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We disclose the effects of an extra longitudinal degree of freedom on the evolution of perturbations in the
framework of mimetic gravity. We consider a flat Friedmann-Robertson-Walker background and explore
the linear perturbations by adopting the spherically symmetric collapse formalism. By suitably choosing
the potential of the mimetic field, we are able to solve the perturbed field equations in the linear regime and
derive the matter density contrast δm in terms of the redshift parameter z. We observe that δm starts growing
at the early stages and, as the Universe expands, it grows faster compared to the standard cosmology. This
may due to the extra degree of freedom of the gravitational field which affects the growth of perturbations.
We observe that in the presence of a mimetic potential, the growth rate function is smaller than the ΛCDM
model in small redshifts. We then consider the effects of this potential on the density abundance, the
deceleration parameter and jerk parameter. We find out that mimetic potential can play the role of dark
energy (DE) and affects the dynamics of matter perturbations and cosmological parameters. We also
investigate the mass function and the number count for the collapsed objects in the mimetic scenario. We
find that the mass function of models with potential is smaller than the model without potential. With the
decreasing the role of DE, the mass function starts to grow in smaller redshifts; i.e., halo abundance is
formed later. It is found that the more massive structures are less abundant and form at later times, as it
should be in the hierarchical model of structure formation.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is one of the
foundations of modern physics along with the quantum field
theory [1]. Until now, GR has successfully passed various
excremental and observational tests such as bending of light,
gravitational time dilation, gravitational lensing, precession
of the Mercury orbit, etc. [2]. Another successful prediction
of GR is the existence of the gravitational waves which was
detected directly from merging of black holes in the Laser
Interferometer Gravitational-Wave Observatory (LIGO) [3].
This detection, a century after the theory was established by
Einstein in 1915, is a great achievement in science and opens
a new window, gravitational-wave observatory, to look at the
Universe. Despite the huge success of GR, it still suffers to
explain some cosmological observations such as the flat
galaxies rotation curves [dark matter (DM) puzzle], the
initial and the black hole singularities and the accelerated
expansion of the Universe [dark energy (DE) puzzle].
Therefore, either alternative theories of gravity or new
components of matter/energy have been proposed to explain
the observed phenomenons.

Modified gravity theories have achieved great develop-
ment and performance in the explanation of some unsolved
problems of GR. One of the modifications to GR is the
mimetic theory of gravity which was suggested as a new
explanation for the DM puzzle [4]. In this scenario, a
mimetic scalar fieldΦ is introduced which is not dynamical
by itself, nevertheless it makes the longitudinal degree of
freedom of the gravitational field dynamical. This dynami-
cal longitudinal degree of freedom of the gravitational
field can play the role of mimetic pressureless DM [4].
A modified version of mimetic gravity can address the
cosmological singularities [5] as well as the singularity in
the center of a black hole [6]. Besides, it has been
confirmed that the original setting of the mimetic theory
predicts that the gravitational wave (GW) propagates at the
speed of light, ensuring agreement with the results of the
event GW170817 and its optical counterpart [7–9]. It has
also been shown that this theory can explain the flat rotation
curves of spiral galaxies without needing to particles DM
[10,11]. The mimetic theory of gravity has raised a lot of
enthusiasm in the past few years both from the cosmo-
logical viewpoint [12–31] as well as black holes physics
[32–51]. The investigations on the mimetic theory of
gravity were also generalized to fðRÞ gravity [52–65] as
well as Gauss-Bonnet gravity [66–70]. In particular,
a unified description of early inflation and late-time
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acceleration in the context of mimetic fðRÞ gravity was
established in [71]. It has been confirmed that in the
background of mimetic fðRÞ gravity, the inflationary era
can be realized [71].
Observations confirm that almost 26% of the energy

budget of the Universe corresponds to the DM sector, while
around 69% constitutes the DE [72]. There are enough
evidences that support the existence of DM and DE in the
Universe [73]. DE has became relevant only more recently
and is presumed to be a smooth component with a negative
pressure. DE has an antigravity feature and pushes the
Universe to accelerate and therefore is responsible for the
acceleration of the cosmic expansion (for a recent review on
DE and DM see [74]). DM plays two important roles in the
Universe evolution. First it provides enough gravity for the
rotation of the spiral galaxies as well as cluster of galaxies.
Second, it plays a crucial role in the growth of perturbation
and structure formation in the early stage of the Universe.
The latter is due to the fact that DM has no electromag-
netism interaction (no photon radiation) while it enjoys the
gravitational interaction. As a result, DM begins to collapse
into a complex network of DM halos, while ordinary matter
continues its collapse due to the photon radiation and
finally settles down into the well potential of the DM.
Without DM, the epoch of galaxy formation would occur
substantially later in the Universe than is observed.
Understanding the origin and physics of the growth of

perturbations in galaxies and clusters of galaxies has been
one of the main challenges of modern cosmology. This is of
great importance, since these perturbations eventually lead
the large scale structure of the Universe. It is a general
belief that the large scale structure of the Universe such as
galaxies and clusters of galaxies arise from gravitational
instability that amplifies very small initial density fluctua-
tions during the Universe evolution. Such fluctuations then
grow slowly over time until they get robust enough to be
detached from the background expansion. Finally, they
collapse into gravitationally bound systems such as gal-
axies and clusters of galaxies. In other words, the primor-
dial collapsed regions serve as the initial cosmic seeds for
which the large scale structures are developed [75,76].
An appropriate approach to investigate the growth of

perturbations and structure formation is the so-called top-
hat spherical collapse (SC) model. The results of the
observational data [77] show that most of the structures
are formed from nonlinear evolution of perturbations in the
dark age period (10 < z < 100) [78]. The dark age is the
period between the time when the cosmic microwave
background was emitted and the time when the evolution
of structure in the Universe led to the gravitational collapse
of objects, in which the first galaxies were formed. The
simplest analytical approach to study nonlinear structure
formation is the SC model [79]. In this model, one
considers a uniform and symmetrical spherical perturbation
in an expanding background. The symmetry of this model

allows us to treat a spherical perturbation in a Friedmann-
Robertson-Walker (FRW) universe. In other words, we can
describe the growth of perturbations in a spherical region
using the same Friedmann equations for the underlying
theory of gravity [80]. According to the SC model, at early
times, primordial spherical overdense regions expand along
the Hubble flow. Since the relative overdensity of the
overdense region with respect to the background is small,
the linear theory is enough to study their evolution. At a
certain point, gravity starts dominating and overcomes the
expansion rate. Eventually, the sphere reaches a maximum
radius and completely detaches from the background
expansion. The following phase is represented by the
collapse of the sphere under its own self-gravity. The exact
process of collapse due to gravitational instability depends
strongly on the dynamics of the background Hubble
flow [81]. The effects of DE on the structure formation
has been investigated in various scenarios [82]. In the
context of mimetic gravity, the cosmological perturbations
have been investigated in [83]. Our work differs from [83]
in that instead of using the Newtonian gauge, we use SC
formalism to examine the evolution of perturbations.
The outline of this paper is as follows. In Sec. II, we

provide a review on mimetic gravity and derive the corre-
sponding Friedmann equations in the context of mimetic
cosmology. In Sec. III, using the spherically collapse
approach, we explore the growth of matter perturbation in
the background of flat mimetic cosmology. In Sec. IV, we
study the mass function and number count of the collapsed
objects in the mimetic scenario. The last section is devoted to
the conclusion and discussion.

II. MIMETIC COSMOLOGY

According to the mimetic theory of gravity, the physical
metric gμν is related to the auxiliary metric g̃μν and scalar
field Φ through a conformal transformation [4]

gμν ¼ g̃μνg̃αβ∂αΦ∂βΦ; ð1Þ

where the physical metric gμν is invariant under the
conformal transformations of the auxiliary metric g̃μν,
namely, under g̃μν → Ω2g̃μν, we have gμν → gμν.
The action of mimetic gravity in the presence of a

mimetic potential is given by [14]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ λ

2
ð∂μΦ∂μΦ − 1Þ − VðΦÞ þ Lm

�
;

ð2Þ

where R is the Ricci scalar, Lm is the Lagrangian of matter,
g is the determinant of the physical metric, and λ is a
Lagrange multiplier. Here VðΦÞ is an arbitrary function of
the scalar field Φ, and the factor 1=2 in front of the
Lagrange multiplier λ is introduced for later convenience.
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Such a model has been shown to provide an economical
way of reproducing a number of simple and well-motivated
cosmological scenarios, relevant for both early- and late-
time cosmology, without the need for neither an explicit
DM nor dark fluid [12]. Throughout this work, we take
κ2 ¼ 8πG ¼ 1, for simplicity. By varying the above action
with respect to the physical metric gμν, one can derive the
field equations as [14]

Gμν þ λ∂μΦ∂νΦþ gμνVðΦÞ ¼ Tμν; ð3Þ

where Gμν is the Einstein tensor and Tμν is the energy
momentum tensor of the usual matter. Variation of the
action (2) with respect to Lagrange multiplier λ yields

gμν∂μΦ∂νΦ ¼ 1: ð4Þ

This constraint, which is consistent with conformal trans-
formation (1), implies that the scalar field is not dynamical
by itself, however, it encodes a new longitudinal degree of
freedom to the gravitational field [4]. By varying action (2)
with respect to the mimetic field Φ, we find [14]

∇μðλ∂μΦÞ þ dV
dΦ

¼ 0: ð5Þ

This equation can also be derived by taking the covariant
derivative of Eq. (3) and using the fact that ∇μGμν ¼ 0,
together with the continuity equation ∇μTμν ¼ 0. We also
assume the background is homogeneous, isotropic and
spatially flat with line elements,

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð6Þ

where aðtÞ is the scale factor of the Universe and we have
taken the spacetime signature as ðþ;−;−;−Þ. For homog-
enous cosmology, the mimetic scalar field is only a function
of time, i.e., Φ ¼ ΦðtÞ. Inserting into condition (4)
immediately yields

_Φ2 ¼ 1: ð7Þ

Integrating (assuming _Φ > 0), we get Φ ¼ t, where we
have also set the integration constant equal to zero. We
further assume the energy content of the Universe is in
the form of perfect fluid with energy-momentum tensor
Tμ
ν ¼ diagðρ;−p;−p;−pÞ, where ρ and p are, respectively,

the energy density and pressure of the fluid. Conservation
of the energy-momentum tensor, ∇μTμν ¼ 0, in the back-
ground of a FRW universe leads to

_ρþ 3Hðρþ pÞ ¼ 0: ð8Þ

So the energy density of the pressureless matter can be
written as ρm ¼ ρm;0a−3. The cosmological field equations

can be derived by substituting the metric (6) and the energy
momentum tensor in the field Eqs. (3) and (5). We find [14]

3H2 ¼ ρ − λ − V; ð9Þ

3H2 þ 2 _H ¼ −ðpþ VÞ; ð10Þ

_λþ 3Hλþ dV
dΦ

¼ 0; ð11Þ

where H ≡ _a=a is the Hubble parameter. Let us note
that we can distinguish three sectors for the energy
components. First is the usual matter with energy density
ρ and pressure p. The second is the mimetic field which
plays the role of DM and contributes through λ in the field
equations. Third is the mimetic potential, V, which plays
the role of DE. The first Friedmann equation (9), using the
definition of density parameters, can be rewritten

Ωm þ Ωλ þ ΩV ¼ 1; ð12Þ

Ωm ≡ ρm
3H2

; ð13Þ

Ωdm ≡Ωλ ≡ −λ
3H2

; ð14Þ

Ωde ≡ ΩV ≡ −V
3H2

: ð15Þ

Using the fact that Φ ¼ t, Eq. (11) can be written as

dλ
d ln a

þ 3λþ dV
d ln a

¼ 0: ð16Þ

Thus, if we make the following ansatz for the potential,

VðaÞ ¼ −
β

1þ β
λðaÞ; ð17Þ

then we can solve analytically Eq. (16) to arrive at

λðaÞ ¼ λ0a−3ð1þβÞ; ð18Þ

where β is a dimensionless constant and λ0 is the present
value of λ, and we have chosen a0 ¼ aðt ¼ t0Þ ¼ 1. Hence
the explicit form of the mimetic potential is given by

VðaÞ ¼ −
βλ0
β þ 1

a−3ð1þβÞ: ð19Þ

In the absence of the mimetic potential (β ¼ 0 ¼ V), from
Eq. (18) one can see that λ ¼ λ0a−3, namely the field
mimics DM [4].
As we shall see the mimetic potential indeed plays the

role of DE and can lead to the acceleration of the cosmic
expansion. Besides, in our model, we assumed the mimetic
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potential (which plays the role of DE) is a function of λ
(which plays the role of DM). This implies an interaction
between DE and DM. The Hubble expansion rate can be
obtained via Eq. (9) as

H2 ¼ ρm;0ð1þ βÞ − λ0a−3β

3ð1þ βÞa3 : ð20Þ

So we can define the normalized Hubble parameter as

EðzÞ ¼ HðzÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρm;0ð1þ βÞ − λ0ð1þ zÞ3β
3H2

0ð1þ βÞð1þ zÞ−3

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ βÞ þ Ωλ;0

Ωm;0
ð1þ zÞ3β�ð1þ zÞ3

ð1þ βÞ þ Ωλ;0

Ωm;0

vuut : ð21Þ

The evolution of the normalized Hubble parameter versus z
for different values of β is plotted in Fig. 1.
In Fig. 2, we have plotted the evolution of the density

abundance Ωm, defined as

ΩmðzÞ ¼
ρm
3H2

¼ ð1þ βÞρm;0

ð1þ βÞρm;0 − λ0ð1þ zÞ3β

¼ ð1þ βÞΩ0
m

ð1þ βÞΩ0
m þ Ω0

λð1þ zÞ3β : ð22Þ

As we can see from Fig. 2, the matter density abundance
with different β parameters has the same behavior at first,
i.e., all graphs are reduced by decreasing z. In addition
for smaller values of β parameter, the density abundance
drops faster.

We can also write the explicit expression for Ωλ as

ΩλðzÞ ¼
−λ
3H2

¼ −λ0ð1þ βÞð1þ zÞ3β
ð1þ βÞρm;0 − λ0ð1þ zÞ3β

¼ ð1þ βÞΩ0
λð1þ zÞ3β

ð1þ βÞΩ0
m þΩ0

λð1þ zÞ3β : ð23Þ

In a similar way, the evolution of the density abundanceΩV
is given by

ΩVðzÞ ¼
−V
3H2

¼ βλ0ð1þ zÞ3β
ð1þ βÞρm;0 − λ0ð1þ zÞ3β

¼ −
βΩ0

λð1þ zÞ3β
ð1þ βÞΩ0

m þ Ω0
λð1þ zÞ3β : ð24Þ
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FIG. 1. The behavior of the normalized Hubble rate for
different values of β.
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FIG. 2. The evolution of the matter density abundance as a
function of redshift z for different values of β.
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FIG. 3. The evolution of the DM density abundance in terms of
the redshift z for different values of β.
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As we can see from Figs. 2–4, in the framework of mimetic
gravity, the different potential suggests different values
for Ω0

m, Ω0
λ and Ω0

V . Comparing to standard values of
the density parameters, i.e., Ω0

m ¼ 0.05, Ω0
λ ¼ 0.26 and

Ω0
V ¼ 0.69, we find that the best value for the β parameter

is β ≃ −1.3, which corresponds to the ΛCDM model.
The deceleration parameter in terms of the redshift can

be written as

q ¼ −1 −
_H
H2

¼ −1þ ð1þ zÞ
HðzÞ

dHðzÞ
dz

; ð25Þ

Using Eq. (20) the deceleration parameter is given by

qðzÞ ¼ 1

2

�ðβ þ 1Þρm;0 − ð3β þ 1Þλ0ð1þ zÞ3β
ðβ þ 1Þρm;0 − λ0ð1þ zÞ3β

�
: ð26Þ

Let us note that for either β ¼ 0 or λ0 ¼ 0, we have
q ¼ 1=2, which is the result of standard cosmology in
the presence of dust. We have plotted the behavior of the
deceleration parameter qðzÞ for different β parameters in
Fig. 5. We observe that the Universe experiences a
transition from decelerating phase (z > ztr) to accelerating
phase (z < ztr), where ztr is the redshift at the transition
point. Also we can see that with decreasing β, the phase
transition between deceleration and acceleration takes place
at lower redshifts. Note that qðzÞ has a phase transition,
for different values of β, forming deceleration (q > 0) to
acceleration (q < 0) phase, around z ≈ 0.6 which is com-
patible with observational data.
Another quantity which is helpful in understanding the

phase transitions of the Universe expansion is called the
jerk parameter. This is a dimensionless quantity obtained
by taking the third derivative of the scale factor with respect
to the cosmic time, providing a comparison between

different DE models and the ΛCDM (j ¼ 1) model. The
jerk parameter is defined as [84–86]

j ¼ 1

aH3

d3a
dt3

¼ qð2qþ 1Þ þ ð1þ zÞ dq
dz

: ð27Þ

As we know the Hubble parameter, the deceleration
parameter and the jerk parameter are purely kinematical,
since they are independent of any gravity theory, and all of
them are only related to scale factor a or redshift z. For the
ΛCDM model, the value of j is always unity. A non-
ΛCDM model occurs if there is any deviation from the
value of j ¼ 1. This is similar as deviation from the
equation of state parameter ω ¼ −1, for other DE models.
Using Eq. (25) in Eq. (27), we can find the jerk parameter in
our model. From Fig. 6 we observe the jerk parameter at
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FIG. 4. The evolution of the DE density abundance in terms of
the redshift z for different values of β.
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FIG. 5. The behavior of the deceleration parameter as a function
of redshift for different β.
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FIG. 6. The evolution of jerk parameter with respect to redshift
for different values of β parameter.
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early time (z > 1) tends to a ΛCDMmodel (j ¼ 1). Finally,
we can plot the mimetic potential given in Eq. (19) as a
function of redshift parameter. From Fig. 7, we observe that
as the Universe expands, the potential increases from the
past to the present.

III. GROWTH OF PERTURBATION
IN MIMETIC COSMOLOGY

We consider a universe filled with pressureless matter,
p ¼ pm ¼ 0. In this case Eq. (8) reads

_ρm þ 3Hρm ¼ 0; ð28Þ

which has a solution of the form ρm ¼ ρm;0a−3, where ρm;0

is the energy density at the present time. In order to study
the growth of perturbations, we consider a spherically
symmetric perturbed cloud of radius ap, and with a
homogeneous energy density ρcm. The SC model describes
a spherical region with a top-hat profile and uniform
density so that at any time t, we can write ρcmðtÞ ¼ ρmðtÞ þ
δρm [87]. If δρm > 0 this spherical region will eventually
collapse under its own gravitational force and if δρm < 0 it
will expand faster than the average Hubble expansion rate,
thus generating a void. In other words, δρm is positive in the
overdense region and it is negative in underdense regions.
In fact, when the Universe is in the matter dominated era,
denser regions expand slower than the entire Universe.
Therefore if their density is enough large, they eventually
collapse and create gravitational constraint systems like
clusters [88]. Similar to Eq. (28), the conservation equation
for a spherical perturbed region can be written as

_ρcm þ 3hρcm ¼ 0; ð29Þ

where h ¼ _ap=ap is the local expansion rate of the
spherical perturbed region of radius ap (subscript p refers
to the perturbed). In order to study the evolution of
perturbations, we define a useful and dimensionless quan-
tity called density contrast as [88]

δm ¼ ρcm
ρm

− 1 ¼ δρm
ρm

; ð30Þ

where ρcm is the energy density of the spherical perturbed
cloud and ρm is the background density. Taking the
derivative of Eq. (30) with respect to the cosmic time
and using Eqs. (28) and (29) we obtain

_δm ¼ 3ð1þ δmÞðH − hÞ; ð31Þ

δ̈m ¼ 3ð _H − _hÞð1þ δmÞ þ
_δ2m

1þ δm
; ð32Þ

where the dot denotes the derivative with respect to time.
Combining Eqs. (9), (10), (19) and (18), we arrive at

ä
a
¼ −

1

6

�
ρm þ

�
−1þ 3β

1þ β

�
λ0a−3ð1þβÞ

�
: ð33Þ

According to the SC model, a homogeneous sphere of
uniform density with radius ap can itself be modeled using
the same equations that govern the evolution of the
Universe, with scale factor a [75]. Therefore, we can write
for the spherical perturbed cloud with radius ap, an
equation similar to Eq. (33), namely

äp
ap

¼ −
1

6

�
ρcm þ

�
−1þ 3β

1þ β

�
λc0a

−3ð1þβÞ
p

�
: ð34Þ

In general, one may expect λ0 and β differ inside and outside
of the spherical region. However, for simplicity here we
propose they are similar, namely λc0 ¼ λ0 and βc ¼ β.
Consider two spheres with equal amounts of material, one
of background material with radius a, and one of radius ap
with a homogeneous change in overdensity, so we have
ρcma3p ¼ ρma3 [88]. Combining with Eq. (30), we get

ap ¼ að1þ δmÞ−1=3: ð35Þ

Therefore, Eq. (34) can be rewritten as

äp
ap

¼ −
1

6

�
ρcm þ

�
−1þ 3β

1þ β

�
λ0a−3ð1þβÞð1þ δmÞ1þβ

�

¼ −
1

6

�
ρcm þ

�
−1þ 3β

1þ β

�
λ0a−3ð1þβÞ½1þ ð1þ βÞδm�

�
;

ð36Þ
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FIG. 7. The behavior of the mimetic potential in terms of the
redshift parameter for different β.
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where we have expanded the last term and only kept the
linear term of δm. This is due to the fact that we work in the
linear regime where δm < 1. Combining Eqs. (33) and (36)
yields

_H− _h¼1

6
δm½ρmþð−1þ3βÞλ0a−3ð1þβÞ�−H2þh2: ð37Þ

Substituting Eq. (37) into Eq. (32) and using Eq. (31), we
can find the second order differential equation for the density
contrast δm as

δ̈m −
1

2
½ρm þ ð−1þ 3βÞλ0a−3ð1þβÞ�δmð1þ δmÞ

−
4

3

_δ2m
1þ δm

þ 2H_δm ¼ 0; ð38Þ

where the matter energy density is given by ρm ¼ ρm;0a−3.
In order to study the evolution of the density contrast δm
in terms of the redshift parameter, 1þ z ¼ 1=a, we first
replace the time derivatives with the derivatives with respect
to the scale factor a. It is a matter of calculations to show that

_δm ¼ δ0maH; δ̈m ¼ δ00ma2H2 −
1

2
aðH2 − VÞδ0m; ð39Þ

where the prime stands for the derivative with respect to a.
Therefore Eq. (38) with using Eq. (9) can be written as

δ00m þ 3

2a
δ0m þ 1

2aH2
ð−3H2 þ ρm − λ0a−3ð1þβÞÞδ0m

−
1

2a2H2
δmð1þ δmÞðρm þ ð−1þ 3βÞλ0a−3ð1þβÞÞ

−
4

3

δ0m2

ð1þ δmÞ
¼ 0: ð40Þ

Since we are working in the linear regime, thus we
neglect Oðδ2mÞ and Oðδ0m2Þ. Combining Eqs. (20) and (40),
we arrive at

δ00m þ 3

2a
δ0m −

3

2a
β

�
λ0a−3β

ðβ þ 1Þρm;0 − λ0a−3β

�
δ0m

−
3

2a2
ðβ þ 1Þ

�
ρm;0 þ ð−1þ 3βÞλ0a−3β
ðβ þ 1Þρm;0 − λ0a−3β

�
δm ¼ 0: ð41Þ

It should be noted that either in the absence of the mimetic
field (λ0 ¼ 0), or in the absence of the mimetic potential
(β ¼ 0), Eq. (41) reduces to

δ00m þ 3

2a
δ0m −

3δm
2a2

¼ 0; ð42Þ

which is the result obtained in standard cosmology [79]. This
implies that the presence of the mimetic potential plays an

important role in studying the evolution of perturbation in
mimetic cosmology. In other words, in the absence of the
mimetic potential, the perturbed equation for the density
contrast, δm, in the linear regime, coincides with the ones
in standard cosmology. Also in order to express δm as a
function of z, we can change the variable from the scale
factor to the redshift parameter z. In this way, Eq. (41)
transforms to

ð1þ zÞ2 d
2δm
dz2

þ 1

2
ð1þ zÞ dδm

dz

þ 3

2
ð1þ zÞð3βþ1Þ

�
λ0β

ð1þ βÞρm;0 − λ0ð1þ zÞ3β
�
dδm
dz

−
3

2
ð1þ βÞ

�
ρm;0 þ ð−1þ 3βÞλ0ð1þ zÞ3β
ð1þ βÞρm;0 − λ0ð1þ zÞ3β

�
δm ¼ 0:

ð43Þ

In this work, we assume Ω0
m ¼ 0.05, Ω0

λ ¼ 0.26, and
Ω0

V ¼ 0.69. Thus from Eqs. (13) and (14) we have
λ0=ρm;0 ¼ Ω0

λ=Ω0
m ¼ þ5.2, (λ0 > 0). Therefore, Eq. (43)

admits the following analytical solution:

δmðzÞ¼
�
C1ð1þzÞαþ2F1

�
ηþ;η−;sþ;

1923ð1þβÞ
10000ð1þzÞ3β

�

þC2ð1þzÞα−×2F1

�
ηþ;η−;s−;

1923ð1þβÞ
10000ð1þzÞ3β

��
M;

ð44Þ

where C1 and C2 are integration constants and

M¼ ½−19230000þð3697929βþ3697929Þð1þ zÞ−3β�1=4
× ½−10000þð1923þ1923βÞð1þ zÞ−3β�5=4;

α� ¼ 1

4
� 1

28

ffiffiffi
7

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−175þ294βþ441β2

q
þ3

4
β;

η� ¼−
1

84β

�
−105β∓ 35þ

ffiffiffi
7

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−175þ294βþ441β2

q �
;

s� ¼∓ 1

42β

�
∓ 42βþ

ffiffiffi
7

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−175þ294βþ441β2

q �
:

ð45Þ

To obtain the integration constants, we note that for large
values of the redshift parameter, the parameter β goes to zero
where the GR limit is recovered. We therefore consider the
adiabatic initial conditions for matter perturbations as [79]

dδmðzÞ
dz

ðjz¼ziÞ ¼ −
δmðziÞ
1þ zi

; ð46Þ

where δmðziÞ is the initial value for the density contrast at
z ¼ zi. In Fig. 8, we have plotted the matter density contrast
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as a function of redshift for different values of β parameter
and for redshifts 10 < z < 100. We observe that in the
framework of mimetic gravity, the growth of matter pertur-
bations is larger than the ΛCDM model. Indeed, the density
contrast of matter starts growing from its initial value and, as
the Universe expands, the matter density contrast grows up
faster and deviates from the ΛCDM profile. We find out that
the β parameter affects the growth of matter perturbations,
in particular in the lower redshifts. In fact, the growth of
perturbations increases with increasing β, which reveals the
influences of the mimetic field. The physical reason behind
this behavior comes from the fact that the mimetic field
encodes an extra longitudinal degree of freedom to the
gravitational field, which can support the growth of matter
perturbations. We remind that the Universe goes through
several phase transitions during its formative stages. Cosmic
reionization is the last of them, where ultraviolet and x-ray
radiation escape from the first generations of galaxies
heating and ionizing their surroundings and subsequently
the entire intergalactic medium [89]. This occurred between
150 million and one billion years after the big bang
(6 < z < 20) [89]. The results suggest that the Universe
was approaching the end of reionization around z ¼ 6. It
suggests that the Universe must still have been almost
entirely neutral at z > 10. This is the physical reason that
we take the perturbations for 10 < z < 100 in Fig. 8 [89].
We can investigate the growth rate of matter perturba-

tions which is given by the growth function as [75]

fðaÞ ¼ d lnD
d ln a

; DðaÞ ¼ δmðaÞ
δmða ¼ 1Þ : ð47Þ

Let us note that in the absence of the mimetic field (λ0 ¼ 0),
or in the absence of the mimetic potential (β ¼ 0), the

growth function is a constant of unity. In Fig. 9 we have
plotted the growth function in terms of the redshift
parameter. We observe the amplitude of perturbations in
high redshifts corresponds to the unity, but it starts to
decrease at low redshifts similar to the ΛCDM model.
Therefore, the role of potential (DE), likeΛ, is to reduce the
growth function from unity. Besides, the current value of
fðzÞ crucially depends on the β parameter and decreases
with decreasing β.
We can also measure the growth rate matter perturbations

from the redshift-space distortion of the clustering pattern
of galaxies. This distortion is caused by the peculiar
velocity of inward collapse motion of the large-scale
structure, which is directly related to the growth rate of
the matter density contrast δm [90]. Recent galaxy redshift
surveys have provided bounds on the growth rate fðzÞ or
fðzÞσ8ðzÞ in terms of the redshift where fðzÞ is from
Eq. (47)) and σ8 is the rms amplitude of δm at the comoving
scale 8h−1 Mpc [91,92] and can be written as [93]

σ8ðzÞ ¼
δðzÞ

δðz ¼ 0Þ σ8ðz ¼ 0Þ; ð48Þ

where we have assumed σ8ðz ¼ 0Þ ¼ 0.983 [92], and we
have shown the redshift evolution of fðzÞσ8ðzÞ for different
values of β parameter in Fig. 10. We see that the growth rate
of models with potential (nonzero β) is smaller than the
model without potential. Although the behavior of models
with potential is similar for large redshifts, in small red-
shifts (z < 1) the model with a larger β parameter predicts a
larger value of the cosmological growth rate. From Fig. 10
we observe that in small redshifts, the growth rate function
with potential is smaller than the ΛCDM model. Also one
can see that the evolution of the function fσ8 for β ¼ −1.2,

δ

10 30 50 70 90

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

ΛCDM
β=-0.04
β=-1.1

FIG. 8. The evolution of the matter density contrast for different
values of β during the evolution of the Universe. We have chosen
δmðziÞ ¼ 0.0001 and zi ¼ 400.

FIG. 9. The evolution of the growth function for different
values of β parameter, where the solid line is for β ¼ −1.1, the
dash-dotted line is for β ¼ −1.2, and the long dashed line is for
ΛCDM.
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is very similar to the ΛCDM theory. The difference can
be traced back to the linear regime of the solutions. The
present value of fσ8 for β ¼ −1.14 is greater than of the
ΛCDM value. Also we see for a larger value of β parameter
fσ8 reaches the maximum value at smaller redshifts.
In other words, with increasing the role of potential
(DE) the large structures have been formed later in this
mimetic gravity.

IV. MASS FUNCTION AND CLUSTER
NUMBER COUNTS

Besides the evolution of matter density contrast, in the
present work the number count of the collapsed objects in
the mimetic scenario is also emphasized. The gravitational
collapse of the matter overdensity is the basic process of
large scale structure formation in the Universe. The objects,
formed by the collapse, are called the DM halos. Due to
gravitational attraction the baryonic matter follows the
distribution DM. Hence the galaxy clusters are embedded
in the DM halos. The observed distribution of galaxy
clusters provides the information about the distribution of
DM halos in the Universe. In this section, using the SC
model, we study the DM halo mass function and the
number distribution in the context of mimetic cosmology.
Now we want to use the Press-Schechter approach in

order to estimate the number counts of DM halos for
different bins of redshifts and halo masses [94]. The Press-
Schechter formalism assumes the fraction of mass in the
Universe contained in gravitationally bound systems with
masses greater than M is given by the fraction of space
where the linearly evolved density contrast exceeds a
threshold δc, and that the density contrast is normally
distributed with zero mean and variance σ2ðMÞ—the
root-mean-square value of the density contrast δ at scales
containing mass M. Therefore, it is assumed that for a
massive sphere to undergo gravitational collapse at a

redshift z its linear overdensity should exceed a threshold
δcðzÞ. Notice that only linear quantities are used in this
formalism. The key quantity in the SC is the critical
overdensity δcðzcÞ at a given collapse redshift zc. It is
defined as the value of the linear density contrast at the
redshift where the nonlinear density contrast diverges.
In other words it is defined as the final value (i.e., at
redshift zc) of the linear evolution of a given spherical
top-hat initial perturbation that actually collapses at zc
according to the full nonlinear equations.
These assumptions lead to the well-known analytical

formula for the comoving number density of collapsed
halos of mass in the range M and M þ dM at a given
redshift z [95]:

dn
dM

¼ −
ffiffiffi
2

π

r
ρm;0

M
δcðzÞ

σðM; zÞ
d ln σðM; zÞ

dM
exp

�
−

δ2cðzÞ
2σ2ðM; zÞ

�
;

ð49Þ

where ρm;0 is the present matter mean density of the
Universe and δcðzÞ is the linearly extrapolated density
threshold above which structures collapse, i.e., δcðzÞ ¼
δðzcÞ. In an Einstein-de Sitter universe, an overdensity
region collapses with a linear contrast δc ¼ 1.686 [96]. In
order to obtain δc in terms of the redshift parameter z, we
consider linear equation (41) for the spherical region where
δm ¼ δc. This equation with using the differential-radius

method [97] has the solution in the form δcðaÞ ∝ aðAþ3Þ=4
c , in

far redshifts. In other words with 1þz∝ t−2=3, we can see the
time dependence δc∝ tm, where m¼ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ24Ωm
p

−1Þ=6
[98]. Therefore, its solution can be written as

δcðzÞ ¼
δi
2

�
1þ 1

A

��
1þ zi
1þ z

�ðA−1Þ=4
; ð50Þ

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 72β

p
depends on the model parameter β.

Let us note that for an initial perturbation δi ¼ 10−7 and
1þ zi ¼ 108, and the overdensity region collapses at redshift
zc ¼ 2.558, Eq. (50) gets δc ¼ 1.686, which corresponds to
the EdS value. The quantity

σðM; zÞ ¼ DðzÞσM ð51Þ

is the linear theory “rms” density fluctuation in spheres of
comoving radius R containing the mass M, where DðzÞ≡
δmðzÞ=δmðz ¼ 0Þ is the linear growth function obtained from
Eq. (47)). The smoothing scale R is often specified by the
mass within the volume defined by the window function at
the present time, see e.g., [75]. In our analysis the variance
of the smoothed overdensity containing a mass M is given
by [99]

σM ¼ σ8

�
M
M8

�
−γðMÞ=3

; ð52Þ

0 0.5 1 1.5 2 2.5 3 3.5 4

0.02

0.12

0.22

0.32

0.42

0.52

ΛCDM
β=-1.14
β=-1.2

FIG. 10. The behavior of fðzÞσ8ðzÞ for different values of β
parameter.
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whereM8 ¼ 6 × 1014Ωð0Þ
M h−1 M⊙ is themass inside a sphere

of radius R8 ¼ 8h−1 Mpc, and σ8 is the variance of the
overdensity field smoothed on a scale of size R8 [99]. The
index γðMÞ is a function of the mass scale and the shape
parameter, Γ, of the matter power spectrum [99]

γ ¼ ð0.3Γþ 0.2Þ
�
2.92þ 1

3
log

�
M
M8

��
: ð53Þ

In our study we use Γ ¼ 0.167 [100].
Denoting γ̃ðMÞ ¼ d ln σðM; zÞ=dM,

γ̃ðMÞ ¼ ð0.3Γþ 0.2Þ
�
2.92þ 2

3
log

�
M
M8

��
; ð54Þ

we can rewrite Eq. (49) as

dn
dM

¼ −
ffiffiffi
2

π

r
ρm;0

M
δcðzÞ

σðM; zÞ γ̃ðMÞ exp
�
−

δ2cðzÞ
2σ2ðM; zÞ

�
: ð55Þ

For a fixed σ8 (power spectrum normalization) the predicted
number density of DM halos given by the above formula is
uniquely affected by the DE models, with different β
parameter, through the ratio δc=DðzÞ. In Fig. 11, we have
shown the redshift evolution of the mass function
[dn=dMð1=Mpc3Þ] of objects with mass 1013h−1 M⊙ for
different β parameter. From this figure, we can investigate
the modifications caused by a DE component on the number
of DM halos. We observe that the mass function of models
with potential (nonzero β) starts to grow around z ∼ 2.
Besides, the mass function for β ¼ −1.01, −1.4 is smaller
than the ΛCDMmodel, while for β ¼ −1.4 its present value

corresponds to the ΛCDM model. Also the smaller value of
β parameter gives larger halo abundances. In other words
from Fig. 11, we find out that by reducing the role of DE,
then the comoving number density becomes more. We can
see that with decreasing the role of DE (for smaller β
parameter), the mass function starts to grow in smaller
redshifts; i.e., halo abundance is formed later. Also we find
this same qualitative behavior within the mass range,
1013–1016h−1 M⊙, for dark energy models with different
β parameter.
The effect of dark energy on the number of DM halos

is studied by computing two quantities. The first is all sky
number of halos per unit of redshift, in a given mass
bin [98]

N bin ≡ dN
dz

¼
Z
4π
dΩ

Z
Msup

Minf

dn
dM

dV
dzdΩ

dM; ð56Þ

where the comoving volume element is given by

dVðzÞ
dzdΩ

¼ r2ðzÞ
HðzÞ ; ð57Þ

where rðzÞ ¼ R
z
0 H

−1ðxÞdx is the comoving distance. We
have plotted the redshift evolution of the comoving volume
element [dV=dzdΩðMpc3Þ] with different β parameter in
Fig. 12. As we see the comoving volume element is larger
for smaller values of β parameter. Note that the comoving
volume element does not depend on the growth factor of the
perturbation DðzÞ, but only on the cosmological back-
ground. The number counts in mass bins, N bin ¼ dN=dz,
obtained from Eq. (56), is shown in Fig. 13. In this figure
we show it for the β ¼ 0 model and for different mass bins
½Minf ;Msup� as ½1012; 1013�h−1 M⊙, ½1013; 1014�h−1 M⊙,

FIG. 11. The evolution of mass function for objects with mass
M ¼ 1013ðh−1 M⊙Þ with different β parameter, where the dash-
dotted line is for β ¼ −1.6, the dashed line is for β ¼ −1.4, the
dotted line is for β ¼ −1.01 and the solid line is for ΛCDM.

FIG. 12. The behavior of the comoving volume element with
different β parameter, where the dashed line is for β ¼ −1.4, the
dotted line is for β ¼ −1.2, the solid line is for β ¼ −0.09, and the
dash-dotted line shows it for β ¼ 0.
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½1014; 1015�h−1 M⊙. As we see the more massive structures
are less abundant and form at later times, as it should be in
the hierarchical model of structure formation. Also the
second quantity is the all sky integrated number counts
above a given mass threshold, Minf and up, to redshift [98]

N ðz;M>MinfÞ¼
Z
4π
dΩ

Z
∞

Minf

Z
z

0

dn
dM

dV
dz0dΩ

dMdz0: ð58Þ

V. CONCLUSION AND DISCUSSION

The discovery that the expansion of the Universe is
accelerating has led to large observational programs being
carried out to understand its origin. New facilities are being
designed and built aiming to measure the expansion history
and the growth of structure in the Universe with increasing
precision out to greater redshifts. Since the dark sectors
change the expansion history of the Universe and the
evolution of matter density perturbations, these new facili-
ties will not only test the current period of accelerated
expansion but also explain the nature of the dark sectors.
In this paper, we have investigated the evolution of

the matter perturbations in the context of mimetic gravity
for different values of the model parameters. We have

employed the SC formalism in order to examine the
perturbations and worked in the linear regime. We pro-
posed the mimetic potential (which plays the role of DE) is
proportional to the mimetic DM density, i.e., V ∝ λ. With
this ansatz, we found out λ ∼ a−3ð1þβÞ, implying an inter-
action between DE and DM in this model. The density
contrast has similar behavior for different values of β
parameter; that is, it starts from its initial value and then it
grows up at low redshifts. Besides, the density contrast
grows faster for larger values of β parameter. Furthermore,
as the value of the β parameter decreases, then the growth
of matter perturbations is decreasing, too. In other words
we see that the growth rate of models with potential
(nonzero β) is smaller than the model without potential.
Also we studied the modifications caused by a dark energy
component on the number of DM halos as the smaller value
of β parameter gives larger halo abundances. Also we see
that for smaller β parameter and therefore with decreasing
the role of DE, the mass function starts to grow in smaller
redshifts; i.e., halo abundance is formed later. Also we see
the comoving volume element is larger for smaller values
of β parameter. In addition we found the number counts in
mass bins for the more massive structures are less abundant
and form at later times, as it should be in the hierarchical
model of structure formation. We also studied the evolution
of the density parameters. We observed that the evolution of
the matter density abundance and the DM density abun-
dance for different values of β decrease by decreasing the
redshift. We found out that the density abundance of matter,
consist of baryonic and DM, drops slower for larger values
of β. From the evolution of the deceleration parameter, we
see that the Universe experiences a phase transition from
decelerating phase to accelerating phase around redshift
ztr ≈ 0.6 which is compatible with observational data.
It is interesting to constrain the model presented here by

using observational data, such as observations of type Ia
supernova and baryon acoustic oscillations. We leave this
issue for future investigations.
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