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Upcoming observational runs of the LIGO-Virgo-KAGRA Collaboration and future gravitational-wave
(GW) detectors on the ground and in space require waveform models more accurate than currently
available. High-precision waveform models can be developed by improving the analytical description of
compact binary dynamics and completing it with numerical-relativity (NR) information. Here, we assess
the accuracy of the recent results for the fourth post-Minkowskian (4PM) conservative dynamics through
comparisons with NR simulations for the circular-orbit binding energy and for the scattering angle. We
obtain that the 4PM dynamics gives better agreement with NR than the 3PM dynamics and that while the
4PM approximation gives comparable results to the third post-Newtonian (PN) approximation for bound
orbits it performs better for scattering encounters. Furthermore, we incorporate the 4PM results in effective-
one-body (EOB) Hamiltonians, which improves the disagreement with NR over the 4PM-expanded
Hamiltonian from ∼40% to ∼10%, or ∼3% depending on the EOB gauge, for an equal-mass binary, two
GW cycles before merger. Finally, we derive a 4PN-EOB Hamiltonian for hyperbolic orbits and compare
its predictions for the scattering angle to NR and to the scattering angle of a 4PN-EOB Hamiltonian
computed for elliptic orbits.
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I. INTRODUCTION

Gravitational-wave (GW) observations [1–4] have impro-
ved our understanding of compact binaries, composed of
black holes and/or neutron stars, their properties, and their
astrophysical formation channels [5–7]. Searching for GW
signals and estimating their parameters require accurate
waveform models or templates. Since numerical-relativity
(NR) simulations are computationally expensive, analytical
approximationmethods become essential for producing such
waveforms.
The post-Newtonian (PN) approximation is valid for slow

motion, v2=c2 ≪ 1, and weak gravitational potential,
GM=rc2 ≪ 1, making it most applicable for binaries in
bound orbits where v2=c2 ∼GM=rc2, which are the main

sources observed by ground-based GW detectors, such as
LIGO, Virgo, and KAGRA [8–10]; for reviews, see
Refs. [11–16].
Similarly, the post-Minkowskian (PM) approximation

is a weak-field expansion but places no restriction on
the magnitude of velocities. Next to entirely classical
approaches to the PM approximation [17–25], recent
progress has been pioneered by methods starting out from
(quantum) scattering amplitudes [26–39]. In addition,
manifestly classical methods that make use of quantum-
field-theory techniques show great promise for advancing
the PM approximation, namely, effective field theory
[40–45] and worldline quantum field theory [46,47]
approaches. The PM approximation has also been applied
to spin [48–67], tidal [68–75], and radiative effects [76–90].
The PM expansion encompasses the PN expansion, such

that the (nþ 1)PM order includes all the information up to
the nPN order, making it potentially more accurate.
Binaries in bound orbits can reach velocities on the order
of 0.4 or larger when spiraling over the last orbits before
merger. This means that the relativistic corrections become
more and more important in the last stages of the inspiral
and plunge. Thus, we might expect that at some high PM
order the PM expansion may start to become more accurate
than the PN expansion. Furthermore, scattering encounters
on hyperbolic trajectories can reach high velocities, for
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which the PM approximation becomes more relevant. The
gravitational self-force (GSF) approximation [91–103]
expands Einstein’s equations in power of the binary’s mass
ratio m2=m1 ≪ 1. It is thus valid for any velocity and is
not restricted to the weak fields. Figure 1 illustrates the
regions of parameter space in which the PN, PM, and GSF
approximations are (roughly) applicable when generic
orbits are considered.
Detecting GW bursts from hyperbolic encounters would

have important implications on our understanding of
dense stellar environments and the merger rate of com-
pact objects formed through this astrophysical channel.
Currently, there does not seem to be a consensus in the
literature [104–110] on the event rate for scattering
encounters, due to the high uncertainty in the astrophysical
models; the expected event rates vary between 0.001 to
0.39 per year for upcoming LIGO-Virgo-KAGRA runs,
depending on the model [110], with higher rates expected
for future detectors. Gravitational waves from hyperbolic
encounters would be expected at higher rates in the LIGO-
Virgo-KAGRA frequency band if a large population of
primordial black holes exists in dense stellar clusters, as
was proposed in Refs. [111–114] based on some infla-
tionary models. Other GW sources that could reach highly
relativistic velocities are binaries in galactic nuclei, where
dynamical capture and three-body interactions can drive
binaries to high eccentricities [106,115–125].
Most studies of hyperbolic and parabolic encounters use

the PN approximation, for both the dynamics [126–129]
and the GWenergy spectrum [107,130–133]. The effective-
one-body (EOB) formalism [134,135] has also been applied
to scattering, as in Refs. [136–141]. EOB waveform models

improve the inspiral-merger-ringdown waveforms by com-
bining test-body, PN, black-hole perturbation, and NR
results. PM results have been incorporated in EOB
Hamiltonians in Refs. [22,23,142,143].
In this paper, we study the results of Refs. [34,35,44,45]

for the 4PM conservative dynamics, both the “vanilla” 4PM
Hamiltonians and the EOB Hamiltonians constructed with
4PM conservative information. Generally, the waveform
models are evaluated on the two-body dynamics, which is
derived from the Hamiltonian and the radiation-reaction
(RR) force. The Hamiltonian describes the conservative
dynamics, while the RR force accounts for the energy and
angular momentum losses due to GWs, and it is included in
the right-hand side of the Hamilton equations. Since the RR
force has not been computed in PM theory at sufficiently
high PM order, in this paper, we restrict our study to the
conservative sector and therefore focus on the Hamiltonian.
As shown in Refs. [144–146], a good diagnostic to assess
the accuracy of models for the conservative dynamics is to
compare the binding energy from the Hamiltonians and
NR. The latter contains both conservative and dissipative
effects. When augmenting the models’ dynamics with RR
effects, the binding energy can change (e.g., see Fig. 6 in
Ref. [142]). However, it is still very informative to perform
studies that compare to NR only the conservative dynamics
at various orders of the perturbative expansion and also
develop different flavors of Hamiltonians and explore their
closeness to NR. Eventually, when RR effects in PM theory
become available, one will be able to identify the most
suitable model for the full dynamics that best represent the
NR results. Quite interestingly, in the case of the scattering
angle, for which we can add the RR effects to the models’

FIG. 1. The left panel shows the region of applicability of NR and the PN, PM, and GSF approximations for small eccentricity e ∼ 0, in
which case the PN and PM approximations overlap. The right panel shows the range in eccentricity for which each approximation is
applicable for comparable masses q ∼ 1. The PM approximation is more accurate than the PN approximation for scattering encounters at
large velocities, or equivalently large eccentricities at fixed periastron distance.
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predictions, we show that the radiative contribution is much
smaller than the conservative one (see Fig. 6).
The paper is structured as follows. In Secs. II and III,

we summarize the 4PM results and incorporate them in
EOB Hamiltonians. Then, in Sec. IV, we compare the
circular-orbit binding energies with NR, while in Sec. V, we
compare the scattering angles. We conclude in Sec. VI and
write in Appendixes A and B the expressions for the PN
and EOB Hamiltonians. We also provide those expressions
as a Mathematica file in the Supplemental Material [147].

A. Notation

We adopt units in which the speed of light c ¼ 1.
For a binary with masses m1 and m2, with m1 ≥ m2, we

define the following quantities:

M≡m1 þm2; μ≡m1m2

M
; ν≡ μ

M
; q≡m1

m2

:

ð1Þ

From the total energy E, we define the binding energy,

Ē≡ E −M
μ

; ð2Þ

and the effective energy Eeff through the EOB energy map
[134],

E ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Eeff

μ
− 1

�s
: ð3Þ

We also introduce the quantities

γ ≡ Eeff

μ
¼ E2 −m2

1 −m2
2

2m1m2

;

Γ≡ E
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
; ð4Þ

where γ is related to the asymptotic relative velocity v by

v≡
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
γ

; or γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð5Þ

When dealing with PN expansions, it is convenient to
define the dimensionless energy variable1

ε≡ γ2 − 1 ¼ γ2v2: ð6Þ

The orbital angular momentum is denoted as L and is
related to the relative position R, radial momentum PR, and
total linear momentum P via

P2 ¼ P2
R þ L2

R2
: ð7Þ

We use Hhyp to denote a Hamiltonian with PM or PN
information that is valid for unbound/hyperbolic motion
and use Hell for a Hamiltonian valid for bound/elliptic
orbits. A Hamiltonian written without a “hyp” or “ell”
subscript is valid for generic motion.
We often use the following dimensionless rescaled

quantities:

r≡ R
GM

; u≡1

r
; p≡P

μ
; pr≡PR

μ
; l≡ L

GMμ
; Ĥ≡H

μ
:

ð8Þ

II. PM-EXPANDED SCATTERING ANGLE
AND HAMILTONIAN

The 4PM conservative dynamics (including tail effects)
has been derived recently in Refs. [34,35,44,45] for
hyperbolic orbits in a large-eccentricity expansion. We
note that this 4PM result agrees with the 6PN result
of Refs. [82,149,150] and exhibits a simple mass depend-
ence, which is expected due to Lorentz invariance and
dimensional analysis, as argued in Ref. [24]. The result of
Refs. [34,35,44,45] also agrees with the 5PN result of
Refs. [151–153], except for a single term that does not
have the expected mass dependence and is proportional to
ν2.2 Furthermore, Ref. [45] argued that conservative
memory terms are still missing at 4PM order. However,
at the PM order we are working in, there is no unique
definition of the conservative dynamics. In this paper, we
follow the definition of the conservative dynamics of
Refs. [82,149,150], which implies that memory effects at
4PM order will appear in the dissipative dynamics and will
be accounted for when they become available. Thus, here,
we assume that the conservative-dynamics results in
Refs. [34,35,44,45] are complete.
The two-body dynamics can be conveniently encoded in

the gauge-invariant radial action, Ir, which at 4PM order
can be written schematically as

Ihypr;4PM ¼ Ir;3PM −
πG4M7ν2P2

8EL3

�
Mp

4

þ ν

�
4Mt

4 ln

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
2

þMπ2
4 þMrem

4

��
; ð9Þ

1Note that ε used here is denoted p2
∞ in Refs. [35,148].

2The difference in the 5PN conservative scattering angle
between Refs. [35,148,151], which is given by Eq. (69) of the
latter, is proportional to ν2v6=L4. In all configurations considered
in this paper, the velocities reached by a binary system are
typically ≲0.5. As a consequence, such a difference has a very
small effect in our study—for example, on the order of 10−3

degrees for the range of parameters in Fig. 6.
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which includes the lower PM orders, with the 3PM part
Ir;3PM valid for both bound and unbound motion. The terms
M…

4 are directly related to parts of the scattering ampli-
tude; they are independent of the masses and are written in
Eq. (3) of Ref. [35]. An expression for these terms that is
valid for generic orbits (bound and unbound) is difficult to
derive and has not yet been found. The physical reason is
that the tail effects [154] start to enter at 4PM order, which
is a nonlocal-in-time interaction depending on the entire
history of the binary. Thus, it is different for bound and
unbound orbits.
The scattering angle, by which the two bodies are

deflected in the center-of-mass frame, is a gauge-invariant
function that contains the same information as the radial
action or the hyperbolic-orbit Hamiltonian. It can be
obtained from the derivative of the radial action with
respect to the angular momentum, that is,

χ ¼ −
∂Ihypr

∂L
− π. ð10Þ

The 3PM and 4PM pieces of the conservative scattering
angle have a logarithmic divergence in the high-energy
(massless) limit. However, that divergence at 3PM order
was shown to cancel with a corresponding divergence in the
radiative contribution [76–81], and it is expected that such
divergence also cancels at 4PM order [82]. In this paper, we
only consider comparable-mass binaries, for which the
singularity in the massless limit is irrelevant, and we
demonstrate in Fig. 6 that the radiative contribution to
the 3PM scattering angle is negligible for the range of
parameters we consider.
Reference [35] also derived a two-body Hamiltonian

from the radial action, following the steps in Refs. [29,155].
The 4PM Hamiltonian in isotropic gauge and for hyper-
bolic orbits is given by

Hhyp
4PM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2

q
þ
X4
n¼1

Gn

Rn cn; ð11Þ

where the cn coefficients are given by Eqs. (10) of Ref. [31]
and Eq. (8) of Ref. [35]. Like the radial action, the 3PM part
of Hhyp

4PM is valid for generic motion, but the 4PM piece is
for hyperbolic orbits. This Hamiltonian is determined in
Ref. [35] from an ansatz that matches the scattering angle
that follows from the radial action Ihypr;4PM, which is
determined from the scattering amplitude.
To assess how close Hhyp

4PM is to a bound-orbit 4PM
Hamiltonian, we complement Hhyp

4PM with bound-orbit
corrections ΔHell

4PMðnPNÞ, such that the nPN expansion of

Hhyp
4PM þ ΔHell

4PMðnPNÞ gives the correct nPN Hamiltonian up

to OðG4Þ for bound orbits in isotropic gauge. We obtain
ΔHell

4PMðnPNÞ to 6PN order, as explained in Appendix A,

since the 6PN Hamiltonian is fully known up to
OðG4Þ [149,150]. In Sec. IV, we compare the binding
energy calculated from these Hamiltonians with NR,
finding a small difference between Hhyp

4PM and its bound-
orbit corrections.

III. EFFECTIVE-ONE-BODY HAMILTONIANS

In the case of nonspinning compact objects, the EOB
formalism [134,135] maps the binary motion to that of a
test mass in a deformed Schwarzschild background. The
two-body Hamiltonian HEOB is related to an effective
Hamiltonian Heff via the energy map

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð12Þ

The effective metric is defined by

geffμν dxμdxν ¼ −AdT2 þ BdR2 þ R2ðdθ2 þ sin2 θdϕ2Þ; ð13Þ

with the mass-shell condition [156]

0 ¼ gμνeffPμPν þ μ2 þQ; ð14Þ

leading to the effective Hamiltonian Heff ¼ −P0,

H2
eff ¼ A

�
μ2 þ P2

R

B
þ L2

R2
þQ

�
: ð15Þ

In the ν → 0 limit, Heff reduces to the Schwarzschild
Hamiltonian for a test mass, which is given by

Ĥ2
S ¼ ð1 − 2uÞ½1þ ð1 − 2uÞp2

r þ l2u2�: ð16Þ
To include higher PN information in an EOB

Hamiltonian, we write an ansatz for the A, B, and Q
potentials in Eq. (15), perform a canonical transformation,
and then match HEOB to the PN-expanded Hamiltonian.
This procedure is explained in more detail in Appendix A.
For PM results, it is more convenient to calculate the gauge-
invariant scattering angle from the ansatz for HEOB, then
match it to the PM-expanded scattering angle in Eq. (10).
These calculations will lead to the first derivation of 4PM-
EOB Hamiltonians (and their nPN limits) for hyperbolic
orbits.
For an ansatz, we choose the B potential to be the

same as in the Schwarzschild metric, i.e., B ¼ 1=ð1 − 2uÞ,
and include all the 4PM corrections into either Q or A.
When included in Q, we get a 4PM generalization of
the post-Schwarzschild (PS) Hamiltonian considered in
Refs. [23,142], which is given by

ðĤeff;PSÞ2 ¼ Ĥ2
S þ ð1− 2uÞ

× ðu2q2PM þ u3q3PM þ u4q4PM þΔQ
4PNÞ; ð17Þ
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where qnPM can in general be any scalar function of the
energy or the dynamical variables. In this ansatz, we
include a 4PN correction term ΔQ

4PN as explained below.
The other gauge we consider in this paper incorporates

PM corrections in the A potential and reads

ðĤeff;PS� Þ2 ¼ ð1 − 2uþ u2a2PM þ u3a3PM þ u4a4PM

þ ΔA
4PNÞ½1þ ð1 − 2uÞp2

r þ l2u2�; ð18Þ

which is meant to more closely resemble, in the circular-
orbit limit, the standard EOB gauge of Refs. [134,156,157],
which is often used in EOB waveform models for LIGO-
Virgo-KAGRA observations.
To determine the qnPM and anPM coefficients, we

calculate the scattering angle from the Hamiltonian. To
achieve this, we invert the Hamiltonian ĤEOBðl; r; prÞ ¼
Ēþ 1=ν to obtain prðĒ; l; rÞ, then evaluate the integral

χ ¼ −2
Z

∞

r0

∂prðĒ; l; rÞ
∂l

dr − π; ð19Þ

where r0 is the turning point obtained from the largest
root of the unperturbed (1PM) radial momentum

pð0Þ
r ðĒ; l; rÞ ¼ 0. To simplify evaluating this integral, we

assume that a canonical transformation has been performed
such that qnPM and anPM are functions only of the effective
energy Eeff, which is constant. However, since qnPM and
anPM themselves define Heff , their dependence on Eeff
should be understood perturbatively in the PM scheme.
When working up to 3PM order, that energy can be taken to
be the (1PM-accurate) Schwarzschild Hamiltonian ĤS (see
Refs. [23,142] for more details). However, at 4PM order,
we need to account for nonlinear effects by using the 2PM
effective energy, as explained in Appendix B.
Since the scattering angle is gauge invariant, matching χ

calculated from the EOB Hamiltonian to the PM-expanded
scattering angle in Eq. (10) enables us to solve for the
coefficients qnPMðγÞ and anPMðγÞ, where γ ≡ Eeff=μ. (See
Appendix B or the Supplemental Material [147] for the
expressions of these coefficients.).
We also complement the 4PM EOB Hamiltonians above

with the missing 4PN (5PM) piece. This is done by writing
an ansatz for Δ4PN, such that

Δ4PN ¼
X5
n¼2

αnunε5−n þ ðα4;lnu4εþ α5;lnu5Þ ln u

þ α4;ln εu4 ln ε; ð20Þ

where we use the PN expansion parameters u and
ε≡ γ2 − 1, each of 1PN order. Then, we perform a
canonical transformation and match the result to the elliptic
4PN Hamiltonian of Ref. [157]. Note that the ln ε term is
there to cancel a corresponding term that appears in the

4PM hyperbolic-orbit Hamiltonian. The coefficients in
Eq. (20) are written in Appendix B.
We summarize in Table I the different Hamiltonians

considered in this paper.

IV. BINDING ENERGY FOR CIRCULAR ORBITS

The 4PM part of the Hamiltonian in Eq. (11) is valid in
the large-eccentricity limit, which means it is not consistent
with the circular-orbit binding energy at 4PN and higher
orders. However, we show that the tail contribution to that
Hamiltonian has a small effect on the dynamics, and so we
use it to get an estimate for the 4PM contribution to the
binding energy.

A. PN-expanded binding energy

We start by comparing the PN-expanded binding energy
calculated from a bound-orbit Hamiltonian to the unbound
case.
In Appendix A, we compute the bound-orbit 6PN

Hamiltonian in isotropic coordinates, by canonically trans-
forming the EOB Hamiltonian of Refs. [149,150]. We
truncate that Hamiltonian at 4PM and calculate the binding
energy, which at 4PN reads

Ēiso;ell
4PNð4PMÞ ¼ Ē3PNðxÞ þ x5

�
11795

768
− ν

518

45
lnx

þ ν

�
428071π2

36864
−
7899659

34560
þ 1036 ln2

45

�

þ ν2
�
1435π2

576
−
122815

6912

�
−
5341ν3

3456
−

77ν4

62208

�
;

ð21Þ

TABLE I. Summary of the Hamiltonians considered in this
paper.

Hamiltonian Definition

HnPN PN-expanded Hamiltonian to Oðc−2nÞ
HnPM PM-expanded Hamiltonian to OðGnÞ
Hhyp

4PM þ ΔHell
4PMðnPNÞ 4PM hyperbolic-orbit Hamiltonian plus

a bound-orbit correction up to orders
nPN and 4PM

Hell;iso
nPNð4PMÞ PN-expanded Hamiltonian truncated at

OðG4Þ in isotropic coordinates, valid
for bound orbits

HEOB
nPN PN-EOB Hamiltonian in the gauge used

in Refs. [134,156,157]
HEOB;PS

… EOB Hamiltonian in Eq. (17), based on
the PS gauge [23,142]

HEOB;PS�
… EOB Hamiltonian in the gauge used

in Eq. (18)
HEOB;…

4PMþ4PN
4PM-EOB Hamiltonian (for hyperbolic
orbits) complemented with the
missing 4PN part (for bound orbits).
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where Ē3PNðxÞ is given by Eq. (232) of Ref. [12] and
x≡ ðMΩÞ2=3, with Ω being the orbital frequency. Note
that the 4PN part of this result is not gauge invariant but is
only valid for isotropic coordinates. The reason is that
PN-accurate coordinate transformations—for example,

to isotropic coordinates—in general span several PM
orders.
We find that the difference between the binding energy in

Eq. (21) and the energy computed from the hyperbolic-
orbit Hamiltonian (11) at 4PN is given by

Ēiso;hyp
4PNð4PMÞ − Ēiso;ell

4PNð4PMÞ

¼ νx5
�
37933

45
þ 1036γE

45
−
113847608 ln 2

45

−
1472499 ln 3

20
þ 13671875 ln 5

12

�

≃ 14.94νx5; ð22Þ

where we see that the disagreement is in the nonlogar-
ithmic, linear-in-ν coefficient of Eq. (21). That coefficient
is −112.96 in Ēiso;ell

4PNð4PMÞ and is −98.01 in Ēiso;hyp
4PNð4PMÞ, with

the difference being 14.94. (Note that the ln x term in
Eq. (21) is the same for bound and unbound orbits, as was
shown to all PN orders in Ref. [89].)
In Fig. 2, we plot the relative difference in the binding

energy at different PN orders, and for mass ratios q ¼ 1
and q ¼ 10, finding disagreement ≲2%, which justifies

FIG. 2. Relative difference in the circular-orbit binding energy,
computed analytically from an elliptic versus a hyperbolic-orbit
Hamiltonian.

FIG. 3. Binding energy versus orbital frequency for the PM-expanded Hamiltonians compared to the NR prediction for a nonspinning
equal-mass (left panel) and mass-ratio q ¼ 10 (right panel) binary black hole. The top axis gives the number of GW cycles before
merger, which is twice the number of orbits. The lower panels show the relative difference of the 4PM curves with NR.
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applying the hyperbolic 4PM result to bound orbits as we
do below, since we find that the disagreement with NR is
larger than 2%.

B. Binding energy from PM-expanded Hamiltonians

To compute the binding energy for circular orbits from
the PM-expanded Hamiltonian in Eq. (11), we do so
numerically by setting pr ¼ 0 in the Hamiltonian and
solving _pr ¼ −∂Ĥ=∂r ¼ 0 for the angular momentum
l at different orbital separations. We then plot Ē ¼
ĤnPM − 1=ν versus the orbital frequency MΩ ¼ ∂Ĥ=∂l
(see Ref. [142] for more details).
In Fig. 3, we compare the binding energy with NR data

that were extracted in Ref. [158] from numerical simu-
lations produced by the Simulating eXtreme Spacetimes
(SXS) Collaboration [159,160]. In particular, we use the
simulations with SXS ID 0180 for mass ratio q ¼ 1 and ID
0303 for q ¼ 10, for which the numerical error is too small
to show in the figure.
We see that the 4PM Hamiltonian gives much better

agreement with NR toward merger than Hamiltonians
computed at lower PM orders. This is because the 4PM
Hamiltonian contains the full 3PN information, which is
known to give considerably better results than 2PN.

The improvement at 4PM is even more significant for
mass ratio q ¼ 10 than q ¼ 1, because the 3PN coefficient
in the binding energy increases significantly with increas-
ing mass ratio. In addition, it seems that Hhyp

4PM is very close
to what a bound-orbit 4PM Hamiltonian would be, as
evidenced by how close the curves Hhyp

4PM þ ΔHell
4PMðnPNÞ,

computed at 4PN, 5PN, and 6PN orders, are to Hhyp
4PM.

For comparison, the figure also shows the 3PN EOB
Hamiltonian in the gauge of Refs. [134,156,157], which
gives better agreement with NR (also when considering
different mass ratios) because it includes the exact test-
body limit, and the associated resummation of the PN
results. In the plots, we stop the numerical evaluation of the
energy either at the innermost-stable circular orbit (ISCO)
or at two GW cycles (one orbit) before merger. We note that
the EOB results on the figures do not contain any NR
information, and the g00 effective metric contains PN terms
in a Taylor-expanded form.

C. Binding energy from PM-EOB Hamiltonians

Similarly, computing the binding energy from the
PM-EOB Hamiltonians leads to Fig. 4 for q ¼ 1 and
Fig. 5 for q ¼ 10. In both figures, we plot the binding
energy at each PM order and complement 4PM with 4PN

FIG. 4. Binding energy versus orbital frequency for the PM-EOB Hamiltonians, compared to the NR prediction for q ¼ 1. The left
panels contain results for the EOB Hamiltonian in the PS gauge in Eq. (17), while the right panels are for the PS� gauge in Eq. (18).
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information. We stop the numerical evaluation either at the
ISCO or at one GW cycle before merger.
From the figures, we observe the following:
(i) The 4PM order provides a significant improvement

over the lower orders, even though the PM Hamil-
tonian is for hyperbolic orbits.

(ii) The PS� gauge performs better than the PS gauge,
for both equal and unequal masses. That difference
is due to higher-order terms resulting from the
resummation of the Hamiltonian coefficients. We
expect that the more PN/PM orders are included the
closer different gauges would be to each other.

(iii) Complementing 4PM with the missing 4PN infor-
mation for bound orbits gives results for the
PS� gauge that are comparable to the standard
PN-EOB gauge.

(iv) Using 4PN-expanded potentials in HEOB;..
4PN gives

almost the same result as the 4PMþ 4PN Hamil-
tonian, although for the PS� gauge, the 4PMþ 4PN
Hamiltonian is slightly better for equal masses than
its 4PN expansion.

V. SCATTERING ANGLE COMPARISONWITH NR

Since the 4PM part of the radial action in Eq. (9) is valid
for hyperbolic orbits, a better comparison with NR is
through the scattering angle.
NR simulations for the scattering angle were reported in

Ref. [136] for equal masses q ¼ 1 and initial linear
momentum jpj ¼ 0.11456439M. The initial energy in these
simulations is approximately ENR

in ≃ 1.02259 (correspond-
ing to velocity v ≃ 0.4), and the initial angular momentum
LNR
in is proportional to the impact parameter bNR, which

ranges between 9M and 16M. The NR error in the
scattering angle is ∼1–2 deg.
Reference [136] also reported the energy and angular

momentum losses due to the emitted GWs, which can be
used to account for the radiative contribution to the
scattering angle. It was proven in Ref. [128] that when
working to linear order in RR the radiative contribution to
the total scattering angle is half the difference of the
conservative scattering angle evaluated as a function of
the outgoing and incoming states, i.e.,

χrad ¼ 1

2
½χconsðEout; LoutÞ − χconsðEin; LinÞ�; ð23Þ

which means that the total scattering angle is given by

χtotðEin; LinÞ≡ χconsðEin; LinÞ þ χradðEin; LinÞ

¼ 1

2
½χconsðEin; LinÞ þ χconsðEout; LoutÞ�; ð24Þ

which can be written as

χtotðEin; LinÞ ¼ χconsðEavg; LavgÞ; ð25Þ

where

Eavg ≡ Ein þ Eout

2
; Lavg ≡ Lin þ Lout

2
: ð26Þ

We emphasize that Eq. (25) holds when neglecting con-
tributions quadratic in RR, which start at 5PN order.

FIG. 5. Similar to Fig. 4 but for mass ratio q ¼ 10, and we only show the relative difference since the EOB curves are closer to the NR
curve than for equal masses. All curves end at the ISCO.
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A. PM-expanded scattering angle

In the left panel of Fig. 6, we plot the conservative PM-
expanded scattering angle, calculated from Eq. (10), for the
initial values of energy and angular momentum used in the
NR simulations, which are written in Table I of Ref. [136].
We see that each PM order gives better agreement with NR
than the lower orders, with overall good agreement at 4PM,
especially considering that these scattering angles are rather
large while the PM expansion is an approximation away
from a straight line.
We also plot the 3PN expansion of the 4PM scat-

tering angle, finding that the difference with the full
4PM angle is only ∼:1 deg. This is because the initial
velocity is v ≃ 0.4, for which a PN expansion provides
a good approximation. Higher velocities would lead to
larger differences between the PM scattering angle and its
PN expansion. Furthermore, the figure shows the 3PM
conservative scattering angle plus the leading order (3PM)
radiative contribution, which is given by Eq. (5.7) of
Ref. [76]; however, the effect of that radiative contribution
is so small that it is almost the same as the conservative
3PM curve.
In the right panel of Fig. 6, we plot the scattering angle

taking into account the effect of RR by modifying the initial
conditions, as explained above in Eq. (25). We see that all
curves are shifted closer to the NR curve, but their order
remains the same.

B. Scattering angle from PM-EOB Hamiltonians

To compute the scattering angle from the EOB
Hamiltonians, we start with an initial azimuthal angle

ϕin ¼ 0, evolve the equations of motion without RR force,
and then read off the final angle ϕout, leading to the
scattering angle χEOB ¼ ϕout − ϕin − π. We start the evo-
lution with initial separation rin ¼ 104 and initial angular
momentum LNR

in and solve ENR
in ¼ HEOB for the initial pr.

In Fig. 7, we plot the relative difference in the
conservative scattering angle between EOB and NR,
finding much smaller difference than the PM-expanded
angles in Fig. 6. Similarly, in Fig. 8, we plot the same
quantity but using initial conditions that account for the NR
energy and angular momentum losses, as in Eq. (25). For
comparison, both figures show the scattering angle calcu-
lated from a 3PN EOB Hamiltonian in the gauge of
Refs. [134,156,157], which is valid for arbitrary trajectories
since 3PN is purely local in time (no tails contributions).
From Fig. 7, we see that 4PM performs better than 3PM

for the PS gauge, but 3PM is better for the PS� gauge.
However, when including the NR RR in Fig. 8, 4PM
becomes closer to NR than 3PM for both gauges. We also
see that the PS� gauge gives better agreement with NR than
the PS gauge.
For bound orbits, we saw in the previous section that PN

expanding the PM Hamiltonians gave almost the same
results. For scattering encounters, on the other hand, we see
from both Figs. 7 and 8 that the 4PM Hamiltonians lead to
better results than the 3PN expansion of their potentials, for
both EOB gauges and whether or not RR is included.

C. 4PN EOB Hamiltonian for hyperbolic orbits

The 4PN EOB Hamiltonian derived in Ref. [157]
included the tail part in a small-eccentricity expansion

FIG. 6. Comparison of the PM-expanded scattering angle with NR. The left panel shows the conservative scattering angle, except for
the χ3PM þ χrad3PM. curve that also includes the leading-order (3PM) radiative contribution. The right panel incorporates the effect of the
radiative losses from the NR simulations using Eq. (25).
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and is thus valid for bound orbits. The 4PN tail contribution
for hyperbolic orbits was derived in Ref. [161], analytically
at leading order in the large-eccentricity expansion, and
numerically for eccentricity ≥ 1. However, it is not
straightforward to translate the all-orders-in-eccentricity
result of Ref. [161] to an EOB Hamiltonian in the form
of Eq. (15). Therefore, here, we compute a hyperbolic-orbit
4PN EOB Hamiltonian at next-to-leading order in the
large-eccentricity expansion. We use that Hamiltonian to
compare the effect of using an elliptic versus a hyperbolic-
orbit Hamiltonian on the scattering angle.

We start by writing an effective Hamiltonian of the form

Ĥ4PN;hyp
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ahyp

�
1þ p2

r

Bhyp þ l2u2 þQhyp

�s
; ð27Þ

ðBhypÞ−1 ≡ AhypD̄hyp; ð28Þ

in which the potentials contain local and nonlocal-in-time
contributions, starting at 4PN order. The local part is valid
for generic motion and is given by Eqs. (4.4), (9.6), and

FIG. 7. Comparison with NR of the conservative scattering angle computed from the EOB Hamiltonians in the PS gauge (left panel)
and the PS� gauge (right panel).

FIG. 8. Scattering angle calculated from the EOB Hamiltonians in the PS gauge (left panel) and the PS� gauge (right panel) while
incorporating radiative effects from NR through the initial conditions as in Eq. (25).
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(9.7) of Ref. [148], which we follow in how the local and
nonlocal parts are split.
We then write an ansatz for the potentials with unknown

coefficients for the nonlocal contribution, that is,

Ahyp ¼ 1 − 2uþ 2νu3 þ
�
94

3
−
41

32
π2
�
νu4

þ
��

41π2

32
−
221

6

�
ν2 þ

�
2275π2

512
−
4237

60

�
ν

�
u5

þ ðanloc5 þ anloc5;ln u ln uþ anloc5;lnp lnp
2Þu5; ð29Þ

D̄hyp ¼ 1þ 6νu2 þ ð52ν − 6ν2Þu3

þ
��

123π2

16
− 260

�
ν2 þ

�
1679

9
−
23761π2

1536

�
ν

�
u4

þ ðdnloc4 þ dnloc4;ln u ln uþ dnloc4;lnp lnp
2Þu4; ð30Þ

Qhyp ¼ 2νð4 − 3νÞu2p4
r þ ð10ν3 − 83ν2 þ 20νÞu3p4

r

þ
�
6ν3 −

27ν2

5
−
9ν

5

�
u2p6

r : ð31Þ

In this ansatz, the 4PM nonlocal coefficients in D̄hyp are at
leading order in the large-eccentricity expansion, while
those at 5PM in Ahyp are at next-to-leading order, with no
nonlocal contributions to Qhyp. We also assume in the
ansatz a dependence on lnp2 because it simplifies the
result, but other possible choices include lnðl2u2Þ or lnEN,
with EN being the Newtonian energy.
To fix the unknown coefficients in the ansatz, we

calculate the scattering angle from the Hamiltonian using
Eq. (19), then match the result to the total 5PM (4PN)
scattering angle, which schematically reads

χ4PN
2

¼ χ1
L
þ χ2
L2

þ χ3
L3

þ χloc4 þ χnloc4

L4
þ χloc5 þ χnloc5

L5
; ð32Þ

where the local χn coefficients are given by Eq. (10.1) of
Ref. [148] and the nonlocal part is given by Eq. (6.11) of
Ref. [149]. After matching the scattering angle and solving
for the Hamiltonian coefficients, we obtain the solution

anloc5 ¼ ν

�
2752

15
ln 2 −

5464

75

�
;

anloc5;lnp ¼ 64ν

5
; anloc5;ln u ¼ 0;

dnloc4 ¼ ν

�
168 −

1184

15
ln 2

�
;

dnloc4;lnp ¼ 592ν

15
; dnloc4;ln u ¼ 0; ð33Þ

that is, with no dependence on ln u.

In Fig. 9, we compare to NR the scattering angle com-
puted from the elliptic-orbit Hamiltonian of Ref. [157] and
the angle computed from the hyperbolic-orbit Hamiltonian
in Eq. (27). We see that, unexpectedly, the elliptic-orbit
Hamiltonian gives better agreement with NR. However,
that result depends on the particular resummation of the
potentials.
To illustrate this, we consider a simple factorization of

the A potential given by

Ahyp;fact ¼ ð1 − 2uÞ
�
1þ 2νu3 þ

�
106

3
−
41π2

32

�
νu4

þ
��

963π2

512
−
21841

300
þ 2752 ln 2

15

�
ν

þ
�
41π2

32
−
221

6

�
ν2 þ 64

5
ν lnp2

�
u5
�
; ð34Þ

which agrees with Eq. (29) when Taylor expanded.
Similarly, the factorized version of the elliptic-orbits A
potential in Eq. (8.1) of Ref. [157] reads

Aell;fact ¼ ð1 − 2uÞ
�
1þ 2νu3 þ

�
106

3
−
41π2

32

�
νu4

þ
��

1

20
þ 963π2

512
þ 128γE

5
þ 256 ln 2

5

�
ν

þ
�
41π2

32
−
221

6

�
ν2 þ 64

5
ν ln u

�
u5
�
: ð35Þ

Comparing the scattering angle computed fromHamiltonians
with these factorized potentials (dashed lines in Fig. 9),we see

FIG. 9. Scattering angle calculated from 4PN EOB Hamilto-
nians for elliptic and hyperbolic orbits. The solid lines are for
Hamiltonians with Taylor-expanded potentials, while the dashed
lines are for Hamiltonians with factorized potentials.
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that the hyperbolic-orbit Hamiltonian now gives better agree-
ment with NR than the one for elliptic orbits.
These results show that there can be differences between

elliptic and hyperbolic-orbit Hamiltonians when applied to
scattering encounters, but which performs better depends
on the particular gauge of the Hamiltonian and the
resummations of its coefficients.

VI. CONCLUSIONS

In this paper, we investigated the conservative 4PM
Hamiltonian with nonlocal-in-time (tail) effects for hyper-
bolic orbits, which was derived in Refs. [34,35,44,45], by
comparing it to NR simulations for the binding energy and
scattering angle. We found an improvement over lower PM
orders, which was expected since 4PM order contains the
full 3PN information. In addition, even though the nonlocal
part of the 4PMHamiltonian is valid for hyperbolic motion,
we showed that it performs well for bound orbits and that
the hyperbolic piece has a small effect on the dynamics.
This was demonstrated by comparing the PN-expanded
binding energy for bound versus unbound orbits (see
Fig. 2) and by complementing the 4PM Hamiltonian with
bound-orbit corrections at 4PN, 5PN, and 6PN orders
(see Fig. 3).
For a first study, we incorporated the 4PM information in

two EOB Hamiltonians, given by Eqs. (17) and (18). (The
EOB Hamiltonians are not calibrated to NR simulations
and do not use resummations of the effective-metric
components.) For bound orbits, we found that the PM
Hamiltonians gave similar results to the same Hamiltonians
with PN-expanded potentials. However, for the scattering
angle, the PM-EOB Hamiltonians showed better agreement
with NR than PN-EOB Hamiltonians in the same gauge
(see Figs. 7 and 8).
In particular, we found that including 4PM results in

EOB Hamiltonians improved the disagreement with the
NR binding energy from about 40%, for equal masses at
two GW cycles before merger, to about 10% for the PS
gauge and 3% for the PS� gauge (see Figs. 3 and 4).
These results have been obtained for the conservative
dynamics but will change, and likely improve, once RR
is included and the equations of motion are evolved for
an inspiraling trajectory. For the scattering angle, the
differences with NR were 8% and 2%, respectively, for
the two EOB gauges, at impact parameter b ¼ 11GM
and initial relative velocity v ≃ 0.4 (see Figs. 6 and 8).
Our comparisons of the scattering angle also highlighted
the importance of including RR effects even when
comparing conservative results with NR. For example,
the conclusions one draws would be different between
Fig. 7, which is purely conservative, and Fig. 8, which
includes the NR radiative losses.
Furthermore, we worked out a 4PN EOB Hamiltonian

for hyperbolic orbits, which extends the elliptic-orbit
Hamiltonian of Ref. [157]. We compared the scattering

angles of the two Hamiltonians to NR and showed that the
Hamiltonian gauge and the resummations of its coefficients
can affect the agreement with NR.
The only NR simulations currently available in the

literature for the scattering angle [136] are for equal masses
and for a specific value of the energy corresponding to
v ≃ 0.4. It would be interesting to see how PM and PN
information compare with NR for unequal masses and
higher velocities. Such studies would enable the construc-
tion of accurate waveform models over the whole binary
parameters space including large eccentricities and large
velocities.
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APPENDIX A: PN HAMILTONIAN FOR BOUND
ORBITS IN ISOTROPIC GAUGE

In this Appendix, we canonically transform the
6PN-EOB Hamiltonian of Refs. [149,150] to the isotropic
gauge, in which the Hamiltonian only depends on r and p2

with no explicit dependence on the angular momentum.
We start by writing an ansatz with unknown coefficients

for the Hamiltonian

Ĥiso
6PN ¼ 1

ν
þ p2

2
−
1

r
þ
X7
i¼2

Xi

j¼0

αij
p2ði−jÞ

rj

þ
X7
i¼5

Xi

j¼1

αij
p2ði−jÞ

rj
ln r; ðA1Þ

where the 0PM coefficients are given by the PN expan-
sion of

Hiso
0PM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2

q
: ðA2Þ

Then, we write an ansatz for the generating function G,
perform a canonical transformation using Poisson brackets,
and match to the 6PN EOB Hamiltonian, i.e.,

HEOB
6PN ¼ Hiso

6PN þ fG; Hiso
6PNg þ

1

2!
fG; fG; Hiso

6PNgg

þ 1

3!
fG; fG; fG; Hiso

6PNggg þ…; ðA3Þ

where each bracket introduces a factor of 1=c2.
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The result for the full 6PN Hamiltonian, which contains six coefficients that have not yet been determined in
Refs. [149,150], is provided in the Supplemental Material. Here, we write that Hamiltonian truncated at OðG4Þ,

Ĥell;iso
4PNð4PMÞ ¼ Ĥiso

3PN þ
�

7

256
þ 63ν4

256
−
105ν3

128
þ 189ν2

256
−
63ν

256

�
p10

þGp8

r

�
45

128
− ν4 − 3ν3 þ 51ν2

8
þ ν

�
−
294051

2800
þ 10834496 ln2

45
þ 6591861 ln3

700
−
27734375 ln5

252

��

þG2p6

r2

�
13

8
þ 35ν4

32
þ 337ν3

16
þ 453ν2

32
þ ν

�
9062513

16800
−
21212984

15
ln2þ 1296484375 ln5

2016
−
282031389 ln3

5600

��

þG3p4

r3

�
105

32
−
487ν3

16
−
2589ν2

32
þ ν

�
−
2872367

2400
þ 233388968 ln2

75
þ 16351713 ln3

160
−
405859375 ln5

288

��

þG4p2

r4

�
105

32
−
5ν4

16
þ 27ν3

2
þ
�
2957

48
−
41π2

64

�
ν2 þ ν

�
−
74 ln r
15

þ 4086409

3600
−
29665π2

12288
þ 148γE

15

−
680106004

225
ln2þ 196484375 ln5

144
−
37122381 ln3

400

��
; ðA4Þ

Ĥell;iso
5PNð4PMÞ ¼ Ĥell;iso

4PNð4PMÞ þ
�
−

21

1024
þ 231ν5

1024
−
1155ν4

1024
þ 1617ν3

1024
−
231ν2

256
þ 231ν

1024

�
p12

þGp10

r

�
−

77

256
− ν5 −

5ν4

2
þ 95ν3

8
þ ν2

�
−
18236

35
þ 10834496 ln 2

9
þ 6591861 ln 3

140
−
138671875 ln 5

252

�

þ ν

�
1212079

22400
−
5417248

45
ln 2þ 27734375 ln 5

504
−
6591861 ln 3

1400

��

þG2p8

r2

�
−
425

256
þ 315ν5

256
þ 7107ν4

256
þ 2625ν3

256

þ ν2
�
48228101

13440
−
2125906693

378
ln 2þ 242787134673 ln 3

286720
þ 3671798828125 ln 5

1548288
−
96889010407 ln 7

221184

�

þ ν

�
82224409

53760
−
249145033

60
ln 2þ 12166079921875 ln 5

6193152
þ 96889010407 ln 7

884736
−
103980982797 ln 3

229376

��

þG3p6

r3

�
−
273

64
−
6607ν4

128
−
1527ν3

8
þ ν2

�
−
5713223

560
þ 105895904239 ln 2

13230
þ 2588320706587 ln 7

1105920

−
10808816520303 ln 3

2007040
−
28119126171875 ln 5

10838016

�
þ ν

�
2922687496621 ln 2

132300
−
4523914911

627200

þ 13469503195629 ln 3
5734400

−
2588320706587 ln 7

4423680
−
150369012359375 ln 5

14450688

��

þG4p4

r4

�
−
165

32
−
35ν5

64
þ 2055ν4

64
þ
�
56249

192
−
41π2

64

�
ν3 þ ν2

�
72487381

5040
−
148 ln r

15
−
27697π2

6144
þ 296γE

15

−
9735062548 ln 2

33075
þ 14337306321183 ln 3

1254400
−
650540498447 ln 7

138240

−
2701666015625 ln 5

1354752

�
þ ν

�
−
107 ln r
140

−
10889π2

4096
þ 976047931

78400
þ 107γE

70
−
526259559517 ln 2

13230

þ 33874913921875 ln 5
1806336

þ 650540498447 ln 7
552960

−
641012819877 ln 3

143360

��
; ðA5Þ
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Ĥell;iso
6PNð4PMÞ ¼ Ĥell;iso

5PNð4PMÞ þ
�

33

2048
þ429ν6

2048
−
3003ν5

2048
þ3003ν4

1024
−
1287ν3

512
þ2145ν2

2048
−
429ν

2048

�
p14

þGp12

r

�
273

1024
−ν6−

3ν5

2
þ75ν4

4
þν3

�
−
218307

140
þ10834496ln2

3
þ19775583ln3

140
−
138671875 ln5

84

�

þν2
�
10614711

22400
−
1

5
5417248ln2þ27734375ln5

56
−
59326749ln3

1400

�

þν

�
−
1860381

44800
þ1354312ln2

15
þ19775583ln3

5600
−
27734375ln5

672

��

þG2p10

r2

�
441

256
þ693ν6

512
þ17175ν5

512
−
2505ν4

256

þν3
�
1752882443

134400
−
50772177511 ln2

3780
þ15140243287719 ln3

2867200
þ15746212109375 ln5

3096576
−
1065779114477 ln7

442368

�

þν2
�
930216823

107520
−
188966394467 ln2

7560
þ147239183828125ln5

12386304
þ484445052035 ln7

589824
−
7125985899279ln3

2293760

�

þν

�
−
29016839

35840
þ154094423ln2

72
þ527065116993 ln3

2293760
−
96889010407 ln7

1769472
−
12533579921875ln5

12386304

��

þG3p8

r3

�
2805

512
−
19425ν5

256
−
168131ν4

512
þν3

�
−
5539742599

120960
þ38790406370519ln2

1786050
þ1009279694921875ln5

877879296

þ453841966033589 ln7
89579520

−
244047465883413ln3

10035200

�
þν2

�
−
180308862367

2822400
þ116606471572979ln2

1071630

þ3680972377512689ln7
358318080

−
448065058976289ln3

40140800
−
181279182489765625ln5

3511517184

�
þν

�
−
3456473588783

304819200

þ369057536315537 ln2
9185400

þ607401830370627ln3
80281600

−
1267373911442149ln7

429981696
−
44240036362654375ln5

2341011456

��

þG4p6

r4

�
2275

256
−
105ν6

128
þ1855ν5

32
þ
�
146987

192
−
41π2

64

�
ν4þν3

�
−
74lnr
5

−
25729π2

4096
þ1701353519

20160
þ148γE

5

−
2348423027149 ln2

51030
þ8674336284777ln3

286720
þ250707235071713ln7

17915904
−
2232609748046875ln5

125411328

�

þν2
�
197 lnr
140

−
197γE
70

−
104939π2

16384
þ2714159093323

16934400
−
126132398166437ln2

1071630
þ763693932388383 ln3

8028160

þ204623745011171875ln5
3511517184

−
4304025048065071ln7

71663616

�
þν

�
−
5827lnr
1008

−
2337139π2

25165824
þ3571766093993

76204800

þ5827γE
504

−
616925145960877ln2

3214890
þ52541416380715625ln5

585252864
þ1554400159532395ln7

107495424

−
144912376553769ln3

4014080

��
: ðA6Þ

This Hamiltonian can be used to check the PN expansion
of a bound-orbit isotropic-gauge 4PM Hamiltonian, once
the latter is computed in the future. Currently, it only agrees
with the hyperbolic-orbit Hamiltonian of Ref. [34] at
3PN order.
In Sec. IV, we complement the 4PM Hamiltonian Hhyp

4PM
with bound-orbit PN corrections ΔHell

4PMðnPNÞ to get an

estimate for its effect on the circular-orbit binding energy.
We obtain those bound-orbit corrections using

ΔHell
4PMðnPNÞ ¼ Hell;iso

nPNð4PMÞ −Hhyp
4PMjnPN; ðA7Þ

i.e., we subtract the nPN expansion of Hhyp
4PM from the

isotropic-coordinate Hamiltonian in Eq. (A6).
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APPENDIX B: COEFFICIENTS OF THE
4PM-EOB HAMILTONIANS

In this Appendix, we list the coefficients of the PM-EOB
Hamiltonians, in the PS gauge of Eq. (17) and the PS�
gauge of Eq. (18).

1. Hamiltonian in the PS gauge

When matching the scattering angle calculated from the
EOB Hamiltonians to the PM-expanded scattering angle in
Eq. (10), we solve for the coefficients qnPMðγÞ as functions
of the effective energy.
The 2PM coefficient was derived in Ref. [23], and it

reads

q2PMðγÞ ¼
3ð5γ2 − 1ÞðΓ − 1Þ

2Γ
: ðB1Þ

When working up to 3PM order, as in Ref. [142], it was
enough to replace γ by the Schwarzschild Hamiltonian ĤS.
However, at 4PM order, we need to replace γ by the 2PM

effective energy, which we take to be the 2PM expansion
of Eq. (17), i.e.,

γ → ĤS þ
q2PMðĤSÞ

2ĤS
u2: ðB2Þ

In the 3PM and 4PM coefficients, we simply replace γ
by ĤS.
The 3PM coefficient is given by Eq. (2.17) of Ref. [142],

which reads

q3PMðγÞ ¼
8ð4γ4 − 12γ2 − 3Þνffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

Γ2
sinh−1

� ffiffiffiffiffiffiffiffiffiffi
γ − 1

p
ffiffiffi
2

p
�

þ 1

6ðγ2 − 1ÞΓ2
½9ð10γ4 − 7γ2 þ 1ÞΓ

− 9ð10γ4 − 7γ2 þ 1ÞΓ2

þ 8γð14γ4 þ 11γ2 − 25Þν�: ðB3Þ
The 4PM coefficient we obtain reads

Γ3ε

ν
q4PMðγÞ¼

7

8
ð380γ3þ380γ2þ169γþ169ÞE

�
γ−1

γþ1

�
2

þ
�
300γ2þ2095γ

4
þ417

2

�
K

�
γ−1

γþ1

�
2

−
�
300γ3þ665γ2þ2929γ

4
þ1183

4

�
E
�
γ−1

γþ1

�
K
�
γ−1

γþ1

�
−
8ð12γ6−40γ4þ3γ2þ3ÞΓ lnð ffiffiffiffiffiffiffiffiffiffi

γ−1
p þ ffiffiffiffiffiffiffiffiffiffi

γþ1
p Þffiffiffi

ε
p

−
γ2ð3−2γ2Þ2ð35γ6−65γ4þ41γ2−11Þln2ðγþ ffiffiffiffiffiffiffiffiffiffi

γ−1
p ffiffiffiffiffiffiffiffiffiffi

γþ1
p Þ

8ε3
þ2γð75γ8−215γ6−143γ4−569γ2þ852Þ lnγ

3ε

þ1

4
ð−25γ8þ125γ6þ180γ5−49γ4þ48γ3−9γ2−228γ−42Þln2ðγþ1Þþðγ2−1Þ lnε

12ε
½210γ6−552γ5

þ3γ4ð70ε ln2þ113Þþ24γ3ð15ε ln2−38Þþ γ2ð3148−900ε ln2Þþ24γð19ε ln2−139Þ−30ε ln2þ1151�

þ lnðγþ1Þ lnε1
2
ð−35γ6−60γ5þ185γ4−16γ3−145γ2þ76γ−5Þ− lnðγþ1Þðγ

2−1Þ
6ε

½150γ7−75γ6ε ln2

−832γ5þ18γ4ð5ε ln2−68Þþ2γ3ð90ε ln2−739Þþ γ2ð1053ε ln2−272Þþ12γð19ε ln2−420Þ

þ4ð39ε ln2−76Þ�þ lnðγþ
ffiffiffiffiffiffiffiffiffiffi
γ−1

p ffiffiffiffiffiffiffiffiffiffi
γþ1

p
Þ
�
γ lnε

4ε3=2
ð70γ8−235γ6þ277γ4−145γ2þ33Þ

−
4γ lnðγþ1Þ

ε3=2
ð30γ6−71γ4þ35γ2þ6Þ− γð2γ4−5γ2þ3Þ

12ε5=2
ð210γ6−720γ5þ3γ4ð70ε ln2þ113Þ

−576γ3þ γ2ð3148−900ε ln2Þ−3504γ−30ε ln2þ1151Þ
�
þ 2γffiffiffi

ε
p Li2

�
−

ffiffiffiffiffiffiffiffiffiffi
γ−1

γþ1

s �
ð30γ5−60γ4−7γ3þ82γ2

−57γþ12Þþð−25γ8þ55γ6þ81γ4−91γ2−20ÞLi2
�
1− γ

γþ1

�
−
1

2
ðγþ1Þ2ð25γ6−50γ5þ20γ4þ70γ3− γ2

−52γ−12ÞLi2
�
1− γ

2

�
−
2γLi2ð

ffiffiffiffiffiffi
γ−1
γþ1

q
Þffiffiffi

ε
p ð30γ5−60γ4−7γ3þ82γ2−57γþ12Þ; ðB4Þ

where we recall that ε≡ γ2 − 1.
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The bound-orbit 4PN correction term ΔQ
4PN in Eq. (17) is given by

ΔQ
4PNðĤS; rÞ ¼

ðĤ2
S − 1Þ3ν
r2

�
−
1027

12
−
147432

5
ln 2þ 1399437 ln 3

160
þ 1953125 ln 5

288

�

þ ðĤ2
S − 1Þ2ν
r3

�
−
78917

300
−
14099512

225
ln 2þ 14336271 ln 3

800
þ 4296875 ln 5

288

�

þ ðĤ2
S − 1Þν
r4

�
296γE
15

−
27139

75
−
9766576

225
ln 2þ 1182681 ln 3

100
þ 390625 ln 5

36

�
−
148ðĤ2

S − 1Þ
15r4

ν ln r

þ 1

r5

�
ν

�
136γE
3

−
34499

1800
−
29917π2

6144
−
254936

25
ln 2þ 1061181 ln 3

400
þ 390625 ln 5

144

�
þ 9ν3

4

þ
�
205π2

64
−
2387

24

�
ν2
�
−

68

3r5
ν ln r −

148ðĤ2
S − 1Þν

15r4
lnðĤ2

S − 1Þ: ðB5Þ

2. Hamiltonian in the PS� gauge

For the EOB Hamiltonian in the gauge in Eq. (18), the
2PM coefficient is given by

a2PMðγÞ ¼
3ð5γ2 − 1ÞðΓ − 1Þ

2Γγ2
; ðB6Þ

and we replace γ by the 2PM-expanded effective
Hamiltonian, i.e.,

γ → ĤS þ
a2PMðĤSÞ

2ĤS
ð1þ p2

r þ l2u2Þu2: ðB7Þ

The 3PM coefficient is given by

a3PMðγÞ ¼
q3PMðγÞ

γ2
−
6ð5γ2 − 1ÞðΓ − 1Þ

Γγ2
; ðB8Þ

where we replace γ by ĤS. Similarly, for the 4PM
coefficient, we obtain

a4PMðγÞ ¼
q4PMðγÞ

γ2
þ 1

12γ4Γ3ε
f9ð195γ6 − 209γ4 þ 49γ2 − 3ÞΓ3 − 18ð135γ6 − 157γ4 þ 41γ2 − 3ÞΓ2

þ γ2ν ln2½75γ8 ln2− 300γ7 þ 45γ6 ln2þ 4γ5ð416þ 45 ln2Þ− 3γ4ð691 ln2− 816Þ þ 4γ3ð739þ 12 ln2Þ
þ γ2ð544þ 1767 ln2Þ− 12γð19 ln2− 840Þ þ 608þ 186 ln2�− Γ½896γ7ν− 3γ6ð256 ffiffiffi

ε
p

ν ln2þ 225Þ þ 704γ5ν

þ 9γ4ð256 ffiffiffi
ε

p
ν ln2þ 105Þ− 1600γ3νþ 9γ2ð64 ffiffiffi

ε
p

ν ln2− 33Þ þ 27� þ 4γ2ν ln

�
γþ 1

2

�
½152− 75γ7 þ 105γ6 ln2

þ 4γ5ð104þ 45 ln2Þ þ γ4ð612− 555 ln2Þ þ γ3ð739þ 48 ln2Þ þ γ2ð136þ 435 ln2Þ þ γð2520− 228 ln2Þ

þ 15 ln2� þ 3γ2ð25γ6 − 100γ4 − 180γ3 − 51γ2 − 228γ − 42Þεν ln2ðγþ 1Þ− 3γ2ν ln2
�
γþ 1

2

�
½25γ8

− 125γ6 − 180γ5 þ 49γ4 − 48γ3 þ 9γ2 þ 228γþ 42� þ 384γ2ð−4γ4 þ 12γ2 þ 3ÞΓ ffiffiffi
ε

p
ν lnð

ffiffiffiffiffiffiffiffiffiffi
γ − 1

p
þ

ffiffiffiffiffiffiffiffiffiffi
γþ 1

p
Þ

− 2γ2ν lnðγþ 1Þ½75γ8 ln2− 150γ7 − 165γ6 ln2þ γ5ð832− 180 ln2Þ− 9γ4ð117 ln2− 2ð68þ 5 ln2ÞÞ
þ γ3ð1478− 48 ln2Þ þ γ2ð272þ 897 ln2Þ þ 12γð420þ 19 ln2Þ þ 4ð76þ 39 ln2Þ�g: ðB9Þ

The bound-orbit 4PN correction term ΔA
4PN in Eq. (18) is given by

ΔA
4PNðĤS; rÞ ¼ ΔQ

4PNðĤS; rÞ þ u5
��

640

3
−
41π2

8

�
ν − 14ν2

�
: ðB10Þ
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