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It is well established that the mass parameter breaks the conformal symmetries in the case of geodesic
motion. The proper conformal Killing vectors cease to generate conserved charges when non-null
geodesics are considered. We examine how the introduction of the mass is actually related to the
appearance of appropriate distortions in the conformal sector, which lead to new conservation laws. As a
prominent example, we use a general pp-wave metric, which exploits this property to the maximum. We
study the necessary geometric conditions, so that such types of distortions are applicable. We show that the
relative vectors are generators of disformal transformations and prove their connection to higher order
(hidden) symmetries. Except from the pp-wave geometry, we also provide an additional example in the
form of the de Sitter metric. Again, the proper conformal Killing vectors can be appropriately distorted to
generate conserved quantities for massive geodesics. Subsequently, we proceed by introducing an
additional symmetry breaking effect. The latter is realized by considering a Bogoslovsky type of line
element, which involves a Lorentz violating parameter. We utilize once more the pp-wave case as a guide to
study how the broken symmetries—this time also related to Killing vectors—are substituted by distortions
of the original generators. We further analyze and discuss the necessary geometric conditions that lead to
the emergence of these distortions.
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I. INTRODUCTION

The motion of particles in curved backgrounds is
essential for the understanding of various gravitational
phenomena. Among these, we may distinguish the study
of black hole shadows [1–5] or aspects of the gravitational
memory effect [6–9], both of which are related to the
investigation of geodesic motion. Of special importance are
cases where the geodesic system is characterized by enough
existing integrals of motion, in involution, so as to be
deemed as integrable in the Liouville sense. It is well
known that, for the geodesic systems of equations, at least
in the context of Riemannian geometry, the integrals of
motion are closely related to the symmetries of the back-
ground manifold. For works regarding the symmetries of
the geodesic equations as well as their geometrical signifi-
cance, see [10–18].
As far as space-time vectors are concerned, the homo-

thetic algebra of the metric is particularly important in the
generation of symmetries for the affinely parametrized
geodesics [14], giving rise to point symmetry transforma-
tions. On the other hand, Killing tensors of various ranks
are connected with the generation of what, we refer to as
higher order, or hidden, or dynamical symmetries. An
example of such a symmetry, which happens to be crucial
for the integrability of the relative system, is the one

associated to the Carter constant for the motion in a
Kerr black-hole background [19]. The seminal work by
Carter motivated further studies on the subject [20–22]. In
classical mechanics, we have of course the well-known
examples of the Laplace-Runge-Lenz vector for the
Kepler problem [23] and the Fradkin tensor for the
three-dimensional isotropic harmonic oscillator [24]. In
more modern concepts, interesting cases of hidden sym-
metries arise within the scope of supersymmetry [25–30].
For more results on higher order or hidden symmetries in
various systems, and the geometric conditions of the
involved objects in their construction, see also [31–41].
Apart from the Killing vectors or tensors however, there

is an intriguing involvement of the conformal algebra of the
metric. For example, in the case of null geodesics, all
conformal Killing vectors (CKVs) generate conserved
quantities which are linear in the momenta. However,
when timelike geodesics are considered, the relative con-
served quantities are just generated by the subset of the
Killing vectors (KVs). We may say that, the introduction of
mass for the test particle leads to a symmetry breaking
effect that reduces the dimensionality of the symmetry
group since obviously KVs ⊂ CKVs. Interestingly enough,
it has been shown [42], that the proper conformal Killing
vectors, i.e., the elements of the set CKVs ∩ KVs, are still
involved in the construction of conserved charges, even in
the massive case. However, what happens now is that they
enter in nonlocal conserved quantities. Moreover, for their*nsdimakis@scu.edu.cn; nsdimakis@gmail.com
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derivation, it is important to maintain the initial para-
metrization invariant form of the problem, e.g., not to start
from the affinely parametrized equations, which explains
why they are usually overlooked.
Among the various studies regarding geodesic equations,

a great number is devoted to the motion in a pp-wave
background [43–52]. The symmetries of the pp-wave
metrics have been extensively studied in several works
[53–55]. The plane-fronted gravitational waves with paral-
lel rays (or more simply pp-waves [56]) are nonflat space-
times defined by the existence of a covariantly constant and
null bivector. In many cases, another definition is encoun-
tered in the literature, that of possessing a covariantly
constant, null vector [57]. The latter however is not
equivalent to the first; the two become indistinguishable,
if we just regard vacuum solutions of general relativity.
Here, we follow mainly the formalism of [54,55] and make
use of the first definition, which is slightly more restrictive:
It implies not only the existence of a covariantly constant,
null vector, but also that the space-time is either of type N
or O in the Petrov classification [55,58].
The pp-waves have several interesting properties. They

belong to a larger class of geometries, whose curvature
scalars are all zero, the so-called vanishing scalar invariants
space-times [59]. Their metrics contain the very interesting
case of plane gravitational waves and—through Penrose’s
limit [60]—their applications extend even to string theory
[61]. In [51], it was shown that, when the background
metric is that of a pp-wave spacetime, the nonlocal
conserved charges of the general geodesic problem reduce
to local expressions. The resulting integrals of motion
appear as if they are generated from mass-dependent
distortions of the proper conformal Killing vectors of the
metric, “reinstating,” in a sense, the broken symmetries due
to the introduction of the mass. Here, we further investigate
the nature and the geometric implications of such vectors
and show that they still emerge even if you consider a
Finslerian generalization of the pp-wave geometry, which
introduces an additional, Lorentz violating, parameter.
The outline of this work is the following: First, we start

with an overview regarding the existence of nonlocal
integrals of motion for massive geodesics in a generic
space-time. We prove that these conserved charges are
actually generated by nonlocal Noether symmetries and we
derive their generators. We revisit the result, which first
appeared in [51], concerning the mass-dependent distor-
tions of the proper conformal Killing vectors, which
generate integrals of motion in the case of pp-waves. We
concentrate on their geometric interpretation and prove that
such vectors are the reduced form of higher order Noether
symmetries. What is more, we demonstrate that there exist
geometries, besides pp-waves, that can admit such types of
“distorted” symmetries; as a brief example we consider the
de Sitter solution of general relativity. In the subsequent
sections, we extend the previous results in the case where a

Lorentz violating parameter is also introduced, causing an
extra symmetry breaking in conjunction to the mass. This is
realized by taking the generalized Bogoslovsky-Finsler line
element. We further investigate the necessary geometric
conditions for such distorted vectors to exist and we derive
the explicit expressions for the Finslerian pp-waves.

II. MASS DISTORTED SYMMETRY VECTORS

In this section, for the convenience of the reader, we
revisit some known facts from the theory of geodesic
systems and also make a brief review of the results obtained
in [42,51], parts of which are going to be of importance in
our analysis. We briefly describe the notion of nonlocal
conservation laws related to conformal Killing vectors, as
introduced in [42], for a general geodesic system. We
additionally prove that these conserved quantities are owed
to nonlocal Noether symmetries of the action and present
the relative expressions. Subsequently, we proceed to
revisit the specialization of this result in the case of pp-
wave space-times, where the conformal vectors acquire
mass-dependent distortions in order to generate conserved
charges for timelike geodesics [51]. For a generic space-
time, we investigate the geometric implications of such
vectors and show that they are related to higher order
(hidden) Noether symmetries. Finally, in order to demon-
strate that there can be other geometries—beside pp-waves
—admitting such type of symmetries, we present an
example utilizing the de Sitter metric.

A. Generic geodesic systems and
nonlocal integrals of motion

For the motion of a relativistic particle of mass m in a
background spacetime whose metric is given by gμν, we
consider the action

S½λ� ¼
Z

Ldλ; ð2:1Þ

where

L ¼ 1

2n
gμν _xμ _xν −

m2

2
n: ð2:2Þ

The latter is a quadratic, parametrization invariant
Lagrangian. The λ denotes the parameter along the trajec-
tory, the xμ ¼ xμðλÞ are the coordinates and n ¼ nðλÞ is an
auxiliary degree of freedom referred to as the einbein [62].
The dot in (2.2) is used to symbolize the derivatives with
respect to λ, i.e., _xμ ¼ dxμ

dλ .
Under an arbitrary change of the parameter λ ↦ λ̃ ¼

fðλÞ, and the transformation laws

nðλÞdλ ↦ nðλ̃Þdλ̃ and xðλÞ ↦ x̃ðλ̃Þ; ð2:3Þ
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the action (2.1) remains form invariant, i.e., S½λ� ¼ S½λ̃�.
Hence, arbitrary transformations of the parameter λ con-
stitute symmetries of S. It is for this reason that Lagrangian
(2.2) is referred to as parametrization invariant. We observe
from (2.3) that, although n is considered a degree of
freedom on equal footing with the xμ, there is the difference
that the latter transform as scalars, while n as a density of
weight þ1.
Maybe the most well-known Lagrangian, used to

describe the motion of a relativistic massive particle, is
the square root Lagrangian

Lsq ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

q
; ð2:4Þ

where we use the minus inside the square root because we
adopt the convention gμν _xμ _xν < 0 for timelike geodesics
(throughout this work, we also make use of the units
c ¼ 1). Lagrangian (2.4) is also parametrization invariant,
but this time not because of an auxiliary field, like (2.2), but
because it is a homogeneous function of degree one in the
velocities, i.e., Lsqðx; σ _xÞ ¼ σLsqðx; _xÞ, where σ is a
positive constant.
At this point it is useful to remind Euler’s theorem on

homogeneous functions, which states that: If hðyÞ is a
homogeneous function of degree k, i.e., hðσyÞ ¼ σkhðyÞ
for σ > 0, then the following equality holds:

yμ
∂h
∂yμ

¼ kh: ð2:5Þ

By simply setting h ¼ Lsq, y ¼ _x and k ¼ 1 in (2.5), the
theorem, in the case of Lagrangian (2.4), implies that the

latter has an identically zero Hamiltonian, _xμ ∂Lsq

∂_xμ − Lsq ≡ 0.
This, together with the fact that the euler-Lagrange equa-
tions of (2.4) are not well defined for null geodesics (the
expression gμν _xμ _xν ¼ _xμ _xμ ¼ 0 appears in denominators)
makes the use of the L of (2.2) better suited for our
purposes.
The einbein Lagrangian of (2.2) is dynamically equiv-

alent to Lsq. In order to see this, we need to write down the
Euler-Lagrange equations of (2.2), which are equivalent to

ẍμ þ Γμ
κλ _x

κ _xλ ¼ _xμ
d
dλ

ðln nÞ; ð2:6aÞ

1

n2
gμν _xμ _xν þm2 ¼ 0; ð2:6bÞ

where the Γμ
κλ are the Christoffel symbols of the metric gμν.

The first set consists of the second order equations obtained
by variation with respect to x, while the last equation,
(2.6b), is the constraint equation acquired by variation with
respect to n. By solving algebraically this last relation for
the einbein, n, and substituting it in Eqs. (2.6a), we obtain

the Euler-Lagrange equations of Lsq. In the einbein
formalism, the affinely parametrized geodesics are obtained
by using the gauge fixing condition n ¼ const, which leads,
from (2.6b), to xμ _xμ ¼ const. What is more, for the null
geodesics, we need to just set m ¼ 0 in (2.6b), which leads
to no complications (2.6a).
Unlike Lsq, the Hamiltonian of (2.2) is not identically

zero; it happens to become zero, but in a weak sense
according to Dirac’s theory of constrained systems [63,64].
The total Hamiltonian is obtained through the Dirac-
Bergmann algorithm [63,65] and it reads

HT ¼ n
2
Hþ unpn; ð2:7Þ

which is a linear combination of constraints pn ≈ 0 and
H ≈ 0. The symbol “≈” denotes a weak equality, meaning,
that the respective quantities (here pn andH) cannot be set
to zero prior to carrying out Poisson bracket calculations.
Only the end result—after calculating Poisson brackets—is
meant to be projected on the constraint surface, defined by
the equations pn ¼ 0 and H ¼ 0. The pn corresponds to
the momentum for the degree of freedom n and the relation
pn ≈ 0 forms the primary constraint of the theory, the un is
an arbitrary multiplier and

H ¼ gμνpμpν þm2 ≈ 0; ð2:8Þ

is the secondary constraint—also called Hamiltonian or
quadratic constraint. The pμ ¼ ∂L

∂_xμ are the usual momenta
conjugate to the degrees of freedom xμ.
As, we mentioned, the action (2.1) describes a para-

metrization invariant system, i.e., one whose action and
equations of motion remain invariant under arbitrary
changes of the parameter λ. The symmetry structure of
this type of quadratic in the velocities Lagrangians,
including a potential term, has been studied in [66] together
with its connection to minisuperspace cosmological sys-
tems in Einstein’s general relativity. For recent studies on
the algebra spanned by the symmetries of such a
Lagrangian, associated to minisuperspace cosmology, see
[67,68]. In particular in what regards geodesic problems, it
has been shown [42] that the system described by (2.2)
admits nonlocal conserved quantities of the form

Iðλ; x; pÞ ¼ Yμ ∂L
∂_xμ

þm2

Z
nðλÞωðxðλÞÞdλ

¼ Yμpμ þm2

Z
nðλÞωðxðλÞÞdλ; ð2:9Þ

where the Yμ are the components of conformal Killing
vectors of gμν with conformal factor ωðxÞ, i.e.,

LYgμν ¼ 2ωðxÞgμν; ð2:10Þ
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where we use L do denote the Lie derivative. The charge I
has an explicit dependence on the parameter λ, brought
about by the integral we see on the right-hand side of (2.9).
The total derivative of I with respect to the parameter can
be seen that it is zero by virtue of the Hamiltonian
constraint:

dI
dλ

¼ ∂I
∂λ

þ fI;HTg ¼ nωðxÞH ≈ 0: ð2:11Þ

The conserved charge given by I in (2.9) is nonlocal due to
involving an integral of phase space functions. This means
that at least some prior knowledge of the trajectory is in
principle needed in order to carry out the integration in the
right-hand side of (2.9) and acquire the explicit dependence
on λ that Iðλ; x; pÞ has. The parametrization invariance
however, can help overcome such a difficulty. To experi-
ence this, we need to remember that nðλÞ can be used to
fix appropriately the gauge, i.e., choose the parameter
along the curve. For example a choice like n ¼ ωðxÞ−1
makes the I for the corresponding conformal Killing vector
to become

I ¼ Yμpμ þm2λ: ð2:12Þ

Such is the case when, we consider the affinely para-
metrized geodesics (n ¼ 1) and a generic homothetic
vector (ω ¼ 1), which is known to result in an integral
of motion like (2.12), possessing a linear dependence on
the parameter λ. What we see here, with the help of (2.9), is
that any proper conformal Killing vector can lead, under the
appropriate choice of parameter along the curve, to an
integral of motion of the form (2.12). Thus, we can always
“localize” at least one of any integrals of motion of the form
(2.9), by choosing appropriately the parameter λ (a time
choice gauge fixing).
We need to mention that, the expression (2.9) also yields

two other well-known results from the theory of sym-
metries of geodesic systems:
(a) When Y corresponds to a Killing field, i.e., ωðxÞ ¼ 0,

we obtain the typical conserved quantities of the
form I ¼ Yμpμ.

(b) If, we consider null geodesics (m ¼ 0), then all
conformal Killing fields generate conserved quantities
of the form I ¼ Yμpμ.

Obviously, the substitution of either ωðxÞ ¼ 0 or m ¼ 0 in
(2.9) leads to the desired linear in the momenta expressions
and thus, we obtain the expected results of the two cases. It
is interesting to note, that the two previous properties signal
an explicit symmetry breaking at the level of the
Lagrangian (2.2). When the parameterm is zero, conformal
Killing vectors form symmetries and generate conserved
charges. On the other hand, when m ≠ 0, only pure Killing
vectors remain with this property. Of course, we have
KVs ⊂ CKVs, hence, the mass is responsible for breaking a

symmetry group. The new information that (2.9) provides
us with is that even when m ≠ 0, the proper conformal
Killing fields still somehow contribute in generating
integrals of motion, but of nonlocal nature. An important
question is, if these new charges are actually owed to some
Noether symmetries, which substitute the ones broken of
the original CKVs. This is what we will prove later, after
briefly presenting the concept of Noether symmetries and
their charges.

B. Noether symmetries

We start with a short review of how Noether symmetries
are calculated. In this presentation, we use as our model
the Lagrangian (2.2), since it is the one that is of interests
to us.
If, we consider a general transformation in the space of

the dependent and independent variables—nðλÞ, xμðλÞ, and
λ respectively—then its generator is written as

X ¼ χ
∂

∂λ
þ Xn

∂

∂n
þ Xμ ∂

∂xμ
; ð2:13Þ

where χ, Xn, and Xμ denote the coefficients in the relative
directions. If the corresponding transformation leaves form
invariant the action (2.1) of the system (δS ¼ 0), we say
that it makes up a variational or, more broadly known
as, a Noether symmetry transformation. In infinitesimal
form, the criterion which tells us if this condition is satisfied
reads [69]

prð1ÞXðLÞ þ L
dχ
dλ

¼ dΦ
dλ

; ð2:14Þ

where Φ is some function related with the surface term
up to which the action S may change [δS ¼ 0 ⇒
δðLdλÞ ¼ dΦ] [64]. Symmetries that satisfy (2.14) for
Φ ≠ const are sometimes referred to as quasisymmetries,
exactly because they cause the action to change by a surface
term. The prð1ÞX is called the first prolongation of
the vector X. It is the extension of the basic vector X to
the space of the first order derivatives _xα and it is given by
the formula

prð1ÞX ¼ X þ
�
dXμ

dλ
− _xμ

dχ
dλ

�
∂

∂_xμ
: ð2:15Þ

We just consider the first prolongation because the
LagrangianL that, we use has a dependence up to velocities.
For higher order Lagrangians, e.g., containing accelerations,
one would also use higher order prolongations.
When a vector satisfies the symmetry criterion (2.14), it

gives rise to the conserved quantity of the form

I¼Xμ ∂L
∂_xμ

þχ

�
L− _xμ

∂L
∂_xμ

�
−Φ¼Xμpμ−χH−Φ; ð2:16Þ
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where in the last equality, we substituted the equivalent
phase space expressions for the momenta and the
Hamiltonian constraint. In both (2.14) and (2.16), we
neglected terms that would formally appear and have to
do with derivatives of the Lagrangian with respect to _n.
Since L has no _n dependence, these terms are bound to be
trivially zero.
Up to now, we have made no assumption over the

dependencies that the involved functions may have. These
classify the symmetry vector, X, into different categories.
For example if χ, Xn, and Xμ depend only on the
independent and dependent variables, λ, xμ, and n, then
we say that X is a generator of a point symmetry. If, on the
other hand, there is additional dependence on derivatives,
like for example _xμ, then we talk about higher order (or
hidden) symmetries. If there is dependence on nonlocal
expressions, then we refer to X as a nonlocal symmetry
generator.
The simplest case is that of point symmetries, because,

for them, there exists an algorithmic procedure of deriving
the corresponding symmetry generator. The process is the
following: When calculating (2.14), we obtain an expres-
sion which contains the functions χ, Xn, Xμ, Φ and their
derivatives. Due to the presence of L in (2.14), there appear
terms involving products of velocities _xμ. However, since
we consider a point symmetry, none of the involved
functions χ, Xn, Xμ, or Φ depends on velocities. As a
result, each coefficient of different velocity products inside
(2.14) needs to be set separately equal to zero. This creates
an over-determined system of partial differential equations
for the coefficients of the vector X and for Φ, which, when
solved, it derives the desirable symmetry vector. For
example, in the case of the geodesic Lagrangian (2.2),
and for m ≠ 0, the Killing vectors of the metric emerge as
generators of point symmetries: Eq. (2.14) leads to
LXgμν ¼ 0 for X ¼ XμðxÞ ∂

∂xμ and Φ ¼ const. According
to (2.16), the corresponding conserved charge is linear in
the momenta, I ¼ Xμpμ.
The situation gets severely more complicated for higher

order symmetries. Imagine for example that we allow

dependencies on the velocities, _xμ, inside χ, Xn, Xμ, and
Φ. Then, we cannot proceed in the same manner as before,
by breaking Eq. (2.14) in smaller pieces according to the
different velocity dependencies. Equation (2.14) is to be
solved in its totality as a single equation. This complexity is
what makes higher order symmetries sometimes to be
referred to as hidden symmetries. In order to facilitate the
procedure of encountering such symmetries however,
certain restrictions are usually assumed in the dependencies
of the velocities inside the aforementioned functions, e.g.,
consider only polynomial dependencies up to certain order.
The most usual case is when considering a linear depend-
ence in the velocities inside the coefficients of X. Then,
you obtain integrals of motion associated with Killing
tensors of second rank leading, through (2.16), to quadratic
in the momenta constants of the motion. Such is the case of
the famous Carter constant in the Kerr geometry, which is
related to the existence of a nontrivial Killing tensor
Kμν. Now (2.14) results in a symmetry generator of the
form X ¼ Kμ

νðxÞ_xν ∂

∂xμ, under the condition ∇ðκKμνÞ ¼ 0

and Φ ¼ const. Here, ∇ is the covariant derivative and
the parentheses in the indices denotes the usual full
symmetrization, e.g., AðμνÞ ¼ 1

2
ðAμν þ AνμÞ. In this case,

(2.16) yields a quadratic in the momenta conserved
charge, I ¼ Kμνpμpν.
Let us consider the integral of motion (2.9), which is a

nonlocal expression. It is logical to assume that there might
be some nonlocal symmetry generator (2.13) satisfying
(2.14) for the einbein Lagrangian (2.2). Truly, it is not very
difficult to see that if we write the vector

X ¼
�
Yμ −

_xμ

n

Z
nωðxÞdλ

�
∂

∂xμ
; ð2:17Þ

where Y is a conformal Killing vector satisfying (2.10),
then this X satisfies (2.14) for Φ ¼ const. According to the
prolongation formula (2.15), we obtain for the vector (2.17)

prð1ÞX ¼
�
Yμ −

_xμ

n

Z
nωdλ

�
∂

∂xμ
þ
�
dYμ

dλ
þ
�
_n_xμ

n2
−
ẍμ

n

�Z
nωdλ − ω_xμ

�
∂

∂_xμ

¼
�
Yμ −

_xμ

n

Z
nωdλ

�
∂

∂xμ
þ
�
∂Yμ

∂xκ
_xκ þ 1

n
Γμ
κλ _x

κ _xλ
Z

nωdλ − ω_xμ
�

∂

∂_xμ
: ð2:18Þ

In the above expression, we used the chain rule in order to write dYμ

dλ ¼ ∂Yμ

∂xκ _x
κ and the equations of motion (2.6a) to eliminate

the accelerations ẍμ. The action of the above prolonged vector on the Lagrangian (2.2) yields

prð1ÞXðLÞ ¼ 1

2n
ðLYgμν − 2ωðxÞgμνÞ_xμ _xν −

1

2n2

�Z
nðλÞωðxðλÞÞdλ

�
∇κgμν _xμ _xν _xκ ¼ 0: ð2:19Þ
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The first term after the equality in (2.19) is zero because, by
our assumption, Y is a conformal Killing vector satisfying
(2.10), while the second also vanishes due to the covariant
derivative of the metric being zero, ∇κgμν ¼ 0. Hence,
criterion (2.14) is satisfied for (2.17) with Φ ¼ const. We
have thus proved that there exists a nonlocal symmetry
generator (2.17), which gives rise to the integral of motion
(2.9). We may now proceed and see how all these apply in
the case of a pp-wave geometry and why it is, in a sense,
special.

C. The exceptional pp-wave case

A generic pp-wave space-time, in Brinkmann coordi-
nates, is described by a line element of the form

ds2 ¼ gμνdxμdxν ¼ Hðu; x; yÞdu2 þ 2dudvþ dx2 þ dy2;

ð2:20Þ

where H ¼ Hðu; x; yÞ is the profile function and xμ ¼
ðu; v; x; yÞ are the coordinates. The expressions for a
generic conformal Killing vector (2.10) and the corre-
sponding conformal factor are well known for pp-wave
space-times and in these coordinates are given by [54]

Yu ¼ μ

2
δijxixj þ aiðuÞxi þ aðuÞ; ð2:21aÞ

Yv ¼ −μv2 þ ðxia0iðuÞ þ 2b̄ðuÞ − a0ðuÞÞvþMðu; x; yÞ;
i; j ¼ 1; 2; ð2:21bÞ

Yi ¼ −ðμxi þ aiÞvþ γijkla0jðuÞxkxl þ b̄ðuÞxi
− ϵijcðuÞxj þ ciðuÞ; ð2:21cÞ

and

ω ¼ ωðu; v; xiÞ ¼ b̄ðuÞ þ xia0iðuÞ − μv; ð2:22Þ

respectively. The a, b̄, c, ai, and ci, where i ¼ 1, 2, are all
functions of the variable u, while μ is a constant parameter.
The function Mðu; x; yÞ needs to satisfy certain integra-
bility conditions, given in Appendix A, while the rest of the
functions are connected to the profile Hðu; x; yÞ of the pp-
wave through

½μxi þ aiðuÞ�∂iH ¼ 2μH þ 2a00i ðuÞxi − 2a00ðuÞ þ 4b̄0ðuÞ:
ð2:23Þ

In our relations, we use the indices i, j, k, l to denote the
coordinates on the two-dimensional flat plane xi ¼ ðx; yÞ.
The δij is used as a metric in this surface and we will not
bother with distinguishing between upper and lower indices
in that plane. For the other two coordinates of xμ, namely u
and v, we use the relative letter as a superscript, when we
want to denote the component corresponding in that
direction. For example, the Yu denotes the component of
the vector Y in the direction u. The symbols like ∂u, ∂v, and
∂i, are used to express in a compact form the relative partial
derivatives with respect to the corresponding coordinate,
e.g., ∂u ¼ ∂

∂u, ∂i ¼ ∂

∂xi.
If, we use the pp-wave space-time metric in (2.2), we

obtain the geodesic Lagrangian

L ¼ 1

2n
ðH _u2 þ 2_u _vþ_x2 þ _y2Þ − n

m2

2
: ð2:24Þ

The Euler-Lagrange equations of the system lead to

EnðLÞ ≔
∂L
∂n

−
d
dλ

�
∂L
∂ _n

�
¼ 0 ⇒ Hðu; x; yÞ _u2 þ 2_u _vþδij _xi _xj þ n2m2 ¼ 0; ð2:25aÞ

EuðLÞ ≔
∂L
∂u

−
d
dλ

�
∂L
∂ _u

�
¼ 0 ⇒ v̈þ ∂iHðu; x; yÞ_xi _uþ 1

2
∂uHðu; x; yÞ _u2 − _n

n
_v ¼ 0; ð2:25bÞ

EvðLÞ ≔
∂L
∂v

−
d
dλ

�
∂L
∂_v

�
¼ 0 ⇒ ü −

_n
n
_u ¼ 0; ð2:25cÞ

EiðLÞ ≔
∂L
∂xi

−
d
dλ

�
∂L
∂_xi

�
¼ 0 ⇒ ẍi −

1

2
∂iHðu; x; yÞ _u2 − _n

n
_xi;¼ 0; ð2:25dÞ

where En, Eμ denote the Euler derivatives with respect to n
and xμ ¼ ðu; v; xiÞ.
According to what, we saw in the previous section, we

expect the Killing vectors of the pp-wave metric to be
associated with point symmetries of the Lagrangian (2.24),
yielding linear in the momenta integrals of motion. The

proper conformal Killing vectors are also to be involved,
but generally in nonlocal expressions.
Let us note that the existence of the covariantly constant

null Killing vector field, l ¼ ∂v, for any pp-wave metric
(2.20) guarantees the conservation of the momentum
pv ¼ ∂L

∂_v, whose on mass shell value we symbolize with
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πv; this in order to distinguish it from the phase space
variable pv. In other words, on mass shell we have
pv ¼ πv ¼ const, due to the conservation law dpv

dλ ¼ 0.
This implies

pv ¼ πv ⇒
_u
n
¼ πv ⇒ n ¼ _u

πv
; ð2:26Þ

which is also the solution to the Euler-Lagrange equa-
tion (2.25c). Hence, the auxiliary degree of freedom n is
proportional to the velocity _u. Note that this is not a gauge
fixing condition for n; it is bound to hold for any possible
parametrization. By using (2.26) and (2.25a), it was shown
in [51] that the generic conformal factor ω of (2.22) can be
written in such a way so as to have

nω ¼ d
dλ

�
gμνfμ

_xν

_u

�
¼ 1

π2v

d
dλ

�
gμνfμ

_xν

n

�
¼ 1

π2v

d
dλ

ðfμpμÞ;

ð2:27Þ

where pμ ¼ ∂L
∂_xμ ¼ 1

n gμν _x
ν are the momenta, and f is a

spacetime vector with components

fu ¼ 0; ð2:28aÞ

fv ¼ 1

2
uðxia0iðuÞ − a0ðuÞ þ 2b̄ðuÞ − 2μvÞ þ 1

2
xiaiðuÞ

þ μ

4
δijxixj þ

1

2
aðuÞ −m2

π2v

μ

4
u2; ð2:28bÞ

fi ¼ −
1

2
uðμxi þ aiðuÞÞ: ð2:28cÞ

As a result the generally nonlocal conserved charge (2.9)
is expressed in phase space, by virtue of (2.27), as

I ¼
�
Yμ þm2

π2v
fμ
�
pμ ¼ ϒμpμ; ð2:29Þ

with Y being a conformal Killing vector and where, we
introduced a new vector ϒ with components

ϒμ ¼ Yμ þm2

π2v
fμ: ð2:30Þ

This vector expresses a mass-dependent distortion of the
proper conformal Killing vectors Y. It can be seen that the
contribution of f in I is relevant only when Y is a proper
CKV. That is, the pure Killing vectors still generate the
known conserved expressions Yμpμ. It is only when Y is a
proper CKV that a mass-dependent modification is needed
in order to have a conserved quantity.

The corresponding conservation law reads

dI
dλ

¼ −2nΩEnðLÞ −ϒμEμðLÞ −
m2

n
Ω
�
n2 −

_u2

π2v

�
; ð2:31Þ

where Ω ¼ ω − m2

2π2v
μu. The right-hand side is zero because

of the Euler-Lagrange equations (2.25) and the known first
integral (2.26). The two first terms in the right-hand side of
(2.31) is the result of what you get when you take the total
derivative of a typical Noether charge; a linear combination
of the Euler-Lagrange equations. The existence of the last
term in (2.31) however, is something different. It is not an
equation of motion, but a first order relation, which is zero
due to an already known conserved charge. In other words,
relation (2.31) gives us a conservation law which holds due
to the given constant value of another known integral of the
motion. In the next section, we are going to study what is
the exact relation of the vector ϒ in (2.30) and the
conserved charge I of (2.29) with the Noether symmetries
of this system.

D. Relation to a Noether symmetry

In Sec. II B, we gave a brief description of the typical
Noether symmetry approach. As can be seen by (2.16),
linear in the momenta integrals of motion of the form
I ¼ Xμpμ are given by point symmetry generators, i.e.,
vectors whose components depend purely on the dependent
and independent variables (no higher order or nonlocal
dependence):

X ¼ Xμðλ; n; xÞ ∂

∂xμ
: ð2:32Þ

By utilizing the symmetry criterion (2.14) it is easy to
derive that, for the pp-wave space-time, as for any metric,
only the Killing vectors of the space-time generate point
symmetries of this form. In particular, for massive geo-
desicsm ≠ 0, we get that X is a symmetry if LXgμν ¼ 0. On
the other hand, as we saw in the previous section, we were
able to write the conserved quantity appearing in (2.29),
which is a linear in the momenta integral of the motion, but
which is generated by a mass-dependent distortion of the
conformal Killing vectors of the metric, the vector ϒ in
(2.30). The latter appears to generate a linear conserved
charge even though it is not a Noether symmetry. Let us
mention here that conserved quantities are not all neces-
sarily of Noetherian origin. However, in this case, we shall
demonstrate that there is actually a relation ofϒ to a formal
Noether symmetry.
In order to reveal the true Noether symmetry it is enough

to naively substitute the constant ratio m2

π2v
that we see in

(2.30)1 with its dynamical equivalent. In other words let us

1Note that there is an extra m2

π2v
term inside the fv component of

f, see relation (2.28b), which also needs to be substituted.
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substitute m2 from (2.6b), with respect to velocities, and
πv ¼ pv ¼ ∂L

∂_v ¼ _u
n, then we obtain

m2

π2v
¼ −

gμν _xμ _xν

_u2
: ð2:33Þ

We may now write a new vector ϒ̃ whose components are
defined as

ϒ̃μ ≔ ϒμjðm;πvÞ→_x ¼ Yμ −
gμν _xμ _xν

_u2
f̃μ; ð2:34Þ

where f̃ ≔ fjðm;πvÞ→_x. Let us consider the first prolongation
of this vector, with the help of formula (2.15), in order to
extend it in the space of the velocities

prð1Þϒ̃ ¼ ϒ̃μ ∂

∂xμ
þ _̃ϒ

μ ∂

∂_xμ

¼
�
Yμ −

gμν _xμ _xν

_u2
f̃μ
�

∂

∂xμ

þ
�
_Yμ −

gμν _xμ _xν

_u2
_̃f
μ
�

∂

∂_xμ
: ð2:35Þ

The second equality in the above relation holds on mass

shell. The components _̃ϒ
μ
in general contain accelerations,

which however can be eliminated by using the Euler-
Lagrange equations (2.25b)–(2.25d) or equivalently by
remembering that the ratio containing velocities in (2.34)
is an on mass shell constant.
It is easy to verify that prð1Þϒ̃ðLÞ ¼ 0, which means that

the vector ϒ̃ is a Noether symmetry of the action. However,
it is not a point symmetry, since its components in (2.34)
contain dependence on the first derivatives. The vector ϒ̃
constitutes a higher order or a hidden symmetry. The
corresponding conserved charge, Ĩ, which is generated
by symmetry (2.34), is connected to the I of (2.29) in the
same manner that the ϒ̃ is connected to the ϒ

Ĩ ≔ Ijðm;πvÞ→p ¼ Yαpα −
gαβðfjðm;πvÞ→pÞγpαpβpγ

Kμνpμpν
: ð2:36Þ

In the above relation, we have substituted the constant ratio

(2.33) with respect to the momenta, as m2

π2v
¼ − gμνpμpν

p2
v

and

we have used the trivial second rank Killing tensor
K ¼ l ⊗ l ¼ ∂v ⊗ ∂v, which is constructed out of the
covariantly constant Killing vector l. It is clear that
π2v ¼ p2

v ¼ Kμνpμpν. The total derivative of Ĩ with respect
to the parameter λ, is zero purely by virtue of the Euler-
Lagrange equations (2.25).
We thus have, a higher order symmetry generator ϒ̃

whose components are given in (2.34). This generates a
Noether charge, Ĩ, that is a rational function in the

momenta. The interesting coincidence is that, on mass
shell, part of this ratio is already constant, equal to m2

π2v
. This

leads to the reduced expression of the original conserved
quantity, which we denoted with I, and which has a linear
dependence on the momenta. This reduced charge seems as
if generated by a mass-dependent distortion of the con-
formal Killing vectors of the metric: the vector ϒ with its
components supplied by (2.30). The latter, even though it is
not a formal Noether symmetry, has some interesting
geometrical implications that offer a generalization of what
we see happening in pp-waves.

E. Geometric interpretation and generalizations

It is interesting to study whether this nice coincidence
that we encountered in the case of pp-wave space-times,
where a higher order symmetry of the geodesics is revealed
as a mass-dependent distortion of the conformal Killing
vectors, can be generalized to include other geometries. We
shall see that in principle this is possible, in fact let us first
state that:
Theorem 1.—For a given manifold with metric gμν,

which admits a second rank Killing tensor Kμν, any
space-time vector ϒ satisfying

Lϒgμν ¼ 2ΩðxÞ
�
gμν þ

m2

κ
Kμν

�
; ð2:37Þ

produces a linear in the momenta conserved charge
I ¼ ϒμpμ for the corresponding geodesic system by virtue
of the Hamiltonian constraint (2.8) and the conserved
charge Kμνpμpν ¼ κ.
The proof can be easily deduced by simply taking the

Poisson bracket of I with the Hamiltonian constraint (2.8),
which plays the principal role in the time evolution:

fI;Hg ¼ fϒαpα; gμνpμpν þm2g

¼ −ðLϒgμνÞpμpν ¼ 2ΩðxÞ
�
gμν þm2

κ
Kμν

�
pμpν

¼ 2ΩðxÞðgμνpμpν þm2Þ ¼ 2ΩðxÞH ≈ 0; ð2:38Þ

with the second equation being valid due to having
Kμνpμpν ¼ κ. That is, the integral of motion I is related
to the constant value of the known quadratic integral. In
the pp-wave case, we had Ω ¼ ω − m2

2κ μu, where ω is
the conformal factor (LYgμν ¼ 2ωgμν), ϒ given by (2.30),
K ¼ l ⊗ l and κ ¼ π2v.
In addition to the above, we can prove the following:
Theorem 2.—If a space-time with metric gμν, admits

a second rank Killing tensor Kð≠ gÞ and a vector ϒ ¼
ϒðx; m2

κ Þ satisfying (2.37), then the equation
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ϒ̃ ¼ ϒ

�
x;
−gμν _xμ _xν

Kαβ _xα _xβ

�
; ð2:39Þ

is a higher order Noether symmetry generator of the
geodesic action, yielding the conserved charge of the form

Ĩ ¼ ϒ̃αpα: ð2:40Þ

The proof is quite straightforward to derive and makes
use of the fact that K is a Killing tensor; it does not
necessarily require that the space-time is a pp-wave. It can
be found in detail in Appendix B.
In the pp-wave case, we saw that the vectors satisfying

(2.37) obtain the nice form

ϒ ¼ Y þm2

κ
f: ð2:41Þ

An important observation is that the vectors ϒ do not
necessarily close an algebra. In principle this seems
counterintuitive from our usual experience, but it becomes
better understood if we think of our situation in terms of the
Poisson bracket formalism. Remember that the linear I of
the (2.29) are the on mass shell reduced expressions of the
actual charges Ĩ of (2.36). The Poisson bracket of two
reduced charges I will not necessarily give something
which happens to also be a reduced expression of some
higher order charge. It is the Poisson brackets between two
Ĩ charges that are bound to be conserved, not those
involving the I. The vectors ϒ are not the actual sym-
metries; they offer a convenient reduction scheme that
allows for simpler calculations and to reveal the higher
order—true Noether—symmetries ϒ̃, which would be
quite more difficult to derive in the conventional manner.
The relation (2.37) satisfied by ϒ, reveals the latter as a

generator of disformal transformations. These form a
generalization of conformal transformations and were
initially introduced by Bekenstein [70]. Usually, a disfor-
mal transformation of the metric is written as

ĝμν ¼ AðxÞgμν þ BðxÞlμlν; ð2:42Þ

where ĝμν is a new “physical” metric, lμ is the gradient of
some scalar field, i.e., lμ ¼ ∇μϕ, and AðxÞ, BðxÞ are scalar
functions of the space-time [71]. One motivation behind the
introduction of disformal transformations was to connect
different scalar-tensor theories [72]. For further uses and
applications of disformal transformations see [73–78]. We
may generalize (2.42) by defining a transformation of the
form ĝμν ¼ AðxÞgμν þ BðxÞKμν, with K any second rank
tensor, which would be compatible with (2.37). In the pp-
wave case, a vector like ϒ, satisfying a relation like (2.37)
for Kμν ¼ lμlν with l ¼ ∂v a null, Killing vector, is
referred as a null-like disformal Killing vector in the
terminology of [71]. The l can be also written as the

gradient of some scalar field lμ ¼ ∇μϕ, where ϕ ¼ u.
Thus, in the pp-wave case, the vectorsϒ generate disformal
transformations in accordance with definition (2.42). We
need to note that, in the original definition [70], the
functions A and B depended only on the scalar field ϕ
and the inner product lμlμ ¼ ∇μϕ∇μϕ. Obviously this is
more restrictive than requiring A and B to be space-time
functions.
The existence of a vector ϒ satisfying (2.37) signifies

that, in order for these conserved charges to appear, there
must exist a coordinate transformation, which at the same
time is a disformal transformation of the metric involving a
Killing tensor K. We may proceed to examine an example
of a different metric admitting such symmetries.

1. The de Sitter example

As we demonstrated, for pp-waves, you can satisfy
Eq. (2.37) by distorting appropriately the conformal
Killing vectors of the metric. This raises the question,
whether there exist other space-times which also have this
property and for which we can derive hidden symmetries
through (2.37). One obvious answer is the flat space, since
all the relations that we used for pp-waves can lead trivially
to the Minkowski space (in light-cone coordinates) by
simply setting the profile function, Hðu; x; yÞ, in the line
element (2.20), equal to zero. Here, we report another
example in the form of the de Sitter universe corresponding
to a spatially flat Friedmann–Lemaître–Robertson–Walker
(FLRW) space-time that solves Einstein’s equations with a
cosmological constant.
If we write the line element in Cartesian coordinates

x ¼ ðt; x; y; zÞ, we have

ds2 ¼ −dt2 þ eltðdx2 þ dy2 þ dz2Þ; ð2:43Þ

where l denotes the constant associated with the value of
the Ricci scalar, R ¼ 3l2 and the cosmological constant
Λ ¼ 3l2

4
, for which the metric (2.43) satisfies Einstein’s

equations Rμν − 1
2
gμνRþ Λgμν ¼ 0.

The Lagrangian that reproduces the geodesic equations
is given by

L ¼ 1

2n
½−_t2 þ eltð_x2 þ _y2 þ _z2Þ� − n

m2

2
ð2:44Þ

and the equations themselves are equivalent to

_t2 − eltð_x2 þ _y2 þ _z2Þ −m2n2 ¼ 0; ð2:45aÞ

̈t ¼ _n _t
n

−
1

2
leltð_x2 þ _y2 þ _z2Þ; ð2:45bÞ

ẍi ¼ _xið _n − nl_tÞ
n

; ð2:45cÞ
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where tðλÞ, xiðλÞ, and nðλÞ are all functions of λ, which
symbolizes the parameter along the curve.
The manifold where the motion takes place is maximally

symmetric, thus possessing ten Killing vectors. They of
course generate the corresponding linear in the momenta
conserved charges of the geodesic equations. We refrain
from giving their expressions here. We are more interested
in the five proper conformal Killing vectors of the space-
time, which, in these coordinates, are written as

Y0 ¼ e
l
2
t
∂t; Yi ¼ e

l
2
txi∂t −

2

l
e−

l
2
t
∂i;

Y4 ¼ e−
l
2
t

�
4

l2
− xjxj

�
∂t −

4

l
e−

l
2
txi∂i; ð2:46Þ

where now i; j ¼ 1; 2; 3 and xi ¼ ðx; y; zÞ. The i, j indices
are raised and lowered with the spatial part of the metric
gij ¼ eltδij. These vectors generate conserved charges only
when m ¼ 0 (null geodesics).

Let us see how they can be distorted to generate
conserved quantities in the massive case. First, let us
construct the trivial Killing tensor K ¼ ∂i ⊗ ∂i out of
the sum of the tensor products of the Killing vectors
that constitute the spatial translations. Its covariant com-
ponents are

Kμν ¼

0
BBBBB@

0 0 0 0

0 e2lt 0 0

0 0 e2lt 0

0 0 0 e2lt

1
CCCCCA

ð2:47Þ

and of course, we have ∇ðκKμνÞ ¼ 0. By using Eq. (2.37),
we find the following five vectors that satisfy it for
appropriate functions ΩðxÞ:

ϒ0 ¼
e

l
2
t

ðm2

κ elt þ 1Þ12
∂t; ϒi ¼

e
l
2
t

ðm2

κ elt þ 1Þ12
xi∂t −

2

l
e−

l
2
t

�
m2

κ
elt þ 1

�1
2

∂i;

ϒ4 ¼
e−

l
2
t

ðm2

κ elt þ 1Þ12
�
4

l2
− xjxj

�
∂t −

4

l
e−

l
2
t

�
m2

κ
elt þ 1

�1
2

xi∂i: ð2:48Þ

Notice that by settingm ¼ 0 in (2.48), we obtain the proper
conformal Killing vectors (2.46). Due to theorem 2, we
expect the vectors ϒ̃, that emerge by substituting the
constant ratio m2

κ in (2.48) with the expression

m2

κ
¼ −

gμνpμpν

Kαβpαpβ
¼ pμpμ

p2
x þ p2

y þ p2
z

¼ e−2lt
�

_t2

_x2 þ _y2 þ _z2
− elt

�
ð2:49Þ

are higher order symmetries of the Lagrangian. Truly, it can
be easily verified that the resulting ϒ̃ðx; _xÞ ≔ ϒjeqð2.49Þ
satisfy prð1Þϒ̃ðLÞ ¼ 0 and form higher order Noether
symmetries, whose charges are the Ĩ ¼ ϒ̃αpα. As an
example let us take the conserved charge corresponding
to the

ϒ̃0 ¼
e
lt
2�

_t2e−lt

_x2þ_y2þ_z2

�1
2

∂t; ð2:50Þ

which reads

Ĩ0 ¼ ϒ̃μ
0pμ ¼ ϒ̃μ

0

∂L
∂_xμ

¼ −
e
1
2
lt_t

n
�

e−lt_t2

_x2þ_y2þ_z2

�1
2

: ð2:51Þ

It is straightforward to see that dĨ0
dλ ¼ 0 due to (2.45b) and

(2.45c). The corresponding on mass shell reduced expres-
sion of the charges Ĩ are given by the I ¼ ϒαpα, which are
conserved on account of m2 ¼ 1

n ½_t − eltð_x2 þ _y2 þ _z2Þ� and
κ ¼ e2lt

n ð_x2 þ _y2 þ _z2Þ.
We thus see that there exist geometries beyond pp-

waves, where the conformal Killing vectors of the space
admit mass-dependent distortions. These generate addi-
tional conserved quantities when m ≠ 0.
Up till now, we considered geodesics in (pseudo-)

Riemannian geometry and saw how the symmetry break-
ing owed to the mass can lead to the appearance of new
classes of symmetries. In the following sections, we
shall depart from the (pseudo-)Riemannian case, in order
to introduce another symmetry breaking parameter.
This will be realized through considering a more
general, Finslerian, geometry and in particular that of a
Bogoslovsky space-time, which involves a Lorentz vio-
lating parameter b.

N. DIMAKIS PHYS. REV. D 106, 024043 (2022)

024043-10



III. THE BOGOSLOVSKY-FINSLER LINE
ELEMENT

We start this section with some generic information on
Finsler geometry, so as to facilitate the following presen-
tation. In Finsler geometry, we consider a general line
element of the form

ds2F ¼ Fðx; dxÞ2; ð3:1Þ

where Fðx; dxÞ is a function homogeneous of degree one in
the dxμ, that is, Fðx; σdxÞ ¼ σFðx; dxÞ for every σ > 0.
This is a generalization which contains the (pseudo-)
Riemannian case, where the F2 is simply quadratic in
the dxμ. A metric tensor can still be introduced as

Gμνðx; dxÞ ¼ −
1

2

∂
2F2

∂ðdxμÞ∂ðdxνÞ ð3:2Þ

and thus write

ds2F ¼ Gμνðx; dxÞdxμdxν; ð3:3Þ

with the difference that the metric Gμν now, in contrast to
the Riemannian gμν, carries a dependence on the differ-
entials dxμ. The equality of (3.1) and (3.3) is obtained with
the use of Euler’s theorem for homogeneous functions and
from exploiting the fact that F2 is a homogeneous function
of degree two in the dxμ. Given a Finsler function Fðx; dxÞ,
we may also express the line element as

ds2F ¼ Fðx; dxÞ2 ¼ F ðx; dxÞgμνðxÞdxμdxν; ð3:4Þ

where F ðx; dxÞ is a function homogeneous of degree zero
in dx.
Bogoslovsky [79,80] introduced a line element of the

form

ds2F ¼ ημνdxμdxν
� ðlμdxμÞ2
−ημνdxμdxν

�b
; ð3:5Þ

where 0 < b < 1 is a dimensionless parameter,
ημν¼diagð−1;1;1;1Þ, ∇μlν¼0, ημνlμlν ¼ 0, and l0 > 0.
This serves as a generalization of special relativity where
the isotropy is broken in a preferred direction, which is set
by the future directed null vector l. The symmetries of line
element (3.5) have been studied in [81] and are identified to
form the eight-dimensional group named DISIMbð2Þ,
which is a deformation of the ISIMð2Þ group of very
special relativity [82]. This lower symmetry count, in
comparison to the ten-dimensional Poincaré group of the
quadratic line element ds2 ¼ ημνdxμdxν, implies that we
have another symmetry breaking effect owed to the
anisotropy parameter b.

Bogoslovsky’s theory has an obvious generalization to a
curved space with the substitution ημν ↦ gμν [83,84]. In the
case of a pp-wave space-time, we can set as the preferred
direction the covariantly constant null vector l ¼ ∂v. Then,
the line element of the Finslerian extension is written as

ds2F ¼ gμνdxμdxν
�
Kαβdxαdxβ

−gμνdxμdxν

�b
; ð3:6Þ

where we made the use of the Kαβdxαdxβ ¼ ðlμdxμÞ2 ¼
du2 of the pp-wave case—remember that Kμν ¼ lμlν.
For line elements of the form of (3.6), appearing in this

Finslerian version of pp-waves, there exists an interesting
theorem owed to Roxburgh and proven in [85]. In brief it
states that, if in the Finslerian line element (3.4) the
function F ðx; dxÞ is such, so that

F ðx; dxÞ ¼ F
�ðKμ1…:μkðxÞdxμ1…dxμkÞ2k

gμνðxÞdxμdxν
�
; ð3:7Þ

with Kμ1…:μkðxÞ a tensor of rank k, which is covariantly
constant (∇κKμν ¼ 0) with respect to the connection
associated with gμν, then the geodesics of ds2F are identical
to those produced by the Riemannian metric gμν and the
typical quadratic line element ds2 ¼ gμνdxμdxν.
Obviously, the pp-wave case falls into this category

since l is covariantly constant and hence so is Kμν.
Thus, Finslerian pp-waves of this type basically produce
the same geodesics as the Riemannian case. However, the
physically related parameters are indeed affected by the
presence of b ≠ 0. What is more, we are going to see that
interesting changes take place in what regards the sym-
metry structure of the system and—what the mass does
when breaking the conformal Killing symmetries in the
Riemannian case—now the parameter b also does it to
certain isometries of the base metric gμν.

IV. GEODESICS AND A NEW
CONSERVATION LAW

The geodesic Lagrangian for the Finslerian line element
ds2F of (3.5) is given by

LF ¼ −m
ffiffiffiffiffiffiffiffiffi
−F2

p
; ð4:1Þ

or equivalently, in the einbein formalism, by

L ¼ 1

2n
Gμνðx; _xÞ_xμ _xν − n

m2

2
; ð4:2Þ

which is of the same form as (2.2) with the difference that
instead of gμν, it now involves the Finsler metric Gμνðx; _xÞ
defined in (3.2).
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The (geodesic) Euler-Lagrange equations for the degrees
of freedom xμ are equivalent to [86]

ẍμ þ γμκλ _x
κ _xλ ¼ xμ

d
dλ

ðln nÞ; ð4:3Þ

where γμκλ ¼ 1
2
Gμσð∂Gσλ

∂xκ þ ∂Gκσ

∂xλ
− ∂Gκλ

∂xσ Þ are the Christoffel
symbols with respect to the metric Gμν. The Euler-
Lagrange equation for the einbein field, n, yields the
constraint

1

n2
Gμνðx; _xÞ_xμ _xν þm2 ¼ 0: ð4:4Þ

The momenta are given by

pκ ¼
∂Ln

∂_xμ
¼ 1

n
Gμκ _xμ; ð4:5Þ

which looks similar to the relation of the Riemannian case,
but this time the right-hand side is not linear in the
velocities. We note that the extra term that would appear
due to the dependence ofGμν on the velocities is identically
zero by virtue of the definition (3.2) and the fact that the
Finsler metric, Gμν, is a homogeneous function of degree
zero in the velocities; this term would be proportional to

∂Gμν

∂_xκ
_xμ _xν ¼ −

1

2

∂
3F2

∂_xμ∂_xν∂_xκ
_xμ _xν ¼ ∂Gμκ

∂_xν
_xμ _xν ¼ 0: ð4:6Þ

The last equality holds due to Euler’s theorem on homo-
geneous functions, which in this case implies ∂Gμκ

∂_xν _xν ¼ 0

[see (2.5) for k ¼ 0].
We may thus once more write the Hamiltonian constraint

as

H ¼ Gμνðx; pÞpμpν þm2 ≈ 0; ð4:7Þ

assuming that we have managed to invert relations (4.5)
and thus express the velocities with respect to the momenta.
If we want to look for a linear in the momenta conserved
quantity of the form I ¼ ϒμpμ, we need to demand
fI;Hg ≈ 0. We use the weak equality here because, due
to the Hamiltonian constraint (4.7), which is bound to be
zero, it is enough that the Poisson bracket produces
something multiple of the constraint. The Poisson bracket
is calculated to be

fI;Hg ¼ −
�
ϒσ ∂G

μν

∂xσ
þGμσ ∂ϒ

ν

∂xσ
þGσν ∂ϒ

μ

∂xσ

�
pμpν

¼ 1

n2

�
ϒσ

∂Gμν

∂xσ
−Gμσ

∂ϒν

∂xσ
−Gσν

∂ϒμ

∂xσ

�
_xμ _xν; ð4:8Þ

where, in the last equality, we made the transition to
velocity phase space coordinates by utilizing (4.5). In
the parentheses we recognize what would be the Lie
derivative of Gμν if the latter had no dependence in the
velocities. Once more, an additional appearing term of the
form ∂ϒκ

∂xσ
∂Gμν

∂pσ
pμpνpκ has been set to zero because

∂Gμν

∂pσ
pμ ¼

∂Gμν

∂_xκ
∂_xκ

∂pσ
pμ ¼ −GλνGτμ ∂Gλτ

∂_xκ
∂_xκ

∂pσ
Gρμ _xρ

¼ −Gλν ∂_x
κ

∂pσ

∂Gλρ

∂_xκ
_xρ ¼ 0: ð4:9Þ

The last equality holds again due to Euler’s theorem.
For the line element of (3.6) the corresponding Finsler

metric Gμν reads

Gμνðx; _xÞ ¼ 2bð1 − bÞ
�
gσμgτν

Kb

G1þb þ ðgσμKτν þ gσνKτμÞ
Kb−1

Gb þ KσμKτν
Kb−2

G1−b

�
_xσ _xτð1 − bÞgμν

Kb

Gb − bKμν
Kb−1

Gb−1 ; ð4:10Þ

where, for abbreviation, we use K ¼ Kμν _xμ _xν and
G ¼ −gμν _xμ _xν. When we insert the metric (4.10) inside
(4.8) and consider the equation fI;Hg ≈ 0, we arrive at

fI;Hg¼ 1

n2

�
ð1−bÞðLϒgμνÞ_xμ _xν

Kb

Gb −bðLϒKμνÞ_xμ _xν
Kb−1

Gb−1

�

≈0; ð4:11Þ

where Lϒ now stands for the Lie derivative with respect to
the vector ϒ.
In the case where Kμν is a covariantly constant Killing

vector, which means that, according to Roxburg’s theorem
[85], Eq. (4.3) become the Riemannian (2.6a), the K and G

are constants of the motion. Let us set the on mass shell
constant value of their ratio as K

G ¼ 1
M2

b
. Then, the condition

(4.11) becomes

fI;Hg¼ 1

n2
Lϒ

�
1−b
M2b

b

gμν−
b

M2ðb−1Þ
b

Kμν

�
_xμ _xν≈0: ð4:12Þ

The equality to zero is sufficient to be satisfied on mass
shell. By taking an example from the Riemannian case, we
may relax it to formulate the following:
Theorem 3.—Consider the Bogoslovsky space described

by the line element (3.6). If K is a second rank covariantly
constant Killing tensor of g, and there exists a vector ϒ
satisfying
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Lϒ

�
gμν−

b
1−b

M2
bKμν

�
¼ 2ΩðxÞðgμνþM2

bKμνÞ; ð4:13Þ

where the constantMb of the geodesic motion is defined as

M−2
b ¼ Kμν _xμ _xν

−gμν _xμ _xν
, then the I ¼ ϒμpμ is conserved along the

geodesics.
The proof is straightforward. When we contract the right-

hand side of Eq, (4.13) with the velocities we obtain
something which is on mass shell zero,

fI;Hg ∝
2Ω
n2

ðgμν þM2
bKμνÞ_xμ _xν

¼ 2Ω
n2

ð−M2
bKμν _xμ _xν þM2

bKμν _xμ _xνÞ ¼ 0; ð4:14Þ

by simply using the fact that

M−2
b ¼ Kμν _xμ _xν

−gμν _xμ _xν
: ð4:15Þ

For the condition (4.13), we have not made any assumption
about the space-time e.g., if it is going to be a pp-wave or
not. The only thing that is needed is for K to be covariantly
constant with respect to the Levi-Civita connection com-
patible with gμν, i.e., ∇κKμν ¼ 0. We may also notice that
on the left-hand side of (4.13) there appears a metric
disformally related to the original gμν

ĝμν ¼ gμν −
b

1 − b
M2

bKμν: ð4:16Þ

The Killing vectors of this metric satisfy (4.13) for Ω ¼ 0.
In the next section, we proceed to study what happens in the
case where g is a pp-wave metric.

V. THE DISTORTED SYMMETRY VECTOR IN
FINSLERIAN PP-WAVES AND IN FLAT SPACE

Let us consider the metric g of a pp-wave space-time
derived from (2.20) and take as Kμν the “square” of the
covariantly constant vector l ¼ ∂v. A study on the inte-
grability of the corresponding geodesic equations based on
conventional integrals of motion has been given previously
in [52]. Here, we concentrate on the quantities that
condition (4.13) generates. The Finslerian geodesic
Lagrangian (4.1) is written as

LF¼−m
ffiffiffiffiffiffiffiffiffi
−F2

p
¼−m _ubð−Hðu;x;yÞ _u2−2_u _v−δijxixjÞ1−b2 :

ð5:1Þ

Once more, we use the coordinates xμ ¼ ðu; v; xiÞ, as we
did in Sec. II C. In the case b ¼ 0, the Lagrangian LF
reduces to the usual square root Lagrangian of the

Riemannian geodesics. The dynamically equivalent
Lagrangian in the einbein formalism is given by

L ¼ −
1

2n
_u2bð−Hðu; x; yÞ _u2 − 2_u _v−δijxixjÞ1−b − n

m2

2

ð5:2Þ

and it reproduces a set of Euler-Lagrange equations
equivalent to those of LF. The constraint equation (the
Euler-Lagrange for n) leads to

n ¼ � _ub

m
ð−Hðu; x; yÞ _u2 − 2_u _v−δijxixjÞ1−b2 : ð5:3Þ

Substitution of (5.3) in (5.2) gives L ¼ �LF. From now
on—and to be consistent with the sign conventions
assumed—wherever n is substituted from (5.3) the plus
root is utilized, so that we obtain the correspon-
dence L ¼ LF.
Since l is covariantly constant, obviously the same holds

for K ¼ l ⊗ l, which we used to write (4.1). Thus,
Lagrangians (5.1) and (5.2) are bound to generate the
same geodesic equations as (2.24) of the Riemannian case.
It can be easily verified that this is true. Consequently, we
expect that the same number of conserved quantities must be
admitted in both systems. However, we need to mention that
it will not necessarily be the same vectors that generate
symmetries. This is because Lagrangians (5.1) and (5.2) are
distinct from their Riemannian counterparts (obtained when
b ¼ 0); they have a different functional dependence on
velocities and this changes the formof thegeneratingvectors.
An obvious symmetry that remains the same is the one

owed to the covariantly constant vector l, which tells us
that the momentum in the v direction is again conserved.
Truly, it is easy to see that we have the conserved charge

pv ¼
∂L
∂ _v

¼ ð1− bÞ _u
1þ2b

n
ð−Hðu;x; yÞ _u2 − 2_u _v−δijxixjÞ−b ¼ πv:

ð5:4Þ

Once more, we use the Greek letter πv to denote the on
mass shell constant value of the momentum pv. By
combining (5.4) with (5.3) and remembering Eq. (4.15),
it is easy to derive the relation

M2
b ¼

�ð1 − bÞ2m2

π2v

� 1
1þb ð5:5Þ

among the constants of integration. The latter gives us Mb
in terms of the mass m, the momentum πv and the Lorentz
violating parameter b; obviously, when b ¼ 0, M2

0 ¼ m2

π2v
.
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By solving Eq. (4.13), we now obtain the following
vector:

ϒμ ¼ Yμ þM2
bf

μ
1 þ

b
1 − b

M2
bf

μ
2; ð5:6Þ

where Y is a conformal Killing vector of the pp-wave
metric gμν [its components are given by Eqs. (2.21)] and f1,
f2 are the acquired distortions. The first is exactly the same
as the one derived in (2.28) with the identification
m2

π2v
→ M2

b, i.e.,

fu1 ¼ 0; ð5:7aÞ

fv1 ¼
1

2
uðxia0iðuÞ − a0ðuÞ þ 2b̄ðuÞ − 2μvÞ þ 1

2
xiaiðuÞ

þ μ

4
δijxixj þ

aðuÞ
2

−M2
b
μ

4
u2; ð5:7bÞ

fi1 ¼ −
1

2
uðμxi þ aiðuÞÞ: ð5:7cÞ

The second distortion is new and contributes only along the
v direction

fu2 ¼ 0; fi2 ¼ 0; ð5:8aÞ

fv2 ¼
μ

2
δijxixj þ aiðuÞxi þ aðuÞ: ð5:8bÞ

An alternative way to write the expression for ϒ using only
the Y vector components is

ϒμ¼Yμþ
X2
n¼1

M2n
b

un

22n−1
∂
n

∂vn
Yμþ bþ1

2ð1−bÞM
2
bδ

μ
vYu: ð5:9Þ

It can be checked that the quantity I ¼ ϒμ ∂L
∂_xμ, made up

from the vector (5.6), is a constant of the motion, by virtue
of the already known conserved charge (5.4) and the
constraint equation, which yields (5.3). The corresponding
function ΩðxÞ for which ϒ satisfies (4.13) is given by

ΩðxÞ ¼ xia0iðuÞ þ b̄ðuÞ − μ

�
vþM2

b

2
u

�
: ð5:10Þ

A first observation regarding the vector (5.6) is that the
Lorentz violating parameter b introduces an additional
distortion in terms of the vector f2. In what follows,
we are going to study more in detail this distortion and
its nature. Apart from the pp-wave case, we will also
comment separately on what happens in the flat case,
Hðu; x; yÞ ¼ 0. The corresponding higher order sym-
metries of the flat case have been studied separately in [87].
Another interesting point is that, once more, if we take

the basic vector (5.6) and substitute, in place of M2
b, the

ratio involving velocities, i.e., (4.15). Then, exactly
as it happened in the Riemannian case, the induced vector
ϒ̃ ≔ ϒjM2

b¼K
G
forms a higher order symmetry vector sat-

isfying the infinitesimal criterion of invariance with
prð1Þϒ̃ðLÞ ¼ 0. Hence, we again have a higher order
Noether symmetry whose on mass shell reduced expression
yields the distorted space-time vector (5.6).

A. The nonflat case, Hðu;x;yÞ ≠ 0

In the nonflat case, where the metric describes a pp-wave
space-time, the most general expression of a Killing vector,
Lξgμν ¼ 0, is2 [54]

ξ¼ðαuþβÞ∂uþðσ−αv−c0iðuÞxiÞ∂vþðγϵijxiþciðuÞÞ∂j;
ð5:11Þ

whose components are obtained from (2.21) when
setting the functions, aiðuÞ, b̄ðuÞ, and the parameter μ
appearing in the conformal factor (2.22) equal to zero and
by introducing

aðuÞ¼αuþβ; cðuÞ¼ γ; and Mðu;x;yÞ¼σ−c0iðuÞxi:
ð5:12Þ

Of course Hðu; x; yÞ has to also satisfy a certain partial
differential equation, which is obtained from (A1a) with the
above substitutions together with aiðuÞ ¼ b̄ðuÞ ¼ μ ¼ 0,

1

2
ðαuþβÞ∂uHþ1

2
ðciðuÞ−ϵijxjÞ∂iHþαH−c00i ðuÞxi¼0:

ð5:13Þ

The constant parameters α, β, γ, and σ characterize the
corresponding monoparametric groups of motion; of them,
the Killing vector owed to the parameter σ, i.e.,
ξv ¼ l ¼ ∂v, is present in all pp-wave space-times. In
total, a nonflat pp-wave can admit at most seven Killing
vectors [54].
As we observe from (5.7) and (5.8) the modification

owed to the presence of Killing fields has just to do with the
function aðuÞ, since it is the only one appearing in the fμ1
and fμ2 components, which at the same time does not
belong to the conformal factor ω of (2.22). From the linear
expression of aðuÞ in (5.12), we can also notice that no
modification owed to the fμ1 can affect a Killing vector. The
αu part is automatically cancelled in the component fv1 by
the combination 1

2
ða − ua0Þ ¼ β

2
; as it can be seen from

(5.7b). The remaining β constant is nothing but a con-
tribution which can be subtracted by a constant multiple of

2We use the ξ here to denote the subset of the Y consisting only
of the pure Killing vectors of the metric, i.e., those Y corre-
sponding to a conformal factor of ωðxÞ ¼ 0.
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the already known Killing field ξv ¼ l ¼ ∂v and thus the
fμ1 can be cleared out from all modifications involving
Killing fields.
On the contrary, the fμ2 modification is bound to contain

parameter α (when the appropriate Killing field exists); see
the fv2 in (5.8b). The parameter β can still be removed
by subtracting a multiple of the existing symmetry l.
As a result, whenever gμν is such that the vector associated
with α,

ξ0 ¼ u∂u − v∂v; ð5:14Þ

is Killing, i.e., Lξ0gμν ¼ 0, then ξ0 is broken as a symmetry
for the Finslerian space-time with b ≠ 0. However, with the
appropriate distortion owed to f2, we may write the
equation

ϒ0 ¼ u∂u þ
�

b
1 − b

M2
bu − v

�
∂v; ð5:15Þ

which generates a conserved charge I ¼ ϒμ
0pμ in place of

the broken symmetry. It is easy to check that the ϒ0 is a
Killing vector of the disformally related metric (4.16), i.e.,
Lϒ0

ĝμν ¼ 0. In other words, the modification that restores
the broken Killing symmetry satisfies (4.13) for Ω ¼ 0. We
see thus that, in contrast to the b ¼ 0 case, when b ≠ 0, it is
possible to have a modification over a Killing vector field
instead of just proper CKVs. The introduction of b can truly
break isometries and one needs to add certain modifica-
tions, which on the mass shell lead to conserved quantities.
From the Riemannian case, we remember that the

distorted conformal Killing vectors—being the reduced
form of some formal symmetries—do not necessarily close
an algebra. Here, we shall see that the b-dependent
modification acquired in ϒ0 does not alter the algebra
status with the rest of the symmetry vectors. To demon-
strate this, let us break down the ξ of (5.11) with respect to
the rest of the parameters. Then, we have the following
possible Killing vectors: ξu ¼ ∂u, ξxy ¼ −y∂x þ x∂y, and of
course the always present ξv ¼ l ¼ ∂v. In addition to the
above, we may also have vectors of the form

ξci ¼ −c0iðuÞxi∂v þ ciðuÞ∂j: ð5:16Þ

It is clear from the above expressions that the only
commutator relation that is altered by the modification
term appearing in (5.15) is

½ϒ0; ξu� ¼ −ξu þ
b

1 − b
M2

bξv: ð5:17Þ

Even though this commutator brings about no problem in
the closing of an algebra, in reality such a situation cannot
arise for a nonflat space-time, because ξu and the non-
modified vector ξ0 ¼ u∂u − v∂v cannot be both Killing

vectors for a nonflat metric of the form of gμν [application
of both ξu and ξ0 leads to Hðu; x; yÞ ¼ 0]. Thus, the
modified vector ϒ0 is bound to close the same commutator
relations as the original ξ0 vector with the rest of the
unbroken symmetries.
Finally, we can summarize that, in the pp-wave case, just

one of the Killing vectors may acquire a distortion, the
vector ξ0. The distortion does not affect the property of
closing an algebra with the rest of the Killing vectors of the
original metric gμν. Any other acquired distortions will be
associated with the existing proper conformal Killing
vectors.

B. The flat case. “Reinstating” the Poincaré algebra

The flat space trivially satisfies the same relations as
those of a pp-wave case by simply setting Hðu; x; yÞ ¼ 0.
The Bogoslovsky-Finsler line element given by (3.5) yields
the space-time of deformed very special relativity, which, in
light-cone coordinates, is written

ds2F ¼ −ð−2dudv − dx2 − dy2Þ1−bðduÞ2b: ð5:18Þ

As we previously noticed, the geodesic motion is described
either by (5.1) or (5.2) with the substitution Hðu; x; yÞ ¼ 0.
It is known that the space-time possesses an eight-
dimensional symmetry group, the DISIMbð2Þ, which
was presented in [81] and which is a deformation of the
ISIMð2Þ group of very special relativity [82]. The sym-
metry generators ofDISIMbð2Þ are given by the following:

(i) The translations

Tu ¼ ∂u; Tv ¼ ∂v; Ti ¼ ∂i; ð5:19aÞ

(ii) the rotation

R ¼ x∂y − y∂x; ð5:19bÞ

(iii) the (combination of boosts and rotations)

Bui ¼ u∂i − xi∂v; ð5:19cÞ

and a vector with an explicit dependence on b,

N b ¼ ðb − 1Þu∂u þ ð1þ bÞv∂v þ bxi∂i: ð5:20Þ

By looking at the (5.19), we understand that the existence
of the parameter b has broken the three of the rest of the
Poincaré symmetries, namely the vectors

B0 ¼ u∂u − v∂v ð5:21aÞ

Bvi ¼ −xi∂u þ v∂jx; ð5:21bÞ
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which now fail to produce conserved charges for the
geodesic motion in the space characterized by (5.18).
In [87], it was shown that these symmetries are sub-

stituted by higher order symmetries, which are associated
with the distorted vectors of the type that we study here. If
we apply the condition (4.13) for the metric gμν with
Hðu; x; yÞ ¼ 0, we derive—except from the known sym-
metries (5.19)—the following additional vectors:

(i) The distorted Killing (for b ¼ 0) vectors,

ϒ0 ¼ u∂u þ
�

b
1 − b

M2
bu − v

�
∂v; ð5:22aÞ

ϒvi ¼ v∂jx − xi∂u −
b

1 − b
M2

bx
i
∂v: ð5:22bÞ

(ii) The distorted proper conformal Killing (when
b ¼ 0, m ¼ 0) vectors,

ϒD ¼ ðM2
buþ 2vÞ∂v þ xi∂i; ð5:23aÞ

ϒK ¼ u2∂u þ
1

2

�
1þ b
1 − b

M2
bu

2 − δijxixj
�
∂v þ uxi∂i;

ð5:23bÞ

ϒC1
¼ δijxixj

2
∂u

−
1

4

�
M4

bu
2þM2

b

�
4uv−

1−b
1þb

δijxixj
�
þ4v2

�
∂v

−
�
M2

b

2
uþv

�
xi∂i; ð5:23cÞ

ϒk
C2

¼ uxk∂u þ
�

1

1 − b
M2

buþ v

�
xk∂v

−
1

2
ðM2

bu
2 þ 2uvþ δijxixjÞ∂k þ xkxi∂i:

ð5:23dÞ

All of the above yield linear in the momenta conserved
quantities—we shall see an example of this later. We notice
that the first set (5.22) consists of distortions of the Killing
vectors (5.21) of gμν. The ϒ0 and ϒvi are themselves
Killing vectors, but of the disformally related metric ĝμν of
(4.16), which in these coordinates reads

ĝμν ¼

0
BBBBB@

− b
1−bM

2
b 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1
CCCCCA
: ð5:24Þ

Thus, we can now understand how the condition (4.13)
works for the various vectors. The nondistorted symmetries
(5.19) satisfy (4.13) by yielding LXgμν ¼ LXKμν ¼ 0,
where X is any vector of Eq. (5.19). Equations (5.22)
satisfy (4.13) by being Killing vectors of the disformally
related metric (5.24), i.e., LXĝμν ¼ 0, where X is now any
of the Eqs. (5.22). Finally, Eqs. (5.23) are solutions of
(4.13) for appropriate nonzero ΩðxÞ.
An interesting additional observation is that the linear

combination of the distorted homothecy ϒD and Killing
vector ϒ0 gives rise to the symmetry vector (5.20), which
together with the seven Killing vectors (Tu; Tv; Ti; R; Bui)
forms the eight-dimensional algebra corresponding to the
DISIMbð2Þ group of the symmetries, we mentioned in the
beginning of the section,

N b ¼ bϒD þ ðb − 1Þϒ0: ð5:25Þ

We already stated that the three Eqs. (5.22) are Killing
vectors of ĝμν; the same holds trivially also for the seven in
(5.19) since the action of their Lie derivative returns a zero for
both gμν and Kμν. Hence, they are bound to close an algebra.
The nonzero Lie brackets among these ten vectors are

½Tu; Bui� ¼ Ti; ½Tu;ϒ0� ¼ Tu þ
b

1 − b
M2

bTv; ½Tv;ϒ0� ¼ −Tv;

½Tv;ϒvi� ¼ Ti; ½Ti; R� ¼ ϵijTj; ½Ti; Buj� ¼ −δijTv;

½Ti; Bvj� ¼ −δij
�
Tu þ

b
1 − b

M2
bTv

�
; ½R;Bui� ¼ ϵjiBuj;

½R;ϒvi� ¼ ϵjiBvj; ½Bui;ϒ0� ¼ −Bui; ½Bui; Bvj� ¼ ϵjiR − δijϒ0;

½ϒ0;ϒvi� ¼ −ϒvi þ
b

1 − b
M2

bBui; ½ϒvi; Bvj� ¼ ϵji
b

1 − b
M2

bR: ð5:26Þ
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This is isomorphic to the Poincaré algebra. It can be easily
noticed by simply observing that the disformally related
metric ĝμν is flat. Hence, its ten Killing vectors (5.19) and
(5.22) just span the Poincaré algebra expressed in a
different coordinate system. We need to be clear however,
that the actual symmetry of the space with line element
(5.18) is still the DISIMbð2Þ group. Strictly speaking, the
(5.22) are not formal symmetries. As we already men-
tioned, such vectors [together with the (5.23)] are the on
mass shell reduced expressions of higher order symmetries,
which happen upon the reduction to yield space-time
vectors.

1. Constants of the motion and comparison with the
Minkowski case

In order to make direct comparisons with the free
relativistic particle in Minkowski space let us use the
transformation

u ¼ 1ffiffiffi
2

p ðz − tÞ; v ¼ 1ffiffiffi
2

p ðtþ zÞ ð5:27Þ

and take some linear combinations of the vectors involved
in the algebra (5.26), so as to write them as

T μ ¼
∂

∂xμ
;

Lij ¼ xj
∂

∂xi
− xi

∂

∂xj
−

bM2
b

2ð1 − bÞ ðδ
j
zxi − δizxjÞ

�
∂

∂t
þ ∂

∂z

�
; i; j ¼ 1; 2; 3;

Mj ¼ xj
∂

∂t
þ t

∂

∂xj
−

bM2
b

2ð1 − bÞ ðx
j − δjztÞ

�
∂

∂t
þ ∂

∂z

�
: ð5:28Þ

Notice that here, for the Cartesian coordinates, we use the
Latin indices to denote the spatial components. Thus, the i,
j in this section run from 1 to 3. We additionally observe
that, in these coordinates, the only vectors that do not admit
a modification based on b are the translations and the
rotation in the x − y plane. Of course by linear combina-
tions one can write as many “unmodified by b” Killing
vectors as in the previous section. However, we choose to
use (5.28) as the basic vectors so that we have a direct
comparison with what we know from the classical free
relativistic particle problem, when b ¼ 0 is enforced. Thus,
Lij become the rotations and Mj the boosts when b ¼ 0.
Under the use of transformation (5.27) the Lagrangian

(5.2) becomes

L ¼ −
1

21þbn
ð_z − _tÞ2bð−ημνxμxνÞ1−b − n

m2

2
; ð5:29Þ

where ημν ¼ diagð−1; 1; 1; 1Þ. For b ¼ 0, we obviously
recover the Lagrangian of a relativistic free particle in flat
space. The solution to the Euler-Lagrange equations can be
written as

nðλÞ ¼ 2−
b

bþ1ð1 − bÞ1−b1þbm− 2b
bþ1ðp0 þ pzÞ 2b

1þb; ð5:30aÞ

tðλÞ¼ t0−
1

2

�
p2
xþp2

y

ðp0þpzÞ2
þ1þ ð1−bÞ 2

bþ1m
2

bþ1

2
b

bþ1ðp0þpzÞ 2
bþ1

�
ðp0þpzÞλ;

ð5:30bÞ

xðλÞ ¼ pxλþ x0; ð5:30cÞ

yðλÞ ¼ pyλþ y0; ð5:30dÞ

zðλÞ ¼ z0 −
1

2

�
p2
x þ p2

y

ðp0 þ pzÞ2
− 1

þ ð1 − bÞ 2
bþ1m

2
bþ1

2
b

bþ1ðp0 þ pzÞ 2
bþ1

�
ðp0 þ pzÞλ; ð5:30eÞ

where we have substituted the b-dependent mass (5.5) as

Mb ¼
� ffiffiffi

2
p ð1 − bÞm
p0 þ pz

� 1
1þb

; ð5:31Þ

since, we have pv ¼ p0þpzffiffi
2

p from (5.27). The t0, xi0 together

with all the pμ are constants of integration. Since (5.29)
produces equations equivalent to the Minkowski case, the
solutions tðλÞ, xðλÞ, yðλÞ, and zðλÞ are bound to be linear in
λ when the latter is the affine parameter, i.e., when
nðλÞ ¼ const. However, the constants of integration are
now associated in a different manner with respect to the
physical observables, due to the presence of b. In (5.30), the
constants of integration are arranged so that on mass shell
we have

∂L
∂_t

¼p0;
∂L
∂_x

¼px;
∂L
∂_y

¼py;
∂L
∂_z

¼pz: ð5:32Þ

As, we mentioned, the pμ here are all constant. This is owed
to the fact that the translations T μ are still symmetries of the
problem. In this section, we make no reference to phase-
space formalism, so we do not distinguish between the
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variables pμ and their on mass shell constant values, we
simply use pμ to also denote the constants of integration. It
can be seen that when b ¼ 0, and under the constraint

m2 ¼ p2
0 − p2

x − p2
y − p2

z ; ð5:33Þ

the expressions (5.30) reduce to the usual

nðλÞ ¼ 1; tðλÞ ¼ t0 − p0λ; xiðλÞ ¼ xi0 þ piλ:

ð5:34Þ

With the help of (5.30), we may write the relation

ημν
∂L
∂_xμ

∂L
∂_xν

¼ −2− b
bþ1ð1þ bÞð1 − bÞ1−bbþ1m

2
bþ1ðp0 þ pzÞ 2b

bþ1;

ð5:35Þ

which is exactly equivalent with the one given in [81] for
the Hamiltonian constraint (when considering the pμ as
phase-space variables). Obviously, upon setting b ¼ 0, we

return as to the usual Hamiltonian constraint of (special)
relativistic motion (5.33).
It is easy to verify that the whole set of (5.28) produces

conserved quantities. Whenever b ¼ 0 and the constraint
among constants (5.33) is used, they become those
generated by the Poincaré generators for the free relativistic
particle. For example let us take the modified
rotation around the x axis. According to (5.28) the vector
is written as

Lyz¼−
bM2

b

2ð1−bÞy
∂

∂t
þz

∂

∂y
−
�
1þ bM2

b

2ð1−bÞ
�
y
∂

∂z
: ð5:36Þ

We expect a constant of motion to be given by the quantity

Iyz ¼ ðLyzÞμ ∂L
∂_xμ

ð5:37Þ

which yields

Iyz ¼
2−ð1þbÞ

nð_t2 − _x2 − _y2 − _z2Þb ð_z − _tÞ2b−1½2ð1 − bÞz_yð_z − _tÞ

− yðbðM2
b − 2Þ_t2 − 2ðbðM2

b − 1Þ þ 1Þ_t _zþbM2
b _z

2 þ 2ðb_x2 þ b_y2 þ _z2ÞÞ�: ð5:38Þ

Direct use of (5.30) demonstrates that Iyz is indeed a constant of motion on mass shell, acquiring the value

Iyz¼
ðp0þpzÞ−bþ3

bþ1

2
2bþ1
bþ1

½2 b
bþ1ðp0þpzÞ 2

bþ1ððp2
xþp2

y−ðp0þpzÞ2Þy0þ2pyðp0þpzÞz0Þþð1−bÞ 2
bþ1m

2
bþ1ðp0þpzÞ2y0�; ð5:39Þ

where (5.31) has been used so as the physical mass appears
in the expression. Upon substitution of the latter from
(5.33) and by setting b ¼ 0 the above relation becomes
none other than

Iyzjb¼0 ¼ z0py − y0pz; ð5:40Þ

which is the usual angular momentum in the x direction.
The same is true of course for the conserved quantities

constructed with the distorted conformal Killing vectors.
For example, let us take the ϒD of (5.23a), which in
Cartesian coordinates, performing the change (5.27),
becomes

ϒD¼
�
tþzþ1

2
M2

bðz− tÞ
�
ð∂tþ∂zÞþx∂xþy∂y: ð5:41Þ

With the use of (5.30), we calculate the on mass shell
constant value of the charge,

ID ¼ ϒμ
Dpμ ¼ pxx0 þ pyy0 þ ðp0 þ pzÞðt0 þ z0Þ

þ ð1 − bÞ 2
1þbm

2
1þb

2
b

1þb

ðp0 þ pzÞb−11þbðz0 − t0Þ; ð5:42Þ

where once more (5.31) has been used. By setting b ¼ 0,
we obtain the mass distorted charge of the Minkowski case

IDjb¼0 ¼ pxx0 þ pyy0 þ ðp0 þ pzÞðt0 þ z0Þ þm2
z0 − t0
p0 þ pz

ð5:43Þ

and further, for m ¼ 0, we obtain the conserved charge of
the null geodesics generated by the corresponding pure
conformal Killing vector.
The disformally related metric (5.24) in the Cartesian

coordinates becomes
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ĝμν ¼

0
BBBBBBBB@

−
�
1þ bM2

b
2ð1−bÞ

�
0 0

bM2
b

2ð1−bÞ

0 1 0 0

0 0 1 0
bM2

b
2ð1−bÞ 0 0 1 − bM2

b
2ð1−bÞ

1
CCCCCCCCA
; ð5:44Þ

and of course Eqs. (5.28) are its Killing vectors. We can
write (5.44) as

ĝμν ¼ ημν −
bM2

b

1 − b
∂μϕ∂νϕ; ð5:45Þ

with the introduction of a scalar ϕ ¼ 1ffiffi
2

p ðz − tÞ, so as to be
consistent with in the original definition by Bekenstein
regarding disformal transformations. It can be seen that the
lightlike geodesics are not preserved when passing from ημν
to ĝμν, forb ≠ 0. However, the causal structure is not affected
since, for any vector Aμ for which ημνAμAν < 0, we obtain
ĝμνAμAν < 0 as long as 0 < b < 1. Of course, ĝμν and ημν
both describe a flat space, and we perform the aforemen-
tioned comparison of ĝμνAμAν with ημνAμAν by considering
the coordinate system fixed. In other words, we take ĝμν and
ημν to be different metrics written in the same coordinate
system, not the same metric expressed in different coor-
dinate systems. A comparison from this point of view is
reasonable if we remember that the b ≠ 0 case actually
describes motion in a Finslerian geometry; the ĝμν, we write
here serves as a (pseudo-)Riemannian “simulation” of how
the motion looks for a massive particle of mass m.
In Fig. 1, we draw the light cones3 depending on the

value of b and given by the metric ĝμν, while keeping

fixed the ratio where the physical mass m is involved:
m
πv
¼

ffiffi
2

p
m

p0þpz
¼ 1. The first layer from the top corresponds to

b ¼ 0 where we have the typical Minkowski metric. The
intermediate layer is for b ¼ 1

10
⇒ Mb ≃ 0.995 and the last

corresponds to b ¼ 1
2
⇒ Mb ≃ 0.909. We observe the

expected deviation in the z direction from the isotropy
and from the b ¼ 0 surface of special relativity as b
becomes larger. A physically reasonable value for the
Lorentz violating parameter b, however, is way more
minuscule b < 10−26 [81].

VI. CONCLUSION

We examined how the elements of the conformal algebra
of a given geometry may admit appropriate distortions,
which lead to additional conserved quantities. We observed
that these distortions are related to parameters that bring
about an explicit symmetry breaking effect at the level of
the geodesic equations. What is more, the resulting dis-
torted vectors are generators of certain disformal trans-
formations of the metric. We established a connection
between these distorted conformal Killing vectors with
higher order or hidden symmetries of the relative problem.
The corresponding conserved Noether charges are in
general rational functions of the momenta, which conven-
iently reduce to linear expressions on the mass shell.
We initiated our presentation by studying the geodesic

motion in a (pseudo-)Riemannian space. The resulting
distorted vectors in this case are owed to the mass, which
breaks the proper conformal symmetries for non-null
geodesics. The proper CKVs acquire mass-dependent
distortions in order to continue producing conserved
quantities. We derived the geometric condition in order
for such distortions to emerge. In short, the space-time
needs to admit a second rank Killing tensor and addition-
ally there has to exist a coordinate transformation, mapping
the original metric to another, disformally related, which
makes use of the same Killing tensor. Our basic example of
a geometry satisfying the necessary conditions has been
that of a generic pp-wave space-time. We wrote all the
resulting distortions of the proper conformal Killing vectors
and their connection to higher order symmetries. Apart
from the pp-wave case, however, we also presented an
additional novel example in the form of the de Sitter
solution of Einstein’s equations with a cosmological con-
stant. In the pp-wave case the distortion appeared in an
additively manner, while in the de Sitter case it assumes a
more complicated form.
The consideration of a Finslerian geometry in the form of

the generalized Bogoslovsky line element revealed that the
additional introduction of a (Lorentz) symmetry breaking
parameter follows a similar pattern. This time, again for a
pp-wave space-time, one of the Killing symmetries is lost
due to the newly introduced parameter. The latter becomes
involved in an appropriate distortion, which reveals a

FIG. 1. Light cones in the x − z plane for (starting from the
upper surface) b ¼ 0, b ¼ 1

10
, and b ¼ 1

2
. In all cases, we have

considered
ffiffi
2

p
m

p0þpz
¼ 1.

3By using the term light cones here, we do not imply them ¼ 0
surfaces of the initial problem but the geometric surfaces
ĝμνAμAν ¼ 0 and how they differ from ημνAμAν ¼ 0.
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conserved quantity that takes the place of the one lost from
the missing symmetry. For the rest of the proper conformal
Killing vectors, similar distortions to those of the
Riemannian case appear. We derive explicitly all the
relative expressions and we notice that again the ensuing
vectors are associated with higher order symmetries. We
further investigated the general geometric conditions that
are necessary so that such a type of symmetry emerges.
Finally, we briefly mentioned how all this applies to the flat
case, where three of the original Killing vectors acquire the
necessary distortions. The distorted Killing vectors lead
naturally to a disformally related metric by assuming the
role of its isometries. We use this exact metric to compare
the motion of the Finslerian case to the one taking place in
the Minkowski space-time of special relativity.
By looking at the necessary condition that we derived for

the Finslerian line element, Eq. (4.13), we notice that, in
contrast to the (pseudo-)Riemannian case, there exists an
additional restriction; the condition requires the Killing
tensor admitted by the base metric to be covariantly
constant. This is easily satisfied in the pp-wave case by
simply utilizing the trivial tensor K ¼ l ⊗ l, constructed
by the covariantly constant Killing vector l, which all
pp-waves possess. However, the particular example of the
de Sitter space, that we considered in the Riemannian case,
does not apply here, since the relevant Killing tensor that
we used there is not covariantly constant. This leaves an
open question on whether we can incorporate other
geometries in the Finslerian case, which can make use
of (4.13).
It is particularly interesting how the pp-waves appear to

be on the spot in what regards the emergence of this type of
symmetries. They conveniently satisfy all the necessary
conditions, both in the Riemannian case and in the
Finslerian generalization. This adds up to the intriguing
geometrical properties that these space-times possess and
justifies their importance in physical theories. Further study
is necessary, however, in order to reveal other types of
geometries where hidden symmetries can be reduced in
such a way so as to be mapped to distortions of the
conformal structure. The example of the de Sitter metric in
the Riemannian case shows that this is in general possible
and novel symmetries can be revealed for certain
space-times.
From a pure mathematical perspective, the use of such

hidden symmetries can be exploited to extend the known
integrable classes of geodesic systems. The reduced linear
integrals of the Lorentzian case, which are associated with
the existence of proper conformal Killing vectors, imply
that, for those space-times for which such quantities appear,
the problem of the timelike geodesics has as many integrals
of the motion as the null case. In [88] it was demonstrated
that the integrability of the geodesic system is closely
related to that of the geodesic deviation equation. It is

interesting to study if the hidden symmetries presented here
can be “inherited” at the level of the geodesic deviation.
Especially for the pp-wave case this could contribute to the
further analytic study of the memory effect [6–9].
In what regards the physical interpretation of each

conserved charge, this highly depends on the exact
space-time where the motion takes place. However, the
fact that the mass of the particle appears explicitly in
the expressions allows for a direct comparison between the
relative observables of the two cases (massive and mass-
less). The same is true for the Finslerian case and the
Lorentz violating parameter b. We saw in (5.22) how the
b ≠ 0 case affects the boosts and, of course, the corre-
sponding integrals of the motion. We thus acquire a picture
of how symmetry breaking parameters affect classical
observables. In this respect it is intriguing how the explicit
symmetry breaking, either because of the mass or due to
some Lorentz violating parameter, leads to the appearance
of hidden symmetries in the relevant theories. The latter
seem to substitute the ones which were broken by the
introduction of the corresponding parameter. This is a
subject that certainly requires further attention and the
study of additional examples.
Another interesting implication of the actual hidden

symmetries is their possible realization at the quantum
level. In several cases, hidden symmetries have been used
in the context of a canonical quantization procedure: from
the derivation of the hydrogen spectrum with the use of the
Laplace-Runge-Lenz vector [89], to modern problems in
quantum cosmology [90]. For quadratic Hamiltonians and
higher order symmetries related to the existence of Killing
tensors, there are various works, which explore a formal
way of constructing the relative quantum operators under
appropriate geometric conditions [91–93]. It is true that
there are cases where the quantum analogs of hidden
symmetries—unlike their classical counterparts—do not
commute with the Hamiltonian. This effect is referred to in
the literature as quantum anomaly [94]. In our case, we
have to recognize an additional difficulty owed to the fact
that the Noether charges are rational functions in the
momenta. Thus, the construction of the corresponding
quantum observables is far from trivial. Nevertheless, it
is useful to further investigate if the on mass shell reduced
linear expressions can be used in this respect, or if under
appropriate (not affecting the quantum description) canoni-
cal transformations, one can obtain more manageable
expressions.
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APPENDIX A: INTEGRABILITY CONDITIONS OF Mðu;x;yÞ
The integrability conditions that need to be satisfied by the functionMðu; x; yÞ, appearing in the components (2.21) of a

general conformal pp-wave Killing vector, are

∂uMðu; x; yÞ ¼ ðb̄ðuÞ − a0ðuÞÞHðu; x; yÞ − 1

2

�
μ

2
δijxixj þ xiaiðuÞ þ aðuÞ

�
∂uHðu; x; yÞ

−
1

2

��
b̄ðuÞxj þ cðuÞϵijxi þ cjðuÞ þ

1

2
γijkla0iðuÞxkxl

�
∂jHðu; x; yÞ

�
; ðA1aÞ

∂iMðu; x; yÞ ¼ −ðμHðu; x; yÞ þ b̄0ðuÞÞxi − aiðuÞHðu; x; yÞ þ c0ðuÞϵijxj þ c0iðuÞ − γijkla00j ðuÞxkxl: ðA1bÞ

In order to avoid confusion, we stress here that one may
note some differences over some constant factors, when
comparing with the relative relations derived in the [54]
paper. This is owed to the fact that, in the latter, the authors
consider a slightly different line element for the pp-wave
space-time than what we assume in (2.20). Both (2.21) and
(A1), which we use in this work, are compatible with (2.20)
and differ slightly from the formalism encountered in [54],
due to the difference in the line elements.

APPENDIX B: PROOF OF THEOREM 2

We assume that a vector of the formϒ ¼ ϒðx; m2

κ Þ solves
(2.37). Let us consider the vector ϒ̃ of (2.39), which for
simplicity we will write in the form ϒ̃ ¼ ϒ̃ðx; GKÞ, under-
standing that we do not consider here G ¼ −gμν _xμ _xν and
K ¼ Kμν _xμ _xν as constants but as quadratic functions in the
velocities. The first prolongation of ϒ̃ is given by

prð1Þϒ̃ ¼ ϒ̃κ ∂

∂xκ
þ _̃ϒ

κ ∂

∂_xκ
; ðB1Þ

where

_̃ϒ
κ ¼ ∂ϒ̃κ

∂xν
_xν þ ∂ϒ̃κ

∂_xν
ẍν: ðB2Þ

We can split the partial derivative with respect to the
positions xμ in two parts: one that differentiates the x
dependence outside the G

K ratio, i.e., ∂ϒ̃
μ

∂xν jðGKÞ, as if
G
K ¼ const,

and another which contains separately the derivation of the
G
K part. So, we write

∂ϒ̃κ

∂xν
¼ ∂ϒ̃κ

∂xν

				
ðGKÞ

− gαβ;ν
∂ϒ̃κ

∂G
_xα _xβ þ Kαβ;ν

∂ϒ̃κ

∂K
_xα _xβ: ðB3Þ

In addition, for the derivative of ϒ̃κ with respect to the
velocities, we have

∂ϒ̃κ

∂_xν
¼ −2gαν

∂ϒ̃κ

∂G
_xα þ 2Kαν

∂ϒ̃κ

∂K
_xα: ðB4Þ

By using (B3) and (B4) (B2), we obtain

_̃ϒ
κ ¼ ∂ϒ̃κ

∂xν

				
ðGKÞ

þ
�
∇ðνKαβÞ

∂ϒ̃κ

∂K
−∇ðνgαβÞ

∂ϒ̃κ

∂G

�
_xα _xβ _xν

þ 2

�
G
∂ϒ̃κ

∂G
þK

∂ϒ̃κ

∂K

�
d
dλ

ðln nÞ; ðB5Þ

where we have also used (2.6a) to substitute the accel-
erations ẍν appearing in (B2).
All but the first term in the above expression are zero:

First of all, we have trivially ∇νgαβ ¼ 0, where the ∇ν

denotes the covariant derivative with respect to the
Christoffel symbols. By our demand, we also have
∇ðνKαβÞ ¼ 0, sinceK is a Killing tensor. As for the relation,

G ∂ϒ̃κ

∂G þK ∂ϒ̃κ

∂K ¼ 0, it is zero due to the dependence of Yκ

on the ratio G
K. Hence, the first prolonged vector (B1) is

written as

prð1Þϒ̃ ¼ ϒ̃κ ∂

∂xκ
þ ∂ϒ̃κ

∂xν

				
ðGKÞ

∂

∂_xκ
: ðB6Þ

The action of (B6) on the Lagrangian (2.2) yields

prð1Þϒ̃ðLÞ ¼ 1

2n

�
ϒ̃κ ∂

∂xκ
gμν þ gμκ

∂ϒ̃κ

∂xν

				
ðGKÞ

þ gνκ
∂ϒ̃κ

∂xμ

				
ðGKÞ

�
_xμ _xν: ðB7Þ

What we see inside the parentheses is the left-hand side of
(2.37), i.e., the ϒκ ∂

∂xκ gμν þ gμκ
∂ϒκ

∂xν þ gνκ
∂ϒκ

∂xμ , since the

remaining derivatives of ϒ̃ treat the ratio G
K ¼ −gαβ _xα _xβ

Kμν _xμ _xν
¼

m2

κ as a constant. As a result, with the use of equality (2.37),
we may write
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prð1Þϒ̃ðLÞ ¼ ΩðxÞ
n

�
gμν þ

G
K
Kμν

�
_xμ _xν

¼ ΩðxÞ
n

�
−Gþ G

K
K
�

¼ 0: ðB8Þ

Thus, the vector ϒ̃ðx; GKÞ is a higher order symmetry of the
geodesics, by virtue of (2.37) and because of K being a

Killing tensor. Its on mass shell reduced form is given by
the vector ϒðx; m2

κ Þ.
The expression for the conserved charge (2.40), gen-

erated by the symmetry ϒ̃, stems directly from Noether’s
theorem and in particular relation (2.16) [our symmetry
vector, ϒ̃, satisfies (2.14) for Φ ¼ const and has only
components in the x directions, not in λ, so χ ¼ 0].
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