approach that we follow is that of the H normalization [99],
which has been widely studied in the literature for various
cosmological models [100—109].

We consider the new dimensionless variables

U V(y)

:\/EH’ y:\/gcosh(\/fu/)H’ k=tanh(\/&y), (62)

X

and we introduce the new independent variable w, defined

o H . .
through dw = mdt. Thus, the field equations can be

transformed to the following algebraic-differential system,

B 2= 1)[2(3x + V6E) VI~ Veuly)].
(63)

dx

o= 6&x(1 — x?)2, (64)

with u(y) = —(InV(y)) . while from the constraint equa-
tion (17) it follows that

1—x?—y?=0. (65)

For the superintegrable scalar potential Vz(y), we cal-
culate u(y(k))=Ao+2tanh(y/Ey), that is u(x) =2+ 2x,
where / is a constant. Hence, for 4y = 0 potential V()
reduces to the form of V,(y). Furthermore, the effective
equation-of-state parameter for the cosmological fluid (22) is
expressed in terms of the new variables as

2
Wegp (¥, 6) = =1 4 2x% + 4\/?59610 (66)

In Table I, we summarize the results of the dynamical
analysis, namely the critical points and curves of critical
points, their existence and stability conditions, and their
physical features quantified by the equation-of-state param-
eter of the total cosmological fluid.

The set of critical points P (k*), where «7} is the solution
of the equation 2y/6&k}+/1— (k7)*>—V6u(xt) =0,
describe de Sitter universes, in which weg (P (x*))=—1.
The corresponding eigenvalues of the linearized system are
derived as

024055-6



UNIFIED DARK SECTORS IN SCALAR-TORSION THEORIES ...

PHYS. REV. D 106, 024055 (2022)

TABLE I.  Critical points and curves of critical points, their existence and stability conditions, and their physical features. k7 is the
—13x2
solution of the equation 2y/88kf v/T— ()7 = Véu(xt) = 0, while f(xf) = } [k +2v2 M52
Point (x,x) Existence Stability Solution
P](K*) (0, Kl) K| = KT Stable for — \/E < Kl < % and (11__2:%;2 < 5 < f(KT) Weff(Pl(K*)) = —1. de Sitter.
pitt (FLED Always PO giaple for 2y > 0. Werr(PS™) = 1 + 4eny /%, Scaling.
Pg+‘_) saddle.
Pg_"ﬂ saddle.
P<2_’_> stable for 4y < 0.
n _ . .
P; (x, 1) Ao =2 Numerical elaboration (see text and figures) We( P?) — 112214 \/%x_
de Sitter for x € {0, —2\/%\/5},
matter dominated for x = — 2R3+ V63+4‘f.
Py (x,—-1) Ag =2 Numerical elaboration (see text and figures)

Weir(P3) = =14 2x° —4\/7

de Sitter for x € {0, 2\/%\/_},

matter dominated for x = M&T V63+45.

et = 1%"*2{—3 + \/3 [8(21<*2 —1)E+84/(1 —K*2)5+3:| }

and thus points P, (k*) are stable, namely late-time attrac-

1 1 1—x*2 1 [ 7-10x*2
tors, for —75 <K' < 75, m < 5 < g [(1_2’(’:2)2
2v2

8k* :—ézfz'zjs]
Additionally, points PY”, with &=+1, 5==+I,

describe scaling solutions with weff(Pgs’")) =1+ 481’]\/_2?2.
The linearized matrix for the vector field (63)—(64) is

_ [J“ 112} &

J21 J22

where

T ==3V1 =12 + 9V 1 — 22
+ \@x[zx(\/g—x%:— 1) —zo},
(x? - 1){\/6{(2K2 - 1)VE+ m} + 3Kx}

Jip=- ;

1 -2
Jo = V6(1 = K2)¥2\/E,
Jy = =3V6Kx\/E — K2E. (68)

[

The Hartman-Grobman theorem or center manifold
theorem relies on the fact that a system evolving in
time as u(f) € R" must satisfy the differential equation
du/dt = f(u) for some smooth map f: R" - R"
[110,111]. This is clearly not the case for the vector
field (63)-(64) at k = £1, since J is not continuous at
k = +1 due to the fact that /5 is not bounded at k = +1.

Therefore, in order to conclude on the stability of ng’”)

we need to perform a numerical elaboration. Introducing
the variables

u=ux-—e, v=K-1, (69)
we result to the dynamical system

du 3
_— = = —, 2
dw \/;/IOM(LH— ¢)

+ 3u(u® + 3ue + 2)\/—v(2n + v)

+ V6u(u +2¢)(n + ) [\/—60(211 +v) — 1], (70)

dv  V6(u+e)[—Ev(2n+ v)]3/?
do & ’

(71)
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where we assume the v-range, 0 < v <2 for = —1 or
—2 < v L0 for n = +1, as the physical ones. Although
the corresponding linearization matrix is not bounded and
is not continuous at (u,v) = (0,0), we can obtain partial
information about the stability at the origin by studying
the invariant set # = 0. The dynamics at the invariant set
u = 0 is given by

dv _ V6e[—=Ev(2n + v)]P/? ‘

— 72
o : (72)
By assuming &> 0, and re-scaling time by % =
—v(2n + v) /&L, we obtain
dv 5 5
— = V6er?(2n + v)?, (73)
dw

where 0 < v <2forp=—-1,or-2 < v <0fory=+1,is
the physical domain for ». In a one-dimensional phase
space, % > 0 implies that the arrow is directed to the
right, and ijj < 0 implies that the arrow is directed to the
left [111]. Hence, from the analysis of the corresponding
one-dimensional flow it follows that the center manifolds

of the points P+ and P7) are stable, whereas the

e=1,n=1

B
S
B
N
-2.55 . . . =
-2.0 -1.5 -1.0 -0.5 0.0
V(@)

FIG. 1. One-dimensional flow of the dynamical system (73) for ¢ = £1, # = +£1. The points of interest Pgi’i

center manifolds of the points P+~ and P-*) are
unstable. These results are illustrated in Fig. 1.

We continue by presenting the phase-space diagram for
the dynamical system (63) and (64) for various values of

the free parameters £ and 4 in Figs. 2 and 3. As we observe

in both figures for A, > 0, point P ?’“

while for 1y < 0, point Pg_’_> is the stable late-time solution
of the system. For £ = 1, there is an equilibrium point
Py (x*), which is saddle (see Fig. 2). Furthermore, for
& = 12, there are three equilibrium points of type P;(x*),
and one of them can be stable (open circle in the middle of
some graphs in Fig. 3).

Lastly, let us examine the special case where A = —2. In
this case for the additional curve of critical points P we

is the attractor,

find that wes(Py) = —1 4 2x% +4,/%x. These points
describe a de Sitter solution for x & {0, —2\/§¢E}.

Hence, the points of P; describe matter-dominated sol-

utions when x* = —2‘/5% V63+4§. Moreover, as far as & is

concerned, for x* it follows 0 < & < %, while for x~ we
obtain 0 < &. Similarly, for the additional curve of points

P; we find that wer(P3) =—1+2x>—4 %x. These
points describe de Sitter solutions for x € {02\/%\/5}

e=1,n=-1

V(@)

0.0 0.5 1.0 1.5 2.0
V(@)

e=—1,n=-1

V(@)

0.0 0.5 1.0 1.5 2.0
V(@)

) are represented by open

circles. Note that the center manifolds of the points P§+'+) and Pg_’_) are stable, whereas the center manifolds of the points P<2+'_) and

PS5 are unstable.
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FIG. 2. Phase-space portraits for the dynamical system (63), (64), for the value £ = 1 and various values of the free parameter A,.

(1.£1)

(=)

Closed circles denote the equilibrium points P, and open circles denote the equilibrium point P;(x*). For 4y < 0, point P, " is

(+4)

the stable, late-time attractor, while for 1y > 0, point P, is the stable late-time solution of the system, and P;(x*) is a saddle.

P; describe matter-dominated universes when x* =

N—% V645+3, and for x* it follows 0 < & < %, while for x~

we acquire 0 < &.

D. Unified dark sectors

We have now all the information to proceed to a unified
description of the dark sectors. In particular, as we saw, the
scenario of the scalar-torsion theory at hand possesses
critical points in which the total, effective equation-of-state

parameter of the Universe behaves as dust matter and
critical points in which it behaves as dark energy. Thus, we
can describe the matter and late-time acceleration epochs
with a single sector.

In Fig. 4 we depict the evolution of the effective
equation-of-state parameter wys for various choices of A
and £. As we can see, the Universe at intermediate times
remains around the scaling solution in which w is close
to zero; hence, this era corresponds to the dust matter-
dominated phase. As time passes, the Universe enters into
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FIG. 3. Phase-space portraits for the dynamical system (63), (64), for the value £ = 12 and various values of the free parameter A,.

(£1.4£1)

Closed circles denote the equilibrium points P, and open circles denote the equilibrium points of type P, (x*). For 4y < 0, point

P<2_’_) is the stable, late-time attractor, while for 4, > 0, point P,

(++)

is the stable late-time solution of the system. One of the equilibrium

points of type P;(x*) is stable (open circle in the middle of some graphs).

an accelerated phase in which wgg becomes smaller than
—1/3, and at present, it becomes equal to —0.7 as required
by observations. Finally, the Universe will result in a
de Sitter phase at asymptotically late times. Hence, using
models of scalar-torsion theory, we succeeded in describing
the matter and late-time accelerated eras with a single
sector, which was the goal of the present work.

On the other hand, in the context of a scalar-tensor theory,
similar cosmological evolution can be provided for specific
coupling and potential functions, see, for instance, the

analysis presented before in [89] for the Brans-Dicke theory,
where it is clear that two major epochs are provided by
the resulting field equations which describe a matter era
and an acceleration epoch. Thus, in terms of the background
geometry, we can not see any major difference between the
scalar-tensor and scalar-torsion theories. However, that is not
true when we consider cosmological perturbations.
Moreover, modified theories of gravity are a geometric
mechanism for unified dark energy models, where there
exists an interacting term between the dark matter and the
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weff(a)

In(a)

FIG. 4. Evolution of effective, total equation-of-state parameter
weg of the cosmological fluid in scalar-torsion theory, for 1 =2
and & = 0.08 (solid line), £ = 0.09 (dotted line) and & = 0.1
(dashed line). We have imposed wg; ~ —0.7 at present time
a = ap = 1 as required by observations.

dark energy components of the Universe. Interesting
discussions on the application of modified theories of
gravity on the bullet cluster can be found, for instance,
[112-118]. According to our knowledge, there is no
analysis of the literature discussing teleparallelism and
bullet clusters, which is also an interesting subject to
investigate in the future, inspired by the present results.

V. CONCLUSIONS

We presented a unified description of the matter and dark
energy epochs, using not a peculiar, exotic fluid, but a class
of scalar-torsion theories. In particular, we started from the
subclass of such theories in which a scalar field is non-
minimally coupled with the torsion scalar, and we provided
a Hamiltonian description, focusing on the conservation
laws. Then, by applying Noether’s theorem and by requir-
ing the field equations to admit linear-in- momentum
conservation laws, we extracted two classes of potentials
for the scalar field.

For the two scalar potentials, we extracted analytic
solutions and performed a detailed dynamical analysis to
extract the critical points and their properties and thus the
global feature of the Universe evolution independently of the
initial conditions. As we saw, the system possesses critical
points that correspond to scaling solutions in which the
effective, total equation-of-state parameter is close to zero
and points in which it is equal to the cosmological constant
value —1. Therefore, during its evolution, the Universe
remains for sufficiently long times around the scaling
solutions, i.e., in the epoch corresponding to dust-matter
domination, while at later times w,g decreases and becomes
smaller than —1/3, which marks the onset of the acceler-
ation. Then, at present, it is equal to —0.7, as required by
observations, while at asymptotically late times, the
Universe results in the de Sitter phase. In summary, using
scalar-torsion theory, we succeeded in describing the matter
and late-time accelerated eras with a single sector.

We close this section by referring to the significant addi-
tional advantage of the scenario at hand is related to the
stability at the perturbation level. As we mentioned in the
Introduction, although a unification of the dark sectors can be
obtained through Chaplygin gas-based models as well as in
Horndeski-based constructions, in both cases, perturbative
instabilities, and pathologies related to the sound-speed
square may appear at the perturbation level. On the contrary,
the scalar-tensor theories applied in this work are known to be
free from instabilities and pathologies at the perturbative level
[33,46,119-121]. This feature acts in favour of the robustness
of the present scenarios. We should further confront the
perturbations of the scenario at hand with growth data, too;
however, this critical investigation lies beyond the scope of
the present work, and it is left for a future project.
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