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The relationship between thermodynamics and the Lloyd bound on the holographic complexity for a
black hole has been of interest. We consider D dimensional anti–de Sitter black holes with hyperbolic
geometry as well as black holes with momentum relaxation that have minimum values for the temperature
and the mass. We will show that the singular points of the thermodynamic curvature of the black holes, as
thermodynamic systems, correspond to the zero points of the action and volume complexity at the Lloyd
bound. For such black holes with a single horizon, the rates of growth of the complexity of volume and the
complexity of action at minimum mass and minimum temperature are zero, respectively. We show that the
thermodynamic curvature diverges at these minimal values. Because of the behavior of the growth rate of
the action complexity and thermodynamic curvature at minimum temperature, we propose the growth rate
of the action complexity as an order parameter of the black holes as the thermodynamic systems. Also, we
derive the critical exponent related to the thermodynamic curvature in different dimensions.
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I. INTRODUCTION

FollowingHawking andBekenstein’s outstandingpapers,
theblackholes are consideredas the thermodynamic systems
[1–3]. The thermodynamic laws about the black holes have
been investigated formany different black holes. Also, some
thermodynamic response functions for black holes are
derived and according to their behaviors, some phase
transition points are predicted [4–7]. Recently, the thermo-
dynamic geometry of many different black holes has been
vastly investigated and some useful information is extracted.
Thermodynamic geometry was introduced by Ruppeiner

and Weinhold based on the fluctuation theory [8–10]. For a
thermodynamic system, one can construct a Riemann
manifold using fluctuating thermodynamic parameters.
Different metrics are defined for the thermodynamic
parameters space. In entropy representation, the second

derivatives of the entropy with respect to related extensive
parameters of the system such as the internal energy, the
volume of the system, and the total number of particles
define the components of metric tensor [10]. Also,
Weinhold introduced another metric which is based on
the second derivatives of the internal energy with respect to
the related extensive parameters [9]. Of course, some
different metrics can be found in the other representations
[11]. The curvature of the constructed thermodynamic
parameters space is the Ricci scalar of the thermodynamic
manifold and has some information about the thermody-
namics of the system [10].
It has been shown that the thermodynamic curvature of

an ideal classical gas vanishes at all physical ranges [12].
However, the thermodynamic curvature of an ideal Bose
(Fermi) gas is positive (negative). The intrinsic statistical
interaction of bosons is attractive while it is negative for
fermions [11]. In fact, one can argue that the sign of the
thermodynamic curvature classifies the statistical inter-
actions of the system. Also, the singular points of the
thermodynamic curvature can be evidence of the existence
of phase transitions. For example, the thermodynamic
geometry of ideal gases with particles that obey Bose-
Einstein, q-deformed, Polychronakos, and nonextensive
are singular at the condensation transition point [13–17].
Thermodynamic geometry of well-known black holes

such as Kerr, Kerr-Newman, ReissnerNordstrom, BTZ,
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Warped AdS and so on has been investigated [18–25].
Also, the thermodynamic geometry of some black holes in
extended thermodynamic phase space has been considered
[26–30]. It has been shown that the cosmological constant
should be included in the fluctuating thermodynamics
parameters to obtain a consistent corresponding Smarr
relation for some black holes [31,32]. Also, for Born-
Infeld black holes, the maximal field strength is included in
fluctuating parameters [33,34]. Also, phase transitions of
some AdS black holes have been considered using the
thermodynamic geometry method [35–37]. We will con-
sider the new parameter which is related to the momentum
relaxation as a fluctuating parameter and extend the
thermodynamic parameters space properly. We will obtain
the thermodynamic curvature and consider its singular
points. One can find some correspondence between the
singular points of some response function and also, the
growth rate of the holographic complexity.
Recently, the study of some concepts in quantum

information theory such as entanglement entropy [38]
and holographic complexity [39,40] has been considered
using the approach of AdS=CFT correspondence. In fact,
since the entanglement entropy is not enough to describe
the dynamic of the black hole beyond the horizon, another
concept called the holographic complexity was introduced.
According to [40], the minimum number of operators
required to go from an initial state to a final state is defined
as the complexity of the system. In the context of AdS=CFT
correspondence [41], two prescriptions have been sug-
gested for the holographic complexity; the complexity ¼
volume (CV) conjecture [42,43] and the complexity ¼
action (CA) conjecture [40,44–46]. In [47] we have
employed the (CA) conjecture to investigate the action
growth rate for the charged and neutral AdS black branes of
a holographic model consisting of Einstein-Maxwell theory
in the D dimensional bulk spacetime with D − 2 massless
scalar fields which is called Einstein-Maxwell-Axion
(EMA) theory. In Ref. [48], we have also found the
complexity and its time evolution for charged AdS black
holes (the Gubser-Rocha model [49,50]) in diverse dimen-
sions via the (CA) conjecture. It has been shown that the
growth rate of the holographic complexity violates the
Lloyds bound in early times.
We will organize the paper as follows: black hole with

hyperbolic geometry and its related thermodynamic geom-
etry is investigated in Sec. II. Also, the complexity of these
black holes is considered using of the (CA) and (CV)
conjectures in this section. The thermodynamic curvature
of black holes with momentum relaxation is worked out in
two thermodynamic phase spaces in Sec. III. Also, the
action complexity, as well as the volume complexity, is
computed. We show that one can find a meaningful
relationship between the thermodynamic curvature and
the growth rate of the complexity in some special points.
In fact, the zero points of complexities correspond to the

singular points of the thermodynamic curvature. Also, the
thermodynamic curvature as a power law function is
considered in the vicinity of critical points. We will
conclude the paper in Sec. IV.

II. AdS BLACK HOLES WITH HYPERBOLIC
GEOMETRY

Black holes with hyperbolic horizons are well known to
exist in AdS spacetime. Most of the black holes such as
Schwarzschild, Kerr and Kerr-Newman have an appropri-
ate AdS analogues. Also, there exist some AdS black holes
which are called the topological black holes and their
horizons may either be spherical, planar or hyperbolic
[51–55]. We briefly review the AdS black holes with
hyperbolic geometry in this section. When a cosmological
constant Λ is included in the Lagrangian, the Einstein-
Hilbert action is changed to the following form

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p ðR − 2ΛÞdDx; ð1Þ

where, g ¼ detðgμνÞ is the determinant of the metric tensor,
R is the Ricci scalar, D denotes the dimension of spacetime
and Λ is

Λ ¼ −
ðD − 1ÞðD − 2Þ

2L2
; ð2Þ

where L is the AdS radius. In particular, we focus on the
AdS black holes in D dimensions, whose metric takes the
general form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
k;D−2; ð3Þ

with

fðrÞ ¼ r2

L2
þ k −

m0

rD−3 ; ð4Þ

where k ¼ fþ1; 0;−1g indicates the curvature of the
(D–2)-dimensional line element dΣ2

k;D−2, which is given by

dΣ2
k;D−2 ¼ dθ2 þ sinh2 θdΩ2

D−3 for k ¼ −1; ð5Þ

and m0 is the mass parameter which is defined in the
following. Also, with k ¼ −1, dΣ2

−1;D−2 is the metric on a
(D − 2)-dimensional hyperbolic“plane”withunit curvature.
In particular, the black holes with k ¼ fþ1; 0;−1g have
spherical, planar, and hyperbolic horizons, respectively.

A. Thermodynamic of black holes with
hyperbolic geometry

The location of the horizon rh is determined in terms of
the “mass” parameter m0 as follows
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m0 ¼ rD−3
h

�
r2h
L2

− 1

�
; ð6Þ

and the mass is given by

M ¼ ðD − 2ÞV
16π

m0; ð7Þ

where V denotes the dimensionless volume of the hyper-
bolic geometry in D − 2 dimensions. The temperature of
the thermal ensemble is given by

T ¼ 1

4π

∂f
∂r

����
r¼rh

¼ 1

4πrh

�
ðD − 1Þ r

2
h

L2
− ðD − 3Þ

�
: ð8Þ

Examining fðrÞ in Eq. (4) with k ¼ −1, we see that there is
still a horizon at rh ¼ L even whenm0 ¼ 0. Furthermore,
Eq. (8) then yields to a finite temperature in this case as
follows

Tmin ¼
1

2πL
: ð9Þ

In the context of AdS=CFT, vacuum metric M ¼ 0 has the
form of an AdS black hole that can be interpreted in terms
of an entangled state of two copies of the CFT on a
hyperbolic plane. The entropy is related to the area of the
horizon as follows

S ¼ V
4
rD−2
h ; ð10Þ

and the thermodynamic pressure is defined in [56–58] for
the AdS spacetime

P ¼ −
Λ
8π

¼ ðD − 1ÞðD − 2Þ
16πL2

: ð11Þ

Using Eqs. (6) and (8), and replacing rh and L with
entropy and pressure, we obtain the mass and temperature
in terms of thermodynamic parameters as

M¼−V 1
D−2

2−2−
2

D−2ðD−2Þ
π

S
D−3
D−2þV

1
2−D

22þ 2
D−2

D−1
PS1þ 1

D−2; ð12Þ

T ¼ −V 1
D−2

2−2−
2

D−2ðD − 3Þ
π

S
1

2−D þ V
1

2−D
22þ 2

D−2

D − 2
PS

1
D−2: ð13Þ

Using Eq. (13), we extract the pressure as a function of S
and T and replace it in Eq. (12) to obtain an equation forM
as a function of the entropy and temperature. We have
plotted M as a function of T for a fixed value of entropy in
Fig. 1. One can define a minimum value for temperature;
Tmin, which corresponds to the M ¼ 0. In fact, for T <
Tmin the mass of the black hole will be negative. Also, we
can introduce a minimum mass; Mmin, which corresponds

to T ¼ 0. For the cases M < Mmin, the temperature is
negative. We work out the minimum temperature and
minimum mass as follows

Tmin ¼ V
1

D−2
2−

D
D−2

π
S−

1
D−2; ð14Þ

Mmin ¼ −V 1
D−2

2−
D

D−2ðD − 2Þ
ðD − 1Þπ S

D−3
D−2: ð15Þ

We will explore some singular behavior at these special
points. In the following we consider the thermodynamic
geometry and the thermodynamic curvature of thermody-
namic parameters space.

B. Thermodynamic geometry

We consider the thermodynamic geometry of AdS black
holes in D dimensional hyperbolic geometry. In order to
construct the thermodynamic geometry, we select the
appropriate fluctuating thermodynamic parameters. The
Weinhold geometry is introduced by metric tensor compo-
nents which are defined by the second derivatives of
internal energy with respect to the fluctuating parameters

gWab ¼
∂
2M

∂Xa
∂Xb : ð16Þ

We note that the mass has the role of internal energy and the
fluctuating parameters are considered X1 ¼ S and X2 ¼ P.
We will investigate the thermodynamic curvature using the
Ruppeiner geometry [59–61]. We define the metric tensor
components of Ruppeiner geometry

ds2R ¼ −MT−1gWabdX
adXb: ð17Þ

For a two dimensional thermodynamic parameters space,
we evaluate the metric elements using Eqs. (12), (13), (16),
and (17). Using the metric tensor components, we obtain

FIG. 1. Mass as a function of temperature for a fixed value of
entropy in D ¼ 4 dimensional hyperbolic geometry.
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the affine connections, Riemann tensor, Ricci tensor, and
finally the Ricci scalar of thermodynamic parameters space.
The Ricci scalar or equivalently the thermodynamic cur-
vature is given by:

R ¼ πV
7

D−2
23þ 2

D−2ðD − 3ÞðD − 2Þ2ðD2 − 1Þ
XY3

S
1

D−2−2

þ π2V
5

D−2
28þ 6

D−2ðD − 3ÞðD − 2ÞðD − 1Þ
XY3

PS
3

D−2−2

− 3π3V
3

−2þD
211þ 10

D−2ðD − 1Þ
XY3

P2S
5

−2þD−2; ð18Þ

where,

X ¼ π24þ 4
D−2PS

2
D−2 − V

2
D−2ðD − 3ÞðD − 2Þ; ð19aÞ

Y ¼ π24þ 4
D−2PS

2
D−2 − V

2
D−2ðD − 2ÞðD − 1Þ: ð19bÞ

It is obvious that the X ¼ 0 and Y ¼ 0 denote the singular
points of the thermodynamic curvature. Using the above
equations, we obtain spacial pressures PT (X ¼ 0) and PM
(Y ¼ 0)

PT ¼ V
2

D−2

π
2−4−

4
D−2ðD − 2ÞðD − 3ÞS− 2

D−2; ð20aÞ

PM ¼ V
2

D−2

π
2−4−

4
D−2ðD − 1ÞðD − 2ÞS− 2

D−2: ð20bÞ

Using Eq. (13), One can extract the pressure as a function
of entropy and temperature. Thus, we convert the Eq. (18)
to a function of entropy and temperature as follows:

R ¼ ðD − 1Þ
ðD − 2Þ2

�
V

3
D−28

D
D−2ðD − 3ÞS−2− 3

D−2

π3TðT − TminÞ3
−
V

2
D−22

Dþ2
D−2ðD − 3ÞS−2− 2

D−2

π2ðT − TminÞ3
−
3V

1
D−22

D
2−DS−2−

1
D−2

πðT − TminÞ3
T

�
: ð21Þ

It is obvious from Fig. 2 that the thermodynamic
curvature is singular at two special pressures, PT and
PM, which are defined by Eqs. (20a) and (20b). Also, the
thermodynamic curvature as a function of temperature has
been plotted in Fig. 3. Thermodynamic curvature is
singular at T ¼ 0 and T ¼ Tmin. We argued that T ¼ 0
corresponds to the M ¼ Mmin because we show that

T ¼ ðD − 1Þ
ðD − 2ÞS ðM −MminÞ: ð22Þ

Also, T ¼ Tmin corresponds to M ¼ 0 which has been
depicted in Fig. 1. In fact, the physical range with

positive mass is T ≥ Tmin. We focus on the singularity
of thermodynamic curvature at Tmin. By numerical meth-
ods, we show that the thermodynamic curvature in the
vicinity of Tmin is singular as a power-law function in all
dimensions

R ∝ −ðT − TminÞ−3: ð23Þ

C. Complexity

According to [44], the growth rate of the complexity of
hyperbolic black hole in AdS spacetime is obtained using

(a) (b)

FIG. 2. The thermodynamic curvature of hyperbolic AdS black holes as a function of pressure for fixed value of entropy (S ¼ 4) in
D ¼ 4 2(a) and D ¼ 5 2(b) dimensions.
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two well-known conjectures. Using the action conjecture
we obtain that

_CA ¼ 2M ¼ 2ðD − 2ÞS
D − 1

ðT − TminÞ; ð24Þ

and for L ≥ rh, the growth rate of the complexity vanishes
_CA ¼ 0. The growth rate as a function of temperature for a
fixed value of entropy has been depicted in Fig. 4. It is
obvious that the rate of growth of the complexity based on
the (CA) conjecture vanishes at T ¼ Tmin. We showed that
the thermodynamic curvature is singular at T ¼ Tmin. In
fact, one of the singular points of the thermodynamic
curvature corresponds to zero growth rate. The growth rate
of the volume complexity satisfies the following relation

_CV ≥
8π

D − 2
ðM −MminÞ; ð25Þ

which means that the growth rate of the complexity
vanishes at some different point M ¼ Mmin. We showed
that M ¼ Mmin corresponds to T ¼ 0, where the thermo-
dynamic curvature is singular.
Furthermore, we evaluate the heat capacity at constant

pressure which is given by

CP ¼ T
�
∂S
∂T

�
P
¼ TfS; PgS;P

fT; PgS;P
; ð26Þ

where the last equality comes from the following relation

�
∂f
∂g

�
h
¼ ff; hga;b

fg; hga;b
; ð27Þ

where the Nambu braket is defined [62] as follows

ff; hga;b ¼
�
∂f
∂a

�
b

�
∂h
∂b

�
a
−
�
∂f
∂b

�
a

�
∂h
∂a

�
b
: ð28Þ

We obtain the heat capacity by evaluating the related
Nambu brackets

CP ¼ ðD − 2ÞSð16PπS 2
D−2 − 16

1
2−DðD − 3ÞðD − 2ÞV 2

D−2Þ
16PπS

2
D−2 þ 16

1
2−DðD − 3ÞðD − 2ÞV 2

D−2

¼ ðD − 2Þ ðP − PTÞ
Pþ PT

S: ð29Þ

The above equation shows that the heat capacity at
constant pressure vanishes at P ¼ PT or equivalently at
T ¼ 0. We showed that the thermodynamic curvature is
singular at this point. The heat capacity as a function of
temperature obtained as follows

CP ¼ 2πðD − 2ÞS1þ 1
D−2T

4
1

2−DðD − 3ÞV 1
D−2 þ 2πS

1
D−2T

: ð30Þ

It is obvious from Eq. (30) that the heat capacity vanishes
at T ¼ 0.

III. BLACK HOLES WITH MOMENTUM
RELAXATION

It is well known that the holographic models with broken
translational symmetry yield theories with momentum
relaxation. The Einstein-Maxwell action in (dþ 1)-
dimensional spacetime is supplemented by d − 1 massless
scalar fields that break the translational invariance of the
boundary theory in the context of the AdS=CFT duality. In
fact, scalar axion fields enter the bulk action only through
the kinetic term and the sources are linear in the boundary.
An extended review on the holographic theories with
broken translational invariance and the related strongly
correlated phases can be found in [63,64]. In the following,
we will consider the thermodynamic, thermodynamic
geometry, and the growth rate of the complexity of black
holes with the momentum relaxation.

(a) (b)

FIG. 3. Thermodynamic curvature as a functionof temperature for fixed valueof entropyS ¼ 4 forD ¼ 4 3(a) andD ¼ 5 3(b)dimensions.
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A. Thermodynamic of black holes

Though the Einstein-Maxwell-Axion gravity is a well-
known theory [65,66], in this paper we focus on the
Einstein-Axion theory with the total action

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

2

XD−2

I¼1

ð∂ψ IÞ2
�
dDx; ð31Þ

where D is the dimension of spacetime and ψ I is the axion
field in D − 2 dimensions via the last kinetic term in the
action. One can suppose that the scalar fields linearly
depend on the D − 2 dimensional spatial coordinates xa,
i.e., ψ i ¼ βδIaxa. The action admits the following black
hole solution

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dxadxa; ð32Þ

where

fðrÞ ¼ r2

L2
−

β2

2ðD − 3Þ −
m0

rD−3 ; ð33Þ

and

M ¼ ðD − 2ÞVD−2

16π
m0;

m0 ¼
16πPrD−1

h

ðD − 1ÞðD − 2Þ −
β2rD−3

h

2ðD − 3Þ ; ð34Þ

where m0 is a mass parameter and VD−2 is the dimension-
less volume of D − 2-dimensional spatial geometry xa. We
can evaluate the temperature

T ¼ f0ðrhÞ
4π

¼ 1

4π

�ðD − 1Þrh
L2

−
β2

2rh

�
: ð35Þ

The entropy and the pressure of the black hole are
given by

S ¼ VD−2

4
rD−2
h ; P ¼ −

Λ
8π

¼ ðD − 1ÞðD − 2Þ
16πL2

: ð36Þ

We expect that the above physical quantities satisfy the
following first law of black hole thermodynamic. The first
thermodynamic law is given by

dM ¼ TdSþ VdPþ φdβ; ð37Þ

where φ is the conjugate variable to the strength of
momentum relaxation with definition

φ ¼ ∂M
∂β

����
S;P

¼ −
ðD − 2ÞβVD−2rD−3

h

16πðD − 3Þ ; ð38Þ

and the Smarr relation for the black hole is obtained as
follows

ðD − 3ÞM ¼ ðD − 2ÞTS − 2PV: ð39Þ

B. Thermodynamic geometry

We study the thermodynamic geometry of a black hole
with momentum relaxation. First, we do not consider the
momentum relaxation parameter; β, as a fluctuating
thermodynamic parameter. It means that the momentum
relaxation is considered as a constant and we will consider
a two-dimensional thermodynamic parameters space
with fluctuating parameters, entropy (S) and pressure
(P). It is straightforward to obtain the metric tensor
components of thermodynamic parameters space. Using
the evaluated metric elements, we work out the thermo-
dynamic curvature

(a)

(b)

FIG. 4. The action complexity growth rate (red solid line) and
volume complexity growth rate (blue dashed line) as a function
temperature for fixed value of entropy S ¼ 4 in D ¼ 4 4(a) and
D ¼ 5 4(b).
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R ¼ a0πS−2þ
1

D−2β6 þ a1π2PS−2þ
3

D−2β4 − a23π3P2S2þ 5
D−2β2

ð−25þ 4
D−2PπS

2
D−2 þ ðD − 2Þβ2Þð−25þ 4

D−2ðD − 3ÞPπS 2
D−2 þ ðD − 2ÞðD − 1Þβ2Þ3 ; ð40Þ

where

a0 ¼ 24þ 2
D−2ðD − 3ÞðD − 2Þ2ðD2 − 1Þ; ð41aÞ

a1 ¼ 210þ 6
D−2ðD − 3Þ2ðD − 2ÞðD − 1Þ; ð41bÞ

a2 ¼ 214þ 10
D−2ðD − 3Þ2ðD − 1Þ; ð41cÞ

where we set VD−2 ¼ 1 for simplicity. Using the definition
of the total entropy, total mass and temperature of the black
hole by Eqs. (34), (35) and (36), we plottedM and T versus
β for fixed values of entropy and pressure in D ¼ 4 and
D ¼ 5 in Fig. 5. We obtain two special values βT and βM
for momentum relaxation parameter which correspond to
T ¼ 0 and M ¼ 0 respectively. These special momentum
relaxation parameters are given by

β2T ¼ π
25þ 4

D−2

D − 2
PS

2
D−2; ð42aÞ

β2M ¼ π
25þ 4

D−2ðD − 3Þ
ðD − 2ÞðD − 1ÞPS

2
D−2: ð42bÞ

These values of β are clear in Fig. 5. In fact, for β > βT, the
mass and temperature will be negative. For βM < β < βT,
the temperature is positive while mass is negative, and
finally for β < βM, both of the temperature and mass are
positive.
The thermodynamic curvature has been depicted in

Fig. 6 as a function of momentum relaxation parameter

for fixed values of the entropy and pressure in D ¼ 4 and
D ¼ 5 dimensions. It is obvious that the thermodynamic
curvature is singular at the special values of β ¼ βT and
β ¼ βM. We could extract the thermodynamic curvature as
a function of temperature. First, we obtain β as a function of
S, P, and T using Eqs. (35) and (36)

β2 ¼ 23þ 2
D−2πS

1
D−2

�
22þ 2

D−2PS
1

D−2

D − 2
− T

�
: ð43Þ

We mentioned that βM corresponds to M ¼ 0. Using
Eqs. (42b) and (43), we obtain a minimum value for
temperature as follows:

Tmin ¼
23þ 2

D−2

ðD − 2ÞðD − 1ÞPS
1

D−2: ð44Þ

In fact, for T < Tmin, the black hole mass will be negative
and T ¼ Tmin corresponds to M ¼ 0. Using the above
equations, we rewrite the thermodynamic curvature (40) as
a function of the temperature

R ¼ ðb0P3S
3

D−2 − b1P2S
2

D−2T þ b2PS
1

D−2T2 − b3T3Þ
ðD − 2Þ5ðD − 1Þ2S2TðT − TminÞ3

; ð45Þ

where b0, b1, b2, and b3 are dimension dependent coef-
ficients and given by

(a) (b)

FIG. 5. Mass (blue, dashed line) and temperature (red, solid line) of black hole as a function of momentum relaxation parameter for
fixed values of entropy (S ¼ 4) and pressure (P ¼ 7) in D ¼ 4 5(a) and D ¼ 5 5(b).

THERMODYNAMIC GEOMETRY AND COMPLEXITY OF BLACK … PHYS. REV. D 106, 024044 (2022)

024044-7



b0 ¼ 29þ 6
D−2ðD − 3Þ; ð46aÞ

b1 ¼ 27þ 4
D−2ðD − 3ÞðD − 2ÞD; ð46bÞ

b2 ¼ 23þ 2
D−2ðD − 3ÞðD − 2Þ2ð5D − 3Þ; ð46cÞ

b3 ¼ 2ðD − 2Þ3ðDþ 1ÞðD − 3Þ: ð46dÞ

Thermodynamic curvature as a function of temperature has
been plotted in Fig. 7. This figure indicates that the
thermodynamic curvature is singular at T ¼ Tmin and
T ¼ 0. For the physical range T > Tmin, mass is positive
and the thermodynamic curvature is negative. Also, we
obtain that the thermodynamic curvature has a power-law
behavior in the vicinity of T ¼ Tmin as follows:

R ∝ −ðT − TminÞ−3: ð47Þ

C. Thermodynamic geometry with fluctuations of
momentum relaxation

It has been shown that in AdS black holes with axionic
charge [67,68], we have to include some parameters to the set
of fluctuating thermodynamic parameters to obtain a relevant
first thermodynamic law. Consideration of the thermody-
namic geometry in extended phase space, contains some
useful information and interesting results.We considered the
thermodynamic geometry in a two dimensional thermody-
namic parameters space. By including the momentum
relaxation parameter to the set of thermodynamic fluctuating
parameters,wewill consider the thermodynamic curvature of
the extended thermodynamic phase space. We obtain the
components of three dimensional thermodynamic parame-
ters space using Eq. (17). We notice that the thermodynamic
parameters are X1 ¼ S, X2 ¼ P, and X3 ¼ β. Evaluation of
the thermodynamic curvature using the nine components of
metric tensor of three dimensional thermodynamic param-
eters space is straightforward. We obtain that

(a) (b)

FIG. 6. Thermodynamic curvature of two dimensional thermodynamic parameters space for a black hole with momentum relaxation
as a function of momentum relaxation parameter for fixed values of entropy (S ¼ 4) and pressure (P ¼ 7) inD ¼ 4 6(a) andD ¼ 5 6(b).

(a) (b)

FIG. 7. Thermodynamic curvature of black hole with momentum relaxation as a function of temperature for fixed values of entropy
(S ¼ 2) and Pressure (P ¼ 7) in D ¼ 4 7(a) and D ¼ 5 7(b).
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R ¼ c0P3π4S
7

D−2−2 þ c1P2π3S
5

D−2−2β2 þ c2Pπ2S
3

D−2−2β4 þ c3πS
1

D−2−2β6

ðD − 2Þð25þ 4
D−2PπS

2
D−2 − ðD − 2Þβ2Þð25þ 4

D−2ðD − 3ÞPπS 2
D−2 − ðD − 2ÞðD − 1Þβ2Þ3 ; ð48Þ

where the coefficients c0, c1, c2 and c3 are given by

c0 ¼ 220þ 12
D−2ðD − 3ÞðD − 1Þð4 1

D−2ð9þD2Þ − 3D × 2
D

D−2Þ; ð49aÞ

c1 ¼ −214þ 10
D−2ðD − 3Þ2ðD − 2ÞðD − 1Þð4D − 9Þ; ð49bÞ

c2 ¼ 2−
26
D−2ðD − 3ÞðD − 1Þð29þ 32

D−2ð148þDðDð245þ 2ðD − 13ÞDÞ − 220ÞÞ − 2
16D
D−2D2Þ; ð49cÞ

c3 ¼ 24−
10
D−2ðD − 3ÞðD − 1Þð4 3D

D−2ðDð7þDþ 3D2Þ − 3Þ þ 4
6

D−2ð336þDðDð152þDð53D − 264ÞÞ − 736ÞÞ
− 11 × 4

4þD
D−2D4Þ: ð49dÞ

The thermodynamic curvatures of extended thermodynamic phase space for D ¼ 4 and D ¼ 5 dimensional solutions are
different. For D ¼ 4 dimensions, the thermodynamic curvature is given by

RD¼4 ¼
48πð32πPS − β2Þð128πPSþ 3β2Þ
S3=2ð64πPS − 3β2Þ2ð64πPS − β2Þ ; ð50Þ

and for D ¼ 5 dimensions, we obtain that

RD¼5 ¼
2πð419430422=3P3π3S2 − 54067221=3P2π2S4=3β2 − 3456PπS2=3β4 þ 72922=3β6Þ

3S5=3ð3221=3PπS2=3 − 3β2Þ3ð6421=3PπS2=3 − 3β2Þ ; ð51Þ

It is obvious that the dependence of thermodynamic
curvature to thermodynamic parameters is different in
D ¼ 4 and D ¼ 5. More especially, the appearance of
the term β6 in the numerator is related to the five and higher
dimensional solutions.
Thermodynamic geometry as a function of momentum

relaxation parameter for fixed values of entropy and
pressure have been plotted in Fig. 8. It can be observed
that the thermodynamic curvature is singular at βM and βT .

Similar to the previous section, we can work out the
thermodynamic curvature as a function of temperature

R ¼ d0P3S
3

D−2 þ d1P2S
2

D−2T þ d2PS
1

D−2T2 þ d3T3

ðD − 2Þ8ðD − 1Þ2S2ðT − TminÞ3T
; ð52Þ

where, the coefficients d0, d1, d2, and d3 are given by

d0 ¼ 2−
12ð2þDÞ
D−2 ðD − 3Þð227D

D−2ð1þD2Þ þ 220þ 54
D−2ð−168þDð60þDð5D − 158ÞÞÞÞ; ð53aÞ

d1 ¼ −2−12− 50
D−2ðD − 3Þð227D

D−2ðD − 1ÞD2 þ 217þ 54
D−2ð2þ 3DÞð−56þDð292þDð−202þDð−37þ 4DÞÞÞÞÞ; ð53bÞ

d2 ¼ 2−
12ð2þDÞ
D−2 ðD − 3Þ

× ð225D
D−2D2 þ 215þ 50

D−2ð544þDðDð992þDðDð370þDðDð2D − 11Þ − 27ÞÞ − 1240ÞÞ − 1648ÞÞÞ; ð53cÞ

d3 ¼ −18ðD − 3ÞðD − 2Þ7: ð53dÞ
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Using Eq. (52), we recognize that T ¼ 0 and T ¼ Tmin are two singular points of the thermodynamic curvature. Similar to
Eqs. (50) and (51), we obtain the thermodynamic curvature in four and five dimensional spacetime

RD¼4 ¼ −
120P2S − 78PS1=2T þ 9T2

Tð8PS3=2 − 3STÞ2 ; ð54Þ

RD¼5 ¼ −
2560P3S − 508821=3P2S2=3T þ 280822=3PS1=3T2 − 729T3

36S2ð222=3PS1=3 − 3TÞ3T : ð55Þ

Thermodynamic curvature as a function of the temperature
for fixed values of the entropy and pressure has depicted in
Fig. 9. Singular behavior of the thermodynamic curvature at
T ¼ 0 and T ¼ Tmin is obvious. We consider the power-law
behavior of the thermodynamic curvature in the vicinity
of T ¼ Tmin. For the four dimensional spacetime, we obtain
that

RD¼4 ∝ ðT − TminÞ−2; ð56Þ

while for the five dimensional spacetime, we show that

RD¼5 ∝ −ðT − TminÞ−3: ð57Þ

It seems that the general behavior of the thermodynamic
curvature near the critical temperature is expressed by a
universal exponent defined by,R ¼ ðT − TcÞ−ω. It has been
shown that the exponent ω is related to the exponent of the
heat capacity near the phase transition point. For the black
holes considered in this paper, we have proved that the
exponent of the thermodynamic curvature is ω ¼ 3 except
for a four dimensional black holewithmomentum relaxation
as a fluctuating thermodynamic parameter which is ω ¼ 2.
Therefore, we argue that the fluctuation of momentum

relaxation might change the universality class of the black
hole as a thermodynamic system.

D. Complexity with momentum relaxation

Similar to the previous section, we can obtain the
complexity based on the (CA) [47] and (CV) conjectures
for the black holes with momentum relaxation. In the
former case, we obtain the growth rate of the action
complexity as a function of temperature

_CA ¼ 2M ¼ 2ðD − 2ÞS
D − 3

ðT − TminÞ: ð58Þ

It is obvious that at T ¼ Tmin, the rate of growth of the
complexity vanishes, _CA ¼ 0. In fact, for the nonphysical
range T < Tmin, mass is negative and the growth rate of the
complexity vanishes [47]. We showed that the thermody-
namic curvature is singular at this point.
We would like to study the late time behavior of the

holographic complexity using the (CV) conjecture. The
metric (32) in the Eddington-Finkelstein coordinate,
becomes

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dxadxa; ð59Þ

(a) (b)

FIG. 8. Thermodynamic curvature of extended thermodynamic phase space for a black hole with momentum relaxation as a function
of momentum relaxation parameter for fixed values of entropy (S ¼ 2) and pressure (P ¼ 7) in D ¼ 4 8(a) and D ¼ 5 8(b).
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where we used the coordinate v ¼ tþ r�ðrÞ with
r�ðrÞ ¼ −

R∞
r

dr0
fðr0Þ. It has been shown in [44] that the final

result for the rate of growth of the complexity in the neutral
AdS black holes becomes

lim
τ→∞

dCV
dτ

¼ 1

GNR
Wðr̃minÞ ¼

1

GNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr̃minÞ

p
r̃D−2
min : ð60Þ

where rmin is theminimumdistance inside the future horizon
and the r̃min is obtained by solving the following equation

0 ¼ W0ðr̃minÞ

¼ ðD − 2Þr̃D−3
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr̃minÞ

p
−
r̃D−2
min f

0ðr̃minÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr̃minÞ

p : ð61Þ

By replacing the fðr̃minÞ from Eq. (33) in the above
equations we expand Eq. (61) in the limit rh ≫ L to find
the leading corrections to r̃min

r̃min¼
rh
2

1
D−1

�
1þð1þ2

2
D−1ðD−2Þ−DÞL2β2

2ðD−3ÞðD−1Þ2r2h
þð2 4

D−1ðD−4ÞðD−2Þþ21þ 2
D−1ðD−1Þ−ðD−1Þ2ÞðD−2ÞL4β4

8ðD−3Þ2ðD−1Þ4r4h
þ���

�
: ð62Þ

We obtain the rate of growth of the complexity of black holes with the momentum relation

_CV ¼
8π

D−2
ðM−MminÞ

�
D−3

D−1
þð4D−8−4

1
D−1ðD−1ÞÞL2β2

4ðD−1Þ2r2h
þð16ðD−2Þ−23þ

2
D−1ðD−1Þþ2

4
D−1ð3D−5ÞÞL4β4

32ðD−1Þ3r4h
þ���

�
;

ð63Þ

where Mmin corresponds to T ¼ 0 and given by

Mmin ¼ −
ðD − 2Þ

8πðD − 3Þ
rD−1
h

L2
: ð64Þ

One can show that always the following relation is satisfied

_CV ≥
8π

D − 2

D − 3

D − 1
ðM −MminÞ: ð65Þ

The growth rate of volume complexity vanishes at
M ¼ Mmin. _CA and _CV as a function of temperature for
fixed values of S and P have been depicted in Fig. 10.
Now, we focus on the behavior of a thermodynamic

response function at singular points of thermodynamic

curvatures. These points correspond to the zero points of
the growth rate of the holographic complexity. Heat
capacity at constant pressure and constant momentum
relaxation parameter is defined

CPβ ¼
�
∂M
∂T

�
P;β

¼
ð∂M
∂S ÞP;β
ð∂T
∂SÞP;β

: ð66Þ

We use the following relation to evaluate the partial
differentiation

�
∂f
∂g

�
h;k

¼ ff; h; kgq1;q2;q3
fg; h; kgq1;q2;q3

; ð67Þ

(a) (b)

FIG. 9. Thermodynamic curvature of extended thermodynamic phase space for a black hole with momentum relaxation as a function
of temperature for fixed values of entropy (S ¼ 2) and pressure (P ¼ 7) in D ¼ 4 9(a) and D ¼ 5 9(b).
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where the Nambu bracket is defined

ff; h; kgq1;q2;q3 ¼
X3
ijk¼1

εijk
∂f
∂qi

∂h
∂qj

∂k
∂qk

; ð68Þ

and εijk is the Levi-Civita symbol. We obtain that

CPβ ¼
ðD − 2ÞSð25þ 4

D−2PπS
2

D−2 − ðD − 2Þβ2Þ
25þ 4

D−2PπS
2

D−2 þ ðD − 2Þβ2

¼ −ðD − 2Þ ðβ
2 − β2TÞ

β2 þ β2T
S: ð69Þ

The sign of heat capacity is changed at β ¼ βT . We know
that βT corresponds to T ¼ 0. Therefore, the heat capacity
vanishes at zero temperature. We can extract the heat
capacity as an explicit function of temperature as follows

CPβ ¼
ðD − 2Þ2ST

23þ 2
D−2PS

1
−2þD − ðD − 2ÞT ; ð70Þ

which shows that at T ¼ 0, the heat capacity vanishes.

IV. CONCLUSION

In this paper, we have considered the thermodynamic
geometry and the Lloyd bound on the holographic com-
plexity for two families of black holes from the CA and the
CV conjectures. First, we constructed the thermodynamic
geometry of a hyperbolic black hole in arbitrary dimen-
sions. For a two dimensional thermodynamic parameters
space, we obtained the thermodynamic curvature and
investigated its behavior near the critical point. Similar

evaluations were performed on the black hole with momen-
tum relaxation. Of course, we consider the momentum
relaxation parameter as a constant or fluctuating thermo-
dynamic parameter in two different cases.
Using the singular points of the thermodynamic

curvature and the sign change points of a response function,
namely the heat capacity, we recognized the critical
points. We obtain the critical exponent of thermo-
dynamic curvature in the vicinity of the phase transition
temperature.
We showed that the singular points of thermodynamic

curvature correspond to the zero points of the growth rate of
the action and the volume complexities. At T ¼ 0, the
growth rate of the volume complexity vanishes and the
thermodynamic curvature is singular for two considered
black holes in all dimensions. The growth rate of the action
complexity vanishes at T ¼ Tmin, while the thermodynamic
curvature is singular at this point and behaves such as power
law function in the vicinity of the critical temperature.
It is well known that for a magnetic system, the mag-

netization as the order parameter vanishes at the para-
magnetic phase and grows up at the ferromagnetic phase.
The behavior of the rate of the growth of the action
complexity with respect to the temperature is interesting
and similar to magnetization of the magnetic systems. In
fact, one can define two different phases using the growth
rate of the action complexity. For T ≤ Tmin, the growth rate
vanishes and it grows up for T > Tmin. According to the
singular behavior of the thermodynamic curvature and
special character of the growth rate of the holographic
action complexity at T ¼ Tmin, one may propose the rate of
growth of the action complexity in an order parameter of the
black holes as a thermodynamic system.

(a) (b)

FIG. 10. The action complexity growth rate (red solid line) and volume complexity growth rate (blue dashed line) as a function of
temperature for fixed values of entropy S ¼ 2 and pressure P ¼ 7 in D ¼ 4 10(a) and D ¼ 5 10(b).
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