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While recent gravitational wave observations by LIGO and Virgo allow for tests of general relativity in
the extreme gravity regime, these observations are still blind to a large swath of phenomena outside these
instruments’ sensitivity curves. Future gravitational-wave detectors, such as LISA, will enable probes of
longer-duration and lower-frequency events. In particular, LISA will enable the characterization of the
nonlinear dynamics of extreme mass-ratio inspirals, when a small compact object falls into a supermassive
black hole. In this paper, we study the motion of test particles around spinning black holes in two quadratic
gravity theories: scalar Gauss-Bonnet and dynamical Chern-Simons gravity. We show that geodesic
trajectories around slowly rotating black holes in these theories are likely to not have a fourth constant of
the motion. In particular, we show that Poincaré sections of the orbital phase space present chaotic features
that will affect the inspiral of small compact objects into supermassive black holes in these theories.
Nevertheless, the characteristic size of these chaotic features is tiny and their location in parameter space is
very close to the event horizon of the supermassive black hole. Therefore, the detection of such chaotic
features with LISA is likely very challenging, at best.
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I. INTRODUCTION

Tests of the extreme gravity regime, where gravity is
simultaneously strong and dynamical, have become
commonplace [1–3]. The newfound ubiquity of these tests
is thanks to the observation of gravitational waves emitted
in the inspiral and merger of compact objects by the Laser
Interferometer Gravitational-wave Observatory (LIGO)
and Virgo. These tests, together with what next-generation
detectors such as the space-based Laser Interferometer
Space Antenna (LISA) [4] will enable, allow us to inter-
rogate Einstein’s theory of general relativity (GR) with ever
finer precision.
While LIGO and Virgo allow for probes of the dynamics

of comparable-mass binaries, LISA [5,6] will allow GR to
be tested for an entirely different class of sources. One
member of this class are extreme mass-ratio inspirals
(EMRIs), in which a small black hole (BH) spirals into
a supermassive black hole (SMBH) [4]. EMRIs offer the
potential to gain an unique insight into the spacetime
geometry of SMBHs because their trajectories, to leading-
order in the mass-ratio, are simply geodesics of the SMBH
background [7,8]. This means that EMRIs are particularly
sensitive to conserved quantities, such as the orbital energy

and orbital angular momentum, as well as to their evolu-
tions [8]. The type and number of conserved quantities, in
turn, depend on the symmetry structure of the SMBH
background. Therefore, EMRI observations have the poten-
tial to reveal the symmetries of rotating SMBH space-
times [9,10].
The relation between a set of geodesics, their conserved

quantities and the symmetry structure of the SMBH space-
time geometry is highly nontrivial in general [9,11]. One
method that allows us to establish this relation comes from
dynamical systems theory, and in particular, from tools
related to the analysis of chaotic systems [12]. In
Hamiltonian systems (such as a test particle traveling on
geodesics in a given spacetime),whether the solution space is
chaotic or not depends on its integrability [13]. A
Hamiltonian system is said to be integrable if there exists
a transformation that allows the equations of motion to be
written as first integrals of themotion [12]. This is identical to
requiring that there exist at least as many conserved quan-
tities as there are degrees of freedom in the system.
If either of the above conditions is not met, then the

Hamiltonian system is said to be nonintegrable, and can
permit chaotic motion. This argument can also be reversed:
If one can show that chaotic motion is present in a given
system, then one knows the Hamiltonian system is non-
integrable, and therefore the number of conserved quan-
tities must be smaller than the degrees of freedom of the
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system. This, in turn, implies that the spacetime has
fewer symmetries than the Kerr solution [14]. In the context
of EMRIs [9,15,16], the notion of integrability and
how chaotic signatures of the spacetime relate to
gravitational-wave observables has attracted much atten-
tion [10]. For example, the abrupt and large changes of the
fundamental frequencies of the motion, first reported in
Ref. [9], have been recently found to translate to “glitches”
in the GW frequency [10].
The current theoretical understanding of chaotic signa-

tures in EMRIs has been gained by choosing a parametric
spacetime that is known to lead to a plethora of chaos
[17–19]. These metrics are typically a solution of the
vacuum Einstein equations distinct from the integrable
(nonchaotic) Kerr metric [14] or designed specifically to be
nonintegrable [20]. Even though by the no-hair theorems
these metrics are expected to be pathological in some way
(e.g., by containing closed timelike curves or lacking a
compact event horizon) and may therefore lack astrophysi-
cal relevance, these investigations have been extremely
informative, as they allow for a venue to perform tests of
GR and study fundamental spacetime symmetries.
But what happens when one studies the possible chaotic

features of EMRIs in a better-motivated modified theory of
gravity? Recently, Ref. [21] investigated whether chaos is
present in geodesics of a slowly rotating BH of dynamical
Chern-Simons (dCS) gravity [22]. This parity-violating
effective modified gravity theory modifies the Einstein-
Hilbert action through a dynamical pseudoscalar field that
couples to the Pontryagin density, and predicts rotating
BHs different from the Kerr solution. Given that the
solutions to this theory have only been found perturbatively
[23], Ref. [21] observed that the size of the chaotic features
decreased as higher-order expansions were considered in
the quadratic sector of the metric. The authors therefore
conjectured that these features would disappear altogether
given an exact BH metric (i.e., valid to all orders in spin),
implying the existence of a hidden, Carter-like, fourth
constant of the motion, associated with an as-yet undis-
covered symmetry (in addition to axisymmetry and statio-
narity). If such a hidden symmetry exists, one expects it is
associated with the presence of a Killing tensor [24].
However, recent work had demonstrated that Killing
tensors of rank 2, 3, 4, 5 and 6 do not exist for spinning
dCS BHs [25]. This analytical work suggests that chaos
may actually be present in geodesic motion around spin-
ning dCS BHs, but its signatures may be so small that they
evaded detection until now.
In this paper, we revisit the question of whether chaos is

present in geodesics of spinning BHs in quadratic gravity,
including both dCS gravity and scalar Gauss-Bonnet (sGB)
gravity [26] (a theory similar to dCS but in which a scalar
couples to the Kretchmann invariant in the action). We
model the spacetime as a resummation of a perturbative
solution [27], in which the deformations of the Kerr

spacetime are computed in the small-spin and small-
coupling approximation, working to fifth order in the
former and first order in the latter. We evolve millions
of geodesics with an adaptive, 7–8 Runge-Kutta-Verner,
custom code that ensures double-precision numerical
accuracy over 106 orbits. With these geodesics, we then
compute Poincaré sections of the orbital phase space, and
calculate the rotation curves for geodesics with thousands
of initial conditions. From each rotation curve, we then
identify nonanalytic behavior associated with classical
resonances in the phase space, and extract the invariant
area in the region of nonanalyticity.
The above analysis, combined with new and faster codes,

allows us to analyze the phase space more deeply than ever
before, revealing for the first time signatures of chaos in
geodesic orbits around both spinning dCS and sGB BHs.
We show that these chaotic signatures are robust to the
expansion order of the Kerr deformations, as well as to
numerical error that can sometimes mimic chaotic struc-
tures. The area of the chaotic regions, however, is exceed-
ingly small (e.g., its width is a millionth of a Schwarzschild
radius). The smallness of the chaotic phase space regions
implies that their impact in the gravitational waves emitted
by EMRIs is likely not detectable. If so, future GW
observations that exclude large chaotic signatures as
induced by parametric spacetimes would place no con-
straints on non-Kerr BH solutions that arise in (at least a
subset of) actual modified theories of gravity.
At first sight, some of the results described above seem to

be in contradiction with those found in Ref. [21]. To
investigate this further, we reproduced the results in that
analysis, and found agreement with their numerical work.
However, our new numerical implementation allows for a
higher-resolution extraction of chaotic features, and for a
deeper exploration of parameter space through paralleliza-
tion in high-performance computing clusters. These tools
yield results that indicate that, although the size of the
chaotic regions does decrease with spin order (as found in
[21]), the change asymptotes to a constant instead of
continuing to decrease to zero, (as conjectured in [21]).
In turn, these results then imply that a fourth constant of the
motion does not exist and geodesic motion in these
quadratic gravity theories is chaotic. Our results are there-
fore in agreement with the recent analytical work of
Ref. [25] that proved the nonexistence of Killing tensors
of rank less than 6 in dCS, and rank 2 in sGB.
This paper is organized as follows. Section II reviews

quadratic gravity and the two specific theories we consider
(sGB and dCS gravity). Section III summarizes the
mathematical tools we use to detect chaos, discusses the
metrics used, and describes some details of the numerical
techniques we develop. Section IV summarizes the appli-
cation of these tools to geodesics, in both Kerr and the
quadratic gravity theories. Section V concludes and sug-
gests how to take this analysis further in the future.
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Appendix discusses the structure of a metric perturbation
necessary to permit chaos in Boyer-Lindquist-like coor-
dinates. Throughout this work we use geometric units in
which G ¼ 1 ¼ c.

II. BLACK HOLES IN QUADRATIC GRAVITY

In this section, we give a brief description of quadratic
gravity, and provide details of the two theories we consider
in this paper, sGB and dCS gravity.

A. The quadratic gravity action

Given the current agreement of GR across several scales
and regimes, it may be that modifications to GR appear
only in the strong-field regime [28]. Modifications can be
introduced through a series in higher-than-linear curvature
terms in the action, therefore developing an effective field
theory. In this context, the Einstein-Hilbert action can be
thought of as the leading-order term in such an expansion,
and the quadratic correction would be a second-order term
[29]. These theories are motivated not only by this effective
theory argument, but can also be found arising from low-
energy expansions of certain string theories [22].
Quadratic gravity, in particular, refers to a class of

effective field theories of modified gravity in which a
scalar field couples to quadratic curvature scalars in the
action. These theories are defined through the action

S ¼ SEH þ Smat þ Sϑ þ SRR; ð1Þ

where SEH denotes the Einstein-Hilbert action, Smat is the
matter action, Sϑ an action that depends only on the scalar
field, and SRR an action that couples the scalar field to a
quadratic curvature scalar.

SEH ¼ κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð2Þ

with κ ¼ ð16πGÞ−1, g the determinant of the metric tensor
and R ¼ gαβgρσRρασβ the Ricci scalar, with Rρασβ the
Riemann tensor. The action for the scalar field Sϑ is

Sϑ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½∇μϑ∇μϑþ 2VðϑÞ�; ð3Þ

where VðϑÞ is a potential. We are here concerned with
massless fields, so we set VðϑÞ ¼ 0, leaving only the
kinetic piece of Sϑ. To ensure that the theory remains an
effective one, we assume ϑ is small (see, e.g., the discussion
in [30]). Finally, SRR is the action which couples ϑ to some
term that is quadratic in the curvature. While we can
imagine constructing many such scalars from curvature
invariants, in practice we are here concerned with only two,
elaborated upon below.

B. Scalar-Gauss-Bonnet gravity

SGB gravity arises from a compactified low-energy
expansion of heterotic string theory [31]. In this effective
theory, the action takes the form of Eq. (1), with the
quadratic term given by [32]

SRR ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðαGBϑGÞ ð4Þ

where G is the Gauss-Bonnet invariant defined as

G≡ R2 − 4RμνRμν þ RμνσρRμνσρ; ð5Þ

ϑ is a scalar field, and Rμν is the Ricci tensor. In geometric
units, the constant αGB has dimensions of length squared.
Observations of gravitational waves emitted by black hole
binaries have constrained α1=2GB ≤ 5.6 km with 90% confi-
dence [33].
The field equations for the theory read [32]

Gab þ
αGB
κ

DðϑÞ
ab ¼ 1

2κ
ðTmat:

ab − TðϑÞ
ab Þ; ð6Þ

□ϑ ¼ αGBG; ð7Þ

where the scalar field stress-energy tensor is

TðϑÞ
ab ¼

�
∇aϑ∇bϑ −

1

2
gabð∇cϑ∇cϑ − 2VðϑÞÞ

�
; ð8Þ

and

DðϑÞ
ab ≡−2R∇a∇bϑþ 2ðgabR− 2RabÞ∇c∇cϑ

þ 8Rcða∇c∇bÞϑ− 4gabRcd∇c∇dϑþ 4Rabcd∇c∇dϑ:

ð9Þ

SGB gravity introduces modifications to both spinning
(axisymmetric) and nonspinning (spherically symmetric)
BHs [32]. In all cases, the sGB modifications are propor-
tional to the dimensionless coupling constant

ζGB ≡ α2GB
κM4

; ð10Þ

where M is the black hole mass. Spherically symmetric
BHs, however, can easily be shown to lead to integrable
(nonchaotic) geodesic orbits (as we review in Appendix),
and thus, we will focus here on spinning BHs.

C. Dynamical Chern-Simons gravity

DCS gravity arises from investigations in string theory
[34], and also through the standard model gravitational
anomaly [35], as well as loop quantum gravity [36]. In this
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effective theory, the action takes the form of Eq. (1), with
the quadratic term given by [26]

SRR ¼ αCS
4

Z
d4x

ffiffiffiffiffiffi
−g

p
ϑ̃RR̃; ð11Þ

where the Pontryagin density is

RR̃≡ �Rα
β
γδRβ

αγδ; ð12Þ

the Riemann tensor’s dual is �Rα
β
γδ ¼ 1

2
ϵγδρλRα

βρλ, (with
ϵμναβ the Levi-Civita tensor), ϑ̃ is a pseudoscalar field, and
αCS is a constant with dimensions of length squared in
geometric units. Multimessenger observations of neutron
star have constrained α1=2CS ≤ 8.5 km with 90% confi-
dence [37].
The field equations for the theory read [26]

Gμν þ
αCS
κ

Cðϑ̃Þμν ¼ 1

2κ
ðTmat

μν − Tðϑ̃Þ
μν Þ; ð13Þ

□ϑ̃ ¼ −
αCS
4

R̃R; ð14Þ

where

Cμνðϑ̃Þ ¼ ð∇σϑ̃Þϵσδαðμ∇αRνÞ
δ þ ð∇σ∇δϑ̃ÞR̃δðμνÞσ; ð15Þ

and Tðϑ̃Þ
ab is the stress-energy tensor of the pseudoscalar

field, which is the same as Eq. (8) but with ϑ → ϑ̃.
The action for the nonminimal interaction in Eq. (10)

introduces modifications from GR only in parity-odd
spacetimes, such as for rotating BHs. As in sGB gravity,
dCS modifications to BH spacetimes are proportional to the
dimensionless coupling parameter

ζCS ≡ α2CS
κM4

; ð16Þ

where again M is the BH mass. Unlike sGB gravity,
however, dCS modifications are not introduced in spheri-
cally symmetric spacetimes [22].

D. Black hole solutions in sGB and dCS gravity

Our work relies on the quadratic gravity metrics known
analytically from expansions in both slow-spin and small-
coupling [23,38,39]. We will make use of metrics of various
orders in spin, and we will even resum these metrics, so that
we are able to probe phenomena across a wide range of
parameter space in spin and coupling strength.
These metrics were derived following a double approxi-

mation scheme as laid out e.g., in [40]. In this method, two
approximations are carried out independently, one in
dimensionless spin parameter, χ ≡ a=M for a BH with
dimensional spin parameter a and mass M, and one in the

coupling term, ζq, where q is the label for the particular
theory under consideration. In both expansions, the param-
eters are treated as independently small ( χ ≪ 1, ζq ≪ 1),
and thus, the resulting metrics can be thought of as
perturbations of a Kerr background metric. Generically,
the GR deformation is expanded to order ðn;mÞ in ð χ; ζqÞ
as follows:

gab ¼ gKerrab þ ζ0
X
l

ð χ0ÞlδgðlÞab ð17Þ

where χ0 and ζ0 are book-keeping parameters that label the
expansion order in χ and ζq, respectively, and gKerrab is the
Kerr metric. Note that the metric is never expanded beyond
linear order in ζq, because both sGB and dCS are treated as
effective field theories.
Sometimes, we will find it convenient to also expand the

Kerr metric in small spin, namely

gKerrab ¼
X
k

ðχ0ÞlgðkÞab ; ð18Þ

in which gð0Þab is the Schwarzschild metric.
We adopt the following notation to distinguish these

metrics at different expansion orders. For a metric whose
GR sector is expanded toOð χnÞ and whose quadratic sector
is expanded to Oð χmζqÞ, we use the notation Oð χnGR;
ð χmζÞqÞ. For example, a metric labeled Oð χ3GR; ð χ2ζÞdCSÞ
is one in which the GR sector is expanded to cubic order in
spin and contains up to quadratic orders in the dCS metric
deformation.
All of these expansions present several confounding

aspects to the otherwise straightforward search for chaos.
It is already well established that simply taking a slow-spin
expansion to a conventionalKerrmetric is sufficient to render
the Carter constant unconserved [21]. In this work, we use
metrics that derive from two such expansions, one in the GR
sector and one in the quadratic sector, both of which could in
principle lead to spurious chaotic features.We thereforemust
be careful to avoid confusing chaotic features that arise due to
expansions from true chaotic features thatwould remain even
if we had an exact BH metric.
Another consequence of the approximation scheme

described above is the introduction of artificial coordinate
singularities. The lowest-order terms of Eq. (18) are simply
the Schwarzschild metric elements, which will contain a
coordinate singularity at rEH ¼ 2M, despite the fact that the
true location of the event horizon (up to expansion order
remainders) is necessarily inside 2M [23,41]. We can
correct for this through a resummation of the metric
elements, whereby we perturbatively add terms that correct
for the event horizon radius at each subsequent order. These
resummed metrics were derived from approximate solu-
tions of Oðχ2GR; ðχ2ζÞdCSÞ in [23], and we therefore extend
them here to approximate metrics of Oðχ5GR; ðχ5ζÞdCSÞ.
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The resummed metrics we use here are presented explicitly
in [42].

III. DYNAMICAL SYSTEMS THEORY

In this section, we introduce some basic concepts from
dynamical systems theory that we will employ heavily to
study chaos in quadratic gravity. We begin with an
introduction to Poincaré surfaces and the rotation number
as a way to measure chaos. We then present the concept of
broken tori and broken symmetries in perturbed space-
times. We conclude with a discussion of the appropriate
geodesics to evolve in order to compute the rotation
number. Throughout this section, we draw heavily from
the reviews on dynamical systems theory in [12,13].

A. Poincare surfaces and the rotation number

A Hamiltonian system with d degrees of freedom is said
to be “Liouville integrable” (or simply integrable) if there
exist d constants of the motion which commute [12]. For
each of these integrable Hamiltonians, there exists a set of
action-angle coordinates in which the trajectories lie on
hypertori of dimension d, embedded in a space of dimen-
sion 2d [13]. If it is ever the case that there are more degrees
of freedom than constants of the motion, the system is no
longer integrable, and none of the above is necessarily
true [43].
When dealing with systems of two degrees of freedom, a

Poincaré map (also sometimes referred to as a Poincaré
surface of section) offers a way to quickly understand the
behavior of a bundle of trajectories on the surface of a torus.
What would otherwise be a challenging multidimensional
visualization exercise becomes much simpler to inspect,
and several features make themselves much clearer. To
construct a Poincaré map, one integrates a trajectory, and
records its phase-space position when it crosses an arbitrary

surface (left panel of Fig. 1), which we take to be the
equatorial plane at θ ¼ π=2.
Repeating this procedure for many trajectories across a

grid of initial conditions of the same conserved quantities
(energy and angular momentum in our case), one arrives at
a map that represents a cross section of a torus (center and
right panels of Fig. 1), whose dimensions are defined by the
trajectory’s action-angle coordinates. As a result of the
Kolmogorov-Arnold-Moser (KAM) theorem, if no chaos is
present, the curves of the Poincaré map should be nested
[12,13]. In the presence of chaos, however, the curves start
to disintegrate [12]. The curves branch off into so-called
“Birkhoff islands,” or sometimes explode altogether, leav-
ing a dusty “sea” of chaos. The rotation curve allows us to
quantify the “amount” of chaos in each region of the
Poincaré map [12].
En route to understanding the rotation number, it is

useful to consider the following questions: given a phase
space trajectory and a slicing of the phase space, how much
time elapses between successive crossings of the slice?
Should the crossing frequency be very regular or not
predictable? Given the usual definition of action-angle
coordinates (see, e.g., [21]), one would expect a nonchaotic
trajectory to be very regular: action-angle coordinates move
with constant-speed motion [13]. Moreover, the amount by
which the trajectory moves between two crossings is
completely determined by the ratio ω2=ω1, where ωi are
the trajectory’s angle coordinates at the crossings [12]. We
can identify the orbit that crosses the slicing surface (for us,
the surface defined by the equatorial plane θ ¼ π=2 with
radial momentum Pr ¼ 0) at only one point as the invariant
point, pI . We can then define the angle between subsequent
crossings pi and piþ1 via [12]

θi ¼ ∡ððpiþ1 − pIÞ; ðpi − pIÞÞ: ð19Þ

FIG. 1. On the left we show an illustration of the torus filled by the trajectories in phase-space and a Poincaré surface. As a trajectory
(black line) traverses the torus, the phase-space position is logged whenever the trajectory crosses some plane (cyan rectangle). These
positions (red dots) then constitute one Poincaré surface, which are also shown in the phase space of generalized coordinates, as shown
in the middle panel. Depending on how the action-angle coordinates transform, the resulting phase-space cross-section may not be
circular. On the right we show several Poincaré surfaces of an integrable system for different trajectories of equal energy and angular
momentum.
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For an integrable system, it should be the case that
θ ¼ ω2=ω1. However, the trajectory of a chaotic
Hamiltonian cannot be transformed into action-angle coor-
dinates. By the KAM theorem, if your Hamiltonian is a
small perturbation from fully integrable, then most trajec-
tories will still be confined to a given torus, and those that
are not will not stray very far [12,13]. The rotation number
is therefore defined as [12]

νθ ¼ lim
N→∞

1

2πN

XN
i

θi ð20Þ

In other words, the rotation number is the average amount
by which the trajectory has shifted during one orbit of the
torus [13]. By calculating the average angle between
successive crossings of the chosen slice, we can compare
the “amount” of chaos of one trajectory to another. In
particular, if the rotation number either “flattens out” into a
so-called “plateau” (left panel of Fig. 2) or suddenly makes
a discontinuous jump (right panel of Fig. 2), that is a telltale
sign of chaos. We will refer to all such signs as nonanalytic
features of the rotation curve.

B. Measuring the broken tori

When the perturbations from the integrable system are
small, as the ones considered in this work, searching for
regions of broken toroidal structure in phase-space is
computationally expensive. In addition to being a very
large space, any detection must be shown as arising due to
the equations of motion themselves, and not any artifact of
numerical precision. In order to reduce the region of phase
space being searched over, we need a hint about where to
start looking. Fortunately, it can be shown [12,13] that, as a

result of the Poincaré-Birkhoff theorem [12], trajectories of
a perturbed system are most likely to exhibit chaos if they
lie near trajectories with integer ratio of frequencies ω.
Such frequency ratios are called resonant. For this reason,
we look first to the 1=2 and 2=3 resonances for any
signatures of chaos.
Once nonanalytic features in the rotation curve are found,

we must also find a way to quantify the size of the chaotic
region.Oneway to do so is through the areaA of the region in
phase space in which these nonanalytic features are con-
tained. For example, let us consider plateaus. As the size of
the plateau decreases, the plateau’s aspect ratio quickly flips,
becoming larger in the Pr axis than in the r axis. While past
work has measured only the width of the plateau, this loses
meaning as the plateau shrinks. Therefore, it is easier to
compare plateau sizes if we concern ourselves with the area
A of the plateau, defined via

A ¼
Z

νmax

νmin

Z
rmax

rmin

dν dr; ð21Þ

where rmin;max and νmin;max are the radii and rotation numbers
at which the nonanalytic features first appear and disappear
as we sweep through initial conditions. For the nonanalytic
features we consider, A can be well approximated as a
rectangle, which is then given by the width, δ1 of the plateau
times its height, δ2 (Fig. 2), i.e., A ¼ δ1δ2.
For systems without dissipation, like the one we are

studying here, the resulting phase space portrait is inde-
pendent of the initial conditions. However, the measure we
described above depends on where in the phase portrait it is
implemented. For this work, we are only concerned with
the 1=2-resonance, which has a Birkhoff island whose
maximum width is at Pr ¼ 0, and that is why we see

FIG. 2. Left: an example of a plateau in the geodesic phase space of an sGB BH at orderOð χ2GR; ð χ5ζÞsGBÞ, signifying the presence of
chaos. Instead of measuring the width of the plateau, we measure their area,A. This measure allows us to compare plateaus between two
chaotic features of different aspect ratios (i.e., where δ1 has shrunk, so the plateau has become more of a discontinuous jump.) Right: a
small plateau, found in the geodesic phase space of an sGB BH expanded to Oð χ7GR; ð χ5ζÞsGBÞ. For very small plateaus, δ1 can shrink
more than δ2, changing the aspect ratio. Measuring δ1 alone can indicate, incorrectly, that the plateau is vanishing. The plateau area, on
the other hand, allows us to compare plateaus of different aspect ratios more meaningfully. In both panels, E ¼ 0.995μ, L ¼ 3.75365μM
and χ ¼ 0.2.
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plateaus for some cases. If one does not use points in the
phase space with Pr ¼ 0, the rotation number for this same
resonance may not show a plateau, and the described area
will be even smaller. Nevertheless, it can still be used and
compared to other conditions if the phase portrait is
consistently measured, i.e., in the same way for all the
analyzed cases. Thus, for different resonances, one may
need to explore the phase portrait and find where these
effects may be maximized.
On the other hand, if one includes dissipation, the initial

conditions will impact the dynamics of the particle [44–46],
as it will cross different structures in phase space differ-
ently. As we are not considering a particle crossing these
structures, we just need to focus on the depicted character
of the phase portrait to study the integrability of the
aforementioned quadratic theories of gravity.

C. Broken symmetries in perturbed spacetimes

The KAM theorem suggests at least two ways in which a
nonintegrable Hamiltonian can be perturbed to lead to
chaos: either reduce the number of conserved quantities,
or increase the number of degrees of freedom. Recall that
the Hamiltonian for geodesic motion on arbitrary back-
grounds is

H ¼ 1

2μ
gμνPμPν; ð22Þ

for a trajectory with four-momentum Pμ ¼ μuμ of a test
particle with mass μ and four-velocity uμ. In our case, the
metric gμν is given by Eq. (17), which can be thought of as a
perturbation of the Kerr spacetime. The symmetries of the
Kerr metric disallow any chaotic behavior in geodesic
trajectories [14]. Perturbations to this Hamiltonian intro-
duced by the deformations of the Kerr metric can then lead
to chaos either by changing the number of conserved
quantities or degrees of freedom. We know the number of
degrees of freedom remains fixed (there are still 4 space-
time dimensions in sGB and dCS gravity), but different
theories may permit different numbers of conserved quan-
tities. Therefore, if chaos is found in sGB or dCS gravity,
then it must be that the number of conserved quantities has
been reduced relative to GR.
A particle traveling along a geodesic in a Kerr spacetime

possesses 4 conserved quantities: the angular momentum in
the z-axis L, the total energy E, the rest-mass of the particle
μ and the Carter constant C [14]. The conserved quantities
E and L are defined from the contractions E ¼ −μ−1ξμðtÞPμ

and L ¼ μ−1ξμðϕÞPμ, where ξμðXÞ is the Killing vector

associated with the X coordinate. The Carter constant is
derived from a second-rank Killing tensor. The angular
moment and the total energy arise from the existence of
azimuthal and time-like Killing vectors, associated with
axisymmetry and stationarity. The conservation of μ

follows from the conservation of the metric signature upon
geodesic evolution. Therefore, these three conserved quan-
tities always exist in geodesics around stationary and
axisymmetric backgrounds. A Killing tensor, however,
need not exist in general for modified theories.
Determining the nonexistence of Killing tensors of arbi-
trary rank is generally very difficult. While searches have
been performed recently for dCS and sGB gravity, finding
that Killing tensors do not exist for slowly-rotating BH
spacetimes up to rank 6 [25], the existence of higher-rank
Killing tensors cannot be ruled out.
We will here adopt an alternative path to characterize the

number of conserved quantities of a given theory: given a
modified (stationary and axisymmetric) BH spacetime,
evolve many test particles along geodesics to look for
signatures of chaos in their associated Poincaré surfaces
[44,47]. This will provide an indication of whether there is
chaos in the spacetime (to within the numerical precision of
our integrator).1 The aforementioned procedure has been
applied to various spacetimes to study their integrability
properties (see, e.g., Refs. [9,19,21,47–50]).
We are now equipped to formulate our original question

differently: Do the metrics of quadratic gravity break any
symmetries of Kerr, and if they do, how significant are the
resulting features of chaos? Ultimately, these features are
what will allow any sort of observational constraint to be
placed on the coupling constant αGB;CS.

IV. GEODESICS IN QUADRATIC GRAVITY

Having laid the foundations for the modified gravity
theories we will investigate, as well as some basics of
dynamical systems theory, we can now proceed to inves-
tigate whether geodesics present chaotic features in quad-
ratic gravity.

A. Choosing appropriate geodesics and initial
conditions

What kinds of particle orbits are most useful for carrying
out the analysis described above? While we can imagine
doing these calculations for any kind of geodesic, Poincaré
sections are relatively data-intensive, so we desire geo-
desics that can provide a theoretically infinite number of
surface crossings. We therefore restrict ourselves to bound
orbits.2 In addition, we should also focus on those geo-
desics that approach the BH event horizon as close as
possible, to ensure the geodesics sample as strong a
gravitational field as possible. Quadratic gravity modifica-
tions naturally become stronger the larger the spacetime

1Indeed, for the purposes of setting bounds on coupling
parameters, this is all that is needed, as machine precision
currently much outpaces even the future detectors’ ability to
constrain modified theories.

2Other studies have also investigated plunging orbits, but these
revealed that the resulting features are relatively small [21].
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curvature, and therefore any chaotic features due to the
modification will scale with the distance to the BH event
horizon.
The region of phase space that a particle explores is

controlled by its effective potential. In a geometric theory
of gravity, one can reduce the Hamiltonian for particle
motion in a stationary and axisymmetric background to two
degrees of freedom via the normalization condition
PαPα ¼ −μ2, where recall that Pα is the particle’s
4-momentum. We can then rewrite Eq. (22) as

1

2
P2
r þ

1

2
P2
θ ¼ Veff ; ð23Þ

where we have defined the effective potential

Veff ¼
1

2

�
gϕϕE2 þ 2gtϕELþ L2gtt

gttgϕϕ − g2tϕ
þ μ2

�
; ð24Þ

and recall that E and L are the particle’s energy and
z-angular momentum, respectively. If for some choice of
ðE;LÞ, the effective potential contains a local minimum,
then geodesics with those choices of ðE;LÞ are bounded.
For example, when we plot Veff for a bound system, we
find that it presents a distinct local minimum, recognizable
from Newtonian dynamics, as shown in Fig. 3.
To amplify the effects of chaos, we must now choose the

subset of ðE;LÞ that not only lead to bound geodesic
motion, but also allow these geodesics to sample the largest
possible spacetime curvatures. The latter is accomplished
by requiring that the geodesics explore regimes of space-
time close to the BH event horizon. For this to occur, we
must then require that the second root of Veff ¼ 0 (labeled
p1 in Fig. 3) is as close as possible to the BH event horizon.

We therefore formulate this as a minimization problem in
the two-dimensional space of possible values for E and L.
To perform the minimization of the location of the second
root, we grid in E and L and find those combinations that
permit a local minimum in the effective potential. Then, by
a root finding algorithm we find the set of parameters that
minimizes the second root of the effective potential, and we
use this root as the left-most initial radius for the geodesic
runs. To perform this minimization, we found it was
sufficient to set the numerical precision to 10−10. The
value of the second root as a function of E and L can be
seen in Fig. 3.
One may naively think that another way to amplify

the effects of chaos would be to increase the size of the
coupling constant ζq, since after all this controls the
magnitude of the GR deformation. This turns out not to
be the case: as ζq is increased, the effective potential shifts
away from the BH event horizon, (equivalent to saying that
p1 shifts away from the origin). Choosing an orbit with as
small a p1 as possible and a spacetime with as large a ζq as
possible is therefore a difficult balance. We see this in
Fig. 4, where in the left panel p1 moves to larger values in
r=M as ζq is increased, and, on the right, that this increase
is monotonic. A similar relationship exists for the dimen-
sionless spin parameter, χ. As seen in Fig. 5, p1 is pushed to
larger values with increasing χ.
We must now select a set of initial conditions to explore

and construct a Poincaré section. To do so, given the choice
of E and L discussed above, the second root of the effective
potential serves as an initial guess about where to look for
chaos. We start by exploring a range of initial radii [for
example, in Fig. 2, the radius ranges from (4.000,4.005)].
We then initialize all of our geodesics with zero radial
momenta, Pr ¼ 0, and at the equator with θ ¼ π=2 and
ϕ ¼ 0. Given this, we then obtain Pϕ from the angular

FIG. 3. Left: effective potential for a given choice of ðE;LÞ and a small value for its second root p1=M. Note that p1=M must exist in
order to achieve a bound orbit, but at the same time, p1 must be minimized in order to probe the strongest field possible. Right: values of
the effective potential’s second root, p1=M for which values of specific energy and angular momentum lead to bound geodesics. This
contour heat map helps determine the initial conditions that will allow for the smallest values of p1=M. For this calculation, we use a
Kerr metric and χ ¼ 0.3. The values of E and L we use in Fig. 5, E ¼ 0.97406μ, L ¼ 3.49916μM, are indicated with a white ‘cross’.
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momentum L definition, and solve for Pθ from the
Hamiltonian (see Eq. (23). Having completely defined
the initial conditions of our geodesics, we are able to
see if the rotation curve intersects the 1=2 resonance. If it
does not, we move the radius range until it does, and then
gradually zoom-in until the value for A changes by less
than 0.1%.

B. Numerical implementation

In order to search for chaos in geodesic motion, we first
require a high-precision geodesic integrator that is able to
capture equatorial surface crossings with the highest
accuracy possible. To this end, we implemented a
Runge-Kutta-style integrator due to Verner, of order
(7,8) and adaptive [51]. After explorations of the con-
vergence properties of this integrator, we found it sufficient
to set the integration tolerance to 10−15, the initial timestep
to 10−1 and the smallest allowable timestep to 10−15.

In order to capture surface crossings as accurately as
possible, we implemented a bisection method every time
an equatorial crossing was detected. We found it sufficient
to set the tolerance in the bisection method to 10−15. With
these choices, we are able to achieve machine precision in
the calculation of the phase space position at each crossing.
This code was validated by performing much longer runs

than required (108 orbits), and tracking the evolution of the
constants of the motion. In the process of validation, we
found that some of the longer runs accumulated numerical
error in the conserved quantities, which could lead to errors
in the plateau size larger than the size of the plateaus we
were looking for. To mitigate this, we restarted the geodesic
integrator every 104 surface crossings, with initial con-
ditions recalculated at the last surface crossing. More
specifically, we reinitialized the initial conditions by setting
θ ¼ π=2, and obtaining Pϕ and Pθ from L, E and the
Hamiltonian; the values of r;ϕ, and Pr are copied from the
previous integration point. This is allowed because, as

FIG. 4. Effective potentials with E ¼ 0.995μ, L ¼ 3.75365μM and χ ¼ 0.2 for different values of the coupling parameter ζsGB show
that the innermost radius accessible to bound orbits, p1, increases monotonically with ζsGB (right). Thus, we expect any effect that
depends on the modification to decrease with the strength of the coupling parameter. The same relationship also holds in dCS gravity.

FIG. 5. Effective potentials with E ¼ 0.995μ, L ¼ 3.75365μM and ζsGB ¼ 0.01 for different values of the dimensionless spin
parameter χ. The innermost radius accessible to bound orbits, p1, increases monotonically with χ (right). This implies a similar
relationship as Fig. 4, but for spin rather than coupling. The same relationship also holds in dCS gravity.
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stated previously, the surface crossing is a point in phase
space that is known to the highest possible precision due to
the bisection method.
A nontrivial aspect of the procedure laid out in the

previous section is accurately determining the invariant
point. Because the Poincaré surfaces can lie arbitrarily
close to the invariant point, it can be difficult to balance
finding the invariant point at the desired accuracy with
minimizing the amount of computation time needed to find
it. We therefore adopt a centroid method to determine the
invariant point as follows. As the initial condition
approaches the invariant point, the shape of the Poincaré
surfaces necessarily approaches a circle (the surfaces can be
thought of as “closing in” on a single point [12]).
Therefore, we track the area of the calculated Poincaré
surface and compare it with the area of a hypothetical
perfect circle, constructed from the largest and smallest Pr
values of the Poincaré surface. When these two areas are
within :1% of each other, we then take the invariant point to
be the center of the circle. In practice, this method requires
approximately 5–6 iterations, using a bisection method in r
to refine the next guess, leading to an uncertainty in the
measurement of the resulting plateau of δA ∼ 10−14.
Finally we perform calibration runs in order to determine

the numerical error inherent in the plateau calculation. We
know that when the coupling parameter ζq ¼ 0, no plateaus
should be present in the rotation curve. Due to numerical
error, however, one may find an extremely small plateau.
To determine the size of this numerical plateau, we set ζq to
extremely small values on the order of ζq ¼ 10−10 or
smaller), and find a plateau of size A0 ≈ 10−12 irrespective
of the small choice of ζq. While we performed calibration
runs for each new system we studied (for either geodesics
in sGB gravity, dCS gravity, as well as for different choices
of ðE; LÞ and of χ), in practice the difference in the value of

A0 was not appreciable between these systems. The plateau
area A0 is therefore a lower bound on the smallest
resolvable plateau of our implementation. Henceforth,
we will compare any measured plateau for any finite value
of ζq toA0 by computingA=A0, and ifA=A0 > 1, then the
chaotic features present in A can be interpreted as not
arising from numerical error.
We can now appreciate how computationally intensive it is

to find a single plateau area. Each geodesic must be
integrated for about 107 timesteps, and each plateau requires
a couple hundred geodesics at the final range in r (not to
mention the low-resolution runs of several dozen geodesics
each at three to four different zoom-in levels). Then, when
this final set of geodesics have been integrated, calculating
the rotation numbers and plateau area is a memory-intensive
process; this is because calculating the rotation number in a
reasonable amount of time requires storing as much phase-
space data as possible in memory. For this reason, we
parallelize the integration and deploy it on a high-
performance computing cluster, dedicating one core to each
geodesic. When considering the time required for the
calculation of a single plateau area, a single data point in,
for example, Fig. 6 requires about 500 CPU hours to obtain.

C. Searching for chaos in quadratic gravity

The bulk of our analysis focused on sGB gravity as the test
case, and so we will focus mostly on this theory, but we
repeated all calculations for dCS gravity and found very
similar conclusions. The only significant difference between
the two theories in our calculations is the size of the coupling
parameters ζq that will generate chaotic features.
In performing this analysis, we are interested in captur-

ing the effect on the plateau size from three free parameters,
namely

FIG. 6. Left: Plateau areas for a system with an sGB modification, and orbital parameters E ¼ 0.995 μ, L ¼ 3.75365 μM and χ ¼ 0.2.
The saturation of the size of the plateau as the expansion around χ increases indicates that chaos is present in geodesic trajectories, and
suggests spinning BH solutions in this theory do not possess the same number of constants of the motion as a Kerr background. Right:
Plateau areas for an sGB system with parameters E ¼ 0.97406μ, L ¼ 3.49916μM and χ ¼ 0.3. The curves show that, despite different
expansion orders in the sGB metric deformation sector, the plateau areas are identical, to within the precision of the integration.
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(1) The expansion order in the spin of the GR sector,
i.e., the coefficient n in Oð χnGR; ð χmζÞqÞ. We expect
any signatures of chaos induced by the truncation of
the slow-rotating Kerr background to diminish as n
is increased, because an exact Kerr geometry does
not permit chaos.

(2) The expansion order in the spin of the quadratic
sector, i.e., the coefficient m in Oð χnGR; ð χmζÞqÞ.
Varying this parameter will determine whether
any chaotic signatures we find are induced by the
modified theory or from the truncation of the slow-
rotating expansion of the metric deformation.

(3) Themodified theory, coupling parameter, ζq. Varying
the coupling will determine the sensitivity of chaotic
signatures to the modified gravity deformations.

Let us first consider varying n and ζq, as explored in the
left panel of Fig. 6. The blue line at the top shows that the
largest signature of chaos occurs for the lowest value of n.
This is to be expected; any signature of chaos due to a
quadratic gravity modification and not due to truncation of
the slow-rotating approximation is here completely domi-
nated by the latter. As n is increased, the plateau areas
decrease, until they saturate to areas of about A=A0 ≈ 101

when n → ∞. This n → ∞ case corresponds to taking the
GR part of the metric to be the Kerr metric exactly [12].
These results imply that the chaotic signatures we find arise

from the quadratic gravity modifications to the metric, and
not from numerical error or from the truncation of the slow-
rotation expansion of the GR sector of the metric.
As a side note, the left panel of Fig. 6 also shows how

chaotic signatures scale with ζq. Focusing on the n → ∞
curve, the general trend, to the extent there is one, is that the
plateau size shrinks with larger ζq. As explained in Sec. III,
this occurs because as the coupling constant is increased,
the inner “wall” of Veff is pushed to larger radii. This, in
turn, means that bound orbits for larger values of ζq are
forced to explore regions of phase space that are farther
from the central body, and as such, are pushed farther away
from the strong field regime. Therefore, any subtle effects
induced by high-curvature corrections near the event
horizon are suppressed as ζq increases.
These chaotic signatures, however, could be arising from

the truncation of the slow-rotation expansion of the GR
deformations of the metric, which we investigate by
varying the order parameter m in the right panel of
Fig. 6. This figure shows that two metrics with deforma-
tions calculated to different orders in spin present plateaus
that are identical to within numerical precision. The error
bars in this figure are determined by taking each parameter
that can affect the calculation of A (integration time,
calculation of the invariant point, and resolution in r) to
an order of magnitude greater precision that what was used

TABLE I. A summary of the dynamics of the plateau size as a function of the relevant free parameters. The plateau areaA0 is the lower
bound on the smallest resolvable plateau of our implementation.

As ___ is increased… A=A0… Because…

Oð χGRÞ Decreases, then saturates The plateau area is initially dominated by the low-χ expansion (Fig. 6, left)
Oð χζqÞ Stays the same The chaos is generated by the ζq coupling, not the low-χ expansion (Fig. 6, right)
ζq Decreases The effective potential is pushed out of the strong-field regime (Fig. 4)

FIG. 7. Left: plateau areas as a function of truncation in slow-spin expansion in the GR sector, for ζdCS ¼ 0.1 and ζsGB ¼ 0.001. Both
theories show that as the GR sector approaches the Kerr metric, the chaotic features diminish but do not vanish, suggesting that any
remaining chaos is due to the quadratic contribution. Right: comparing plateau areas for geodesics in dCS and sGB gravity at
Oðχ∞GR; ðχ5ζÞqÞ, with parameters E ¼ 0.995μ, L ¼ 3.75365μM, χ ¼ 0.2. The quantity ζq ¼ ζdCS in the dCS case, while ζq ¼ 102ζsGB in
the sGB case.
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in the runs and using the resulting difference in the plateau
area as the error in the measurement of A.
One can also repeat the calculation with a metric that

restores higher order terms that correct the locations of the
ergosphere and event horizon, as shown explicitly in the
appendix of [42]. This resummation is designed to recover
the exact Kerr metric when given the Kerr metric expanded
in χ to a finite order. We see from Fig. 6 that the plateau
area behaves the sameevenwhenweuse this resumedmetric.
We conclude then that the plateaus are a signature of chaos
that is due to themetric deformation, rather than theparticular
expansion order used in the metric derivation. All of the
results discussed thus far are summarized in Table I.
We have so far focused on sGB gravity, but we can repeat

the entire analysis in dCS gravity. We obtain the same
qualitative results when we use the dCS BH metric, as we
now explain. When geodesics in dCS are computed at low-
spin order in the GR sector, the chaos is overwhelmingly due
to the slow-spin approximation. However, as is the case in
sGBgravity, when all spin orders are accounted for in theGR
sector, there remains a small but measurable plateau, as
shown in the left panel of Fig. 7.Whenwe compare the size of
the plateaus in dCS gravity and sGB gravity, we find that the
dCS plateaus are about an order of magnitude larger, as
shown in the right panel of Fig. 7. Furthermore, we confirm
that when the metric deformation is truncated at low spin
order, the plateau areas are indistinguishable in size from
those obtained when the metric deformation is kept to higher
order in spin.

V. DISCUSSION

We performed an extensive numerical survey of geo-
desics in sGB and dCS gravity and found signatures of
chaotic behavior in the geodesic motion independent of the
perturbative scheme where these theories are derived and
from numerical errors. These results imply the lack of a
fourth constant of the motion or symmetry for rotating BHs
in these theories. In order to study the robustness of the
above conclusion, we studied whether the chaotic features
remain when we consider resummed BH metrics, which
formally contain an infinite number of spin terms. We
found that the chaotic features do persist when using these
metrics, and thus, our conclusions seem robust. One could
argue that the still-unknown, exact (in spin), BH metric in
these theories is sufficiently different from the resummed
ones that chaos would disappear altogether if we had used
such exact metrics. Although we have no evidence for this,
one way to test this statement would be to perform a similar
analysis on a numerically derived metric, such as those
presented in [52]. We expect our results to be true because
numerical metrics (e.g., [52,53]) or particular extremal
solutions (e.g., [54]) have been shown to lack features that
are not already encapsulated by the slowly rotating sol-
utions. The reanalysis of chaos with numerically computed
spacetimes would present several complications due to the

numerical accuracy required for these calculations and add
to the already considerable computational cost. If the yet-
to-be-known exact solution happens to possess a feature
that is not already encapsulated by the slowly-rotating
solutions, or that the behavior changes drastically, then our
conclusions need to be revisited.
Let us now discuss more concretely the differences and

similarities between this work and that of [21]. While we
did evolve the same exact geodesic parameters (BH spin
and ζq parameters, as well as E and L) and reproduced the
results of [21], we were also able to explore many more
values of ζq due to our new numerical implementation.
Moreover, we defined a new measure, the plateau area,
which enabled us to compare chaotic features with widely
varying aspect ratios. This new measure, combined with
our numerical accuracy, meant we could quantitatively
study features in the rotation curve that previously appeared
as discontinuous kinks, but are now revealed to have a
width in r=M. Furthermore, we determined why areas
become larger as ζq is increased, through an analysis of the
roots of the effective potential. All of this then led to the
discovery that, although the size of the plateau areas do
initially decreases with truncation order of the deformed
metric as found in [21], the size asymptotes to a constant;
further evidence of this was then also found through the
calculation of plateau areas using a resummed-in-spin
metric deformation. All of this implies that, although the
numerical calculations of [21] are correct, their conjecture
may not and chaos should be present in the full BH metric.
Given the characteristic size of the chaotic features we

found, our results suggest that searching for chaos in
gravitational-wave data from future detectors, (as suggested
in Refs. [9–11]), may not be a viable method of placing
constraints on the coupling parameters of these quadratic
gravity theories. The largest chaotic signatures we found
are truly tiny (around 10−5 in r=M), and they appear very
close to the SMBH event horizon. This is in stark contrast
to chaotic features that are found in other parametric BH
spacetimes, which typically contain closed timelike curves
or naked singularities. Chaotic features from well-
motivated BH modifications may be significantly smaller
than those in previously considered spacetimes, and thus
doubt may be cast as to whether such features can be
realistically detected. Exactly what the magnitude of these
effects will be and what signal-to-noise ratio would be
required to detect them necessitates significant work. What
we have shown here contributes to the foundation for such
work, as well as for the detailed study of EMRIs in
quadratic theories of gravity.
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APPENDIX: LIOUVILLE INTEGRABILITY OF
ARBITRARY SPHERICALLY SYMMETRIC

STATIONARY PERTURBATIONS TO
SCHWARZSCHILD

In this appendix, we provide a proof of the integrability
of equations of motion, derived from a Schwarzschild
metric with a spherically symmetric perturbation. Consider
the following metric:

gμν ¼ gSchμν þ δgμν;

with δgμν defined (in Schwarzschild coordinates) as

δds2 ≡ δgttðrÞdt2 þ δgrrðrÞdr2
þr2½δgθθðrÞ þ sin2θδgϕϕðrÞ�: ðA1Þ

We then have for gμν

gtt ¼ −
�
1 −

2M
r

�
þ δgttðrÞ; ðA2Þ

grr ¼
�
1 −

2M
r

�
−1

þ δgrrðrÞ; ðA3Þ

gθθ ¼ r2ð1þ δgθθðrÞÞ; ðA4Þ

gϕϕ ¼ r2sin2θð1þ δgϕϕðrÞÞ: ðA5Þ

The angular components of this metric are equivalent to the
angular components of the 2-sphere metric, except for a
radially-dependent function [i.e., r2ð1þ δgμνðrÞÞ], so the
spherical symmetry is manifestly maintained. We could
simplify this metric further by removing δgϕϕ with a radial
coordinate transformation, but, as we will show below, this
is not necessary for the proof.
Due to the spherical symmetry of the spacetime, without

loss of generality, we can set θ ¼ π=2, leaving geodesic
motion with three degrees of freedom: t; r;ϕ. Due to the
stationarity and spherical symmetry of the spacetime, we
also have two Killing vectors, given by ∂t (from time
translation symmetry) and ∂ϕ (from rotational symmetry

about the z-axis). Finally, given that the Hamiltonian
H ¼ 1=ð2μÞgμνpμpν is conserved (because the norm of
the four-velocity is conserved), we now have three con-
served quantities for the three degrees of freedom of
geodesic motion. Therefore, by the Liouville-Arnold theo-
rem, it is possible to transform the Hamiltonian to action-
angle coordinates, and thus, the system is integrable and
chaotic orbits are not permitted [12].
Explicitly, the perturbed Hamiltonian takes the form (for

energy E and z-component of angular momentum L)

H ¼ 1

2μ

�
E2

δgttðrÞ þ 2M
r − 1

þ L2

δgϕϕðrÞ þ 1

þ
�

p2
θ

δgθθðrÞ þ 1

�
r−2 þ p2

r
2M

r−2M þ δgrrðrÞ þ 1

�
: ðA6Þ

Following through with Hamilton’s formalism, we arrive at
the equations of motion

_r ¼ pr

μð1þ 2M
r−2M þ δgrrðrÞÞ

; ðA7Þ

_θ ¼ pθ

μr2ð1þ δgθθðrÞÞ
; ðA8Þ

_ϕ ¼ L
μr2ð1þ δgϕϕðrÞÞ

; ðA9Þ

_pr ¼ −
1

2μ

�
−
2ð p2

θ
1þδgθθðrÞ þ L2

1þδgϕϕðrÞÞ
r3

þ p2
rð2M − ðr − 2MÞ2δgrrðrÞ0Þ
rþ ðr − 2MÞδgrrðrÞ2

þ E2ð2M − r2δgttðrÞ0Þ
2M þ rδgttðrÞ2

−
p2
θδgθθðrÞ0

ð1þδgθθðrÞÞ2 þ
L2δgϕϕðrÞ0

ð1þδgϕϕðrÞÞ2

r2

�
; ðA10Þ

_pθ ¼ _pϕ ¼ 0: ðA11Þ

where primes indicate derivatives with respect to r. Thus,
the equations of motion can be written as first integrals of
the motion. Note that this result does not depend on the
perturbed metric being Schwarzschild; any spherically
symmetric metric will do (of course, in GR, this will
always be Schwarzschild). Further, this says nothing about
the size of the perturbation δgμν; it is a generic statement
about the perturbation’s symmetries.
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