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Instituto de Física, Benemérita Universidad Autónoma de Puebla,
Apartado Postal J-48, 72570 Puebla, Puebla, México
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We study the evolution of a test scalar field on the background geometry of a regular loop quantum
black hole characterized by two loop quantum gravity correction parameters, namely, the polymeric
function and the minimum area gap. The calculations of quasinormal frequencies in asymptotically flat
spacetime are performed with the help of higher-order Wentzel-Kramers-Brillouin expansion and related
Padé approximants, the improved asymptotic iteration method, and time-domain integration. The effects
of free parameters of the theory on the quasinormal modes are studied and deviations from those of the
Schwarzschild black holes are investigated. We show that the loop quantum gravity correction
parameters have opposite effects on the quasinormal frequencies and the loop quantum black holes
are dynamically stable.
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I. INTRODUCTION

The quasinormal modes (QNMs) are the intrinsic imprints
of black hole (BH) responses to external perturbations on its
background geometry [1–3]. The QNMs spectrum is an
essential characteristic of BHs that depends on BH charges
and could be detected through the gravitational wave
interferometers [4–6]. Hence, this capability allows us to
explore the properties of background spacetime of BHs,
check the validity of the alternative theories of general
relativity, and estimate the BH parameters by studying
gravitational waves (GWs) at the ringdown stage [7,8].
Furthermore, some other potent motivations for inves-

tigating the QN oscillations of BHs in different branches of
fundamental physics can be listed as follows. The QNMs
spectrum governs the dynamic stability of BHs undergoing
small perturbations of various test fields [1–3], the asymp-
totic behavior of the QN modes in the flat background
plays a crucial role in the semiclassical approach to
quantum gravity [9], the highly damped QN frequencies
used to fix the so-called Barbero-Immirzi parameter
appearing in LQG [10], the imaginary part of the QN
frequencies in asymptotically anti–de Sitter spacetime
describes the decay of perturbations of corresponding
thermal state in the conformal field theory [11–15], and
the correspondence between the QN frequencies in the
eikonal limit and unstable circular null geodesics that
describe the size of the BH shadow [16–18].
On the other hand, scalar fields have been considered

extensively as candidates for dark energy [19] and dark

matter [20]. They have been also investigated as the
inflatons in the context of cosmology [21]. Background
scalar fields are a generic feature in the string theory [22,23],
and they have been used to modify the background
spacetime of BHs in the strong-field regime [24,25].
Besides, the scalar fields produce scalar clouds around
BHs through superradiant instability [26].
In gravitational models nonminimally coupled to scalar

fields, the emitted GWs is a linear combination of GWs in
the gravitational theory and the scalar field solutions [27].
Thus, the gravitational waves h̄μν that could potentially be
observed will be a linear combination of GWs in the
gravitational theory, hμν, and the scalar field solutions of
the form

h̄μν ¼ hμν þ βgμνΦ; ð1Þ

whereΦ is the scalar field, gμν is the background metric, and
β is an arbitrary function of the scalar field that characterizes
the nonminimal coupling. However, the interaction of
spacetime metric and scalar waves depends on the scalar
propagation speed so that interactions are negligible for
luminal scalar waves [28].
The scalar fields minimally coupled to gravity describe

the QNMs in the context of scalar-tensor theories. More
recently, it has been demonstrated that the Laser Inter-
ferometer Space Antenna will be able to measure the scalar
charge with an accuracy of the order of percent in the
extreme mass ratio inspirals [29]. This analysis indicated
that the detectability of the scalar charge does not depend on
the scalar field origin and the structure of the secondary
compact object that is coupled to the scalar field.*mmomennia@ifuap.buap.mx, momennia1988@gmail.com
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In the extended and modified gravity theories of general
relativity, the QNMs of BH solutions undergoing scalar
perturbations have been investigated in higher dimensional
Einstein-Yang-Mills theory [30], Einstein-Born-Infeld grav-
ity [31], de Rham-Gabadadze-Tolley massive gravity [32],
conformal Weyl gravity [15,18], and loop quantum gravity
[33]. In addition, the QN modes of Schwarzschild BHs with
Robin boundary conditions [34], the dirty BHs [35], the
Kaluza-Klein BHs [36], and charged BHs with Weyl
corrections [37] have been studied.
When it comes to BH physics, the intrinsic singularity

inside the event horizon has a special place. Although the
properties of spacetime outside the event horizon are
described by a few parameters characterizing the BH
conserved charges, the curvature singularity at the center
of BHs remained a crucial and outstanding problem. In this
context, people have performed plenty of efforts to address
this issue, such as assigning conformal symmetry to
spacetime, employing nonlinear electrodynamic fields,
and considering quantum corrections to general relativistic
theories. However, we expect a too strong bending of the
spacetime near the BH center such that the general relativity
breaks down and a quantum description of gravity becomes
inevitable.
In this paper, we focus on scalar perturbations in the

background spacetime of a nonsingular loop quantum
black hole (LQBH) to investigate the effects of the loop
quantum gravity (LQG) correction parameters on the
scalar QNM spectrum, explore the dynamical stability
of the BHs, and find deviations from those of the
Schwarzschild solutions. Our regular BH case study, also
known as the self-dual BH, was constructed in the
minisuperspace approach based on the polymerization
procedure in LQG [38] and characterized by the polymeric
function and the minimum area gap as two LQG correction
parameters (see [39,40] for review papers on BHs in LQG
and [41] for the role of quantum corrections on the
destruction of the event horizon). Particle creation by
these LQBHs is investigated and it was shown that the
evaporation time is infinite [42]. The gravitational lensing
by the LQBHs in the strong and weak deflection regimes is
studied [43]. These quantum-corrected BHs were gener-
alized to axially symmetric spacetimes and their shadow is
investigated [44]. However, the QNMs of the static case
have been calculated with some defects in [44–46], and we
shall address this issue in the present study as well.
The outline of this paper is as follows. Section II is

devoted to a brief review of LQG-corrected BHs and
perturbation equations of a test scalar field. Then, we
briefly explain the higher-order Wentzel-Kramers-Brillouin
(WKB) approximation and related Padé approximants, the
improved AIM, and the time-domain integration that are
used to investigate the QN modes. In Sec. III, we calculate
the QNMs of LQBHs, study the effects of LQG correction
parameters on the QNMs spectrum, and find deviations

from those of the Schwarzschild BHs. Besides, we inves-
tigate the dynamical stability of the LQBHs, and compute
the QNMs by employing the higher-order WKB formula
and related Padé approximants as a semianalytic method.
We finish our paper with some concluding remarks.

II. LOOP QUANTUM BLACK HOLES
AND PERTURBATION EQUATIONS

The effective LQG-corrected line element, also known as
the self-dual spacetime, with spherical symmetry that is
geodesically complete is given by [38]

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ hðrÞdΩ2; ð2Þ

where dΩ2 is the line element of a two-sphere and the
metric functions fðrÞ, gðrÞ, and hðrÞ can be written as

fðrÞ ¼ ðr − rþÞðr − r−Þ
r4 þ A2

0

ðrþ r0Þ2; ð3Þ

gðrÞ ¼ ðr − rþÞðr − r−Þ
r4 þ A2

0

r4

ðrþ r0Þ2
; ð4Þ

hðrÞ ¼ r2 þ A2
0

r2
; ð5Þ

with the outer (event) horizon rþ ¼ 2M=ð1þ PÞ2, the
inner (Cauchy) horizon r− ¼ 2MP2=ð1þ PÞ2, and the
polymeric function P ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
− 1Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
þ 1Þ

arising from the geometric quantum effects of LQG.
Besides, A0 is related to the minimum area gap of LQG
as A0 ¼ Amin=ð8πÞ and r0 ¼ ffiffiffiffiffiffiffiffiffiffi

rþr−
p ¼ 2MP=ð1þ PÞ2. In

the aforementioned relations, M is the total mass of the
BHs, and ϵ denotes a product of the Immirzi parameter γ
and the polymeric parameter δ satisfying ϵ ¼ γδ ≪ 1.
It is worthwhile to mention that the inner horizon is

produced due to LQG generalization, and these BHs reduce
to a single-horizon BH whenever the polymeric function P
vanishes (see Fig. 1). Besides, note that the LQG correction
parameters ϵ and A0 describe deviations from the
Schwarzschild solutions. Therefore, the LQBHs (2) reduce
to Schwarzschild BHs by taking the limit ϵ ¼ 0 ¼ A0.
Now, we consider a scalar perturbation in the back-

ground of the LQBHs to investigate their QNMs spectrum.
The equation of motion for a minimally coupled scalar field
is given by

∇μ∇μΦðt; r; θ;φÞ ¼ 0: ð6Þ

The following expansion of modes

Φðt; r; θ;φÞ ¼
Z

dωe−iωt
X
l;m

1ffiffiffiffiffiffiffiffiffi
hðrÞp ΨlðrÞYl;mðθ;φÞ; ð7Þ
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allows us to find a Schrödinger-like wave equation for the
radial part ΨlðrÞ of perturbations, and Yl;mðθ;φÞ denotes
the spherical harmonics on a two-sphere. Substituting the
decomposition (7) into the Klein-Gordon equation (6), the
equation of motion reduces to the following wavelike
equation for the radial part of the perturbations

½∂2r� þ ω2 − Vlðr�Þ�Ψlðr�Þ ¼ 0; ð8Þ

where ω is the Fourier variable presented in Eq. (7). In this
relation, Vlðr�Þ is the effective potential that is given by

Vlðr�Þ ¼ fðrÞ lðlþ 1Þ
hðrÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ
hðrÞ

s
∂r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

p
∂r

ffiffiffiffiffiffiffiffiffi
hðrÞ

p �
; ð9Þ

where l is the angular quantum (multipole) number, and r�
is the tortoise coordinate with the following explicit form

r� ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp ¼ r −

A2
0

rþr−

�
1

r
−
rþ þ r−
rþr−

ln ðrÞ
�

þ 1

ðrþ − r−Þ
�
A2
0 þ r4þ
r2þ

lnðr − rþÞ

−
A2
0 þ r4−
r2−

lnðr − r−Þ
�
; ð10Þ

that ranges from −∞ at the event horizon to þ∞ at spatial
infinity, and note that r in the right-hand side of (9) is a
function of r� by (10). Figure 2 shows the behavior of the
effective potential (9) versus the tortoise coordinate for
different values of the LQBH parameters P and A0. From
this figure, we find that the effect of P on the effective
potential is much more than the minimum area gap A0, and
therefore it plays a more important role in the context of
LQBH oscillations.
The spectrum of QN modes is a solution to the wave

equation (8) and we should impose some physically
motivated boundary conditions at the boundaries to find

A0
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FIG. 2. The effective potential versus tortoise coordinate for M ¼ 1, l ¼ 0, P ¼ 0 (left panel), and A0 ¼ 0 (right panel). The
continuous green curve denotes the Schwarzschild’s potential. The potential forms a barrier and vanishes at both infinities (in order to
see the effects of A0 on the potential, large values were adopted).
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FIG. 1. The metric function gðrÞ in r–P plane for A0 ¼ 0 (left panel) and r − A0 plane for P ¼ 0 (right panel). The nonzero values of
the polymeric function produce an inner horizon and decrease the event horizon radius (see the left panel). The vertical black line in the
right panel denotes the event horizon radius rþ of the single-horizon BH.
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the solutions. The quasinormal boundary conditions imply
that the wave at the event horizon is purely incoming and it
is purely outgoing at spatial infinity, such that

�
Ψlðr�Þ ∼ e−iωr� as r� → −∞ðr → rþÞ;
Ψlðr�Þ ∼ eiωr� as r� → ∞ðr → ∞Þ; : ð11Þ

These boundary conditions lead to a discrete set of
eigenvalues ωnl ¼ ωr − iωi with a real part giving the
actual oscillation and an imaginary part representing
the damping of the perturbation. The indices of ωnl denote
the overtone number n and multipole number l. In this
paper, we investigate the QN modes of LQBHs by using a
couple of independent computational methods, such as
the higher-order WKB approximation and related Padé
approximants, the improved asymptotic iteration method
(AIM), and the time-domain integration that we briefly
explain in the following subsections.

A. WKB approximation

The WKB approximation is based on the matching of
WKB expansion of the modes Ψlðr�Þ at the event horizon
and spatial infinity with the Taylor expansion near the peak
of the potential barrier through two closely spaced turning
points characterized by ω2 − Vlðr�Þ ¼ 0. Therefore, the
WKB method can be used for an effective potential that
forms a potential barrier and takes zero values (or small
values compared with the height of the barrier) at the event
horizon (r� → −∞) and spatial infinity (r� → þ∞).
This method first applied to the problem of scattering

around BHs [47], and is extended to the 3rd [48], 6th [49],
and 13th order [50]. The 13th order of WKB approximation
is given by the following formula

ω2 ¼ V0 þ
X6
j¼1

Ω2j − i
ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

q �
nþ 1

2

�

×

�
1þ

X6
j¼1

Ω2jþ1

�
; n ¼ 0; 1; 2;…; ð12Þ

where V0 denotes the height of the effective potential, Ωj’s
are the WKB correction terms of the jth order that depend
on the value of the effective potential and its derivatives at
the local maximum, and n is the overtone number.
It is worthwhile to mention that the WKB formula does

not give reliable frequencies for n ≥ l, while it leads to
accurate values for n < l and exact modes in the eikonal
limit l → ∞. We use this formula up to the 13th order to
calculate the QN frequencies of perturbations.
On the other hand, one can use Padé approximants for

the WKB formula (12) to increase the accuracy of this
method [50]. In order to incorporate the Padé approxim-
ants, we first define a polynomial PkðεÞ by multiplying the

powers of the order parameter ε in the WKB correction
terms as below [51]

PkðεÞ ¼ V0 þ
X6
j¼1

ε2j Ω2j − i
ffiffiffiffiffiffiffiffiffiffiffiffi
−2V00

0

q �
nþ 1

2

�

×

�
εþ

X6
j¼1

ε2jþ1Ω2jþ1

�
; ð13Þ

such that the polynomial order k coincides with the WKB
order and the squared frequency can be obtained by setting
ε ¼ 1 as ω2 ¼ Pkð1Þ. Then, we introduce a class of the
Padé approximants Pñ=m̃ðεÞ of the polynomial PkðεÞ near
ε ¼ 0 with the condition k ¼ ñþ m̃ to obtain

Pñ=m̃ðεÞ ¼
 X̃n

i¼0

Qiε
i

!, X̃m
i¼0

Riε
i

!
; ð14Þ

with

Pñ=m̃ðεÞ − PkðεÞ ¼ Oðεkþ1Þ: ð15Þ

As the next step, since the right-hand side of the WKB
formula (12) is known, we can calculate the coefficients
Qi’s and Ri’s of (14) numerically and employ the rational
function Pñ=m̃ðεÞ to approximate the squared frequency
as ω2 ¼ Pñ=m̃ð1Þ.
In most cases, the Padé approximation (14) of the order

k ¼ ñþ m̃ gives more accurate results for ñ ≈ m̃ compared
to the ordinary WKB formula (12) of the same order [51].
However, there is no way to choose the appropriate orders ñ
and m̃ to obtain the frequency with the highest accuracy. In
order to find the suitable orders ñ and m̃, we follow an
approach based on averaging of Padé approximations
suggested in [51] so that the minimum of the standard
deviation (SD) formula supposed to specify the most
accurate modes.

B. Asymptotic iteration method

The AIM has been employed to solve the eigenvalue
problems and second-order differential equations [52,53],
and then it was indicated that an improved version of
AIM is an accurate technique for calculating QN modes
[18,54,55].
Here, we consider the effect of the LQG correction

parameters P and A0 separately to investigate the contri-
bution of either parameter on the QNMs spectrum and find
deviations from those of the Schwarzschild BHs. Thus, we
study the QNMs for different values of one LQG correction
parameter while setting the other one equals to zero. To do
so, consider two cases as follows; one is the P ¼ 0 case that
leads to a single-horizon LQBH with rþ ¼ 2M, and the
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second case is given by A0 ¼ 0, which represents LQBHs
with two distinct horizons.

1. P = 0 case

First, note that the wave equation (8) has the following
form in the r coordinate

f2ðrÞΨ00ðrÞþfðrÞf0ðrÞΨ0ðrÞþ ½ω2−VðrÞ�ΨðrÞ¼ 0; ð16Þ

where prime denotes the derivative with respect to r and we
used the fact that gðrÞ ¼ fðrÞ. Equation (16) is a second-
order ordinary differential equation with two regular
singular points located at r ¼ 0 and r ¼ rþ. In order to
apply the boundary conditions (11) to this differential
equation, we follow Leaver [56] and define the following
solution

ΨðrÞ ¼ eiωðr−rþÞ
�

r
rþ

�
iωrþ

×

�
r − rþ

r

�
−iωðA2

0
þr4þÞ=r3þ

ψðrÞ; ð17Þ

which has the correct asymptotic behavior at the boundaries
and ψðrÞ is a finite and convergent function. Since the AIM
works better on a compact domain, we also define a new
variable ξ ¼ 1 − rþ=r. Thus, ξ ranges 0 ≤ ξ < 1 so that
ξ ≈ 1 represents the spatial infinity and ξþ ¼ 0 corresponds
to the event horizon.
Now, by considering the new variable ξ and the solution

(17), we can find the standard AIM form of the wave
equation (16) as follows

ψ 00ðξÞ ¼ λ0ðξÞψ 0ðξÞ þ s0ðξÞψðξÞ; ð18Þ

where prime denotes the derivative with respect to ξ, and
λ0ðξÞ and s0ðξÞ are

λ0ðξÞ ¼
2

1 − ξ
−
A2
0ð1 − ξÞ3ð3ξþ 1Þ þ r4þ

ξz

þ 2iωy
ξr3þð1 − ξÞ2 ; ð19Þ

s0ðξÞ ¼
1

ð1 − ξÞ4ξ2r4þ

�
iωrþð1 − ξÞ2½r4þ þ A2

0ð1 − ξÞ3ð3ξþ 1Þ�y
z

þ ξr4þð1 − ξÞ2
z2

�
lðlþ 1Þz2 þ r8þð1 − ξÞ þ A2

0ð1 − ξÞ8
�
10ξr4þ
ð1 − ξÞ4 − A2

0ð1þ ξÞ
	�

þω2

r2þ
ðy2 − z2Þ − 2iωξrþð1 − ξÞy − iωrþðzþ ξr4þ½2ξ2ðξ − 4Þ þ 9ξ − 4�Þ



; ð20Þ

with y ¼ 2ξr4þðξ − 2Þ þ r4þ þ A2
0ð1 − ξÞ2 and z ¼ r4þþ

A2
0ð1 − ξÞ4.

2. A0 = 0 case

On the other hand, as for the P ¼ 0 case, we also obtain
the standard AIM form of the wave equation for A0 ¼ 0.
The wave equation (8) has the following form in the r
coordinate

fðrÞgðrÞΨ00ðrÞ þ ∂r

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

p i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

p
Ψ0ðrÞ

þ ½ω2 − VðrÞ�ΨðrÞ ¼ 0: ð21Þ

In this case, we deal with BHs with two horizons located
at r− and rþ, and therefore, the differential equation (21)
contains three regular singular points located at r ¼ 0,
r ¼ r−, and r ¼ rþ. Following [57], we define the solution

ΨðrÞ ¼ eiωrr−1ðr − r−Þ1þiωrþþiωr2þ=ðrþ−r−Þ

× ðr − rþÞ−iωr2þ=ðrþ−r−ÞψðrÞ; ð22Þ

to apply the boundary conditions (11) such that ψðrÞ is a
finite and convergent function. One may note that the
solutions (17) and (22) are not consistent in the common
limit A0 ¼ 0 ¼ P. In this regard, we should mention that
the constant e−iωrþr−iωrþþ was multiplied to the solution
(17) by hand to obtain a simpler form for the relations (19)
and (20).
Now, we can find the standard AIM form of the wave

equation (21) with the help of the new variable ξ and the
solution (22) as below

ψ 00ðξÞ ¼ λ̂0ðξÞψ 0ðξÞ þ ŝ0ðξÞψðξÞ; ð23Þ

where λ̂0ðξÞ and ŝ0ðξÞ are
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λ̂0ðξÞ ¼
rþ½2iωrþð2ξ2 − 4ξþ 1Þ − 3ξ2 þ 4ξ − 1� þ r−ð1 − ξÞ½1þ ξð2iωrþ þ 6ξ − 7Þ�

ξð1 − ξÞ2½rþ − r−ð1 − ξÞ� ; ð24Þ

ŝ0ðξÞ ¼
1

ξ2ð1 − ξÞ4½rþ − ð1 − ξÞr−�2
½r4þVðξÞ − ξð1 − ξÞ

× fr−ð1 − ξÞ2½rþð1 − 3ξÞ − r−ð1 − ξÞð1 − 4ξÞ�
þ iωrþð1 − ξÞ½4r2þð1 − ξÞ − rþr−ð8ξ2 − 18ξþ 7Þ þ r2−ð1 − ξÞð1 − 4ξÞ�
− r2þω2½r−ð1 − ξÞ − 2rþð2 − ξÞ�½r−ξþ 2rþð1 − ξÞ�g�: ð25Þ

Once the standard AIM form of the master wave
equation is obtained in (18) and (23), we can express
higher derivatives of ψðξÞ in terms of ψðξÞ and ψ 0ðξÞ as
follows

ψ ðnþ2ÞðξÞ ¼ λnðξÞψ 0ðξÞ þ snðξÞψðξÞ; ð26Þ

with the recurrence relations

λnðξÞ ¼ λ0n−1ðξÞ þ sn−1ðξÞ þ λ0ðξÞλn−1ðξÞ;
snðξÞ ¼ s0n−1ðξÞ þ s0ðξÞλn−1ðξÞ: ð27Þ

We now expand λnðξÞ and snðξÞ in a Taylor series around
some point ξ̄ at which the AIM is performed

λnðξÞ ¼
X∞
j¼0

cjnðξ − ξ̄Þj;

snðξÞ ¼
X∞
j¼0

djnðξ − ξ̄Þj; ð28Þ

which allows us to rewrite the recurrence relations (27) in
terms of the series coefficients cjn and djn

cjn ¼ ðjþ 1Þcjþ1
n−1 þ djn−1 þ

Xj
k¼0

ck0c
j−k
n−1; ð29Þ

djn ¼ ðjþ 1Þdjþ1
n−1 þ

Xj
k¼0

dk0c
j−k
n−1: ð30Þ

For sufficiently large n, we consider the following
termination to the number of iterations

snðξÞ
λnðξÞ

¼ sn−1ðξÞ
λn−1ðξÞ

; ð31Þ

which leads to

δn ¼ snðξÞλn−1ðξÞ − sn−1ðξÞλnðξÞ ¼ 0; ð32Þ

and in terms of the Taylor series coefficients, we have

d0nc0n−1 − d0n−1c
0
n ¼ 0; ð33Þ

that is known as the quantization condition and gives an
equation in terms of the QN frequenciesω. As the next step,
we fix all the free parameters, namely, the multipole
number l, the BH mass M, the polymeric function P,
and the minimum area gap of LQG A0. Finally, we use the
quantization condition (33) and a root finder to calculate
the QN modes.

C. Ringdown waveform

In order to investigate the contribution of all modes, we
can integrate the wavelike equation (8) on a finite time
domain. This also helps us to explore the time evolution of
modes and dynamical stability of the BH case study. To do
so, we follow [58] and write the perturbation equation (8)
in terms of the light-cone coordinates u ¼ t − r� and
v ¼ tþ r� in the following form

−4
∂
2Ψlðu; vÞ
∂u∂v

¼ Vlðu; vÞΨlðu; vÞ; ð34Þ

whereΨl assumed to have time dependence e−iωt. To find a
unique solution to (34), the initial data must be specified
on the two null surfaces u ¼ u0 and v ¼ v0. Here, we set
Ψlðu; 0Þ ¼ 1 at v ¼ 0, and use the Gaussian wave packet

Ψlð0; vÞ ¼ exp

�
−
ðv − vcÞ2

2σ2

�
; ð35Þ

centered on vc and having width σ at u ¼ 0. Then, we
choose the observer to be located at r ¼ 5rþ and use built-
in Wolfram Mathematica commands for solving partial
differential equations to generate the ringdown waveforms.
Finally, we employ the Prony method [59,60], a method
for mining information from (damped) sinusoidal signals,
to extract dominant (fundamental) frequency from the data
generated in the ringdown profile.
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III. QUASINORMAL MODES

Before investigating the QN oscillations by using the
mentioned methods in general, let us first reconstruct
Tables I and II of [44] by employing the sixth order
WKB approximation. We present our results in Tables I
and II with the relative error jðω∘ − ωÞ=ωj × 100%, where

ω
∘
’s are given in [44] through Tables I and II, and ω’s are

presented in our Tables I and II. Although both ω
∘
and ω

were calculated by employing the sixth order WKB for-

mula, our tables indicate a disagreement between ω
∘
and ω.

The error increases as the polymeric function increases and
it is about 30% in the worst case. We found that the WKB
method was not properly used which led to this error (see
[51] to find popular mistakes when employing the WKB
approximation). Therefore, Figs. 9 and 10 illustrated in [44]
should be modified according to the following tables
as well.
Now, we look for the lowest overtone and obtain the

QNMs for various values of the free parameters P and A0

to investigate the effects of the LQG corrections on the QN
frequencies and find deviations from those of the
Schwarzschild BHs. Tables III–V show the effect of the
minimum area gap of LQG A0 on the QN frequencies.
Although the free parameter A0 is a small quantity, we
have chosen large values to see its effects on the QN
frequencies. Besides, Tables VI–VIII show the effect of
the polymeric function P on the QN frequencies. The
QNMs were calculated for M ¼ 1=2 and the rows corre-
sponding to A0 ¼ 0 and P ¼ 0 indicate the Schwarzschild
QN frequencies.
By considering Tables III–V, one can see that both the

real and imaginary parts of the QN frequencies decrease
with an increase in A0. Therefore, the perturbations in the

background spacetime of LQBHs with nonzero A0 live
longer with fewer oscillations in comparison with the
Schwarzschild solutions. However, Tables VI–VIII show
an opposite behavior for the polymeric function P. In this
case, the real part of frequencies and damping rate increase
as P increases, and thus, the perturbations in the back-
ground of LQBHs with nonzero P enjoy faster decay with
more oscillations compared to the Schwarzschild BHs. In
Ref. [46], it has been stated that the polymerization does

TABLE II. The QNMs ωnl of electromagnetic perturbations for M ¼ 1 and A0 ¼ 0.01 calculated by the sixth
order WKB formula.

P ω01 ω02 ω12

0.0 0.2482 − 0.0926ið0.00%Þ 0.4576 − 0.0950ið0.00%Þ 0.4365 − 0.2907ið0.00%Þ
0.1 0.3226 − 0.1141ið4.90%Þ 0.5908 − 0.1167ið2.77%Þ 0.5676 − 0.3562ið8.03%Þ
0.2 0.4084 − 0.1357ið9.58%Þ 0.7426 − 0.1383ið5.48%Þ 0.7184 − 0.4214ið16.0%Þ
0.3 0.5043 − 0.1560ið13.9%Þ 0.9108 − 0.1586ið7.99%Þ 0.8869 − 0.4820ið23.7%Þ
0.4 0.6082 − 0.1734ið17.8%Þ 1.0911 − 0.1759ið10.2%Þ 1.0686 − 0.5334ið30.5%Þ

TABLE III. The fundamental QNM (n ¼ 0) for P ¼ 0 and
different values of A0 and l calculated by the AIM (first row) and
the sixth order WKB formula (second row).

A0 ω00 ω01 ω02

0 0.2209 − 0.2098i 0.5859 − 0.1953i 0.9673 − 0.1935i
� � � 0.5858 − 0.1955i 0.9673 − 0.1935i

0.25 0.2155 − 0.2083i 0.5779 − 0.1945i 0.9552 − 0.1928i
� � � 0.5777 − 0.1952i 0.9553 − 0.1927i

0.5 0.2008 − 0.2057i 0.5576 − 0.1930i 0.9245 − 0.1913i
� � � 0.5537 − 0.1977i 0.9246 − 0.1912i

TABLE I. The QNMs ωnl of scalar perturbations for M ¼ 1 and A0 ¼ 0.01 calculated by the sixth order WKB
formula.

P ω01 ω02 ω12

0.0 0.2929 − 0.0978ið0.00%Þ 0.4836 − 0.0968ið0.00%Þ 0.4638 − 0.2956ið0.00%Þ
0.1 0.3739 − 0.1192ið4.62%Þ 0.6206 − 0.1184ið2.71%Þ 0.5987 − 0.3612ið7.82%Þ
0.2 0.4652 − 0.1405ið9.07%Þ 0.7757 − 0.1400ið5.35%Þ 0.7528 − 0.4260ið15.6%Þ
0.3 0.5653 − 0.1603ið13.1%Þ 0.9463 − 0.1600ið7.82%Þ 0.9236 − 0.4860ið23.1%Þ
0.4 0.6717 − 0.1770ið16.7%Þ 1.1280 − 0.1771ið9.99%Þ 1.1067 − 0.5366ið29.8%Þ

TABLE IV. The first overtone (n ¼ 1) for P ¼ 0 and different
values of A0 and l calculated by the AIM (first row) and the sixth
order WKB formula (second row).

A0 ω11 ω12 ω13

0 0.5289 − 0.6125i 0.9277 − 0.5912i 1.3213 − 0.5846i
� � � 0.9277 − 0.5913i 1.3213 − 0.5846i

0.25 0.5130 − 0.6080i 0.9114 − 0.5881i 1.3020 − 0.5819i
� � � 0.9116 − 0.5878i 1.3020 − 0.5818i

0.5 0.4703 − 0.6013i 0.8696 − 0.5825i 1.2527 − 0.5768i
� � � 0.8694 − 0.5836i 1.2528 − 0.5767i
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not affect the damping rate of QNMs, whereas one can
obviously see the effects of P on the imaginary part of the
QN frequencies in Tables VI–VIII. However, note that
the polymeric function affects the real part much more than
the imaginary part, and this fact may lead to a misleading
conclusion so that the polymerization does not affect the
damping rate. We also see that the sixth order WKB
formula is in good agreement with the AIM results for
n < l and low values of the LQG correction parameters
(we shall discuss the higher-order WKB formula and
related Padé approximants in the next section).
The effects of A0 and P on the QNMs that are described

above do not exactly coincide with the picture given in [45]
as well. This is because the dominant fundamental mode
n ¼ 0 ¼ l was calculated with the help of usual third order
WKB formula while this formula does not give reliable
frequencies for n ≥ l. More importantly, for some higher
values of A0 and P (say A0 ≥ 1 and P ≥ 0.9 that was

considered in [45]), a negative gap appears in the effective
potential (9) such that the WKB expansion could not be
performed. This negative gap appears for the lowest
multipole number (l ¼ 0) that may lead to instability
(see Figs. 5–6 and related discussion below).
From Tables III–VIII, we find two important differences

between the LQG correction quantities A0 and P. First, one
can see that the effects of the polymeric function P on the
QNMs are much higher than the minimum area gap A0.
Therefore, the polymeric function P plays a more important
role in the evolution of fields on the background geometry
of LQBHs compared with A0. Second, the LQG correction
parameters affect the value of the QNMs differently. In
other words, both the real and imaginary parts decrease as
A0 increases, whereas they increase as P increases.
Furthermore, the time-domain profile of modes is illus-

trated in Figs. 3 and 4 for a fixed value of one LQG
correction parameter while setting the other one equal to
zero. According to the time evolution of modes, we can
observe three different stages of QN oscillations of the wave
function Ψlðt; rÞ at early, intermediate, and late times for
l ¼ 0, 1. First, note that by considering the contribution of
all modes, both the real and imaginary parts still decrease as
A0 increases (the left panels of Figs. 3 and 4) whereas they
increase as P increases (the right panels of Figs. 3 and 4)
that confirm results deduced from Tables III–VIII. Second,
we see that although the time evolution of scalar field in the
background of LQBHs differ from the Schwarzschild ones
at intermediate times, this is not the case for the late times
and both BH solutions seem to share the same power-law
tail as ΨlðtÞ ∼ t−ð2lþ3Þ [61].
In addition, by employing the Prony method to fit the

data in Figs. 3 and 4, we calculated the longest-lived modes
ω00 as

8><
>:

0.221015 − 0.209788i; for Schwarzschild BH

0.200820 − 0.205698i; for A0 ¼ 0.5; P ¼ 0

0.229522 − 0.218754i; for A0 ¼ 0; P ¼ 0.02

ð36Þ

for l ¼ 0, which coincide with results in Tables III and VI.
The results of ω01 (for l ¼ 1) are

TABLE V. The second overtone (n ¼ 2) for P ¼ 0 and different
values of A0 and l calculated by the AIM (first row) and the sixth
order WKB formula (second row).

A0 ω22 ω23

0 0.8611 − 1.0171i 1.2673 − 0.9920i
� � � 1.2672 − 0.9920i

0.25 0.8347 − 1.010i 1.2414 − 0.9863i
� � � 1.2414 − 0.9860i

0.5 0.7653 − 0.9985i 1.1754 − 0.9761i
� � � 1.1755 − 0.9762i

TABLE VI. The fundamental QNM (n ¼ 0) for A0 ¼ 0 and
different values of P and l calculated by the AIM (first row) and
the sixth order WKB formula (second row).

P ω00 ω01 ω02

0 0.2209 − 0.2098i 0.5859 − 0.1953i 0.9673 − 0.1935i
� � � 0.5858 − 0.1955i 0.9673 − 0.1935i

0.01 0.2253 − 0.2140i 0.6011 − 0.1996i 0.9930 − 0.1978i
� � � 0.6010 − 0.1998i 0.9930 − 0.1978i

0.02 0.2298 − 0.2182i 0.6165 − 0.2038i 1.0190 − 0.2021i
� � � 0.6165 − 0.2040i 1.0190 − 0.2021i

TABLE VII. The first overtone (n ¼ 1) for A0 ¼ 0 and different
values of P and l calculated by the AIM (first row) and the sixth
order WKB formula (second row).

P ω11 ω12 ω13

0
0.5289 − 0.6125i 0.9277 − 0.5912i 1.3213 − 0.5846i

� � � 0.9277 − 0.5913i 1.3213 − 0.5846i

0.01
0.5433 − 0.6256i 0.9529 − 0.6042i 1.3571 − 0.5975i

� � � 0.9529 − 0.6042i 1.3571 − 0.5975i

0.02
0.5580 − 0.6387i 0.9785 − 0.6172i 1.3933 − 0.6105i

� � � 0.9785 − 0.6172i 1.3933 − 0.6105i

TABLE VIII. The second overtone (n ¼ 2) for A0 ¼ 0 and
different values of P and l calculated by the AIM (first row) and
the sixth order WKB formula (second row).

P ω22 ω23

0 0.8611 − 1.0171i 1.2673 − 0.9920i
� � � 1.2672 − 0.9920i

0.01 0.8854 − 1.0391i 1.3023 − 1.0137i
� � � 1.3022 − 1.0138i

0.02 0.9102 − 1.0611i 1.3379 − 1.0356i
� � � 1.3379 − 1.0356i
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8><
>:

0.585883 − 0.195323i; for Schwarzschild BH

0.557644 − 0.192999i; for A0 ¼ 0.5; P ¼ 0

0.616512 − 0.203837i; for A0 ¼ 0; P ¼ 0.02

; ð37Þ

and they are in a good agreement with Tables III and VI
as well.
As for the dynamic stability of our BH case study, Figs. 3

and 4 show that the perturbations decay in time for small
values of A0 and P, and, also, the effective potential (9) is

positive definite (see Fig. 2). These conditions guarantee
the dynamical stability of the LQBHs undergoing scalar
perturbations.
We recall that for some higher values of A0 and P (say

A0 ≥ 1 and P ≥ 0.9), a negative gap appears in the effective
potential for the lowest multipole number (see the left panel
of Figs. 5 and 6). This negative gap may lead to a bound
state with negative energy, hence a growing mode will
appear in the spectrum and dominate at late time which
means dynamic instability (see [62,63] as examples of
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FIG. 3. This figure evaluated at r ¼ 5rþ for l ¼ 0. Either panel indicates the time evolution of the wave function Ψ0ðtÞ of scalar
perturbations for fixed value of one LQG correction parameter while setting the other one equals to zero.
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FIG. 4. This figure evaluated at r ¼ 5rþ for l ¼ 1. Either panel indicates the time evolution of the wave function Ψ1ðtÞ of scalar
perturbations at early, intermediate, and late times. The ringdown waveform is plotted for fixed value of one LQG correction parameter
while setting the other one equals to zero.
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FIG. 5. The effective potential versus tortoise coordinate for l ¼ 0 and P ¼ 0.9 with a negative gap (left panel), and the time evolution
of the corresponding mode Ψ0ðtÞ (right panel).
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dynamic instability of low-l modes). Therefore, we should
check the stability for this case numerically while the
contribution of all the modes is taken into account.
The right panel of Figs. 5 and 6 show that the perturba-

tions decay in time that indicate the dynamical stability of
the BHs. In the right panel of Fig. 5 and for A0 ¼ 1.8, the
asymptotic tail of modes first starts to grow but finally
decays at late time. However, note that the LQG correction
parameters A0 and P are very small quantities by definition,
and we examined the large A0 and P case to complete the
discussion. The important point is that the BHs are
dynamically stable for small A0 and P as demonstrated
in Figs. 2–4.

A. Higher-order WKB formula and Padé approximants

As the final remark, we should note that, usually,
employing the numerical methods to obtain the QNMs
is hard, and normally one needs to modify the approach
based on the different effective potentials. On the other
hand, the WKB approximation provides quite a simple,
powerful, and accurate tool for investigating the dynamical
properties of BHs in some cases. However, generally, this
method does not always give a reliable result and neither
guarantees a good estimation for the error [51]. Besides,
we cannot always increase the WKB order to obtain a more
accurate frequency due to the fact that the WKB for-
mula (12) asymptotically approaches the QNMs. So, there
is an order of the WKB formula that provides the best
approximation and the error increases as the order of the
formula increases. Thus, it will be helpful to find the most
accurate WKB order and related Padé approximation for
calculating the QN frequencies of LQBHs.
In order to estimate the error of the WKB approximation

(12), we use the following quantity [51]

Δk ¼
jωkþ1 − ωk−1j

2
; ð38Þ

because each WKB correction term affects either the real or
imaginary part of the squared frequencies. This relation
obtains the error estimation of ωk that is calculated with the
WKB formula of the kth order, and the minimum value of
Δk usually gives the WKB order in which the error is
minimal. It was shown that Δk provides a good estimation
of the error order for the Schwarzschild BH, usually
satisfying [51]

Δk ≳ δk ¼ jω − ωkj; ð39Þ

where ω is the accurate value of the quasinormal frequency.
The quantity Δk has been also used to estimate the error of
WKB formula in conformal Weyl gravity [64], and the
results mostly have satisfied the condition (39) as well.
Here, we check the validity of the condition (39) for our

BH case study to see if the minimal Δk gives the most
accurate WKB order, and results are given in Tables IX–XII.
The minimal Δk and δk are denoted in bold style. By
considering these tables, we find that the condition (39) is
valid for LQBHs in all cases as for the Schwarzschild BHs
and conformal Weyl solutions. More interestingly, we see
that to obtain the QN frequencies by employing the higher-
order WKB formula (12), the minimal Δk usually identifies
the most accurate WKB order.
In addition, the QN modes are calculated through the

various orders of Padé approximation and results are
presented in Tables XIII–XVI. The bold values denote
the minimal SD and δk. From these tables, it is clear that the
minimal SD coincides with the minimal δk except for
n ¼ 0 ¼ l. Thus, the minimum SD gives the most accurate
result that could be obtained through the Padé approxim-
ants. On the other hand, by comparing Tables IX–XII with
Tables XIII–XVI in order, we see how Padé approximants
increase the accuracy of the WKB formula. Therefore, even
for the case n ¼ 0 ¼ l, employing the Padé approximation
with minimal SD is more accurate than the ordinary WKB
approximation, as we expected.
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FIG. 6. The effective potential versus tortoise coordinate for l ¼ 0 and P ¼ 0.9 with a negative gap (left panel), and the time evolution
of the corresponding mode Ψ0ðtÞ (right panel).
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TABLE XI. The QN modes calculated by the WKB formula of different orders for A0 ¼ 0, P ¼ 0.02, n ¼ 0, l ¼ 0 (left), and l ¼ 1
(right). The minimum value of Δk and δk are given in bold. The accurate modes ω00 ¼ 0.2298 − 0.2182i and ω01 ¼ 0.6165 − 0.2038i
are taken from Table VI.

k ωkðl ¼ 0Þ Δk δk ωkðl ¼ 1Þ Δk δk

1 0.3948 − 0.2043i � � � 0.1656 0.6920 − 0.2009i � � � >10−3

2 0.2754 − 0.2930i 0.0903 0.0876 0.6197 − 0.2244i >10−3 >10−3

3 0.2177 − 0.2396i 0.0399 0.0246 0.6128 − 0.2045i >10−3 >10−3

4 0.2280 − 0.2288i 0.0099 0.0107 0.6165 − 0.2033i >10−3 0.00051
5 0.2191 − 0.2199i 0.0096 0.0108 0.6168 − 0.2039i 0.0003713 0.00029
6 0.2298 − 0.2097i 0.0082 0.0085 0.6165 − 0.2040i 0.0001834 0.00024
7 0.2349 − 0.2153i 0.0061 0.0059 0.6164 − 0.2038i 0.0001122 0.00011
8 0.2420 − 0.2090i 0.0194 0.0153 0.6165 − 0.2038i 0.0000462 <5 × 10−5

9 0.2669 − 0.2373i 0.0298 0.0417 0.6165 − 0.2038i 0.0000610 <5 × 10−5

10 0.2361 − 0.2682i 0.0436 0.0504 0.6166 − 0.2038i 0.0001349 0.00011
11 0.2938 − 0.3202i 0.1872 0.1204 0.6167 − 0.2040i 0.0002370 0.00025
12 0.1488 − 0.6323i 0.4874 0.4220 0.6163 − 0.2041i 0.0003873 0.00038
13 0.2165þ 0.6516i � � � 0.8699 0.6161 − 0.2035i � � � 0.00052

TABLE IX. The QN modes calculated by the WKB formula of different orders for P ¼ 0, A0 ¼ 0.5, n ¼ 0, l ¼ 0 (left), and l ¼ 1
(right). The minimum value of Δk and δk are given in bold. The accurate modes ω00 ¼ 0.2008 − 0.2057i and ω01 ¼ 0.5576 − 0.1930i
are taken from Table III.

k ωkðl ¼ 0Þ Δk δk ωkðl ¼ 1Þ Δk δk

1 0.3813 − 0.2084i � � � 0.1806 0.6398 − 0.1962i � � � 0.0823
2 0.2474 − 0.3212i 0.1219 0.1245 0.5574 − 0.2252i 0.0476 0.0322
3 0.1409 − 0.2487i 0.0696 0.0737 0.5447 − 0.1917i 0.0192 0.0130
4 0.1713 − 0.2046i 0.0341 0.0296 0.5590 − 0.1868i 0.0087 0.0064
5 0.1416 − 0.1805i 0.0530 0.0643 0.5617 − 0.1948i 0.0061 0.0045
6 0.2254 − 0.1134i 0.0712 0.0955 0.5537 − 0.1977i 0.0085 0.0061
7 0.2821 − 0.2041i 0.0810 0.0813 0.5488 − 0.1837i 0.0168 0.0128
8 0.2097 − 0.2746i 0.0994 0.0695 0.5780 − 0.1744i 0.0349 0.0276
9 0.3488 − 0.3913i 0.6479 0.2374 0.5983 − 0.2330i 0.0751 0.0571
10 0.0872 − 1.5646i >1 >1 0.4815 − 0.2896i 0.1527 0.1230
11 2.0551þ 2.5815i >1 >1 0.3850 − 0.0146i 0.1504 0.2483
12 2.4757þ 2.1429i >1 >1 0.5914 − 0.0095i 0.5055 0.1866
13 11.41þ 11.35i � � � >1 0.9907þ 0.7949i � � � >1

TABLE X. The QN modes calculated by the WKB formula of different orders for P ¼ 0, A0 ¼ 0.5, n ¼ 1, l ¼ 1 (left), and l ¼ 2
(right). The minimum value of Δk and δk are given in bold. The accurate modes ω11 ¼ 0.4703 − 0.6013i and ω12 ¼ 0.8696 − 0.5825i
are taken from Table IV.

k ωkðl ¼ 1Þ Δk δk ωkðl ¼ 2Þ Δk δk

1 0.7780 − 0.4841i � � � 0.3292 1.0872 − 0.5181i � � � 0.2269
2 0.5385 − 0.6994i 0.1858 0.1195 0.8906 − 0.6324i 0.1194 0.0541
3 0.4328 − 0.6216i 0.0701 0.0426 0.8581 − 0.5858i 0.0290 0.0120
4 0.4628 − 0.5814i 0.0292 0.0213 0.8686 − 0.5786i 0.0067 0.0040
5 0.4876 − 0.6014i 0.0230 0.0173 0.8712 − 0.5824i 0.0025 0.0016
6 0.4676 − 0.6271i 0.0319 0.0259 0.8694 − 0.5836i 0.0014 0.0011
7 0.4241 − 0.5953i 0.0533 0.0465 0.8684 − 0.5820i 0.0017 0.0013
8 0.4840 − 0.5217i 0.0742 0.0807 0.8708 − 0.5804i 0.0032 0.0025
9 0.5722 − 0.6045i 0.0605 0.1020 0.8739 − 0.5850i 0.0064 0.0050
10 0.5735 − 0.6031i 0.3579 0.1032 0.8645 − 0.5914i 0.0133 0.0102
11 1.0865 − 1.1024i >1 0.7943 0.8510 − 0.5715i 0.0286 0.0216
12 0.3583 − 3.3435i >1 >1 0.8953 − 0.5432i 0.0637 0.0469
13 4.6774þ 5.7383i � � � >1 0.9577 − 0.6409i � � � 0.1057
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TABLE XII. The QN modes calculated by the WKB formula of different orders for A0 ¼ 0, P ¼ 0.02, n ¼ 1, l ¼ 1 (left), and l ¼ 2
(right). The minimum value of Δk and δk are given in bold. The accurate modes ω11 ¼ 0.5580–0.6387i and ω12 ¼ 0.9785–0.6172i are
taken from Table VII.

k ωkðl ¼ 1Þ Δk δk ωkðl ¼ 2Þ Δk δk

1 0.8310 − 0.5019i � � � >10−2 1.1798 − 0.5442i � � � >10−2

2 0.6067 − 0.6875i >10−2 >10−2 0.9949 − 0.6453i >10−2 >10−2

3 0.5536 − 0.6410i >10−2 0.00501 0.9771 − 0.6176i >10−2 0.00142
4 0.5564 − 0.6378i 0.002423 0.00184 0.9783 − 0.6169i 0.0007025 0.00041
5 0.5581 − 0.6392i 0.001103 0.00054 0.9785 − 0.6172i 0.0002033 <5 × 10−5

6 0.5581 − 0.6392i 0.000168 0.00050 0.9785 − 0.6172i 0.0000281 <5 × 10−5

7 0.5579 − 0.6390i 0.000189 0.00031 0.9784 − 0.6172i 0.0000297 0.00007
8 0.5580 − 0.6388i 0.000205 0.00014 0.9785 − 0.6172i 0.0000196 <5 × 10−5

9 0.5577 − 0.6386i 0.000399 0.00032 0.9785 − 0.6172i 0.0000082 <5 × 10−5

10 0.5582 − 0.6381i 0.000728 0.00066 0.9785 − 0.6172i 0.0000048 <5 × 10−5

11 0.5591 − 0.6389i 0.001194 0.00114 0.9785 − 0.6172i 0.0000029 <5 × 10−5

12 0.5578 − 0.6404i 0.001858 0.00173 0.9785 − 0.6172i 0.0000021 <5 × 10−5

13 0.5554 − 0.6384i � � � 0.00258 0.9785 − 0.6172i � � � <5 × 10−5

TABLE XIII. The QN modes calculated by averaging of Padé approximations of different orders for P ¼ 0, A0 ¼ 0.5, n ¼ 0, l ¼ 0
(left), and l ¼ 1 (right). The minimal SD and δk are given in bold. The accurate modes ω00 ¼ 0.2008–0.2057i and ω01 ¼ 0.5576–0.1930i
are taken from Table III.

k ωkðl ¼ 0Þ SD δk ωkðl ¼ 1Þ SD δk

1 0.2937 − 0.1605i >10−2 >10−2 0.5848 − 0.1794i >10−2 >10−2

2 0.2089 − 0.1827i >10−2 >10−2 0.5563 − 0.1913i 0.005019 0.00214
3 0.1982 − 0.1962i 0.003302 0.00985 0.5571 − 0.1918i 0.000329 0.00126
4 0.1989 − 0.1965i 0.000304 0.00937 0.5582 − 0.1928i 0.000582 0.00067
5 0.2012 − 0.1965i 0.003240 0.00917 0.5571 − 0.1932i 0.000337 0.00056
6 0.2040 − 0.2001i 0.000858 0.00647 0.5576 − 0.1928i 0.000188 0.00022
7 0.2037 − 0.1996i 0.000387 0.00677 0.5576 − 0.1928i 0.000142 0.00015
8 0.2046 − 0.2002i 0.001148 0.00669 0.5577 − 0.1929i 0.000068 0.00014
9 0.2036 − 0.1995i 0.000410 0.00682 0.5577 − 0.1930i 0.000178 0.00014
10 0.2046 − 0.2006i 0.001567 0.00630 0.5577 − 0.1930i 0.000023 0.00008
11 0.2076 − 0.1967i 0.008442 >10−2 0.5577 − 0.1930i 0.000048 0.00007
12 0.1996 − 0.2054i 0.004183 0.00125 0.5577 − 0.1930i 0.000074 0.00007
13 0.2019 − 0.2083i 0.009697 0.00281 0.5576 − 0.1930i 0.000007 <5 × 10−5

TABLE XIV. The QN modes calculated by averaging of Padé approximations of different orders for P ¼ 0, A0 ¼ 0.5, n ¼ 1, l ¼ 1
(left), and l ¼ 2 (right). The minimal SD and δk are given in bold. The accurate modes ω11 ¼ 0.4703–0.6013i and ω12 ¼ 0.8696–0.5825i
are taken from Table IV.

k ωkðl ¼ 1Þ SD δk ωkðl ¼ 2Þ SD δk

1 0.5608 − 0.3490i >10−2 >10−2 0.8860 − 0.4222i >10−2 >10−2

2 0.5161 − 0.5923i >10−2 >10−2 0.8829 − 0.5814i >10−2 >10−2

3 0.4539 − 0.6082i >10−2 >10−2 0.8642 − 0.5834i 0.006589 0.00543
4 0.4694 − 0.5918i 0.007131 0.00952 0.8694 − 0.5805i 0.001170 0.00198
5 0.4731 − 0.6019i 0.006718 0.00285 0.8702 − 0.5823i 0.000844 0.00062
6 0.4661 − 0.6026i 0.001203 0.00443 0.8693 − 0.5828i 0.000094 0.00042
7 0.4715 − 0.5943i >10−2 0.00708 0.8696 − 0.5822i 0.000386 0.00031
8 0.4702 − 0.6005i 0.000487 0.00083 0.8697 − 0.5826i 0.000032 0.00013
9 0.4726 − 0.6115i >10−2 >10−2 0.8696 − 0.5826i 0.000031 0.00007
10 0.4965 − 0.6019i >10−2 >10−2 0.8696 − 0.5825i 0.000011 <5 × 10−5

11 0.4703 − 0.6017i 0.000198 0.00037 0.8696 − 0.5826i 0.000027 0.00007
12 0.4703 − 0.6014i 0.000174 0.00011 0.8696 − 0.5825i 0.000010 <5 × 10−5

13 0.4698 − 0.6015i 0.000338 0.00051 0.8696 − 0.5825i 0.000008 <5 × 10−5
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IV. CONCLUSIONS

We have considered a minimally coupled scalar pertur-
bation in the background spacetime of the LQG-corrected
BHs characterized by two LQG correction parameters,
namely, the polymeric function P and the minimum area
gap A0. We have calculated the corresponding QN modes
with the help of three independent methods of calculations;
the higher-order WKB formula and related Padé approx-
imants, the improved AIM, and time-domain integration.
The effects of LQG correction parameters on the QNMs
spectrum have been studied and deviations from those of
the Schwarzschild BHs have been investigated.
We have found that the QNMs were more sensitive to

changes in the polymeric function P compared with the
minimum area gap A0. Thus, P plays a more important role

in the evolution of fields on the background geometry of
LQBHs compared with A0. In addition, we have shown that
the LQG correction parameters had opposite effects on the
QN frequencies. Increasing in P (A0) led to increasing
(decreasing) in the real part of frequencies and damping
rate. While one of the free parameters increases the lifetime
of perturbations, the other one attempts to dissipate
perturbations faster. These cases have been also confirmed
through the time-domain profile of perturbations by con-
sidering the contribution of all modes. We have also
calculated the dominant QN frequencies by employing
the Prony method which was in good agreement with the
results of AIM.
In addition, we have seen that the effective potential of

perturbations was positive definite and the modes decayed

TABLE XV. The QN modes calculated by averaging of Padé approximations of different orders for A0 ¼ 0, P ¼ 0.02, n ¼ 0, l ¼ 0
(left), and l ¼ 1 (right). The minimal SD and δk are given in bold. The accurate modes ω00 ¼ 0.2298 − 0.2182i and ω01 ¼
0.6165 − 0.2038i are taken from Table VI.

k ωkðl ¼ 0Þ SD δk ωkðl ¼ 1Þ SD δk

1 0.3114 − 0.1612i >10−2 >10−2 0.6382 − 0.1853i >10−4 >10−3

2 0.2375 − 0.1917i >10−2 >10−2 0.6166 − 0.2010i >10−4 >10−3

3 0.2309 − 0.2085i 0.004396 0.00974 0.6161 − 0.2032i >10−4 0.00075
4 0.2284 − 0.2220i 0.007874 0.00403 0.6166 − 0.2038i >10−4 0.00007
5 0.2314 − 0.2156i 0.001599 0.00303 0.6166 − 0.2039i 0.00008569 0.00013
6 0.2316 − 0.2175i 0.001262 0.00192 0.6165 − 0.2038i 0.00000082 <5 × 10−5

7 0.2328 − 0.2171i 0.000709 0.00324 0.6165 − 0.2038i 0.00000001 <5 × 10−5

8 0.2305 − 0.2180i 0.000175 0.00071 0.6165 − 0.2038i 0.00000094 <5 × 10−5

9 0.2295 − 0.2183i 0.001963 0.00032 0.6165 − 0.2038i 0.00002807 <5 × 10−5

10 0.2300 − 0.2178i 0.000837 0.00047 0.6165 − 0.2038i 0.00000233 <5 × 10−5

11 0.2303 − 0.2181i 0.000675 0.00053 0.6165 − 0.2038i 0.00000018 <5 × 10−5

12 0.2310 − 0.2181i 0.001046 0.00121 0.6165 − 0.2038i 0.00000004 <5 × 10−5

13 0.2302 − 0.2183i 0.000868 0.00043 0.6165 − 0.2038i 0.00000008 <5 × 10−5

TABLE XVI. The QN modes calculated by averaging of Padé approximations of different orders for A0 ¼ 0, P ¼ 0.02, n ¼ 1, l ¼ 1
(left), and l ¼ 2 (right). The minimal SD and δk are given in bold. The accurate modes ω11 ¼ 0.5580 − 0.6387i and ω12 ¼
0.9785 − 0.6172i are taken from Table VII.

k ωkðl ¼ 1Þ SD δk ωkðl ¼ 2Þ SD δk

1 0.6088 − 0.3678i >10−2 >10−2 0.9729 − 0.4487i >10−4 >10−3

2 0.5875 − 0.6015i >10−2 >10−2 0.9881 − 0.6033i >10−4 >10−3

3 0.5602 − 0.6363i 0.008200 0.00330 0.9794 − 0.6166i >10−4 >10−3

4 0.5562 − 0.6372i 0.001406 0.00238 0.9782 − 0.6167i >10−4 0.00052
5 0.5576 − 0.6394i 0.000505 0.00081 0.9784 − 0.6172i 0.00005898 0.00008
6 0.5581 − 0.6392i 0.000040 0.00047 0.9785 − 0.6172i 0.00000197 <5 × 10−5

7 0.5579 − 0.6391i 0.000116 0.00042 0.9784 − 0.6172i 0.00001819 0.00006
8 0.5580 − 0.6390i 0.000030 0.00027 0.9785 − 0.6172i 0.00000141 <5 × 10−5

9 0.5577 − 0.6387i 0.000187 0.00026 0.9785 − 0.6172i 0.00000410 <5 × 10−5

10 0.5582 − 0.6389i 0.000331 0.00029 0.9785 − 0.6172i 0.00000112 <5 × 10−5

11 0.5581 − 0.6388i 0.000188 0.00010 0.9785 − 0.6172i 0.00000010 <5 × 10−5

12 0.5580 − 0.6387i 0.000019 <5 × 10−5 0.9785 − 0.6172i 0.00000043 <5 × 10−5

13 0.5580 − 0.6387i 0.000008 <5 × 10−5 0.9785 − 0.6172i 0.00000007 <5 × 10−5
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in time that guaranteed the dynamical stability of the
LQBHs undergoing scalar perturbations. Although a neg-
ative gap appeared in the effective potential for the lowest
multipole number and higher values of the LQG correction
parameters, the perturbations decayed in time which indi-
cated dynamical stability of the BHs.
We have used the higher-order WKB formula and related

Padé approximants as a semianalytic method to obtain the
QNMs and find the most accurate order of the WKB and
Padé approximations for calculating the QN frequencies. It
was shown that the minimum value of error estimation
quantity, denoted by Δk throughout the text, provides a
good estimation for the error and usually gives the most

accurate WKB order. Besides, we have seen that, by
employing the averaging of Padé approximations, one
can increase the accuracy of modes considerably compared
to the ordinary WKB formula and obtain accurate modes
for n < l.
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