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We report the existence of a ghost- and tachyon-free sector in metric affine theories of gravity, that is
invariant under diffeomorphism and a particular Abelian symmetry. In contrast with many studied cases in
the literature, the constraints for unitarity and causality are granted by nonaccidental symmetries and do not
ask for further tuning, whose fate under renormalization would be unclear. Unsurprisingly, the minimal
model is massless. We find that a mechanism to provide mass is accommodated by a simple Stueckelberg
extension of metric affine gravity involving the nonmetricity tensor. A nontrivial result is that also such an
extension describes a ghost- and tachyon-free dynamic stabilized by the same Abelian symmetry. The
resulting spectrum of the collective rank-3, rank-2, and rank-0 Lagrangian is investigated with the operators
recently computed in the literature.
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I. INTRODUCTION

The persistent dissatisfaction with some aspects of
quantum gravity supports the search for theoretical frame-
works beyond the minimal Einstein-Hilbert model. One
possible avenue in this direction considers the introduction
of extra fields that also transform, inhomogeneously, under
diffeomorphisms. A particular realization of this idea,
distinguished for its geometrical allure, is given by metric
affine Gravity (MAG). In this paradigm, the symmetric
rank-2 tensor, which carries the graviton, is supported by a
dynamical rank-3 field associated with the geometrical
properties of torsion and nonmetricity. As shared with
similar efforts to modify gravity, such extension calls for
new states which, in general, mine the underlying prob-
abilistic and causal quantum texture. This fundamental
problem, interconnected with the renormalization proper-
ties of gravity, is sometimes completely ignored in models
that ultimately trade quantum mechanics for the solution of
a given cosmological puzzle. When considered with more
care, the awareness of propagating ghostly states has
propelled new approaches intended to curb or eliminate
their disruptive effect on unitarity and causality [1–4]. An
interesting development on this line has brought to light a
different quantization prescription that deals with massive
ghostly propagation in a way to preserve unitarity while
accepting microscopic violation of causality [5–7]. In this
particular framework, as shown in [8], asymptotic freedom

can be realized in MAG. On the other side, traditional
quantum field theory requires us to take offence at the
presence of ghosts and tachyons and to draw, accordingly,
the constraints to avoid them. Indeed, the success of Yang-
Mills and Einstein-Hilbert theories appear to indirectly
support the relevance of ghost and tachyon freedom, as
shown in [9–13]. Considering MAG, extensive literature
has been produced to identify sectors of the large parameter
space that allow a healthy propagation of additional
particles [14–24]. The presence of high-rank fields, carriers
of multiple particle states, brings to this search an intrinsic
complexity.1 To efficiently deal with it, the use of projector
operators is essential in supporting a fast, mechanical,
spectral analysis. This procedure unambiguously selects
the constraints on the parameters to avoid imaginary
masses and negative residues at the poles of the tree-level
propagator. Left out from this analysis is whether such
solutions can be preserved by radiative corrections,
which can reintroduce the instabilities we attempted to
remove. It is interesting to recognize that in the lower rank
cases of spin-1 (Yang-Mills) and spin-2 (Einstein-Hilbert),
the full nonlinear interactions are shaped exactly to
preserve those constraints which granted ghost freedom
at the linear level.
In this paper, we propose to extend to MAG the same

rationale. In this way, we discriminate among different
solutions of the (tree-level) spectral analysis by dismissing
those which require an unstable tuning between parameters,
hence between operators. Again, the large parameter space
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1Such complexity is the trademark of using redundant fields in
order to describe particles. Research is ongoing to achieve an
efficient way to describe physical processes avoiding these field-
related nuisances [25–29].
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makes such endeavors particularly challenging and the
existence of possible solutions, in agreement with the
mentioned principle, is highly nontrivial. We start our
exploration by looking for the simplest realization of this
rationale. For this purpose we rely on, as illustrated in
Sec. III, stabilizing nonaccidental symmetries imposed to
the full MAG action [24]. Then, using an opportune
classification, we can find a shortcut toward a simple
and interesting minimal model. We prove that the require-
ment of radiative stability selects an Abelian sector from
MAG and predicts the presence of a vector state from the
nonmetricity tensor. Unsurprisingly this vector is massless,
also in continuity with what we know from low-spin gauge
theories. Accordingly, this points to the existence of a
supportive scalar sector of Stueckelberg/Goldstone nature.
By using the extended basis of operator completed in [30]
we can show, also a nontrivial result, that such extension
does not reintroduce any unstable tuning of parameters.
In this work we use the mostly minus metric signature.

Given the volume of the computations, typos are inevitable.
Notebooks with correct formulas can be obtained upon
request to the author.

II. METRIC AFFINE GRAVITY

A. The metric affine gravity action

The target of our spectral investigation will be the
so-called metric affine theory of gravity [31] (MAG).
This theory extends the dynamics of the minimal
Einstein-Hilbert action by adding a rank-3 field Aμ

ρ
ν,

quadratically mixed with the dynamical symmetric tensor
hμν ¼ gμν − ημν. The mixing, and the rest of the Lagrangian
terms, are shaped by the nonlinear completion of the
defining gauge symmetries

δhμν ¼ ∂μξν þ ∂νξμ;

δAμ
ρ
ν ¼ ∂μ∂νξ

ρ: ð2:1Þ

As it is well known, this collective gauge symmetry builds a
theory that enjoys a powerful geometrical interpretation
once the symmetric field hμν is integrated into the metric
of curved space-time. Then Eq. (2.1) is completed to
the familiar diffeomorphism transformation generated by
x0 ¼ x − ξðxÞ

g0μνðx0Þ ¼
∂xα

∂x0μ
∂xβ

∂x0ν
gαβðxÞ;

A0
μ
ρ
νðx0Þ ¼

∂xα

∂x0μ
∂xβ

∂x0ν
∂x0ρ

∂xσ
Aα

σ
βðxÞ þ

∂x0ρ

∂xσ
∂
2xσ

∂x0μ∂x0ν
: ð2:2Þ

The shifting symmetry of Aμ
ρ
ν naturally assigns to this

(Lorentz) tensor the familiar role of affine/gauge connec-
tion, so that the definitions of covariant derivative Dμ,
curvature Fμν

ρ
σ

DμTα���β��� ¼ ∂μTα���β��� þ Aμ
σ
αTσ���β��� þ � � � − Aμ

β
σTα���σ���

þ � � �
Fμν

ρ
σ ¼ ∂μAν

ρ
σ þ Aμ

ρ
αAν

α
σ − ðμ ↔ νÞ; ð2:3Þ

together with the tensors

Tμ
α
ν ¼ Aμ

ρ
ν−Aν

ρ
μ; Qρμν ¼−∂ρgμνþAρ

σ
μgσνþAρ

σ
νgσμ;

ð2:4Þ

can be adopted in describing the invariants of the
Lagrangian. Tμ

α
ν and Qρμν are linked, respectively, to

the geometrical properties of torsion and nonmetricity, and
aid to easily distinguish different classes of theories when
one, or both of them, is set to zero.
The resulting model, sometimes in the related form

of Poincaré gauge theory, has been lengthily studied
[9,14–23,32–38]. We rely, in particular, to the form of
the 28 parameters MAG action presented in [24], which we
reproduce here unadulterated

Sðg; AÞ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−a0F þ Fμνρσðc1Fμνρσ þ c2Fμνσρ þ c3Fρσμν þ c4Fμρνσ

þ c5Fμσνρ þ c6FμσρνÞ þ Fð13Þμνðc7Fð13Þ
μν þ c8F

ð13Þ
νμ Þ þ Fð14Þμνðc9Fð14Þ

μν þ c10F
ð14Þ
νμ Þ

þ Fð14Þμνðc11Fð13Þ
μν þ c12F

ð13Þ
νμ Þ þ Fμνðc13Fμν þ c14F

ð13Þ
μν þ c15F

ð14Þ
μν Þ þ c16F2

þ Tμρνða1Tμρν þ a2TμνρÞ þ a3TμTμ þQρμνða4Qρμν þ a5QνμρÞ
þ a6QμQμ þ a7Q̃

μQ̃μ þ a8QμQ̃μ þ a9TμρνQμρν þ Tμða10Qμ þ a11Q̃μÞ�; ð2:5Þ

with the contractions

Tμ ≡ Tλ
λ
μ; Qμ ≡Qμλ

λ; Q̃μ ≡Qλ
λ
μ; Fμν ≡ Fμνλ

λ; Fð14Þ
μν ≡ Fλμν

λ; Fð13Þ
μν ≡ Fλμ

λ
ν; F≡ Fμν

μν:

It is sometime convenient to reformulate the degrees of freedom of MAG by a redefinition of Aμ
ρ
ν that factors out the

Christoffel connection Γρ
μν
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Aμ
ρ
ν ¼ Γρ

μν þ kμρν: ð2:6Þ

In this way, the MAG theory is reshaped in the form of a
quadratic gravity theory augmented with kμρν. In terms of
kμρν the curvature, the torsion and the nonmetricity tensor
acquire the form

Fμν
ρ
σ ¼ Rμν

ρ
σ þ ð∇μkνρσ þ kμραkν

γ
σ − ðμ ↔ νÞÞ;

Tμ
α
ν ¼ kμαν − kναμ; Qλμν ¼ kλμν þ kλνμ; ð2:7Þ

where the derivative operator ∇μ, differently from Dμ in
Eq. (2.3), only includes the Christoffel connection
∇μ ¼ ∂μ þ Γ̂μ. To distinguish between the two formula-
tions, before and after the redefinitions (2.6), we will refer,
correspondingly, to the affine and the contorsion phases of
the theory.

B. Propagating states in metric affine gravity

A generic unconstrained quadratic Lagrangian involving
the two fields hμν and Aμ

ρ
ν can, in general, propagate 24

particle states. These states correspond to the irreducible
representation of the SUð2Þ little group carried by the
tensor representation of the Lorentz group. Each of these
little group representations is identified by a spin quantum
number s and by one of the two eigenvalues of the parity
operator p ¼ �1. A set of tensor fields will, in general,
carry multiple representations with the same spin and
parity, so a further index j is conveniently introduced to
enumerate them. This leads us to use the compact symbol
spj in referring to any of the, 2sþ 1 dimensional, SUð2Þ
representations. Using, again, the enumeration convention
of [24], we have the following decomposition for the MAG
fields:

Aμνρ ⊃ 3−1 ⊕ 2þ1 ⊕ 2þ2 ⊕ 2þ3 ⊕ 2−1 ⊕ 2−2 ⊕ 1þ1 ⊕ 1þ2
⊕ 1þ3 ⊕ 1−1 ⊕ 1−2 ⊕ 1−3 ⊕

⊕ 1−4 ⊕ 1−5 ⊕ 1−6 ⊕ 0þ1 ⊕ 0þ2 ⊕ 0þ3 ⊕ 0þ4 ⊕ 0−1 ;

hμν ⊃ 2þ4 ⊕ 1−7 ⊕ 0þ5 ⊕ 0þ6 : ð2:8Þ

As known, the propagation of the little group components,
sourced by the derivative terms in Eq. (2.5), will challenge
the unitarity and causality of the corresponding quantum
model. On a particle level, this means allowing negative
norm states (ghosts) and imaginary masses (tachyons) in
the spectrum.
Because of the particular gauge symmetry (2.1), it is not

expected by the hμν to propagate anything else but a healthy
2þ sector [9]. The same gauge symmetry is not sufficient to
eliminate ghosts and tachyons once the dynamic rank-3
tensor Aμ

ρ
ν is introduced in the generic MAG theory (2.5).

This is the main problem that has propelled the search, in

past and recent years, to discover and identify viable sectors
in the large parameter space proper of MAG.
The very same issue has also helped the development of

its own methodology to efficiently deal with a large
parameter space and to lead, in a more direct way, to
the nature of the propagating states. We will now briefly
review the algorithm used while referring to [30] and
references therein for a more detailed exposition.
The propagation of particles is determined by the

quadratic part of the action S2. Symbolically, we define
the momentum-space kinetic term KðqÞ to be such

S2 ¼
1

2

Z
d4qðΦð−qÞKðqÞΦðqÞ þ J ð−qÞΦðqÞ

þ J ðqÞΦð−qÞÞ; ð2:9Þ

where a linear coupling between fields ΦðqÞ and
sources J ðqÞ has been introduced. The goal, once KðqÞ
is known, is to compute the propagator DðqÞ defined via
KðqÞ ·DðqÞ ¼ 1̂. Then, the poles and corresponding res-
idues of DðqÞ will reveal the nature of the propagating
particles. To perform such inversion two main problems are
met. The first concerns discerning the particle content,
which identifies with little group elements, from the fields
carrying them. The second regards the computation of
DðqÞ in presence of gauge symmetries. Both tasks are
greatly eased by the knowledge of the projector operators
Pi;i
fs;pg, which decompose a field into its irreducible SUð2Þ

components spi

ϕμ1μ2���μnðqÞ ¼
X
s;p;i

Pi;i ν1ν2���νn
fs;pgμ1μ2���μn ðqÞϕν1ν2���νnðqÞ;

ð2:10Þ

and the mixing operators, Pi;j
fs;pg with i ≠ j, which connect

the different sectors spi and spj with same value of spin and
parity. Such sets, which with an abuse of nomenclature we
will collectively refer to simply as projector operators,
satisfy the completeness, orthogonality and Hermitianicity
relations

X
s;p;i

Pi;i ν1ν2���νn
fs;pgμ1μ2���μn ¼ 1̂ ν1ν2���νn

μ1μ2���μn ;

Pi;k ρ1ρ2���ρn
fs;pgμ1μ2���μn Pj;w ν1ν2���νn

fr;mgρ1ρ2���ρn ¼ δk;jδs;rδp;mP
i;w ν1ν2���νn
fs;pgμ1μ2���μn ;

Pi;j ν1ν2���νn
fs;pgμ1μ2���μn ¼ ðPj;i ν1ν2���νn

fs;pgμ1μ2���μn Þ�: ð2:11Þ

The role of the projector operators is difficult to overesti-
mate and a relevant part of the research of ghost- and
tachyon-free theories is dedicated to explicitly solving the
algebra (2.11) in order to find them. For the applications
strictly relevant to first-order gravity only recently has the
full set of relevant operators been computed [24]. Knowing
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the form of the Pi;j
fs;pg it is possible to rewrite the kinetic

term in (2.9) asZ
d4qΦð−qÞKðqÞΦðqÞ

¼
Z

d4qΦð−qÞ
X
s;p;i;j

ðafS;pgi;j Pi;j
fs;pgÞΦðqÞ; ð2:12Þ

where

afs;pgi;j ¼ 1

2s − 1
TrPi;j

fs;pgKðqÞ; ð2:13Þ

and the trace is over the hidden Lorentz indices [30]. The
projector operators trade, therefore, the complexity of the

index structure for the more simple set of matrices afs;pgi;j .
The central problem of the inversion of the kinetic terms in
order to get the propagator DðqÞ

KðqÞDðqÞ ¼
X
S;p;i;j

ðafS;pgi;j Pi;j
fS;pgÞDðqÞ ¼ 1̂; ð2:14Þ

can now be solved once the inverse matrices bfs;pgi;j ¼
ðafs;pgi;j Þ−1 are computed,

DðqÞ ¼
X
s;p;i;j

bfs;pgi;j Pi;j
fs;pg: ð2:15Þ

When such inversion is not possible the model displays
gauge symmetries directly connected with the n null

vectors Xr¼1;2���n
i of the matrix afs;pgi;j

δΦ ¼ Xr
iP

i;j
fs;pgΨ; ðr ¼ 1; 2 � � � nÞ; ð2:16Þ

where Ψ is an arbitrary, momentum-dependent gauge
parameter. Again, beware of our concise notations where
Lorentz contraction are hidden and symbols in capital greek
letters represent multiple fields [30]. To find the form of
DðqÞ, a gauge fixing is necessary which, in this formalism,

is achieved by selecting a nondegenerate submatrix ãfs;pgi;j .
This matrix can be inverted with no obstruction defining

b̃fs;pgi;j ¼ ðãfs;pgi;j Þ−1. The arbitrariness in the choice of the
invertible submatrix reflects the freedom of gauge fixing.
To counterbalance it, we base our spectral assessments on
the saturated propagator DSðqÞ [9]

DSðqÞ ¼ J̃�ðqÞ
�X

s;p;i;j

b̃fs;pgi;j Pi;j
fs;pg

�
J̃ðqÞ ð2:17Þ

which is gauge invariant provided that

X�r
jP

i;j
fs;pgJ̃ðqÞ ¼ 0; ðr ¼ 1; 2 � � � nÞ: ð2:18Þ

The saturated propagator is the last step to determine
unambiguously whether the quadratic Lagrangian supports
ghostly or tachyonic states. To compute it, our algorithm

will reformulate Eqs. (2.17) and (2.18) in components, for
an opportune frame of reference, thus reducing the tensor
equations to simple algebraic ones.

C. Affine vs contorsion phase, a lesson
from Neville’s model

As a paradigmatic case to illustrate some unsatisfactory
facets of seeking nonpathological propagating sectors in
the large space of MAG, and to set some definitions for
future use, we reanalyze the emergence, from metric MAG,
of the Neville model [14]. Such model adds to the graviton
a massive scalar from the 0− sector conveyed by Aμ

ρ
ν. In

the affine phase, the Neville model is a particular type of the
10-parameters metric MAG theories (Qμνρ ¼ 0). Once
again we use the formulas of [24]

Sðg; AÞ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−a0F

þ Fμνρσðg1Fμνρσ þ g3Fρσμν þ g4FμρνσÞ
þ Fð13Þμνðg7Fð13Þ

μν þ g8F
ð13Þ
νμ Þ þ g16F2

þ Tμρνðb1Tμρν þ b2TμνρÞ þ b3TμTμ�: ð2:19Þ
The usual path to polish the parameter space is to compute

the spin/parity matrices afs;pgi;j , find the corresponding
saturated propagator, and gather the forms, in terms of
the couplings, of masses and residues. These formulas are
then scrutinized in order to find those coherent values for the
couplings leading to all positive masses and residues.
In doing so, constraints are imposed on the theory’s
parameters which, in general, will not be preserved by
the effective quantum action. Indeed, to recover the Neville
model, the simplifying assumption g7 ¼ g8 ¼ g16 ¼ b1 ¼
b2 ¼ b3 ¼ 0 is assumed to start with.
When redefining the affine connection Aμ

ρ
ν as in (2.6),

the action (2.21) will generate a peculiar form of a quadratic
gravity theory with a structure that we symbolically write as

Sðg; kÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LðR;R2Þ þ LðR; kÞ þ LðkÞ�:

ð2:20Þ
In (2.20) the symbol LðR;R2Þ refers to Lagrangian terms
which are a functional of Riemann curvature only, mean-
while,LðR; kÞ describes mixed Riemann-contorsion terms,
possibly including covariant derivative terms with powers
of ∇μ. Lastly, with LðkÞ, we symbolize the possible
polynomial terms up to fourth power in the contorsion
field. Notice that in using (2.6) we have automatically
imposed the metric conditionQμνρ ¼ 0 by working with an
antisymmetric kμνρ ¼ −kμρν, therefore the states are

kμνρ ⊃ 2þ3 ⊕ 2−2 ⊕ 1þ2 ⊕ 1þ3 ⊕ 1−3 ⊕ 1−6 ⊕ 0þ3 ⊕ 0−1 ;

hμν ⊃ 2þ4 ⊕ 1−7 ⊕ 0þ5 ⊕ 0þ6 : ð2:21Þ
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When operating the transition to the contorsion phase two
distinct scenarios emerge corresponding to the presence, or
absence, ofmixingbetweenRiemann curvatureRμ

σ
νρ and the

contorsion fieldkμνρ. In absenceofLðR; kÞ,whichwe refer to
as the decoupled scenario, the curvature squared operators in
LðR;R2Þ signals, with few exceptions,2 the presence of
ghosts in the spectrum. It is, therefore, a reasonable and safe
assumption, in this particular case, to set to zero the
combination of parameters that, in the contorsion phase,
multiply the independent3 curvature squared terms.
Conversely, in the coupled scenario, the presence of R2

is not, automatically, a token for ghost states. In this case, as
we check explicitly, the terms in LðR; kÞ might rescue the
unitarity through their interplay with purely curvature

terms. For the restricted model (2.19) with all but a0, g1,
g3, and g4 nonzero, the transition to the contorsion phase
generates a quadratic gravity framework with

LðR;R2Þ ¼ 1

2
a0R −

1

4
ð2g1 þ 2g3 þ g4ÞRμνρσRμνρσ;

ð2:22Þ

LðR; kÞ ¼ 2ðg1 þ g3ÞkαβνkμβρRαμνρ þ g4kαβνkμβρRανμρ

þ g4kαβνkμβρRαρνμ − 2g4Rαβνμ∇μkαβν

þ 2ðg1 þ g3ÞRαμβν∇μkαβν; ð2:23Þ

plus the lengthy

LðkÞ¼1

2
a0kαβνkβανþ

1

2
a0kααβkνβνþ

1

2
g4kαμρkαβνkβμσkρνσ−g1kαβμkαβνkρμσkρνσ−g3kαβνkβμρkμνσkσαρ−

1

2
g4kαβμkαβνkρνσkσμρ

−g3kαβνkβαμkρνσkσμρ−g4kαμρkαβνkβμσkσνρþg1kαμρkαβνkσνρkσβμþg4kαβνkμβρ∇αkνμρ−4g1kαβνkμβρ∇μkανρ

−g4kαβνkμβρ∇μkναρ−g4∇αkβνμ∇μkαβνþg1∇αkμβν∇μkαβν−g1∇μkαβν∇μkαβν−
1

2
g4∇μkβαν∇μkαβν

−
1

2
g4∇μkαβν∇νkαβμ−g4kαβνkμβρ∇νkαμρ−2g3∇μkαβν∇νkβαμ−g4kαβνkμβρ∇ρkανμ−4g3kαβνkμβρ∇ρkναμ; ð2:24Þ

where we neglected total derivatives.
Both phases are, when coming to on-shell spectral properties, obviously equivalent. An explicit comparison is easy to

perform and provides a consistency check of the algorithm outlined in Sec. II B. While we carried our analysis in both
phases, for concision, we will only illustrate the computation in the contorsion phase.
With help of Eq. (2.13), the spin/parity matrices for the sources of the fields hμν and kμνρ can be derived. Considering the

content equation (2.21), we have the list

af2;þg
i;j ¼

�
a3;3 a3;4
a4;3 a4;4

�
¼

0
B@

1
2
ða0 − 2ð2g1 þ 2g3 þ g4Þq2Þ iffiffiffiffiffi

2q2
p ð2g1 þ 2g3 þ g4Þq4

− iffiffiffiffiffi
2q2

p ð2g1 þ 2g3 þ g4Þq4 − 1
4
q2ða0 þ 2ð2g1 þ 2g3 þ g4Þq2Þ

1
CA;

af2;−g2;2 ¼ 1

2
ða0 − ð4g1 þ g4Þq2Þ;

af1;þg
i;j ¼

�
a2;2 a2;3
a3;2 a3;3

�
¼

� 1
6
ð3a0 þ 4ðg3 − g1Þq2Þ 2

3

ffiffiffi
2

p ðg3 − g1Þq2
2
3

ffiffiffi
2

p ðg3 − g1Þq2 −a0 þ 4
3
q2ðg3 − g1Þ

�
;

af1;−gi;j ¼

0
B@

a3;3 a3;6 a3;7
a6;3 a6;6 a6;7
a7;3 a7;6 a7;7

1
CA ¼

0
B@

1
2
ð−a0 − ð4g1 þ g4Þq2Þ − a0ffiffi

2
p 0

− a0ffiffi
2

p 0 0

0 0 0

1
CA;

af0;þg
i;j ¼

0
B@

a3;3 a3;5 a3;6
a5;3 a5;5 a5;6
a6;3 a6;5 a6;6

1
CA ¼

0
BB@

−a0 − ð2g1 þ 2g3 þ g4Þq2 iffiffiffiffiffi
2q2

p ð2g1 þ 2g3 þ g4Þq4 0

− iffiffiffiffiffi
2q2

p ð2g1 þ 2g3 þ g4Þq4 1
2
q2ða0 − ð2g1 þ 2g3 þ g4Þq2Þ 0

0 0 0

1
CCA;

af0;−g1;1 ¼ a0 þ ðg4 − 2g1Þq2: ð2:25Þ

2See, for instance, related references and discussion in [16].
3Different quadratic contractions of the Riemann tensor are connected, in four dimensions, by a total derivative.
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In general, as can be inferred by the rank of the spin/parity
matrices, only the sectors 1− and 0þ are degenerate. This is
the known realization of gravitational diffeomorphism
invariance. We now present the results of the spectral
analysis obtained by following the procedure outlined in
[30]. Beyond the massless pole, two massive ones are
sourced by the 2− sector, m2

2− ¼ a0
g4þ4g1

, and the 0− one,

m2
0− ¼ a0

g4−2g1
. For all three we must study the form of the

saturated propagator DSðq2Þ ¼
P

s;pD
s;p
S ðq2Þ, taking into

account (gravitational) gauge invariance, so to infer the sign
of the residue. We found the structures

lim
q2→m2

2−

DS ¼
1

q2 −m2
2−
X†MX

¼ 1

q2 −m2
2−

�
4

4g1 þ g4

�X
i¼1;5

jSij2; ð2:26Þ

and

lim
q2→m2

0−

DS ¼
1

q2 −m2
0−
X†MX¼ 1

q2−m2
0−

�
2

2g1− g4

�
jS0j2;

ð2:27Þ
where we use the notation Si to refer to a particular linear
combination of the source components.
The nature of the corresponding propagating particles is

controlled by the sign of a0 which, in turn, is connected
with the properties of the massless 2þ sector. The massless
limit of the saturated propagator is found of the form

lim
q2→0

DS ¼
1

q2
X†MX ¼ 1

q2

�
2

−a0

�X
i¼1;2

jSij2: ð2:28Þ

It is therefore straightforward to conclude that a physical
gravitational propagation, which requires a0 < 0, would
always imply a tachyonic 2− state. This propagation can be
nullified by requiring g4 ¼ −4g1, a constraints that does not
introduce extra gauge symmetries, leaving a healthy 0−

particle of mass m2
0− ¼ −a0=6g1 in the spectrum.

The exploration of the simple Neville’s model answers
many of the questions that are met when seeking for a
unitary and causal parameter space. By studying the model
in both phases it is possible to draw a clearer image of how
the dipole ghosts of quadratic gravity are carried by the
action in the affine phase. Moreover, their cancellation from
the spectrum by setting to zero the quadratic Riemann
terms in the contorsion phase is only effective in the
decoupled scenario. We have shown that the requirement
g3 ¼ 0 in this model is not required for this particular
purpose. Finally, we stress that all the numerous constraints
we imposed to the metric MAG Eq. (2.19) in order to get to
the final Neville theory are not, in any way, expected to be
preserved by loop corrections. This concerns also the
relations obtained to forbid ghosts and tachyons.

III. USE OF SYMMETRIES IN MAG

To preserve the structure of the relevant and marginal
operators which define our starting Lagrangian, a call for
symmetries is mandatory. The presence of a symmetry not
only will restrict the shape of the admissible operators,
possibly introducing reduction relations between different
couplings, but will also protect the established unitarity
from radiative corrections. Our aim is to apply to MAG
the same program which, in a bottom-up approach, it is
possible to discern from the success of Yang-Mills and
Einstein theories. As established in [9–13] it is indeed
possible to understand the structure of such theories as the
unique nonlinear realizations of the emergent symmetries
which rid the propagator of ghostly states. In light of this, a
possible avenue is to adopt a rather radical approach to
build radiatively stable unitary and causal models. This
would entail starting with the most generic Lorentz
invariant Lagrangian (at a fixed polynomial order), scan
over all the possible gauge symmetries, and select those
setups which provide unitarity and causality without further
parameter tuning, aside from sign adjustments. While we
see this as a promising, albeit challenging, path towards
possible UV-complete extension of gravity, this work will
focus on the narrower target of MAG theory. This means
that, on top of (2.1), we look for nonaccidental symmetries
[24] which are exhibited by a subspace of the MAG-type
Lagrangians (2.5). A relevant example is given by the
projective gauge symmetry

δhμν ¼ 0;

δAμ
ρ
ν ¼ X1gμνξρ þ X2δ

ρ
μξν þ X3δ

ρ
νξμ; ð3:1Þ

where the couplings X1, X2, and X3 are fixed based on the
symmetry property of Aμ

ρ
ν and ξ

μðxÞ is the local parameter.
The consequences of the invariance under (3.1) have been
widely investigated [24,39–42]. We highlight, in particular,
how their role to guarantee a theory free of Ostrogradsky
ghosts was analyzed in [43] for the more limited case of
linear curvature theories. How can we proceed in pinpoint-
ing a nonaccidental symmetry with chances of automati-
cally providing a ghost- and tachyon-free MAG theory?
Again, a long brute two-step scan, generating the symmetry
and analyzing the spectrum, might bring to light some
interesting solutions. It is our ambition to ultimately
undertake such large exploration, but our previous analysis
of the Neville model points to a more natural shortcut,
based on the link, visible in the contorsion phase, between
higher-derivative ghosts and the mixed curvature/contor-
sion terms. Simply put, we will only proceed to the full
spectral analysis for those symmetric MAG theories that,
upon switching to the contorsion phase, will obey the
following requirements:
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ð3:2Þ

The rationale (3.2) simplifies our quest by limiting the
access to the time-consuming spectral analysis to a very
narrow set of symmetries. We remind that (3.2) is by no
mean a guarantee of ghost freedom, being only a subset of
ghosts of Ostrogradsky type, and a full analysis must be
performed. We report now an interesting, simple realization
of this idea, that quickly emerged when studying the
contorsion phase of symmetrized MAG theories. The
cardinal symmetry is given by a relaxed form of projective

symmetry, explicitly investigated in [24], where the sym-
metry’s degrees of freedom are lowered from four to just
one ξμðxÞ ¼ ∂μΩðxÞ.

A. The model

We now prove the existence of a healthy, radiatively
stable, configuration in torsion-free MAG. The generic
Lagrangian is, transcribing from [24], of the form

Sðg; AÞ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−a0F þ Fμνρσðc1Fμνρσ þ c2Fμνσρ þ c3FρσμνÞ þ Fð13Þμνðc7Fð13Þ
μν þ c8F

ð13Þ
νμ Þ

þ Fð14Þμνðc9Fð14Þ
μν þ c10F

ð14Þ
νμ Þ þ Fð14Þμνðc11Fð13Þ

μν þ c12F
ð13Þ
νμ Þ

þ c16F2 þQρμνða4Qρμν þ a5QνμρÞ þ a6QμQμ þ a7Q̃
μQ̃μ þ a8QμQ̃μ�: ð3:3Þ

We constrain the 16 parameters4 with the nonaccidental Abelian symmetry

δhμν ¼ 0; δAμ
ρ
ν ¼ gμν∂ρΩðxÞ; ð3:4Þ

finding the reduction

a7 ¼
1

25
ð2a0 − 10a4 − 3a5 þ 4a6Þ;

a8 ¼
1

10
ða0 − 4a5 − 8a6Þ; c8 ¼ −c7; ð3:5Þ

where the remaining ci are set to zero. In the contorsion phase we have a theory of the type (3.2) which, together with the
Hilbert term ∼a0R, displays the following:

LðkÞ ¼ 1

2
ð−a0 − 2a4 − 3a5Þkαβμkαμβ þ

�
−a4 −

1

2
a5

�
kαμβkαμβ

þ 1

25
ð8a0 þ 10a4 þ 13a5 þ 16a6Þkααμkβμβ þ

1

50
ð−2a0 þ 10a4 þ 3a5 − 4a6Þkαμαkβμβ

þ 1

50
ð−7a0 þ 10a4 þ 23a5 − 64a6Þkααμkμββ −

1

2
c7∇βkμνν∇βkααμ þ

1

2
c7∇βkααμ∇μkβνν: ð3:6Þ

Notice that, while we referred to this type of system, in the contorsion phase, as decoupled, such definition only concerns
quadratic mixing. As expected, in (3.6) a h − k interaction survives dictated by general covariance. It is easy to spot a kinetic
term of theUð1Þ-symmetry type for the vector Kμ ¼ kμνν, it is less intuitive to realize that the quadratic nonderivative terms
in kμρν do not introduce, as forced by the symmetry, any pole to the propagator. For this we carry a simple spectral analysis
of the Lagrangian (3.6), ignoring the trivial results coming from studying the spectrum of the Einstein-Hilbert term. The
symmetric kμρν ¼ kνρμ, that guarantees the absence of torsion, enjoys the decomposition:

4Upon moving in the contorsion phase we find, in the torsion-free case, that FμνρσðFμνσρ þ 2Fρσμν − 2FμρνσÞ ¼ 0. In our Lagrangian
we therefore omit the FμνρσFμρνσ term which is instead present in [24].
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kμνρ ⊃ 3−1 ⊕ 2þ1 ⊕ 2þ2 ⊕ 2−1 ⊕ 1þ1 ⊕ 1−1 ⊕ 1−2 ⊕ 1−4 ⊕ 1−5 ⊕ 0þ1 ⊕ 0þ2 ⊕ 0þ4 : ð3:7Þ
We then obtain the following verbose list of spin/parity matrices:

af3;−g1;1 ¼ −a0 − 4ða4 þ a5Þ;

af2;þg
i;j ¼

�
a1;1 a1;2
a2;1 a2;2

�
¼

�−a0 − 4ða4 þ a5Þ 0

0 1
2
ða0 − 2a4 þ a5Þ

�
;

af2;−g1;1 ¼ 1

2
ða0 − 2a4 þ a5Þ;

af1;þg
1;1 ¼ 1

2
ða0 − 2a4 þ a5Þ;

af1;−gi;j ¼

0
BBB@

a1;1 a1;2 a1;4 a1;5
a2;1 a2;2 a2;4 a2;5
a4;1 a4;2 a4;4 a4;5
a5;1 a5;2 a5;4 a5;5

1
CCCA

¼ 2

0
BBBBBB@

− 4ð2a0þ5a4þ2a5þ9a6Þ
15

− 5c7q2

3
− 11a0þ20a4−4a5þ72a6þ25c7q2

15
ffiffi
5

p

− 11a0þ20a4−4a5þ72a6þ25c7q2

15
ffiffi
5

p ð−19a0−130a4þ41a5−288a6−50c7q2Þ
150

7a0þ40a4þ52a5−36a6−25c7q2

15
ffiffi
5

p ð−11a0−20a4þ4a5−72a6−25c7q2Þ
75

− 11a0þ20a4−4a5þ72a6þ25c7q2

15
ffiffiffiffi
10

p − 47a0−10a4þ17a5þ144a6þ25c7q2

75
ffiffi
2

p

7a0þ40a4þ52a5−36a6−25c7q2

15
ffiffi
5

p − 11a0þ20a4−4a5þ72a6þ25c7q2

15
ffiffiffiffi
10

p

ð−11a0−20a4þ4a5−72a6−25c7q2Þ
75

− 47a0−10a4þ17a5þ144a6þ25c7q2

75
ffiffi
2

p

− 4ð17a0þ65a4þ62a5þ9a6Þ
75

− c7q2

3
− 11a0þ20a4−4a5þ72a6þ25c7q2

75
ffiffi
2

p

− 11a0þ20a4−4a5þ72a6þ25c7q2

75
ffiffi
2

p ð14a0−70a4þ29a5−72a6Þ
75

− c7q2

6

1
CCCCCCA

af0;þg
i;j ¼

0
B@

a3;3 a3;5 a3;6
a5;3 a5;5 a5;6
a6;3 a6;5 a6;6

1
CA ¼ 2

0
BBB@

− 6ð3a0þ10a4þ8a5þ6a6Þ
25

11a0þ20a4−4a5þ72a6
25

ffiffi
2

p ð7a0þ40a4þ52a5−36a6Þ
25

11a0þ20a4−4a5þ72a6
25

ffiffi
2

p ð4ð−5a4þa5−18a6Þ−11a0Þ
25

11a0þ20a4−4a5þ72a6
25

ffiffi
2

p

ð7a0þ40a4þ52a5−36a6Þ
25

11a0þ20a4−4a5þ72a6
25

ffiffi
2

p − 6ð3a0þ10a4þ8a5þ6a6Þ
25

1
CCCA: ð3:8Þ

From the cloudy structure of (3.8) it is possible to derive
some simple, but probably not immediate, consequences.
At first, we notice that only the sector 1− can propagate a
particle. Then, regardless the appearances, exploiting the
determinants immediately reveals that such pole is massless
and come with the gauge symmetry connected with the

degeneracy of af0;þg
i;j , as typical in Uð1Þ symmetric models.

The ultimate nature of this pole is exposed by the saturated
propagator which, upon taking account for the symmetry,
shows the simple structure

lim
q2→0

DS ¼
1

q2
X†MX ¼ 1

q2

�
1

c7

�X
i¼1;2

jSij2: ð3:9Þ

We have then proved that the constrained system (3.6),
stabilized by the symmetry (3.4), is free of ghosts without
further tuning other than c7 > 0.

B. The Stueckelberg sector of MAG

The results of the previous section, while unsurprising,
might appear purely academical, given the phenomenological
obstructions to an additional massless vector in the particles
spectrum. Nevertheless, the experience with lower spin
models, in particular the link between massless gauge modes
and the Stueckelberg/Goldstone sectors, points to the neces-
sary existence of a supporting scalar counterpart. Exploring
this hypothesis for higher-rank fields is a challenging task
with an uncertain outcome. The inclusion of all the covariant
interactions of extra scalars to Eq. (3.3), in particular of new
quadratic mixed terms, considerably modifies the starting
theory. While it is not difficult to recognize a possible
extension of the symmetry and obtain a gauge-invariant mass
term, the profusion of different possible contractions, typical
of higher-rank fields, endangers the stability requirement we
sought at the beginning. For our analysis to be coherent we
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must carefully supervise the possible introduction of extra
poles and if radiatively unstable tuning is required. We
entrust, for the spectral analysis of the larger space for fields
of rank 3,2, and 0 the full set of projector operators that have
been recently computed [24,30].
We now start our investigation considering the simple

extension with a single real scalar field ϕðxÞ to the torsion-
free MAG setup of Eq. (3.3)

Sðg; A;ϕÞ ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½∇μϕ∇μϕþ ðs0 þ d0FÞϕ2

þ ðd1Qρ
μ
μ þ d2Qμ

ρμÞ∇ρϕ�: ð3:10Þ

We the test the constraints over Sðg; AÞ þ Sðg; A;ϕÞ of the
familiar Stueckelberg ansatz

δhμν ¼ 0; δAμ
ρ
ν ¼ gμν∂ρΩðxÞ; δϕ ¼ fΩðxÞ; ð3:11Þ

and find nontrivial solutions for f ¼ −d1 − 5
2
d2 and

a7 ¼
1

25
ð2a0 − 10a4 − 3a5 þ 4a6 þ d21Þ −

d22
4
;

a8 ¼
1

10
ða0 − 4a5 − 8a6 − 2d21 − 5d1d2Þ;

c8 ¼ −c7; otherci ¼ 0: ð3:12Þ

At the price of two extra parameters we extended the shift
symmetry (3.4) to coherently include an extra scalar field.
In the contorsion phase we arrive at the following addition
to the Einstein-Hilbert term:

Lðk;ϕÞ¼1

2
ð−a0−2a4−3a5Þkαβμkαμβþ

�
−a4−

1

2
a5

�
kαμ βkαμβþ

R1

200
kαμαkβμβ

þ R2

100
kααμkβμβþ

R3

200
kααμkμββþ

�
d1þ

1

2
d2

�
kαμμ∇αϕþ1

2
d2kμαμ∇αϕ

þ1

2
∇αϕ∇αϕ−

1

2
c7∇βkμνν∇βkααμþ

1

2
c7∇βkααμ∇μkβνν; ð3:13Þ

where we introduced the abbreviations

R1 ¼ ð−8a0 þ 40a4 þ 12a5 − 16a6 − 4d21 þ 25d22Þ;
R2 ¼ ð32a0 þ 40a4 þ 52a5 þ 64a6 þ 16d21 þ 50d1d2 þ 25d22Þ;
R3 ¼ ð−28a0 þ 40a4 þ 92a5 − 256a6 þ 36d21 þ 100d1d2 þ 25d22Þ: ð3:14Þ

Now, by processing this Lagrangian through our enlarged set of projector operators [and adding the sector 0þ8 carried by ϕ
to (3.7)] we can show that the quadratic terms do generate a unique massive pole while preserving the defining Abelian
symmetry (3.11). The only spin/parity sectors different from (3.8) turn to be the 1−

af1;−gi;j ¼

0
BBB@

a1;1 a1;2 a1;4 a1;5
a2;1 a2;2 a2;4 a2;5
a4;1 a4;2 a4;4 a4;5
a5;1 a5;2 a5;4 a5;5

1
CCCA

¼

0
BBBBBB@

−60a0−240a4−240a5−100c7q2þR1þ2R2þR3

60
− 100c7q2þ2R1þR2−R3

60
ffiffi
5

p

− 100c7q2þ2R1þR2−R3

60
ffiffi
5

p 150a0−300a4þ150a5−100c7q2þ4R1−4R2þR3

300

− 100c7q2þR1þ2R2þR3

60
ffiffi
5

p −100c7q2−2R1−R2þR3

300

− 100c7q2þ2R1þR2−R3

60
ffiffi
5

p − 100c7q2þ4R1−4R2þR3

300
ffiffi
2

p

−100c7q2þR1þ2R2þR3

60
ffiffi
5

p − 100c7q2þ2R1þR2−R3

60
ffiffiffiffi
10

p

−100c7q2−2R1−R2þR3

300
−100c7q2þ4R1−4R2þR3

300
ffiffi
2

p

−300a0−1200a4−1200a5−100c7q2þR1þ2R2þR3

300
− 100c7q2þ2R1þR2−R3

300
ffiffi
2

p

− 100c7q2þ2R1þR2−R3

300
ffiffi
2

p 4ð75a0−15a4þ75a5−25c7q2þR1−R2ÞþR3

600

1
CCCCCCA

ð3:15Þ
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and the 0þ one

af0;þg
i;j ¼

0
BBB@

a0;0 a0;3 a0;5 a0;6
a3;0 a3;3 a3;5 a3;6
a5;0 a5;3 a5;5 a5;6
a6;0 a6;3 a6;5 a6;6

1
CCCA

¼

0
BBBBBB@

−100a0−400a4−400a5þR1þ2R2þR3

60
2R1þR2−R3

100
ffiffi
2

p

2R1þR2−R3

100
ffiffi
2

p 4ð25a0−50a4þ25a5þR1−R2ÞþR3

200

R1þ2R2þR3

100
2R1þR2−R3

100
ffiffi
2

p

−iðd1 þ d2Þ
ffiffiffiffiffi
q2

p ið2d1−d2Þ
ffiffiffiffi
q2

p
2
ffiffi
2

p

R1þ2R2þR3

100
iðd1 þ d2Þ

ffiffiffiffiffi
q2

p
2R1þR2−R3

100
ffiffi
2

p − ið2d1−d2Þ
ffiffiffiffi
q2

p
2
ffiffi
2

p

−100a0−400a4−400a5þR1þ2R2þR3

100
iðd1 þ d2Þ

ffiffiffiffiffi
q2

p
−iðd1 þ d2Þ

ffiffiffiffiffi
q2

p
q2

1
CCCCCCA
:

ð3:16Þ

The degeneracy of the af0;þg
i;j shows that the model still preserved the extended Abelian gauge invariance of (3.11),

meanwhile from the 1− sector, we find the unique massive pole

m2
1− ¼ ð2d1 þ 5d2Þ2ð50ð2d1 − d2Þðd1 þ d2Þ þ 2R1 þ R2 − R3Þ

4c7ð50ðd1 − 2d2Þð2d1 þ 5d2Þ þ 2R1 þ R2 − R3Þ
; ð3:17Þ

where, for aesthetic benefit, we traded the parameters a4;5;6 for the triplet Ri. Taking into account gauge invariance via the
constrained source (2.18), we find

lim
q2→m2

1−

DS ¼
X†MX
q2 −m2

1−
¼ Res1−

q2 −m2
1−

X
i¼1;3

jSij2; ð3:18Þ

with the residue Res1− given by

Res1− ¼ 4

c7

�
1þ 75d2ð2d1 þ 5d2Þð50ð3d1 − 2d2Þð2d1 þ 5d2Þ þ 3ð2R1 þ R2 − R3ÞÞ

ð50ðd1 − 2d2Þð2d1 þ 5d2Þ þ 2R1 þ R2 − R3Þ2
�
: ð3:19Þ

We can now require simultaneous positivity of the pole and the residue. For real couplings, and with a0 < 0 from the
graviton 2þ sector, different possible solutions are produced. As anticipated, a subset of these are equalities that reintroduce
the tuning we planned to avoid, being unrelated to the symmetry of the theory. We dispose of these. The success of our quest
is instead measured by the existence of relations which can be more naturally accommodated without tuning to zero the
starting operators. Among such solutions we find, together with a0 < 0 and c7 > 0, the following alternatives:

IÞ A ≠ 0; B > 0

½ðd1 ≠ 0; 2d1 þ 5d2 ≠ 0Þ∨ðd1 < 0; d2 ≤ 0Þ∨ðd1 > 0; d2 ≥ 0Þ�
IIÞ A < 0

½ðd1 ≠ 0; 2d1 þ 5d2 ≠ 0Þ∨ðd1 < 0; d2 ≤ 0Þ∨ðd1 > 0; d2 ≥ 0Þ�
IIIÞ B > 0

½ðd1 < 0; d2 < 0Þ∨ðd1 < 0; 2d1 þ 5d2 > 0Þ∨ðd1 < 0; d2 > 0; 2d1 þ 5d2 < 0Þ�
IVÞ B > 0

½ðd1 > 0; d2 > 0Þ∨ðd1 > 0; 2d1 þ 5d2 < 0Þ∨ðd1 > 0; d2 < 0; 2d1 þ 5d2 > 0Þ�; ð3:20Þ

with the abbreviations
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A ¼ 11a0 þ 20a4 þ 72a6 þ 18d21 − 4a5;

B ¼ 22a0 þ 40a4 þ 36ð4a6 þ d21Þ − 8a5 − 225d22:

The constraints resemble the consistency conditions met in
vacuum stability analyses. They select regions in the param-
eter space cruised by the renormalization group flow. Two
scenarios are then possible. Found a point for which any of
(3.20) is valid, the renormalization group trajectory will
asymptotically remain in the corresponding region. More
likely, a cutoff energy will signal the outward crossing of the
safe region marking the range of validity of our description.

IV. CONCLUSIONS

In theories with a large volume of couplings, the search
for unitary and causal propagation demands precise can-
cellations to occur among unrelated parameters. In turn,
these are reduction statements that connect different oper-
ators in the Lagrangian. When these constraints generate an
accidental symmetry, only realized at the quadratic level, no
hope is given that the loop corrections will preserve it.
Interactions will bring back the ghost we hunted away once
the gauge-fixed propagator will couple to a nonconserved
source. Even when no accidental symmetries are generated,
radiative corrections will harass the propagator and ask for
continued tuning to cancel them away. There are no
immediate, consistency arguments against the latter case.
It is nevertheless interesting to push the idea that this
scenario should be avoided, following what is realized in
the lower spin case. In this work, we promote the principle
that the search for ghosts- and tachyons-free regions, in the

parameter space of MAG, must be supported by the
requirement of stability against radiative corrections.
This challenging prerequisite greatly narrows the space
of acceptable solutions and asks for the support of
opportune nonaccidental symmetries. By a guided explo-
ration of the possible symmetries and their effect over the
Lagrangian, we proved that MAG inhabits a massive vector
state in a sector stabilized by an additional Abelian
symmetry. The proof demanded the introduction of an
extra scalar providing the missing Stueckelberg-type
degree of freedom, and dedicated spectral analysis of the
mixed terms for fields of rank 3,2 and 0. Many future
directions of our approach can be identified. We stress, in
particular, the exploration of the interplay between sym-
metries and quadratic curvature terms in the so-called
coupled scenario. From the phenomenological side,
thorough profiling of the massive vector is in order. This
is particularly promising if we consider the many applica-
tions that rely on a massive Abelian vector to tackle long-
standing anomalies [44–46]. In our opinion, the principle of
radiative stability that supports our massive vector selects a
more solid path towards the discovery of new degrees of
freedom in MAG theories.
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