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Motivated by capturing putative quantum effects at the horizon scale, we model the black hole horizon as
a membrane with fluctuations following a Gaussian profile. By extending the membrane paradigm at the
semiclassical level, we show that the quantum nature of the black hole horizon implies partially reflective
boundary conditions and a frequency-dependent reflectivity. This generically results into a modified
quasinormal mode spectrum and the existence of echoes in the postmerger signal. On a similar note, we
derive the horizon boundary condition for a braneworld black hole that could originate from quantum
corrections on the brane. This scenario also leads to a modified gravitational-wave ringdown. We discuss
general implications of these findings for scenarios predicting quantum corrections at the horizon scale.
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I. INTRODUCTION

According to the standard “no drama” scenario, nothing
unusual should happen when an object falls through the
event horizon of a classical black hole (BH), since locally
the horizon does not represent any special region of
spacetime. However, this picture might lead to contra-
dictions when accounting for quantum effects, as dramati-
cally put forward by the information loss paradox [1–5]. In
the attempts to solve these problems, the BH horizon
acquires a special role as it sets the scale in which quantum
effects might become important regardless of the curvature
scale of the object [2,6–15]. If this is the case, astrophysical
BHs might provide a unique portal to quantum gravity
phenomenology [16–23].
Providing a concrete model for the quantum structure of

the horizon is challenging and often based on vague
proposals (see [24,25] for some proposals to include
quantum effects at the horizon). In this work, in an attempt
to quantify the effect of quantum structures near the
horizon, we model the quantum properties of BHs in
two complementary ways.

First, we make use of the BH membrane paradigm
[26–28] and recent extensions thereof [21,25] to model the
quantum properties of the horizon with a semiclassical
membrane, such that the (classical) background spacetime
is perturbed by the quantum stress-energy tensor of the
membrane. A second complementary possibility is to
consider a modified BH background (possibly due to
quantum effects) and apply the classical membrane para-
digm by replacing the modified horizon with a classical
fictitious membrane. In the first scenario, the background is
classical and the perturbation is of quantum origin and thus
the coupling between geometry and matter is treated
semiclassically; whereas, in the second scenario, the back-
ground has a quantum origin (at least semiclassically)
and the perturbation is classical. The latter possibility is
realized, for instance, in the braneworld scenario [29–36],
where the BH localized on the brane necessarily harbors
quantum corrections from the bulk spacetime. In this
context, the vacuum solution on the brane does not
correspond to a Schwarzschild BH, rather it resembles a
tidally charged BH. The value of the tidal charge is related
to the size of the extra dimensions by extending the brane
geometry to the bulk spacetime [37,38].
The first and second scenarios are discussed in Secs. II

and III, respectively. In each section, we derive the
boundary conditions on the modified horizon due to
quantum effects. We compute the quasinormal mode
(QNM) spectrum and the gravitational-wave (GW) echoes
in the postmerger phase [16–18,39,40] (see [20,22,41] for
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recent reviews). A discussion and concluding remarks are
given in Sec. IV. Hereafter we set the fundamental con-
stants G and c to unity. Greek indices denote the spacetime
coordinates and Latin indices denote the coordinates on the
membrane hypersurface.

II. QUANTUM MEMBRANE PARADIGM

According to the original membrane paradigm [26–28], a
static observer can replace the interior of a BH by a fictitious
membrane located at the horizon. The fictitiousmembrane is
described by a viscous fluid whose physical properties are
such that the membrane has the same phenomenology of the
BH. Recently, themembrane paradigmhas been extended to
the case of horizonless compact objects [21,25,42,43] to
derive their GW signatures.
In this section, we shall extend the calculations presented

in Ref. [21] by replacing the classical BH horizon with a
fictitious quantum membrane. The fluid living on the
membrane is made up of several quantum degrees of
freedom. For the purpose of this discussion, we assume
the quantum degrees of freedom to be in their ground state.
All the physical quantities related to the fluid can be
interpreted in terms of operators and thus enter in the
classical discussion through their expectation values. In
what follows, we first set up the basic features of the model
and then discuss the background geometry and the gravi-
tational perturbations thereof. Our derivation is valid in the
postmerger phase of a compact binary coalescence where
linear perturbation theory can be applied and back-reaction
effects are negligible. Finally, we analyze the frequency-
dependent reflectivity and show the QNM spectrum and the
GW echoes for the quantum membrane.

A. The basic picture

Quantum fluctuations at the horizon scale result in the
presence of a fictitious membrane located outside the
horizon. The fluid living on the membrane has a proper
distance from the horizon that is related to the ground state
of the quantum membrane. In the limit of a classical fluid,
the proper distance of the fictitious membrane from the
horizon is negligible and we retrieve the classical BH
picture. Let us notice that, within our framework, it is also
possible to consider the quantum fluid to be fluctuating
around a classical surface close to, but not coincident with,
the horizon. In this case, in the limit of vanishing quantum
corrections, we recover the result presented in Ref. [21] for
horizonless compact objects (further details can be found in
Appendix A).
For simplicity, we shall focus on a static and spherically

symmetric background geometry whose line element is
given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where ðt; r; θ;ϕÞ are the usual Schwarzschild-like coordi-
nates, and fðrÞ is a function of the radial coordinate such
that one of its zeros is located at r ¼ rþ, denoting the
location of the horizon. We stress that the backreaction due
to quantum effects on the background solution is assumed
to be negligible, so effectively the background metric can
be taken to be the Schwarzschild solution, i.e., fðrÞ ¼
1 − 2M=r with M being the object’s mass.
As described above, the quantum membrane is built on

an ensemble of microscopic degrees of freedom in the
ground state and is subjected to a harmonic oscillator
potential. The position of the quantum degrees of free-
dom is depicted collectively by the operator ϵ̂, that plays the
role of the position operator in quantum mechanics. At
variance with the standard quantum mechanics case where
the position vector can have continuous eigenvalues
∈ ð−∞;þ∞Þ, in the present context the eigenvalues of
ϵ̂ ∈ ð0;∞Þ. This condition guarantees that the quantum
membrane resides on (or outside of) the horizon and the
probability of the quantum fluid to be inside the horizon is
exponentially suppressed (effectively, zero).
The quantum state of the microscopic degrees of free-

dom, jΨi, in the representation of ϵ̂ is ΨðϵÞ ¼ hϵjΨi, where
jϵi are the eigenvectors of ϵ̂. Since the quantum degrees of
freedom are in the ground state of a harmonic oscillator, the
overall state of the quantum fluid is given by a Gaussian
wave function,

ΨðϵÞ ¼ A exp

�
−

ϵ2

2σ2

�
; ð2Þ

where ϵ is the eigenvalue of the operator ϵ̂ denoting the
departure of the quantum membrane from the classical
location of the horizon, and A and σ2 are the amplitude and
the variance of the quantum state, respectively.1 The
normalization of the wave function requires

jAj2 ¼ 2

σ
ffiffiffi
π

p : ð3Þ

The classical location of the membrane is at

R ¼ rþ þ hϵ̂i; ð4Þ

where the departure of the membrane from the location of
the horizon is given by the expectation value of the operator
ϵ̂ in the ground state ΨðϵÞ, i.e.,

1The variance of the wave function captures the quantum
nature of the system since σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðMwÞp
, where M and w are

the characteristic mass and frequency scales of the quantum
degrees of freedom associated with the membrane. Thus, the
classical limit, ℏ → 0, is equivalent to σ → 0.
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hϵ̂i ¼
Z

∞

0

dϵ ϵjΨðϵÞj2 ¼ σffiffiffi
π

p : ð5Þ

Note that, in the limit of vanishing quantum corrections,
the quantum nature of the membrane is absent and the
classical membrane is located on the horizon. Finally, it is
useful to determine the quantity hϵ̂2i − hϵ̂i2 that captures
the quantum nature of the membrane in the most straight-
forward manner. From the wave function in (2), it follows
that

hϵ̂2i − hϵ̂i2 ¼ σ2
�
1

2
−
1

π

�
: ð6Þ

As we shall see, the presence of a nonzero σ modifies
significantly the BH boundary condition satisfied by the
gravitational perturbations on the membrane.

B. The background geometry

Having discussed the basic properties of the quantum
membrane, let us focus on its effects on the background
spacetime. The exterior geometry is described by the metric
in (1). The membrane satisfies the Israel-Darmois junction
conditions [44–46]

⟦Kab − Khab⟧ ¼ −8πhT̂abi; ⟦hab⟧ ¼ 0; ð7Þ

where hab is the induced metric on the membrane, Kab is
the extrinsic curvature, K ¼ Kabhab, hT̂abi is the expect-
ation value of the stress-energy tensor operator of the
quantum matter distribution on the membrane, and ⟦…⟧ is
the jump of a quantity across the membrane.
According to the original membrane paradigm, the

fictitious membrane is such that the extrinsic curvature
of the internal spacetime vanishes, i.e., K−

ab ¼ 0 [27],
which we assume to be the case in the present context as
well. The junction conditions in (7) connect the classical
geometry on the three-dimensional hypersurface located at
r ¼ R, to the quantum stress-energy tensor on the mem-
brane, which we choose to be described by the following
operator:

T̂ab ¼ ρûaûb þ ðp − ζΘ̂Þγ̂ab − 2ησ̂ab: ð8Þ

Here, ûa is the three-velocity of the fluid constituting the
membrane, σ̂ab is the associated shear tensor, Θ̂ is the
expansion, and γ̂ab is the metric induced on the two
dimensional surface to which ûa is orthogonal. The
definitions of the above quantities can be found in [21].
It is to be noted that here these quantities are operators
owing to their dependence on ϵ̂ through the location of the
membrane. To the first order in the gravitational pertur-
bation, the energy density and the pressure of the fluid can
be expanded as ρ ¼ ρ0 þ δρ and p ¼ p0 þ δp, where δρ

and δp are the first-order corrections (their expressions are
in Appendix B while discussing polar perturbations).
The parameters ζ and η are the bulk and the shear

viscosities governing how the fluid responds to the external
perturbations. Exact computations of these parameters may
arise from a quantum gravity model, which would also
motivate the picture of the quantum membrane proposed
here. In the absence of a consistent quantum gravity model,
for simplicity, we consider η and ζ to be real constants; in
particular, η ¼ 1=ð16πÞ≡ ηBH and ζ ¼ −1=ð16πÞ≡ ζBH
describe the classical BH case. Note that the viscosity
parameters do not play any role in the unperturbed back-
ground geometry, and hence the stress-energy tensor of the
quantummembrane in the background is identical to that of
a perfect fluid.
The background quantities in the stress-energy tensor

presented above can be computed as follows. From (8), the
nonvanishing components of the stress-energy tensor are:

T̂tt ¼ ρ0fðrþ þ ϵ̂Þ; ð9Þ

T̂θθ ¼ p0ðrþ þ ϵ̂Þ2 ¼ T̂ϕϕ

sin2 θ
; ð10Þ

and the expectation values of the components of the stress-
energy tensor are derived as2

hT̂tti¼ ρ0hfðrþþ ϵ̂Þi

¼ ρ0

�
fðRÞþ1

2
f00ðrþÞðhϵ̂2i− hϵ̂i2ÞþOðσ̃3Þ

�
; ð11Þ

hT̂θθi ¼ p0hðrþ þ ϵ̂Þ2i

¼ p0R2 þ p0ðhϵ̂2i − hϵ̂i2Þ ¼ hT̂ϕϕi
sin2θ

; ð12Þ

where σ̃ ≡ σ=M and for simplicity hereafter we shall
expand some expressions in powers of σ̃ ≪ 1. The com-
ponents of the extrinsic curvature, as well as its trace, can
be computed from the semiclassical junction condition in
(7) on the three-dimensional r ¼ constant≡ R hypersur-
face. Finally, from (7) the background energy-density and
pressure of the quantum fluid living on the membrane are
obtained, i.e.,

ρ0 ¼ −
fðRÞ3=2
4πR

×

�
1

fðRÞ þ 1
2
f00ðrþÞðhϵ̂2i − hϵ̂i2Þ þOðσ̃3Þ

�
; ð13Þ

2Note that these results can also be derived assuming a
classical membrane fluid fluctuating following the distribution
jΨðϵÞj2.
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p0 ¼
R½2fðRÞ þ Rf0ðRÞ�

16π
ffiffiffiffiffiffiffiffiffiffi
fðRÞp ½R2 þ ðhϵ̂2i − hϵ̂i2Þ� : ð14Þ

In the above expressions, the quantum corrections arise
through the hϵ̂2i − hϵ̂i2 term and also the R ¼ rþ þ hϵ̂i
term. Note that, in the classical limit when the quantum
correction σ vanishes, we have R → rþ and hence the
energy density identically vanishes while the pressure
diverges. This behavior is expected in the BH case in
order to sustain a fluid on the horizon [27].
Given the expressions for ρ0 and p0, one can expand the

combination ðρ0 þ p0Þ as a power series in σ, and to the
leading order we obtain

ρ0 þ p0 ¼
f0ðrþÞ

16π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrþ þ hϵ̂iÞp þOðσÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrþÞ

p
16π

π1=4ffiffiffi
σ

p þOð ffiffiffi
σ

p Þ: ð15Þ

The above equation will have an application in the
discussion of the boundary conditions associated with
the gravitational perturbations.

C. Effect of the quantum membrane on the boundary
condition for gravitational perturbations

In this section, we discuss how the presence of a
quantum membrane may affect the gravitational
perturbations. For simplicity, we restrict our analysis to
the case of axial perturbations, however a similar analysis
can be carried out for the polar sector as well (see
Appendix B for further details). In the case of axial
perturbations, the only nonvanishing components of the
metric perturbations are δgtϕ and δgrϕ, arising out of
the Regge-Wheeler gauge condition [21,47]. Owing to the
spherical symmetry of the background spacetime, the two
metric perturbations can be expressed in terms of
Legendre polynomials as

δgtϕ ¼ e−iωth0ðrÞ sin θ∂θPlðcos θÞ; ð16Þ

δgrϕ ¼ e−iωth1ðrÞ sin θ∂θPlðcos θÞ; ð17Þ

for a mode with azimuthal number l ≥ 2. The
metric perturbations are related to the properties of
the quantum membrane through the perturbation of the
semiclassical junction conditions in (7). In particular,
only two components of the extrinsic curvature are
perturbed as

δKtϕ ¼ 1

2
e−iωt

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
× ½iωh1ðRÞ þ h00ðRÞ� sin θ∂θPlðcos θÞ; ð18Þ

δKθϕ ¼ −
1

2
e−iωt

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
h1ðRÞ

× ð− cos θ∂θ þ sin θ∂2θÞPlðcos θÞ: ð19Þ

As a consequence, the perturbation of the trace of the
extrinsic curvature is δK ¼ Kabδhab þ habδKab. Since
htϕ ¼ 0 ¼ hθϕ and Ktϕ ¼ 0 ¼ Kθϕ, it follows that the
perturbation of the trace of the extrinsic curvature
identically vanishes for axial perturbations, i.e., δK ¼ 0.
The junction conditions also involve the stress-energy

tensor of the quantum membrane whose perturbations must
be taken into account. An explicit computation yields the
following components for the expectation values of the
perturbed stress-energy tensor:

hδT̂tϕi ¼ −e−iωtρ0ðRÞh0ðRÞ sin θ∂θPlðcos θÞ

− sin2θδuϕðρ0 þ p0ÞhR̂2

ffiffiffiffiffiffiffiffiffiffi
fðR̂Þ

q
i; ð20Þ

hδT̂θϕi ¼ −ηsin2θð∂θδuϕÞhR̂2i
¼ −ηsin2θ∂θδuϕ½R2 þ ðhϵ̂2i − hϵ̂i2Þ�: ð21Þ

Here δuϕ denotes the perturbation in the velocity of the
membrane fluid due to the gravitational perturbations.
Note that, for axial gravitational perturbations, only the
ϕ-component of the three-velocity is perturbed, while the
rest of the components retain their background values.
The computation of the expectation value in (20) requires a
careful analysis. Indeed, due to the presence of the square
root, the above quantity is nonanalytic in the operator ϵ̂ and
hence the computation of the expectation value has
ambiguities. Thus, we replace the above expectation value
by the following one:

hR̂2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðhR̂iÞ

q
i ¼

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
hr20 þ 2r0ϵ̂þ ϵ̂2i

¼ R2
ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
þ

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
ðhϵ̂2i − hϵ̂i2Þ; ð22Þ

where the location of the quantum membrane and the
quantum correction are given in (4) and (6), respectively.
Substituting the above result in (20), we obtain the desired
expectation value for the ðt;ϕÞ component of the perturbed
stress-energy tensor.
In general, the perturbation of the geometrical term in the

left hand side of (7) yields δKab − Kδhab − habδK. Since
δK identically vanishes, the perturbed semiclassical junc-
tion condition for axial gravitational perturbations reads

δKab − Kδhab ¼ −8πhδT̂abi; ð23Þ

where the only nonvanishing components are the ðt;ϕÞ
and the ðθ;ϕÞ terms. The ðt;ϕÞ component of the above
equation together with (18) and (20) can be used to derive
δuϕ, which takes the form
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δuϕ¼ e−iωt∂θPlðcosθÞ
8π sinθðρ0þp0Þ

ffiffiffiffiffiffiffiffiffiffi
fðRÞp ½R2þðhϵ̂2i− hϵ̂i2Þ�

×

�
1

2

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
½iωh1ðRÞþh00ðRÞ�

−
�

f0ðRÞ
2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp þ2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp
R

�
h0ðRÞ−8πρ0ðRÞh0ðRÞ

�
:

ð24Þ

Similarly, using the expression for δKθϕ from (19) and the
expectation value of δT̂θϕ from (21), the ðθ;ϕÞ component
of the perturbed semiclassical junction condition can be
obtained. Then, substitution of δuϕ from (24) in the ðθ;ϕÞ
component of the junction condition yields the following
expression for h1ðRÞ, i.e., the radial part of the ðr;ϕÞ
component of metric perturbation on the classical location
of the membrane,

h1ðRÞ¼
−2η

ðρ0þp0ÞfðRÞ
�
1

2

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
½iωh1ðRÞþh00ðRÞ�

−
�

f0ðRÞ
2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp þ2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp
R

�
h0ðRÞ−8πρ0ðRÞh0ðRÞ

�
:

ð25Þ

The radial part of the remaining metric perturbation,
namely h0ðrÞ, can be determined in terms of h1ðrÞ through
the relation h0ðrÞ ¼ −fðrÞ∂r½fðrÞh1ðrÞ�=ðiωÞ [47]. Finally,
it is convenient to impose the boundary condition on the
Regge-Wheeler function defined as ψðrÞ≡ fðrÞh1ðrÞ=r.
Replacing h1ðrÞ and h0ðrÞ from (25) in favor of the Regge-
Wheeler function and its derivative with respect to the
tortoise coordinate x (defined through dr=dx ¼ fðrÞ), we
obtain the following boundary condition:

iωψðRÞ¼ η

ðρ0þp0Þ
ffiffiffiffiffiffiffiffiffiffi
fðRÞp

×

�
VaxialðRÞψðRÞ−

1

R
dψðRÞ
dx

½Rf0ðRÞ−2fðRÞ�

−
4fðRÞ
R

�
dψðRÞ
dx

þfðRÞ
R

ψðRÞ
��

1þ 4πρ0Rffiffiffiffiffiffiffiffiffiffi
fðRÞp

��
:

ð26Þ

Here we have used the differential equation satisfied by
the Regge-Wheeler function, which reads [47]

d2ψ
dx2

þ ½ω2 − VaxialðrÞ�ψ ¼ 0; ð27Þ

where VaxialðrÞ is the potential associated with the axial
gravitational perturbations,

VaxialðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
−
f0ðrÞ
r

− 2

�
1 − fðrÞ

r2

��
: ð28Þ

For the Schwarzschild metric, the axial potential reduces
to Vaxial ¼ ð1 − 2M=rÞ½lðlþ 1Þ=r2 − 6M=r3�.
In the limit of vanishing quantum corrections, from (13)

it follows that ρ0 ¼ −
ffiffiffiffiffiffiffiffiffiffi
fðRÞp

=ð4πRÞ, and hence the last
term in (26) identically vanishes. On the other hand, the
presence of

ffiffiffiffiffiffiffiffiffiffi
fðRÞp

in the denominator of (26) appears
problematic, since fðRÞ vanishes in the limit of vanishing
quantum correction, leading to a divergent contribution.
However, the term ðρ0 þ p0Þ appearing in the denominator
of the boundary condition diverges as the membrane
becomes classical, such that the combination

ffiffiffiffiffiffiffiffiffiffi
fðRÞp ðρ0 þ

p0Þ ∼ f0ðrþÞ=ð16πÞ is finite. Therefore, the boundary
condition remains finite in the limit of a vanishing quantum
correction, namely

iωψðRÞ ¼ −16πη
dψðRÞ
dx

; ð29Þ

which, for η ¼ ηBH, coincides with the appropriate boun-
dary condition on a classical BH horizon. This is expected,
since in the limit of vanishing quantum correction, the
surface of the membrane returns back to rþ and the
physical system becomes identical to that of a classical BH.
Let us focus on the corrections introduced by the

quantum membrane. The boundary condition can be
computed analytically for generic values of σ̃ but the final
expression is cumbersome. Thus, we explicitly provide its
expression in the limit σ̃ ≪ 1, which is anyway expected
from microscopical corrections of an astrophysical BH. To
Oðσ̃3Þ corrections, the boundary condition reads

�
iω −

4ðlðlþ 1Þ − 3Þ ffiffiffi
π

p
ησ̃

M
−
2lðlþ 1Þησ̃2

M

�
ψðRÞ

¼ −16πη
�
1þ ðπ − 2Þσ̃2

8π

�
dψðRÞ
dx

: ð30Þ

Notice that the boundary condition above modifies the
BH boundary condition in (29) due to the quantum nature
of the membrane. As a consequence, it is expected that the
reflective properties of the object and its QNM spectrum
are affected by the quantum corrections. We shall inves-
tigate these effects in the next sections.

D. Reflectivity of the quantum membrane

The modified boundary condition in (26) affects the
reflectivity of the membrane. The latter can be computed
analytically when the effective potential at the inner
boundary is negligible. Imposing ω2 ≫ VaxialðRÞ implies
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σ̃ ≪
�

8
ffiffiffi
π

p
lðlþ 1Þ − 3

�
ω2M2: ð31Þ

In this case, the generic solution of (27) near the membrane
reads

ψM ¼ e−iωx þReiωx; x → xðRÞ; ð32Þ
where R is the reflectivity of the membrane. From (32), it
follows that

R ¼
�
ωψM − idψM=dx
ωψM þ idψM=dx

�
e−2iωx; ð33Þ

where the expression for ðdψ=dxÞ=ψ on the surface r ¼ R
can be derived from the boundary condition in (26). When
this expression is substituted in (33), it yields the desired
analytical expression for the reflectivity. For this purpose,
we rewrite the boundary condition presented in (26) in the
following manner:

iωψðRÞ¼ η

ðρ0þp0Þ
ffiffiffiffiffiffiffiffiffiffi
fðRÞp

×

�
dψðRÞ
dx

�
−
Rf0ðRÞþ2fðRÞ

R
−16πρ0

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p �

−4

�
fðRÞ
R

�
2
�
1þ 4πρ0Rffiffiffiffiffiffiffiffiffiffi

fðRÞp
�
ψðRÞ

�

≡−B
dψðRÞ
dx

−AψðRÞ; ð34Þ

where, in the last line, we have introduced the quantities

A≡ η

4πηBH

fðRÞ3=2
ðρ0 þ p0ÞR2

�
1þ 4πρ0Rffiffiffiffiffiffiffiffiffiffi

fðRÞp
�
; ð35Þ

B≡ η

ηBH

�
ρ0

ρ0þp0

þ 1

16πðρ0þp0Þ
2fðRÞþRf0ðRÞ

R
ffiffiffiffiffiffiffiffiffiffi
fðRÞp

�
: ð36Þ

Finally, from (33) we get

R ¼ ωðB − 1Þ þ iA
ωðBþ 1Þ − iA

; ð37Þ

which, as we remind, is valid when the condition in (31) is
satisfied. Note that the reflectivity depends on the ratio
η=ηBH, as well on the quantum parameter σ̃ and the
frequency. Up to Oðσ̃3Þ, the square of the magnitude of
the reflectivity reads

jRj2 ∼
�
1 − η=ηBH
1þ η=ηBH

�
2

þ 16384½lðlþ 1Þ − 3�2π3η4σ̃2
ð1þ η=ηBHÞ4ω2M2

:

ð38Þ

The frequency dependence of the reflectivity in this regime
is shown in Fig. 1. Interestingly, even when η ¼ ηBH, the
reflectivity is nonzero due to the quantum properties of
the membrane, i.e., jRj2 ∼ σ̃2=ðω2M2Þ. Furthermore, in the
large frequency limit and for η ¼ ηBH,

jRðω → ∞Þj ∼ 2ð2 − πÞπσ̃2ð−8π3=2 þ 2ðπ − 6Þπσ̃ þ 7ðπ − 2Þ ffiffiffi
π

p
σ̃2 þ 3ðπ − 2Þσ̃3Þ

× ð256π7=2 − 128ðπ − 2Þπ3σ̃ þ 16ðπ − 14Þðπ − 1Þπ5=2σ̃2 þ 4π2ð100þ πð11π − 80ÞÞσ̃3
þ 2ðπ − 2Þπ3=2ð29π − 66Þσ̃4 þ 34ðπ − 2Þ2πσ̃5 þ 9ðπ − 2Þ2 ffiffiffi

π
p

σ̃6 þ ðπ − 2Þ2σ̃7Þ−1; ð39Þ

FIG. 1. The reflectivity of the quantum membrane as a function of the frequency for σ̃ ¼ 10−10 (left panel) and σ̃ ¼ 10−5 (right panel)
for various choices of the membrane viscosity η and l ¼ 2. We only consider frequencies for which (31) is satisfied.
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which is independent on l and, to leading order in σ̃ ≪ 1,
reduces to

jRðω → ∞Þj ∼ ðπ − 2Þσ̃2
16π

: ð40Þ

In the σ̃ → 0 limit, the reflectivity identically vanishes,
since for vanishing quantum corrections and η ¼ ηBH the
membrane mimics the properties of a classical BH. How-
ever, for σ̃ ≠ 0, the reflectivity is constant in the large-
frequency limit, which explains the plateau of the blue
curve (η ¼ ηBH) in Fig. 1.

E. QNM spectrum and ringdown for the
quantum membrane

After imposing outgoing boundary conditions at infinity
and (26) at the location of the quantum membrane, (27)
defines an eigenvalue problem whose complex eigenvalues
are the QNMs of the object, ω ¼ ωR þ iωI. Here, ωR is the
real part of the QNMs, denoting the oscillatory nature of the
eigenstate, while ωI is the imaginary part of the QNMs,
denoting its characteristic exponential decay. In our con-
vention, a stable mode has ωI < 0, whereas an unstable
mode has ωI > 0.
Given the boundary conditions, we compute the QNM

spectrum using the continued fractions method in a variant
adapted from the case of compact stars [21,48]. The result
of this analysis is presented in Fig. 2, where the real (left
panel) and imaginary (right panel) parts of the fundamental
l ¼ 2 QNMs of the quantum membrane are shown as a
function of the quantum correction σ̃, with η ¼ ηBH. The
highlighted regions in Fig. 2 correspond to the maximum
allowed deviations (with 90% credibility) for the least-
damped QNM in the event GW150914 [49,50] with respect
to the BH case, corresponding to a range ∼16% and ∼33%

for the real and the imaginary part of the QNM, respec-
tively. Figure 2 shows that the deviations from the BH
QNM due to quantum corrections would be measurable by
current GW detectors only when σ̃ ≳ 0.5. It is worth
highlighting that the structure of the QNM spectrum is
similar to the case of a classical membrane discussed
in [21]. In that case, the membrane is located at
R ¼ 2Mð1þ δÞ, where δ is a classical displacement. The
relation among the locations of the classical and the
quantum membrane is δ ¼ σ̃=ð2 ffiffiffi

π
p Þ, but the boundary

conditions are not the same. Indeed, the two scenarios are
conceptually very different. In the classical case, the
separation of the membrane from the horizon is introduced
in an ad hoc manner, while in the present context the
separation from the classical horizon arises naturally from
the quantum properties of the membrane.
The fundamental QNM provides only partial information

on the linear response of the object. Indeed, when σ̃ ≪ 1,
the classical radius of the object is R ∼ rþ and the
perturbations take a long time before probing the inner
boundary. This automatically results in a prompt ringdown
which is nearly identical to the BH one and can differ from
it at later times due to the nontrivial reflectivity of the
quantum membrane [16,17,21,51].
In order to better understand this behavior, let us look at

the time-domain response of the system. This is presented
in Fig. 3 for σ̃ ¼ 10−10 (left panel) and σ̃ ¼ 10−5 (right
panel), and for different choices of the shear viscosity of the
quantummembrane. The initial perturbation has a Gaussian
profile where ∂tψðx; 0Þ ¼ exp½−ðx − 7Þ2� and ψðx; 0Þ ¼ 0.
Due to the presence of the reflective membrane arising out
of quantum effects, the waveform shows the recursive
appearance of GW echoes. This is most evident for
η ¼ 0.01, for which the reflectivity of the membrane is
almost unity, as shown in Fig. 1. Interestingly, even for

FIG. 2. Real (left panel) and imaginary (right panel) part of the fundamental l ¼ 2 QNM of a quantum membrane with effective shear
viscosity η ¼ ηBH as a function of the dimensionless parameter σ̃ which is related to the quantum nature of the membrane. The classical
BH limit is recovered when σ̃ → 0. The highlighted regions are the maximum allowed deviations for the least damped QNM of
GW150914 [49,50]. Quantum deviations would be measurable by current GW detectors when σ̃ ≳ 0.5.
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η ¼ ηBH the postmerger signal is characterized by the
appearance of the first GW echo. However, the amplitude
of the first echo is much smaller than the prompt ringdown
signal, and subsequent GW echoes are highly suppressed.
As a consequence, detecting GW echoes from a quantum
horizon-like membrane would be challenging with current
GW detectors.
Note that the time delay between subsequent echoes is

consistent with the roundtrip time that the radiation takes to
probe the boundary,

Δt ¼ 2M

�
1 −

σ̃ffiffiffi
π

p − 2 log

�
σ̃ffiffiffi
π

p
��

: ð41Þ

For the parameters considered in the left (right) panel of
Fig. 3, Δt ≃ 100M (Δt ≃ 50M) for any η.

The amplitude of the GW echoes with respect to the
prompt ringdown depends on the reflectivity of the quan-
tum membrane and the transmission coefficient of the
photon sphere. It is important to stress that the reflectivity
computed in Sec. II D is valid only when (31) is satisfied.
This condition might be violated for certain frequency
components of the initial wave packet. This might explain
some interesting effects such as a sizeable amplification of
the wave packet for η ¼ ηBH when the reflectivity is
anyway small. Although such amplification is small (note
that the vertical scale of Fig. 3 is logarithmic), this feature
provides an important generic signature that might be
looked for in high-precision data.
Let us focus on the scenario with η ¼ ηBH. Figure 4

shows the time-domain ringdown waveforms (in a loga-
rithmic scale) for several locations of the quantum mem-
brane. As the quantum correction decreases, the time delay
of the first GW echo is longer due to the logarithmic
dependence in (41). This makes the echoes more evident on
the logarithmic scale used in Fig. 4, since the reflected echo
signal stands out the prompt ringdown, which has already
been exponentially damped by the time the first echo
arrives. This also explains why in Fig. 3 the echoes are
apparently less noticeable for σ̃ ¼ 10−5 rather than for
σ̃ ¼ 10−10. This is not because of the reduced reflectivity,
but because of the shorter echo delay time, which results
into the echoes to fall within the domain of the primary
signal.3 Note however that the echo morphology is complex
due to various effects: (i) when σ̃ increases, the effective
size of the cavity decreases and therefore long-lived modes
are less efficiently trapped; (ii) the effective reflectivity of

FIG. 3. Ringdown waveform as a function of time for σ̃ ¼ 10−10 (left panel) and σ̃ ¼ 10−5 (right panel) for several choices of the
shear viscosity of the quantum membrane. Due to the nonvanishing reflectivity of the membrane, the GW signal displays echoes after
regular intervals of time, even when η ¼ ηBH. The initial perturbation is a Gaussian wave packet where ψðx; 0Þ ¼ 0 and
∂tψðx; 0Þ ¼ exp½−ðx − 7Þ2�.

FIG. 4. Ringdown waveforms as a function of time for different
choices of the quantum correction σ̃ and for a quantum membrane
with shear viscosity η ¼ ηBH. The figure shows that the quantum
parameter σ̃ can have observable effects on the ringdown signal.

3From Fig. 1 one notes that for η ≠ ηBH, the reflectivity is
almost constant, however the echo time delay changes signifi-
cantly with σ̃, see (41).
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the membrane at the relevant frequencies (not necessarily
within the range given by (31) in which the reflectivity can
be computed easily) depends generically on σ̃ and ω in a
nontrivial way.
Another interesting feature is that, for certain values of σ̃,

the waveform is approximately constant at late times (see,
e.g., the blue curve in Fig. 4). Although we do not have a
clear explanation for this behavior, we suspect it might be
due to the peculiar boundary conditions that, in the time
domain, have the schematic form

∂xψðx; tÞ ¼ α∂tψðx; tÞ þ βψðx; tÞ; ð42Þ

where α and β are two coefficients depending on η and σ̃. In
the σ̃ → 0 limit, α → 1 and β → 0 but their structure can
affect the signal at finite values, e.g., by introducing a sort
of “memory effect” at the linear level (see, e.g., the recent
discussion in [52]) as shown in Fig. 4. This effect is
interesting on its own and will be investigated in detail
elsewhere.
Finally, Fig. 5 shows the ringdown waveform for a

relatively large value of the quantum correction, i.e.,
σ̃ ¼ Oð0.1Þ. In this case, the roundtrip time of the radiation
probing the boundary is shorter than the case with σ̃ ≪ 1,
as shown in (41). Therefore, at early times the boundary
condition affects the linear response of the object. This
feature is evident in Fig. 5 for values of the shear viscosity
η ≠ ηBH, for which the reflectivity of the quantum mem-
brane is close to unity. In this case, the first GW echo
interferes constructively with the prompt ringdown.
To summarize, we have observed that for a given

quantum correction σ̃, there are effects of the reflectivity
of the quantum membrane that are imprinted on the GW
ringdown signal. These effects are most pronounced for
η ≠ ηBH but are nevertheless present in the most interesting

case η ¼ ηBH, where the only difference to the classical BH
case is incorporated in σ̃ ≠ 0.

III. MEMBRANE PARADIGM FOR
BHS ON THE BRANE

In Sec. II, we have analyzed the consequences of
replacing the horizon by a quantum membrane, leading
to a modified boundary condition and reflectivity of the
object. As a consequence, the QNM spectrum as well as
the ringdown waveforms are affected. While we considered
the membrane to be quantum, the background geometry
remained classical, given in (1). In this section, we shall
discuss the opposite scenario where the background space-
time inherits quantum corrections, while the membrane
remains classical. Such a scenario naturally arises in the
context of braneworld BHs [38,53] whose various obser-
vational signatures have been studied in [54–60]. We shall
first provide the spacetime geometry of the braneworld BH,
and then discuss the quantum origin of such a solution.

A. The background geometry of braneworld BHs

The effective gravitational field equations, describing the
dynamics of gravitating systems on the brane, differ from
the four dimensional Einstein field equations and receive
corrections from the higher dimensional (i.e., the bulk)
spacetime. In particular, the spacetime depends on the bulk
Weyl tensor and quadratic combinations of the brane
energy momentum tensor [29]. In the case of a vacuum
brane, contributions to the effective gravitational field
equations arise from the bulk Weyl tensor alone, and,
owing to the symmetry properties of the Weyl tensor, it
behaves as the Maxwell stress-tensor with an overall
negative sign. As a consequence, the static and spherically
symmetric solution takes the following form [35]:

ds2 ¼ −gðrÞdt2 þ 1

gðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ;

gðrÞ ¼ 1 −
2M
r

þ Q
r2
; ð43Þ

whereM is the BH mass,Q is the charge inherited from the
higher dimensional Weyl tensor (which can be either
positive or negative), and gðrÞ is a function of the radial
coordinate such that one of its zeros is located at
rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q

p
, denoting the location of the horizon.

Due to the presence of extra dimensions, the above BH
inherits quantum corrections arising in the guise of the
AdS=CFT correspondence, which conjectures that the
boundary theory of a higher dimensional anti–de Sitter
(AdS) spacetime is a conformal field theory (CFT). Since
the bulk spacetime in the present context is AdS with some
additional corrections, the BH on the brane must inherit
quantum modifications due to the CFT living on the brane.
Thus, the backreaction due to the CFT modifies the

FIG. 5. Ringdown waveform as a function of time in a linear
scale for σ̃ ¼ 0.1, with two different choices of the shear viscosity
of the quantum membrane and compared to the classical BH case.
The η ¼ ηBH case is practically indistinguishable from the
classical BH case on the linear scale of the plot.
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spacetime geometry of a braneworld BH and alters the
location of the horizon to

R ¼ rþð1þ δÞ; ð44Þ

where [38,53,61]

δ ∼
N2l2pl
Mrþ

: ð45Þ

Here lpl is the Planck length (or the new quantum-gravity
length scale), and N are the CFT degrees of freedom
corresponding to

N2 ∼
�
L
lpl

�
2

∼ 1030
�

L
1 mm

�
2

; ð46Þ

where L is the bulk AdS radius of the higher dimensional
spacetime. Thus, even though the membrane fluid is
classical, the separation of the fluid surface from the BH
horizon is due to the CFT living on the brane and hence is
of purely quantum origin.4

The energy density and the pressure of the unperturbed
membrane fluid take the following form [21]:

ρ0 ¼ −
ffiffiffiffiffiffiffiffiffiffi
gðRÞp
4πR

; p0 ¼
Rg0ðRÞ þ 2gðRÞ
16πR

ffiffiffiffiffiffiffiffiffiffi
gðRÞp ; ð47Þ

where the derivation of the above expressions uses the
Israel-Darmois junction conditions for a classical mem-
brane [44–46]. The derivation assumes that the energy
density of the membrane fluid is sufficiently small to give a
negligible contribution to the bulk dynamics and hence the
corrections arising from the bulk Weyl tensor can be safely
ignored. In order to show that this is the case, one can
compute the ratio ðρ0=δWeylÞ, where ðδWeylÞ is the
perturbation of the bulk Weyl tensor that scales as δWeyl ∼
ð1=LÞ [62,63], where L is the bulk length scale. On the
other hand ρ0 ∼ ð1=MÞ, where M is the mass, and hence is
comparable to the size of the BH. Therefore, the ratio
ðρ0=δWeylÞ ∼ ðL=MÞ ≪ 1. In this approximation (a very
good one, since brane matter should not affect bulk
dynamics) the standard junction conditions in general
relativity can be used. This is effectively equivalent to
assuming continuous bulk Weyl tensor across the
membrane.

B. Gravitational perturbations and boundary
conditions of braneworld BHs

Let us now discuss the linear gravitational perturbations
around the background spacetime in (43) and derive the
associated boundary condition leading to the QNMs. In

particular, our aim is to understand how the presence of the
quantum-origin charge Q and the parameter δ affect the
boundary conditions on the classical membrane and hence
the ringdown. The radial part of the axial gravitational
perturbation (for the polar part, see Appendix C) satisfies
(27) where [64]

Vaxial ¼ gðrÞ
�
lðlþ 1Þ

r2
−
g0ðrÞ
r

− 2

�
1 − gðrÞ

r2

��
; ð48Þ

and x is the tortoise coordinate defined through
dr=dx ¼ gðrÞ. Note that the axial potential depends explic-
itly on the tidal charge parameter Q and reduces to the
standard Regge-Wheeler potential when Q ¼ 0.
To solve (27) as an eigenvalue problem one requires two

boundary conditions, one at infinity and another one at the
location of the membrane. The boundary condition at
infinity is such that the radial perturbation is a purely
outgoing wave,

ψðrÞ ∼ eiωx; x → ∞: ð49Þ

The boundary condition on the surface r ¼ R is derived by
applying the appropriate junction conditions relating the
extrinsic curvature on the surface with the energy-momen-
tum tensor of the membrane fluid. A straightforward exten-
sion of [21] due to the chargeQ and the quantum corrections
through δ yields the following boundary condition:

iωψðRÞ¼−16πη
�
dψðRÞ
dx

þgðRÞ½lðlþ1Þ
R −2ð3MR−2QÞ

R3 �
2½1−3M

R þ2Q
R2 �

ψðRÞ
�
;

ð50Þ

which differs from the Schwarzschild horizonless case
considered in [21] by the nonzero values of Q. The case
of a Schwarzschild BH, on the other hand, requires Q to be
set to zero as well as the quantum correction to the horizon δ
to vanish. Note that, in the limit R → rþ, gðRÞ identically
vanishes and the above boundary condition reduces to the
boundary condition of a BH for η ¼ ηBH.
The boundary condition in (50) can be rewritten as

ψ 0
M ¼

�
−

iω
16πη

− B
�
ψM; ð51Þ

where ψM is the solution of (27) near the membrane [as in
(32)] and the parameter B is defined as

B≡
gðRÞ

h
lðlþ1Þ

R − 2ð3MR−2QÞ
R3

i

2
h
1 − 3M

R þ 2Q
R2

i : ð52Þ

From (33), in the ω2 ≫ VaxialðRÞ regime (which holds in
the relevant case when δ ≪ 1) the reflectivity of the
membrane in the background of the braneworld BH reads

4In the classical limit, ℏ → 0 implies lpl → 0 leading to δ → 0
in (45), as expected.

CHAKRABORTY, MAGGIO, MAZUMDAR, and PANI PHYS. REV. D 106, 024041 (2022)

024041-10



jRj2¼
ω2

	
1− 1

16πη



2þB2

ω2
	
1þ 1

16πη
2


þB2

∼
�
1−η=ηBH
1þη=ηBH

�
2

þ4

�
η

ηBH

�
3
�

1

1þη=ηBH

�
4

×

�
2ðl2þl−3Þð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1− Q̃

p
Þ− ðl2þl−4ÞQ̃

ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1− Q̃

p
Þ4

�2

×
δ2

ω2M4
þOðδ3Þ; ð53Þ

where we defined the dimensionless quantity Q̃ ¼ Q=M2.
In the δ → 0 limit, gðRÞ → gðrþÞ ¼ 0 and hence B iden-
tically vanishes, in which case the reflectivity depends only

on the shear viscosity [20,21]. However, for finite values of
δ, the reflectivity is nonzero even when η ¼ ηBH and
depends on Q̃, δ, η and the frequency, as shown in Fig. 6.
For large frequencies, the reflectivity is given by the ratio

ðη − ηBHÞ=ðηþ ηBHÞ, such that for η ¼ ηBH, the reflectivity
vanishes. This is a striking difference with respect to the
quantum-membrane model of the previous section, in
which the reflectivity approaches a constant value at large
frequency even when η ¼ ηBH.

C. QNM spectrum of the braneworld BH

Axial gravitational perturbations in the exterior of the
braneworld BH are governed by (27), with the boundary
conditions in (49) at infinity and in (50) on the membrane.
We compute the QNMs of the system with two numerical
methods: the same continued fraction method used in the
previous section and a direct integration shooting
method. The former one is more robust when ωI ≳ ωR.
When both the methods are applicable, they are in
excellent agreement.
Let us first analyze a braneworld BH with η ¼ ηBH, for

which the boundary conditions depend on Q̃ and δ, and
reduce to the Schwarzschild case as Q̃ → 0. The result of this
analysis is presented in Fig. 7, where the real (left panel) and
the imaginary (right panel) part of the fundamental l ¼ 2

QNMis shown as a function of δ for several values of Q̃, both
positive and negative. As δ → 0, the QNMs tend asymp-
totically to a value that depend on the tidal charge Q̃,
whereas as δ≳ 0.01 the QNMs start deviating from the
asymptotic values. The highlighted region in Fig. 7 corre-
sponds to the measurement error associated with the
fundamental l ¼ 2 QNM of the remnant of GW150914
[49,50]). As Fig. 7 explicitly shows, alternative objects with

FIG. 7. Real (left panel) and imaginary (right panel) part of the fundamental l ¼ 2 QNM of a braneworld BH with effective shear
viscosity η ¼ ηBH. The QNMs depend on the parameter δ, which is related to the compactness of the object, and of the tidal charge Q̃.
The highlighted region corresponds to the error bars associated with the fundamental l ¼ 2 QNM for the event GW150914 [49,50].
Horizonless objects with η ¼ ηBH, −0.5≲ Q̃≲ 0.3, and δ≲ 0.05 would be compatible with current measurements.

FIG. 6. The reflectivity of a braneworld BH as a function of the
frequency for Q̃ ¼ 0.1, δ ¼ 10−10, and for various choices of the
membrane viscosity η. We only consider frequencies for which
ω2 ≫ VaxialðRÞ.
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approximately η ¼ ηBH, −0.5≲ Q̃≲ 0.3, and δ≲ 0.05
would be compatible with current measurements.
Let us now analyze the case for η ≠ ηBH. Figure 8 shows

the QNM spectrum of the braneworld BH with a quantum
corrected membrane located at δ ¼ 10−10, as a function of
the effective shear viscosity η for several values of tidal
charge Q̃. As η deviates slightly from ηBH (≃0.02), the
QNM spectrum changes drastically. For η → 0 and η → ∞,
the compact object is perfectly reflecting thus the boundary
conditions in (50) reduce to Dirichlet [ψðRÞ ¼ 0] and
Neumann [dψðRÞ=dx ¼ 0] boundary conditions, respec-
tively [21]. The measurement error associated with the
fundamental QNM of GW150914 imposes strong con-
straints on the effective shear viscosity of the compact
object. In particular, the behavior of the imaginary part of

the QNMs against the shear viscosity shows that, for a
quantum corrected braneworld BH, values of η slightly
different from ηBH would be excluded regardless of the
value of the tidal charge Q̃.
Let us also notice that the boundary condition in (50)

reduces to a Dirichlet boundary condition when the radius
of the compact object is located at the photon sphere,
rph ¼ ð1=2Þ½3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q

p
�. In this case, the axial

QNM spectrum is universal regardless of the effective shear
viscosity of the quantum membrane, as shown in Fig. 9. In
this plot, we show the real and the imaginary part of the
universal mode as parametric functions of Q̃ ∈ ð−1; 1Þ.
The detection of this peculiar mode would be a clear
signature of the location of the radius of the object
regardless of its reflectivity.
At this outset, let us briefly discuss the difference of the

approach presented here to the one considered in [65]. Even
though the background metric looks similar, their origins
are different. In our case, the term Q origins from brane-
world and can be either positive or negative, while in [65]
the term Q2 origins from electric charge and is strictly
positive. As a consequence, the equations governing the
gravitational perturbations and hence the boundary con-
ditions are also very different between the one presented
here and in [65]. Moreover, the distance between the
horizon and the membrane in our case is purely quantum,
arising due to CFT, while in [65] is an assumption of
the model.

IV. DISCUSSION AND CONCLUDING REMARKS

Exploring the BH nature of ultracompact objects and
their theoretical and observational consequences is one of
the key ingredients of present day GW research. In
searching for ultracompact objects other than BHs and
neutron stars, one often considers the existence of some
exotic matter or invokes cutoff surfaces near the would-be

FIG. 8. Real (left panel) and imaginary (right panel) part of the fundamental l ¼ 2 QNM of a braneworld BH with δ ¼ 10−10 as a
function of the effective shear viscosity η for several values of the tidal charge Q̃. The highlighted region correspond to the error bars
associated with the fundamental l ¼ 2 QNM for the event GW150914 [49,50]. Values of η slightly different from ηBH would be
excluded by current observations regardless of the value of the tidal charge Q̃.

FIG. 9. The complex QNM plane for the universal l ¼ 2 axial
mode of a braneworld BH parametrized in terms of Q̃ ∈ ð−1; 1Þ.
The red marker corresponds toQ ¼ 0 [21] and negative (positive)
values of Q correspond to the curve on the left (right) of the red
marker. The surface is located at the photon sphere and the mode
is independent of the shear viscosity of the membrane.
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horizon in an ad hoc manner. In this work, we have
provided a natural origin for horizonless ultracompact
objects by invoking quantum effects. Considering the
BH horizon being replaced by a fluid consisting of some
quantum harmonic oscillators in the ground state, we
showed that the horizon gets replaced by a quantum
membrane with nonzero and frequency-dependent reflec-
tivity. The junction condition on the membrane also gets
modified by the existence of the quantum fluid, leading to a
distinct boundary condition for gravitational perturbations
on the membrane. The boundary condition depends on the
quantum nature of the membrane in an explicit manner. As
a consequence, in this setup the reflectivity of the mem-
brane becomes nonzero only in the presence of quantum
effects, while it identically vanishes in the classical BH
limit. This leads to significant changes in the QNM
spectrum, as well as in the time-domain ringdown wave-
form. The latter contains echoes originating from the
nonvanishing membrane reflectivity, even when the shear
viscosity equals that of a classical BH, η ¼ ηBH. However,
the effective reflectivity is small so that the echo ampli-
tude is smaller than in some toy models in which the
reflectivity is close to unity. In our basic model the shear
viscosity is a free parameter, which we often set to the
classical BH value to minimize the number of new free
parameters in the model. An interesting future extension
could be to find an explicit expression for the shear
viscosity in terms of the quantum properties of the
membrane. Another interesting example is to explicitly
compute the stimulated Hawking emission from the
quantum membrane, along the lines of [25,66,67].
As another example of the quantum membrane, we

considered the case of braneworld BH where through
the AdS=CFT correspondence one may argue that a
CFT should be present on the brane, acting as a natural
candidate for the quantum fluid. Thus, the braneworld BH
receives a contribution from the extra dimensions, mani-
festing as a tidal charge parameter Q̃, as well as from CFT,
leading to a reflective membrane away from the horizon.
The departure from the horizon is again due to quantum
effects of the CFT, leading to the existence of a quantum
membrane similar to the previous case. As a consequence,
the boundary condition for the gravitational perturbation
near the horizon are modified, affecting the QNM spectrum
and the ringdown signal. In particular, in order for the real
part of the QNMs to be consistent with the upper bound
imposed by GW150914, the tidal charge parameter Q must
lie within the range −0.5 < Q̃ < 0.3, as well as the
departure from the horizon should satisfy δ < 0.05. This
leads to the following bound on the CFT degrees of
freedom on the brane, N2 < 10−1ðMrþ=l2plÞ. Overall, we
observe that the quantum effects can naturally lead to the
QNM spectrum and the time-domain waveform to be
different from that of BHs, with the presence of echoes
due to the finite reflectivity of the quantum membrane.

Since the above analysis is for a static and spherically
symmetric spacetime, the constraints arising from GW
observations are not directly applicable. The generalization
of the above setup to spinning objects is an important
extension that we leave for future work.
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APPENDIX A: PROPERTIES OF THE QUANTUM
MEMBRANE AWAY FROM THE HORIZON

In this appendix, we discuss the properties of a quantum
membrane consisting of some harmonic oscillators away
from the horizon by a distance υ. The case discussed in the
main text, where the membrane sits on the would-be
horizon, is recovered when υ → 0.
The normalization integral for the ground state wave

function yields

Z
∞

−υ
dϵjΨðϵÞj2 ¼ jAj2

Z
∞

−υ
dϵ expð−ϵ2=σ2Þ

¼ jAj2
�
σ

2

�Z
∞

υ2=σ2
dz z−1=2e−z

¼ jAj2
�
σ

2

�
Γ
�
1

2
;
υ2

σ2

�
; ðA1Þ

where Γða; xÞ is the incomplete Gamma function. Thereby
we fix the normalization constant,

jAj2 ¼
�
2

σ

�
1

Γð1
2
; υ

2

σ2
Þ : ðA2Þ

Furthermore, the expectation value of ϵ̂ reads

hϵ̂i ¼
Z

∞

−υ
dϵ ϵjΨðϵÞj2 ¼ jAj2

�
σ2

2

�Z
∞

υ2=σ2
dz e−z

¼ σ

Γð1
2
; υ

2

σ2
Þ e

−υ2

σ2 : ðA3Þ
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As expected, one recovers (5) by taking the υ → 0 limit of
the above expression. Thus, the classical location of the
fluid surface in the scenario considered here becomes,

R ¼ rþ þ υþ hϵ̂i ¼ rþ þ υþ σ

Γð1
2
; υ

2

σ2
Þ e

−υ2

σ2 : ðA4Þ

Finally, the quantum nature of the membrane is captured by
the following expression:

hϵ̂2i − hϵ̂i2 ¼ σ2

Γð1
2
; υ

2

σ2
Þ

�
Γ
�
3

2
;
υ2

σ2

�
−

e−2
υ2

σ2

Γð1
2
; υ

2

σ2
Þ

�
: ðA5Þ

The expectation value of the relevant components of the
stress-energy tensor yields

hT̂tti¼ ρ0hfðr0þ ϵ̂Þi

¼ ρ0

�
fðr0Þþf0ðr0Þhϵ̂iþ

1

2
f00ðr0Þhϵ̂2iþOðσ̃3Þ

�

¼ ρ0

�
fðRÞþ1

2
f00ðr0Þfhϵ̂2i− hϵ̂i2gþOðσ̃3Þ

�
; ðA6Þ

as well as

hT̂θθi ¼ p0hðr0 þ ϵ̂Þ2i ¼ p0ðr20 þ 2r0hϵ̂i þ hϵ̂2iÞ

¼ p0ðRÞ2 þ p0fhϵ̂2i − hϵ̂i2g ¼ hT̂ϕϕi
sin2θ

; ðA7Þ

where r0 ¼ rþ þ υ. Finally, from the semiclassical junction
condition given in (7), we obtain the energy density of the
quantum fluid living on the membrane,

ρ0¼−
fðRÞ3=2
4πR

1

fðRÞþ1
2
f00ðr0Þðhϵ̂2i−hϵ̂i2ÞþOðσ̃3Þ; ðA8Þ

while the expression for the pressure is

p0 ¼
R½2fðRÞ þ Rf0ðRÞ�

16π
ffiffiffiffiffiffiffiffiffiffi
fðRÞp 1

R2 þ ðhϵ̂2i − hϵ̂i2Þ : ðA9Þ

Note that, in the limit υ → 0, the expressions for ρ0 and p0

coincides with the expressions in Sec. II. Given the above
expressions for the energy density and pressure, we obtain
the following expression for the combination:

ρ0 þ p0 ¼
1

16πR
ffiffiffiffiffiffiffiffiffiffi
fðRÞp ½fðRÞ þ 1

2
f00ðr0Þðhϵ̂2i − hϵ̂i2Þ þOðσ̃3Þ�½R2 þ ðhϵ̂2i − hϵ̂i2Þ�

×

�
−4fðRÞ2½R2 þ ðhϵ̂2i − hϵ̂i2Þ� þ R2½2fðRÞ þ Rf0ðRÞ�

�
fðRÞ þ 1

2
f00ðr0Þðhϵ̂2i − hϵ̂i2Þ þOðσ̃3Þ

��

¼ R2fðRÞ½−2fðRÞ þ Rf0ðRÞ�
16πR

ffiffiffiffiffiffiffiffiffiffi
fðRÞp ffðRÞR2 þ ½1

2
f00ðr0ÞR2 þ fðRÞ�ðhϵ̂2i − hϵ̂i2Þ þOðσ̃3Þg

þ ðhϵ̂2i − hϵ̂i2Þf−4fðRÞ2 þ 1
2
f00ðr0ÞR2½2fðRÞ þ Rf0ðRÞ�g

16πR
ffiffiffiffiffiffiffiffiffiffi
fðRÞp ffðRÞR2 þ ½1

2
f00ðr0ÞðRÞ2 þ fðRÞ�ðhϵ̂2i − hϵ̂i2Þ þOðσ̃3Þg : ðA10Þ

Note that in the absence of any quantum corrections, or of a
classical stochastic treatment of the membrane, we have
hϵ̂2i − hϵ̂i2 ¼ 0, along with R ¼ r0, yielding,

ρ0 þ p0 ¼
−2fðr0Þ þ r0f0ðr0Þ

16πr0
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; ðA11Þ

which coincides identically with the result derived in [21].
We now present the discussion for axial perturbations of

the gravitational sector. First of all, the perturbations of the
extrinsic curvature components remain identical to those in
Sec. II, whereas the components of the stress-energy tensor
becomes

hδT̂tϕi ¼ −e−iωtρ0ðRÞh0ðRÞ sin θ∂θPlðcos θÞ

− sin2θδuϕðρ0 þ p0ÞhR̂2

ffiffiffiffiffiffiffiffiffiffi
fðR̂Þ

q
i; ðA12Þ

hδT̂θϕi ¼ −η sin2 θ∂θδuϕhR̂2i
¼ −η sin2 θ∂θδuϕ½R2 þ ðhϵ̂2i − hϵ̂i2Þ�: ðA13Þ

From the perturbed semiclassical junction condition
δKab − Kδhab ¼ −8πhδT̂abi, we obtain from the ðt;ϕÞ
component,

δuϕ¼ e−iωt∂θPlðcosθÞ
8π sinθðρ0þp0ÞhR̂2

ffiffiffiffiffiffiffiffiffiffi
fðR̂Þ

q
i

×

�
1

2

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
½iωh1ðRÞþh00ðRÞ�

−
�

f0ðRÞ
2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp þ2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp
R

�
h0ðRÞ−8πρ0ðRÞh0ðRÞ

�
:

ðA14Þ
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Along identical lines, the semiclassical junction condition associated with the ðθ;ϕÞ component is

−
1

2
e−iωt

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
h1ðRÞ½− cos θ∂θPlðcos θÞ þ sin θ∂2θPlðcos θÞ�

¼ 8πηsin2θ∂θδuϕ½R2 þ ðhϵ̂2i − hϵ̂i2Þ�: ðA15Þ

Substitution of δuϕ from (A14) yields the following expression for the perturbation h1ðRÞ:

−
1

2

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
h1ðRÞ ¼

η½R2 þ ðhϵ̂2i − hϵ̂i2Þ�
ðρ0 þ p0ÞhR̂2

ffiffiffiffiffiffiffiffiffiffi
fðR̂Þ

q
i

�
1

2

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
½iωh1ðRÞ þ h00ðRÞ�

−
�

f0ðRÞ
2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp þ 2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp
R

�
h0ðRÞ − 8πρ0ðRÞh0ðRÞ

�
: ðA16Þ

Introducing the Regge-Wheeler function, we obtain the final form of the boundary condition on the stretched horizon,
located classically at r ¼ R ¼ rþ þ υþ hϵ̂i:

iωψðRÞ ¼ η½R2 þ ðhϵ̂2i − hϵ̂i2Þ�
ðρ0 þ p0ÞhR̂2

ffiffiffiffiffiffiffiffiffiffi
fðR̂Þ

q
i

�
VaxialðRÞψðRÞ −

1

R
dψðRÞ
dx

½Rf0ðRÞ − 2fðRÞ�

−
4fðRÞ
R

�
dψðRÞ
dx

þ fðRÞ
R

ψðRÞ
��

1þ 4πρ0ðRÞRffiffiffiffiffiffiffiffiffiffi
fðRÞp

��
: ðA17Þ

In the limit of vanishing quantum corrections, by using the
expression for ρ0ðRÞ, it can be shown that the term within
the round bracket in the last line identically vanishes, thus
recovering the result derived in [21].

APPENDIX B: POLAR PERTURBATION FOR
THE QUANTUM MEMBRANE

In the main text we have discussed in detail the axial
gravitational perturbations, since the polar case is much
more involved, which would have taken us away from the
central ideas of the model. However, for completeness, in
what follows we shall discuss the basic ingredients for the
derivation of the polar gravitational perturbations for the
quantum membrane.
For polar gravitational perturbations, the metric pertur-

bations are given by the following expressions [21]:

δgtt ¼ e−iωtPlðcos θÞfðrÞHðrÞ; ðB1Þ

δgrr ¼ e−iωtPlðcos θÞ
HðrÞ
fðrÞ ; ðB2Þ

δgtr ¼ e−iωtPlðcos θÞH1ðrÞ; ðB3Þ

δgθθ ¼ e−iωtPlðcos θÞr2KðrÞ: ðB4Þ

Thus, the metric perturbations in the polar sector are given
by three unknown functions,HðrÞ,H1ðrÞ, and KðrÞ. In the

polar case, the perturbed components of the normal
vector are

δnt ¼
1ffiffiffi
f

p ϵðiωÞe−iωtPlðcos θÞδR0; ðB5Þ

δnr ¼
1

2
ffiffiffi
f

p e−iωtPlðcos θÞHðrÞ; ðB6Þ

δnθ ¼ −
1ffiffiffi
f

p ϵe−iωtδR0∂θPlðcos θÞ; ðB7Þ

where δR0 corresponds to the shift in the classical location
of the membrane due to the polar gravitational perturba-
tions. Along with these, the perturbations of the extrinsic
curvature components follow from [21], yielding

δKtθ ¼−
1

2
ffiffiffi
f

p e−iωt∂θPlðcosθÞðfH1−2iωδR0Þ; ðB8Þ

δKtt ¼
1

4
ffiffiffi
f

p e−iωtPlðcosθÞ½δR0ð4ω2−f02Þþ2f2H0

þfð4iωH1−2f00δR0þ3f0HÞ�; ðB9Þ

δKθθ ¼
e−iωt

2
ffiffiffi
f

p ½fð2δR0 − RHþ R2K0 þ 2RKÞ

þ δR0ðRf0 − 2∂2θÞ�Plðcos θÞ; ðB10Þ

δKϕϕ ¼ e−iωt

2
ffiffiffi
f

p sin2θ½fð2δR0 − RHþ R2K0 þ 2RKÞ

þ δR0ðRf0 − cot θ∂θÞ�Plðcos θÞ: ðB11Þ
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All of these expressions are evaluated on the surface r ¼ R.
Until this point, the computation is purely on the geometry
side and hence classical. The effect of the quantum fluid of
the membrane arises from the perturbed stress-energy

tensor components, whose expectations values is on the
right hand side of the semiclassical junction condition. The
expectation values of the perturbed energy momentum
tensors yield

hδTtti¼ e−iωtPlðcosθÞ½ρ0δR0hf0ðrþþ ϵ̂Þiþðρ1−ρ0HÞhfðrþþ ϵ̂Þi�

¼ e−iωtPlðcosθÞ
�
ρ0δR0

�
f0ðRÞþ1

2
f000ðrþÞðhϵ̂2i− hϵ̂i2Þ

�
þðρ1−ρ0HÞ

�
fðRÞþ1

2
f00ðrþÞðhϵ̂2i− hϵ̂i2Þ

��
; ðB12Þ

hδTθθi ¼ −hR2i½ðζ þ ηÞ∂θδuθ þ ðζ − ηÞ cot θδuθ�

þ e−iωtPlðcos θÞ
�
ðp1 þKp0ÞhR2i þ 2p0δR0hRi þ iζωK

�
R2ffiffiffi
f

p
�
þ 2iζωδR0

�
Rffiffiffi
f

p
��

¼ −hR2i½ðζ þ ηÞ∂θδuθ þ ðζ − ηÞ cot θδuθ�

þ e−iωtPlðcos θÞ
�
ðp1 þKp0ÞhR2i þ 2p0δR0hRi þ iζω

Kffiffiffiffiffiffiffiffiffiffi
fðRÞp hR2i þ 2iζω

δR0ffiffiffiffiffiffiffiffiffiffi
fðRÞp hRi

�
; ðB13Þ

hδTϕϕi ¼ −hR2isin2θ½ðζ − ηÞ∂θδuθ þ ðζ þ ηÞ cot θδuθ�

þ e−iωtPlðcos θÞ
�
ðp1 þKp0ÞhR2i þ 2p0δR0hRi þ iζωK

�
R2ffiffiffi
f

p
�
þ 2iζωδR0

�
Rffiffiffi
f

p
��

¼ −hR2isin2θ½ðζ − ηÞ∂θδuθ þ ðζ þ ηÞ cot θδuθ�

þ e−iωtPlðcos θÞ
�
ðp1 þKp0ÞhR2i þ 2p0δR0hRi þ iζω

Kffiffiffiffiffiffiffiffiffiffi
fðRÞp hR2i þ 2iζω

δR0ffiffiffiffiffiffiffiffiffiffi
fðRÞp hRi

�
; ðB14Þ

hδTtθi ¼ −hR2
ffiffiffi
f

p
iðρ0 þ p0Þδuθ

¼ −hR2i
ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
ðρ0 þ p0Þδuθ; ðB15Þ

where the first-order corrections of the energy density and
the pressure of the membrane are δρ ¼ e−iωtPlðcos θÞρ1ðrÞ
and δp ¼ e−iωtPlðcos θÞp1ðrÞ. Note that when the expect-
ation values of nonpositive integer powers of fðR̂Þ are
present, we ignore the operator nature and approximate
them to be functions of fðRÞ. The expectation values of R̂
and R̂2 appearing in the above expressions are easy to
obtain using the expression R̂ ¼ Rþ ϵ̂ and then computing
the expectation values of ϵ̂ and ϵ̂2.
Using the perturbed version of the semiclassical junction

condition, and the expressions for δKab and hδT̂abi, one
may obtain δR0, ρ1, and p1. These relations, along with the
Zerilli potential for the spherically symmetric background
spacetime, will provide the desired boundary conditions for
polar perturbations, which will depend on the quantum
properties of the membrane.

APPENDIX C: POLAR PERTURBATION FOR
BRANEWORLD BHS: ZERILLI POTENTIAL

In the main text, we have discussed the axial perturba-
tions of the braneworld BH. In this appendix, we also

present the polar perturbations for completeness. The
analysis of polar perturbation will follow the same lines
as in [21], with nonzero metric perturbations being given by
(B1)–(B4). For the braneworld BH as well, the polar
perturbation will shift the location of the membrane at
R ¼ rþ þ δtoRþ δR0, such that the expression for the
components of the perturbed normal vector becomes those
given in (B5)–(B7). Similarly, the perturbed extrinsic
curvature components are those given by (B8)–(B11).
The perturbed energy momentum tensor takes the form
as in [21].
The only difference being the dependence of the Zerilli

potential [68,69] on the tidal charge Q, due to the presence
of the extra dimensions. First of all, one notices that the
three perturbation variables HðrÞ, H1ðrÞ, and KðrÞ are
related by an algebraic relation. Then, after introducing the
standard Zerilli master function, the gravitational pertur-
bation equation becomes [68,69]

d2Z
dx2

þ ½ω2 − VpolarðxÞ�Z ¼ 0; ðC1Þ
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where the effective potential for polar perturbation reads [64]

Vpolar ¼
gðrÞ
2r2K

½2rf1þ 2rf0K0 þ gðrK00 − 4K0Þg þ Kð2qþ 12f − 7rg0 þ r2g00Þ�; ðC2Þ

with K ¼ 2r
2ðqþ1Þ−2gþrg0 and q ¼ ðl−1Þðlþ2Þ

2
. These provide the details for the polar perturbation of braneworld BH.
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