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We present a new family of exact four-dimensional Taub-NUT spacetimes in Einstein-Λ theory
supplemented with a conformally coupled scalar field exhibiting a power-counting superrenormalizable
potential. Our configurations are constructed in the following manner: A solution of a conformally coupled
theory with a conformal potential, henceforth the seed ðgμν;ϕÞ, is transformed by the action of a specific
change of frame in addition with a simultaneous shift of the seed scalar field. The conformal factor of the
transformation and the shift are both affine functions of the original scalar ϕ. The new configuration,
ðḡμν; ϕ̄Þ, solves the field equations of a conformally coupled theory with the extended aforementioned
superrenormalizable potential, this under the presence of an effective cosmological constant. The new
spectrum of solutions is notoriously enhanced with respect to the original seed containing regular black
holes, wormholes, and bouncing cosmologies. We highlight the existence of two types of exact black
bounces given by de Sitter and anti–de Sitter geometries that transit across three different configurations
each. The de Sitter geometries transit from a regular black hole with event and cosmological horizons to a
bouncing cosmology that connects two de Sitter Universes with different values of the asymptotic
cosmological constant. An intermediate phase, which might be represented by two different configurations,
takes place. These configurations are given by a de Sitter wormhole or by a bouncing cosmology that
connects two de Sitter Universes, both under the presence of a cosmological horizon. On the other hand, the
anti–de Sitter geometries transit from a regular black hole with inner and event horizons to a wormhole that
connects two asymptotic boundaries with different constant curvatures. The intermediate phase is given in
this case by an anti–de Sitter regular black hole with a single event horizon. This regular black hole might
appear in two different configurations. As a regular anti–de Sitter black hole inside of an anti-de Sitter
wormhole or as an anti–de Sitter regular black hole with a cosmological bounce in its interior. All these
geometries are shown to be smoothly connected by the mass parameter only. Other standard stationary
black holes, bouncing cosmologies and wormholes are also identified.
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I. INTRODUCTION

The Taub-NUT solution of Einstein equations [1,2]
represents the simplest stationary generalization of the

Schwarzschild black hole and it is well known for having
intriguing topological features. Along with the standard
mass parameter it also includes the so-called NUT charge, a
continuous parameter usually regarded as a magnetic mass,
basically the dual of the standard mass, that offers a natural
realization of the gravitational counterpart of the electric-
magnetic duality [3]. The spacetime is thus interpreted, in
direct analogy with the Dirac magnetic monopole, as the
gravitational field of a dyon. The causal structure of the
solution is wide, offering regions in which the spacetime is
interpreted as a stationary black hole and regions in which
is recognized as a nonsingular anisotropic cosmological
model. These regions are respectively known as NUT and
Taub. Due to the form of the nondiagonal components of
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the metric the spacetime is a priori pathological, specially
in the NUT regions. It possesses a semi-infinite line
singularity, usually called Misner string (the gravitational
analogue of the Dirac string for the magnetic monopole)
[4,5] and it contains regions plagued by closed timelike
curves [6,7], both rendering the black hole interpretation
misleading. Despite these undesirable features, this simple
nonradiating spacetime deserves attention, a reason why
different interpretations have emerged in order to study it.
One interpretation, due to Misner [4], regularizes the

metric everywhere by introducing two coordinate patches
that cover independently the north and south hemispheres of
the symmetry axis and that smoothly connect at the equator.
These patches are based on a change of the time coordinate
that involves the periodic angular coordinate φ, i.e.,
t ¼ tð�Þ ∓ Cφ, where C is a constant proportional to the
NUT charge that defines which semiaxis is being covered.
Once an observer has access to the coordinates that cover the
north hemisphere the Misner string takes place in the
southern semiaxis and vice versa when the observer belongs
to the patch covering the south hemisphere. The Misner
string is then unseen. In the overlap region both coordinates
tð�Þ are related, and due to the periodicity of the azimuthal
angle this ultimately implies that time is identified with a
period proportional to the NUT charge.1 This results into the
existence of closed timelike curves in the NUT regions.
Moreover, under this periodicity condition the analytically
extended Taub-NUT spacetime is either geodesically
incomplete [4,7] or maximally extendable to a spacetime
with no Haussdorff topology [8,9]. Motivated by these
considerations the Taub-NUT spacetime is usually studied
in its Euclidean version where it represents a gravitational
instanton, a gravitational cousin of Euclidean solutions of
Yang-Mills theory [10,11]. It is expected that these gravi-
tational instantons play a similar role in theories of quantum
gravity [12] as the one played by Yang-Mills instantons in
quantum field theory. Several models has been investigated
in this direction [13–19].
On the other hand, there is Bonnor’s interpretation, in

which the Misner string is not avoided by any identification
of the time coordinate and it is treated as a sort of
topological defect usually regarded as a semi-infinite rod
with spin [20,21]. In fact, rewriting the Taub-NUT space-
time in Lewis-Weyl-Papapetrou coordinates it was pointed
out in [22] that NUT regions might represent the exterior
field of a rotating source of which its angular momentum
is measured by the NUT charge. The Misner string now
represents an unremovable quasiregular singularity2 and it
naturally sows the questioning of the geodesic completeness

of the spacetime. Moreover, regions containing closed
timelike curves are still present. Nevertheless these disad-
vantages, it has been recently shown that the presence of the
Misner string is not that catastrophic. In fact, in [23,24] the
authors have shown that the topological defect of the Misner
string is transparent to geodesic observers, and then there is
no need to invoke any compactification of the time coor-
dinate. In consequence, there are no obstructions for the
analytic continuation of the spacetime through the horizons
and then, due to the lack of curvature singularities, thewhole
Taub-NUT spacetime is geodesically complete. Moreover, it
is also demonstrated that for certain values ofC, basically the
constant that locates theMisner string, geodesic observers do
not encounter any causality violations, so the absence of
closed timelike geodesics is ensured.3

Among all gravitational solutions black holes represents
the most iconic ones. Formed by gravitational collapse, one
of the most astonishing features of black holes asserts that
regardless the type of matter involved in the collapse they
are finally characterized by a restricted set of quantities:
mass, electromagnetic charges and angular momentum,
namely, physical quantities satisfying a Gauss type law
and in consequence measurable from infinity. Any other
information about the original matter that formed the black
hole is lost, either eaten up or expelled out from the black
hole once equilibrium is reached. This statement, well-
known as the no-hair conjecture [26], is strongly supported
in Einstein theory by the uniqueness of the Kerr-Newman
family [27–30]. Hair is used to englobe all those properties
of the collapsing matter that might depart from the mass,
electromagnetic charges or angular momentum of the final
configuration and that might represent a nontrivial trace of
the type of matter involved in the gravitational collapse.
The no-hair conjecture is a theory dependent statement and
therefore it must be independently enunciated on all
theories in which black holes are worth study. The simplest
type of hair to be explored is the scalar one, basically
complement Einstein theory with a minimally coupled
scalar field that inherits the symmetries of the spacetime
under scrutiny. An exact solution for this system was early
known [31], although unphysical due to the presence of a
naked singularity. Bekenstein no-hair theorem [32,33] is
the first mathematical realization of the no-hair conjecture
and rules out the existence of black hole solutions with
nontrivial scalar hair in Einstein theory with minimally
coupled self-interacting scalar fields. Nonetheless, it also
tangentially established the foundations to elude the
absence of scalar hair by reaccommodating the hypothesis
associated with the theorem.
Along these lines the first black hole solution pre-

sented as a hairy scalar black hole, independently found
by Bekenstein [34] and by Bronnikov, Melnikov, and
Bocharova [35] (BBMB black hole), was proposed for

1This approach is mathematically identical to the one that
eliminates the Dirac string in the vector potential of the Dirac
monopole. In there, the periodicity condition translates into the
quantization of the electric charge.

2Quasiregular in the sense that all curvature polynomials are
still bounded.

3For a detailed discussion about modern interpretations of the
Taub-NUT spacetime we refer the readers to [25].
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Einstein theory supplemented with a conformally coupled
scalar field. The solution possesses the causal structure of
an extremal Reissner-Nordström black hole with a scalar
field that diverges at the horizon, apparently with no
dramatic consequences [36]. It is usually introduced as a
black hole in dimension four only [37] and it relates to the
one of [31] by a conformal transformation, providing a
precise example of how a change of frame substantially
changes the geometric structure of a given solution.4

However, a deeper analysis [39] reveals that the divergence
of the scalar field is actually harmful and that it is connected
with an ill-defined stress tensor at the horizon. As a result
the BBMB solution does not solves Einstein equations in
an extended chart containing the event horizon and its
interpretation as a genuine black hole is obscure. The
situation, however, is relieved by the mere inclusion of a
cosmological constant, which comes into play along with a
conformal self-interacting potential for the scalar. A wider
family of solutions is found for this case, the so-called
Martínez-Troncoso-Zanelli (MTZ) spacetimes [40,41].
Here, the scalar field pole is hidden behind the event
horizon and the solutions represent stealths and black holes
with different topologies. Einstein equations are then
everywhere solved in the domain of outer domains of
communications, including the horizon and solving the
undesired pathologies of the BBMB solution. Additionally,
contrary to the BBMB black hole these solutions are not
pathological in the minimally coupled frame. The integra-
bility properties of these models have been well-studied
since then, providing solutions for spacetimes with accel-
eration [42,43], NUT charge [44], rotation [45] and a full
analysis of conformally coupled black holes in the entire
Plebański-Demiański family [46,47]. Moreover, several
solutions have been found also in the presence of external
magnetic fields [48,49], in theories with higher order
corrections [50] and in metric-affine geometries [51].
In this context a particularly interesting solution is the

one constructed in [52]. In there the usual four dimensional
conformally coupled scalar theory is augmented with a self-
interaction that deviates from the conformal potential by
allowing the presence of a linear and cubic terms. The
causal structure of the solution is notoriously enhanced
with respect to the MTZ family [40,41] including regular
black holes, wormholes and cosmological spacetimes with
bounces.5 The inclusion of a Maxwell field was studied in
[54] where the authors have shown that the MTZ family
and the solutions presented in [52] are related by a
particular set of transformations; the simultaneous action
of a conformal change of frame plus a specific shift of the
initial scalar field configuration. Both, the conformal factor

and the shifted scalar field are affine functions of the
original scalar configuration. In consequence, the solutions
contained in [52] are the transformed version of the MTZ
solutions, this by means of the transformations provided in
[54]. The scheme, although different, works in analogy to
the one that allows the construction of the BBMB black
hole [34] by applying a conformal transformation onto
the originally pathological solution [31]. In there, a solu-
tion of a minimally coupled scalar theory is translated
into a solution of a conformally coupled theory by means of
a conformal transformation. The set of transformations
defined in [54] transforms a solution of a conformally
coupled theory into a solution of a new conformally
coupled theory in which the scalar potential now deviates
from the conformal potential by including all power-
counting super-renormalizable contributions and where a
new effective cosmological constant takes place.
In the present work we face the construction of a new

family of Taub-NUTspacetimes in the context of conformally
coupled scalar-tensor theories. In a nutshell we construct the
Taub-NUT version of the solutions described in [52,54]. Our
starting point is the seed configuration studied in [44], which
by means of the transformations provided in [54] is upgraded
to represents a new set of geometries given by regular black
holes, wormholes and bouncing cosmologies. Unnoticed in
the previous works [52,54], here we explicitly exploit the
relevance of the new self-interaction: Under certain condi-
tions it provides the existence of exact black bounce geom-
etries that smoothly transit between regular black holes and
wormholes and bouncing cosmologies. The transitions, as we
shall observe, are controlled by the mass parameter only and
do not require the presence of any new artificial scale into the
theory. These type of solutions have recently attracted
considerable attention, see [55,56] and references therein,
most of them representing candidate spacetimes with inter-
esting geometric properties but lacking from a well-defined
action principle from which the equations of motion provide
the desirable configurations. Here, we analyze from a
heuristic point of view the geometric structure of these kind
of exact spacetimes and we give a detailed analysis of every
new backreaction, this accordingly with the sign of the
cosmological constant and the different topologies of the
base manifold.
Our results organize as follows: Sec. II is devoted to

provide preliminary results concerning with the construc-
tion of the solutions. First, we summarize the transforma-
tions presented in [54] showing how a seed solution of a
conformally coupled scalar theory is transformed into a
solution of a conformally coupled scalar theory with an
extended self-interacting potential. Then, we continue by
giving a robust analysis of the seed solution [44], this in
order to explicitly determine how its original causal
structures are enhanced by the action of the transforma-
tions. In Sec. III we present our novel solutions, discuss
their main general properties and give a detailed analysis of
every of these new geometries. We segment our analysis

4For a recent and detailed review of no-hair theorems and
counterexamples to this conjecture we refer to [38] and references
therein.

5The vanishing cosmological constant case was early dis-
cussed in [53] and it represents a traversable wormhole.
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according to the sign of the cosmological constant and we
describe every possible horizon geometry, namely, spheri-
cal, hyperbolic or planar. Several families of regular black
holes, wormholes and bouncing cosmologies are described
paying particular attention to those cases representing black
bounces that transit across different geometries. We finally
conclude in Sec. IV where we summarize our principal
findings and where concrete extensions of the ideas
proposed here are debated. The vanishing cosmological
constant case is briefly described in the Appendix.

II. PRELIMINARIES

Before presenting our new solutions we start by provid-
ing a concise review of the technique developed in [54] and
the main features of the seed configuration [44]. As stated
before, the authors have developed a technique by which it
is possible to obtain new exact solutions in conformally
coupled theorieswhere the scalar self-interaction is no longer
conformal invariant, this by simply applying a specific set of
transformations onto a known solution, dubbed the seed, of a
fully conformal invariant scalar theory. The transformations
are nothing else than a change of frame, for which the
conformal factor is an affine function of the scalar field seed
configuration. A specific shift of the seed scalar field is
simultaneously performed. The combined effect of both
transformations results into an upgrade of the original action,
the cosmological constant acquires an effective value while
the scalar field self-interaction is enhanced (deviating from
conformal invariance), containing for some specific space-
time dimensions all power-counting super-renormalizable
contributions. The new solutions, which solve the field
equations coming from the transformed action, contain a
much richer causal structure as it has been already implicitly
observed in [52]. The techniqueworks in direct analogywith
the usual conformal transformations that permit the integra-
tion of solutions in a standard conformally coupled scalar
action starting from a minimally coupled scalar field theory
[34]. In what is next the transformations are specifically
given and the transformed action is individualized. After the
scheme behind the transformations is clear we proceed with
the analysis of the Taub-NUT seed solution [44], thus paving
the road to understand how our novel solutions upgrade the
geometric structure of the initial seed.

A. The transformation

The starting point is the action of Einstein-Λ theory
supplemented by a self-interacting conformally coupled
scalar field,

S½gμν;ϕ; Aμ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R − 2Λ
2κ

−
1

2
ð∂ϕÞ2

−
ξD
2
ϕ2R − VðϕÞ − 1

4
FμνFμν

�
: ð1Þ

A Maxwell field is also considered. We define κ ¼ 8πG
and the nonminimal coupling with the curvature, as
usual, is identified in arbitrary dimensions to the factor
ξD ≔ 1

4
ðD−2
D−1Þ. This value, up to a boundary term, dresses the

scalar field action with invariance under the conformal
transformations

gμν → Ω2gμν; ϕ →
ϕ

ΩðD−2Þ=2 ; ð2Þ

with Ω a local function of the spacetime coordinates. The
self-interaction is given by the conformal potential, which
in arbitrary dimensions reads

VðϕÞ ¼ αϕ
2D
D−2: ð3Þ

Here α stands for a dimensionless coupling constant. The
respective field equations,

Gμν þ Λgμν ¼ κ

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2 − αgμνϕ

2D
D−2

þ ξDðgμν□ −∇μ∇ν þ GμνÞϕ2

�

þ κ

�
FμλFλ

ν −
1

4
gμνFλρFλρ

�

□ϕ − ξDRϕ ¼ α
2D

D − 2
ϕ

Dþ2
D−2

∇μFμν ¼ 0; ð4Þ
once solved, provide the corresponding seed solution
ðgμν;ϕ; AμÞ, which by means of the set of transformations
defined in [54]

ḡμν ¼ ða
ffiffiffiffiffiffiffiffi
κξD

p
ϕþ 1Þ 4

D−2gμν; ð5aÞ

ϕ̄ ¼ 1ffiffiffiffiffiffiffiffi
κξD

p
ffiffiffiffiffiffiffiffi
κξD

p
ϕþ a

a
ffiffiffiffiffiffiffiffi
κξD

p
ϕþ 1

; ð5bÞ

Āμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − a2Þ

q
Aμ; ð5cÞ

delivers a new conformally related solution ðḡμν; ϕ̄; AμÞ that
solves the transformed field equations

Ḡμν þ λḡμν ¼ κ

�
∂μϕ̄∂νϕ̄ −

1

2
ḡμνð∂ϕ̄Þ2 − ḡμνV̄ðϕ̄Þ

þ ξDðḡμν□̄ − ∇̄μ∇̄ν þ ḠμνÞϕ̄2

�

þ κ

�
F̄μλF̄λ

ν −
1

4
gμνF̄λρF̄λρ

�

□̄ ϕ̄−ξDR̄ ϕ̄ ¼ ∂V̄ðϕ̄Þ
∂ϕ̄

∇̄μF̄μν ¼ 0: ð6Þ
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These equations of motion arise from the redefined action
principle

S̄½ḡμν; ϕ̄; Āμ� ¼
Z

dDx
ffiffiffiffiffiffi
−ḡ

p �
R̄ − 2λ

2κ
−
1

2
ð∂ϕ̄Þ2

−
ξD
2
ϕ̄2R̄ − V̄ðϕ̄Þ − 1

4
F̄μνF̄μν

�
; ð7Þ

which is a consequence of transformations (5) acting on (1).
The new action relates to the seed action by means of
S̄½ḡ; ϕ̄; Āμ� ¼ ð1 − a2ÞS½gμν;ϕ; Aμ�, maintaining unitarity as
long as the shift parameter is constrained to jaj < 1. It must
be noticed that the neat effect of the transformations on the
seed action translates into the presence of a redefined
cosmological constant

λ ¼ κ

ð1 − a2ÞDþ2
D−2

�
Λ
κ
þ α

�
−

affiffiffiffiffiffiffiffi
κξD

p
� 2D

D−2
�
; ð8Þ

along with an enhanced scalar potential defined by

V̄ðϕ̄Þ ¼ 1

ð1 − a2ÞDþ2
D−2

�
Λ
κ
½ð1 − a

ffiffiffiffiffiffiffiffi
κξD

p
ϕ̄Þ 2D

D−2 − 1�

þ α

��
ϕ̄ −

affiffiffiffiffiffiffiffi
κξD

p
� 2D

D−2
−
�
−

affiffiffiffiffiffiffiffi
κξD

p
� 2D

D−2
��

: ð9Þ

This new potential, which ceases to be conformally
invariant, is superrenormalizable for integer values of the
conformal power 2D=ðD − 2Þ. This only occurs in three,
four, and six dimensions. In addition, by construction this
potential is defined such that no zeroth-order term appears,
and then the new cosmological constant is precisely the
one of (8). As we will shortly observe, every new coupling
constant α2D=ðD−2Þ will be related to both, the original
conformal coupling α and the corresponding seed cosmo-
logical constant Λ.

B. The seed configuration

We are interested on the study of new Taub-NUT
solutions, in consequence we fix ourselves to dimension
four where the seed solution for the conformally coupled
theory (1) has been previously reported in [44]. In order to
properly study the new solutions we shall present in the
next section, we first provide a summary of the principal
features of the seed metric, and in this way we pave the road
to understand the causal structure of our novel solutions
and their main differences with respect to solutions
previously reported in the literature. The field equations (4)
are solved by the line element

ds2 ¼ gμνdxμdxν ¼ −FðrÞðdtþ BÞ2 þ dr2

FðrÞ
þ ðr2 þ n2ÞdΣ2

K; ð10Þ

with

FðrÞ ¼ −
Λ
3
ðr2 þ n2Þ þ ðK − 4

3
n2ΛÞðr −MÞ2
ðr2 þ n2Þ ; ð11Þ

and where each Kähler potential and the corresponding
Kähler manifolds are given by

B ¼

8>><
>>:

4nsin2 θ
2
dφ when dΣ2

ðK¼1Þ ¼ dθ2 þ sin2θdφ2

nθ2dφ when dΣ2
ðK¼0Þ ¼ dθ2 þ θ2dφ2

4nsinh2 θ
2
dφ when dΣ2

ðK¼−1Þ ¼ dθ2 þ sinh2θdφ2:

ð12Þ

The configuration is completed by the following scalar and
electromagnetic fields

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
−

Λ
6α

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p

r −M
; A ¼ Qr

r2 þ n2
ðdtþ BÞ:

ð13Þ

Q6 stands for the electric charge and two conditions must
be met, Λα < 0 and

Q2 ¼ 1

18

ðn2 þM2ÞðK − 4
3
n2ΛÞðκΛþ 36αÞ

κα
: ð14Þ

Reality of the electric charge finally requires�
K −

4

3
n2Λ

�
> 0 and

ðκΛþ 36αÞ
κα

> 0; or ð15Þ

�
K −

4

3
n2Λ

�
< 0 and

ðκΛþ 36αÞ
κα

< 0: ð16Þ

Notice that we have applied the coordinate transformation
t → tþ 2nφ onto the original solution presented in [44].
This allows to remove one of the singular semiaxis and
localize the Misner string at the southern semiaxis (θ ¼ π)
only. Moreover, these coordinates provides a simpler setup
in which to study the appearance of generic closed timelike
curves associated with the change of sign of the metric
component gφφ. From hereon we assume a combination of
α and Λ such that the gauge and scalar fields remain real.
The spacetime inherits the asymptotic behavior of Taub-

NUT spaces, namely, with or without a cosmological
constant the spacetime is not globally asymptotically (A)
dS neither globally asymptotically flat. This, as it is known,
is due to the presence of the nondiagonal components of the

6The uncharged case will imply the tuning of the cosmological
constant in terms of the coupling α. In addition, the Λ ¼ α ¼ 0
case will represent the Taub-NUT extension of the BBMB black
hole [34,35].
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metric, basically the presence of the NUT parameter that
turns on the Riemann tensor components associated with
the magnetic part of the Weyl tensor. Nevertheless, the
electric part of the Weyl tensor provides the associated
Riemann tensor components, R̄μν

σρ, with the usual asymp-
totic limr→∞ R̄μν

σρ ¼ Λ
3
δμνσρ. The spacetime is free of curvature

singularities, however the Misner string defect persists
for a spherical foliation. Notwithstanding this, leaning
on Bonnor’s interpretation [20,21] and the recent works
[23,24] the spacetime does not exhibits any pathologies for
free falling observers whose backreaction is negligible. The
spacetime is taken as geodesically complete, and in
consequence the radial coordinate takes values on the full
range from−∞ toþ∞. The mass parameter is then positive
defined, negative values are englobed in the change of
coordinate r → −r. Despite the presence of the Misner
string we analyze the causal structure of the seed metric for
each of the horizon geometries. The metric function (11)
possesses four roots

r−− ¼ l̄
2

 
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
þ 4

M

l̄

s !
ð17Þ

r− ¼ l̄
2

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
þ 4

M

l̄

s !
ð18Þ

rþ ¼ l̄
2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
− 4

M

l̄

s !
ð19Þ

rþþ ¼ l̄
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
− 4

M

l̄

s !
; ð20Þ

which might define up to four Killing horizons. Here,
accordingly with the sign of the cosmological constant we
have made use of the following conventions

Λ > 0 → l̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K=Λ − 4n2

q
ð21Þ

Λ < 0 → l̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð−3K=Λþ 4n2Þ

q
: ð22Þ

The location of these horizons satisfies r−− < 0 < r− <
M < rþ < rþþ, where r ¼ M defines the point in which
the scalar field diverges. The presence of the scalar field
pole is a common feature in solutions of conformally
coupled theories of the kind considered here for scalar
fields that are radially dependent only. All roots of the lapse
function FðrÞ remain real as long as the mass parameter
obeys 0 < M < l̄

4
− n2

l̄
, reality condition that is subjected to

the reality of l̄. In addition, the mass parameter is taken to
be always positive and then l̄

4
− n2

l̄
> 0 must be met. This

case is the most generic one and implies the existence of

four Killing horizons. One direct difference with respect to
the static counterpart is the presence of a solution with a
planar horizon, which in the absence of the NUT parameter
requires the presence of extra matter fields [57]. For each of
the possible horizon geometries the following features are
sketched out:

(i) K ¼ 1, spherical foliation:
Λ > 0: The reality of l̄ and the condition l̄

4
− n2

l̄
>

0 are simultaneously achieved by considering
Λ < 3

8n2. This allows the generic existence of Killing
horizons. In addition, α < 0 provides a real scalar
field configuration. Thus, for 0 < M < l̄

4
− n2

l̄
there

are four Killing horizons. Both, r−− and rþþ,
correspond to cosmological horizons beyond which
the metric becomes time dependent. The scalar field
pole is hidden behind the event horizon rþ. The
region between rþ and rþþ is recognized as the
exterior of a regular stationary black hole, however
under the presence of a pathological semiaxis of
rotation at θ ¼ π and due to the generic existence of
closed timelike curves its interpretation is question-
able. Notwithstanding this, the existence of closed
timelike curves is more subtle under the presence of
the conformally coupled scalar field. These might be
avoided by restricting the parameter space deter-
mined by the cosmological constant and the NUT
charge, this at the price of changing the interpreta-
tion of the spacetime metric. It can be seen as
follows: the gφφ metric component is given by

gφφ ¼
�
ðr2 þ n2Þsin2θ − 16n2FðrÞsin4 θ

2

�
: ð23Þ

Then, in order to maintain the Riemannian nature of
the two dimensional metric given by t ¼ r ¼
constant it is required to hold

4n2FðrÞ
r2 þ n2

< −1: ð24Þ

After some algebraic manipulations it is possible to
show that7

�
1 −

4

3
n2Λ

��
1þ 4n2

�
r −M
r2 þ n2

�
2
�
< 0; ð25Þ

providing the complete absence of closed timelike
curves as soon as Λ > 3=4n2. This condition does
not overlap with the requirement of a real l̄ and in
consequence under this condition the metric func-
tion is devoid of Killing horizons, all roots of FðrÞ

7This is an exclusive property of the conformally coupled
scalar case we consider here. It is mostly due to the quasiextremal
form that the scalar field provides to the metric function.
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become complex. Therefore, the metric function
FðrÞ is everywhere negative, reason why the metric
component gφφ remains always positive. Then, the
spacetime represents a cosmological model in which
the scalar field pole is uncovered.
It is instructive to analyze the case in which the

mass parameter satisfies M > l̄
4
− n2

l̄
. In this case the

roots rþ and rþþ become complex while r− and r−−
remain real. It is not possible to make disappear all
Killing horizons at the same time. Moreover, the
scalar field pole stays uncovered. The metric func-
tion FðrÞ is everywhere negative outside r− and the
spacetime there, although pathological, possesses a
cosmological behavior. This will be particularly
interesting when presenting our novel solutions.
We will see that after applying the transformations
previously explained this spacetime will become a
bouncing cosmology with no pole for the scalar field
and with no pathologies associated to the presence
of closed timelike curves. In addition, under specific
circumstances a black bounce transition in between a
regular black hole and a bouncing cosmology will be
observable.
It is important to stress that in spite of this the

Misner string is still present and that ultimately this
obstruction, as shown in [23,24], can be circum-
vented by considering geodesic observers only.
More appealing for spherical foliation is the Euclid-
ean case, for which the Misner string can be
completely removed by the Misner approach and
for which the presence of closed timelike curves is
not a pathology. This case will be further analyzed
in [58].
Λ < 0: For a negative cosmological constant

relation (22) implies always a complex l̄, and in
consequence the complete absence of Killing hori-
zons no matter the values the mass parameter can
take. The scalar field is real for α > 0 and its pole
remains uncovered. The metric function FðrÞ is
always positive and the radial coordinate remains
spacelike. Both, a singular semiaxis and closed
timelike curves are present.

(ii) K ¼ −1, hyperbolic foliation:
Λ > 0: In this case a positive cosmological con-

stant implies the absence of Killing horizons, no real
roots for FðrÞ. The metric function is everywhere
negative, and in consequence the spacetime inherits
a cosmological nature. The scalar field is real for
α < 0 and its pole is uncovered. The hyperbolic
geometry, in contrast to the previous spherical case,
does not deal with the presence of the singular
semiaxes, namely, Misner strings are not present [5].
Then, only the presence of closed timelike curves
must be analyzed. The azimuthal angle component
of the metric now reads

gφφ ¼
�
ðr2 þ n2Þsinh2θ − 16n2FðrÞsinh4 θ

2

�
: ð26Þ

Following a similar computation to the one ex-
plained for the spherical case it is shown that the
absence of closed timelike curves is ensured by
satisfying

−
�
1þ 4

3
n2Λ

��
1þ 4n2

�
r −M
r2 þ n2

�
2
�
< 0; ð27Þ

condition always achieved by positive cosmological
constant.

Λ < 0: For a negative cosmological constant the
reality of l̄ and the positivity of the combination l̄

4
−

n2

l̄
are ensured by jΛj < 3

8n2, where we have consid-
ered Λ ¼ −jΛj. α is taken to be positive. Hence, for
0 < M < l̄

4
− n2

l̄
four Killing horizons take place,

none of them of cosmological nature. The spacetime
between the event horizon rþþ and asymptotic
infinity is identified as the exterior of a regular
stationary topological black hole where no Misner
string takes place. Moreover, this case offers the
complete absence of closed timelike curves as soon
as jΛj < 3=4n2, condition that overlaps with the
generic existence of Killing horizons. This space-
time represents a well-behaved stationary black hole,
free of Misner strings as well as free of causality
violations for any observer. On the other hand, for
M > l̄

4
− n2

l̄
both roots rþ and rþþ become complex

and the metric function FðrÞ is everywhere positive
outside r−. The scalar field pole is uncovered. In the
next section we will observe how this geometry
transforms into a wormhole spacetime with no
associated pathologies, namely, Misner strings nor
closed timelike curves, and how under specific
conditions provides a black bounce that smoothly
connects a regular black hole with an anti–de Sitter
wormhole.

(iii) K ¼ 0, planar foliation:
This case is particular, despite the value of the

cosmological constant FðrÞ is always devoid of real
roots. Then, the spacetime is either radially depen-
dent or time dependent according to Λ < 0 or
Λ > 0, respectively. Accordingly, α > 0 or α < 0
and in both cases the scalar field pole is uncovered.
Misner strings are pulled out to infinity, however
closed timelike curves generically occur.

The case of vanishing cosmological constant delivers,
for K ¼ 1, the well-known Taub-NUT extension of the
BBMB black hole. Its structure and further analysis can be
extracted from [44]. We will briefly comment on this case
in the Appendix. In there, we will explicitly show how it
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will represent the charged Taub-NUT extension of
Barcelo’s wormhole [53].
It must be noticed that the presence of Misner strings and

of the causal pathologies associated with closed timelike
curves can be generically circumvented only when the
horizon is locally isomorphic to H2, as long as condition
(27) is met. This behavior is due to the presence of the
conformally coupled scalar field and the extremal form it
provides to the metric. However, notice that according to
Bonnor’s interpretation of theMisner string the spherical and
planar solutions are not a priori pathological for geodesic
observers. As it was previously explained, by a simple
change of coordinates and a proper constraint on the constant
C [23,24], the Misner string becomes transparent for geo-
desic observers and even more no closed timelike geodesics
take place. This open a window in which all cases, no matter
the presence of these pathologies, might be interpreted as
black holes when it corresponds. Accordingly, the spherical
and planar cases are worth study. We follow this interpre-
tation and in consequence we will provide a detailed
description of all cases, K ¼ �1, 0.

III. SOLUTIONS

Once the main properties of the seed solution (11) are
known it becomes straightforward to understand how the
new solutions, the ones obtained by applying the set of
transformations (5), upgrade the seed spacetime to a wider
family of geometries. Obtained by applying the map (5)
into the seed configuration (11) and (13) and solving in
consequence the field equations coming from (7), our new
spacetime takes the form

ds̄2¼ðab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þM2

p
þ r−MÞ2

ðr−MÞ2

×

�
−
�
−
Λ
3
ðr2þn2ÞþðK− 4

3
n2ΛÞðr−MÞ2
ðr2þn2Þ

�
ðdtþBÞ2

þ dr2

ð−Λ
3
ðr2þn2Þþ ðK−4

3
n2ΛÞðr−MÞ2
ðr2þn2Þ Þ

þðr2þn2ÞdΣ2
K

�
;

Ā¼ Q̄r
r2þn2

ðdtþBÞ; ð28Þ

ϕ̄ðrÞ ¼
�
6

κ

�
1=2 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
þ aðr −MÞ

ab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
þ r −M

;

b ¼
ffiffiffiffiffiffiffiffiffi
−κΛ
36α

r
; λ ¼ κΛþ 36αa4

κð1 − a2Þ3 :

Notice that the condition αΛ < 0 ensures the reality of the
parameter b. In four dimensions the conformal power is an
integer and in consequence the scalar potential (9) contains
all power-counting superrenormalizable contributions

V̄ðϕ̄Þ ¼ α1ϕ̄þ α2ϕ̄
2 þ α3ϕ̄

3 þ α4ϕ̄
4; ð29Þ

where consistence with all field equations requires to fix the
coupling constants as

α1 ¼ −
2
ffiffiffi
6

p

3

aðΛκ þ 36a2αÞ
κ
3
2ð1 − a2Þ3 ; α2 ¼

a2ðΛκ þ 36αÞ
κð1 − a2Þ3 ;

α3 ¼ −
ffiffiffi
6

p

9

aðΛa2κ þ 36αÞffiffiffi
κ

p ð1 − a2Þ3 ; α4 ¼
1

36

ða4κΛþ 36αÞ
ð1 − a2Þ3 :

ð30Þ

Notice that, beyond the superrenormalizable nature of the
potential, each of the contributions make it worth studying.
The conformal potential is itself interesting due to its Weyl
invariance while on the other hand the quadratic contribu-
tion represents a mass term. More unconventional are
the presence of the linear and cubic terms. Nonetheless,
realistic models of a scalar field theory, as it is the case of
the neutral pion π0 and its sigma model description, do
include these type of potentials, see for instance [59].
Finally and in analogy with the seed configuration, the
solution is closed by imposing the relation

Q̄2 ¼ 1

18

ðn2 þM2Þð1 − a2ÞðK − 4n2Λ
3
ÞðΛκ þ 36αÞ

ακ
; ð31Þ

which in agreement with transformation (5c) is nothing else
than consider Q̄2 ¼ ð1 − a2ÞQ2. In consequence Q̄ remains
real as long as any of the constraints (15) and (16) is
respected.
The analysis of these new geometries starts by noticing

two important differences with respect to the seed solution.
These are the appearance of a curvature singularity and the
emergence of new asymptotic regions, due to the pole of
the conformal factor, that might split the spacetime into two
causally disconnected different regions. In contrast with the
seed metric and despite the presence of the NUT charge,
which usually softens the geometry of Taub-NUT space-
times, a curvature singularity located at

r0 ¼ M − ab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
; ð32Þ

emerges. This singularity arises due to the presence of the
conformal factor and it precisely corresponds to the point in
which the latter vanishes. Thus, beyond the interpretation
of the Misner string the spacetime ends at the singularity r0
which might be located either in the positive or negative
range of the radial coordinate, this depending on the signs
ofM, a and b. For the curvature singularity to be located at
positives values of r we observe,
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rþ0 > 0 →

8>>><
>>>:

M > abnffiffiffiffiffiffiffiffiffiffiffi
1−a2b2

p and 0 < ab < 1

M > 0 and ab < 0

0 < jMj < jabjnffiffiffiffiffiffiffiffiffiffiffi
1−jabj2

p and 0 < jabj < 1 where M ¼ −jMj; ab ¼ −jabj:
ð33Þ

On the other hand, the singularity takes place at negative values of the radial coordinate if,

r−0 < 0 →

8>>><
>>>:

0 < M < abnffiffiffiffiffiffiffiffiffiffiffi
1−a2b2

p and 0 < ab < 1

jMj > jabjnffiffiffiffiffiffiffiffiffiffiffi
1−jabj2

p and 0 < jabj < 1 where M ¼ −jMj; ab ¼ −jabj:
jMj > 0 and ab > 0.

ð34Þ

Thus, the range of the radial coordinate is given by ðr�0 ;∞Þ,
where we have dubbed r�0 the positive and negative
possible locations of the singularity.
While the curvature singularity defines the domain of the

radial coordinate, and basically the extension of the
spacetime, the conformal factor defines the structure of
the asymptotic regions. The presence of the asymptotic
region at plus infinity is clear, nevertheless as already
mentioned the conformal factor may exhibits a pole which
eventually would include a new asymptotic region that
drastically changes the causal structure of the solutions. It is
then necessary to analyze the position of the conformal
factor pole for both cases, whenever rþ0 or r−0 takes place.
Then, it is mandatory to understand how the singularity, the
eventual new asymptotic region, and the Killing horizons
are located with respect to each other.
According to these observations, and before giving a

detailed analysis of every of the geometries contained in
(28), a few comments are in order:
(1) Although the new metric ḡμν is defined through a

change of frame of the seed metric gμν and in
consequence inherits most of its features, the con-
formal factor dramatically changes the causal struc-
ture of the spacetime. As already mentioned its root
introduces a curvature singularity (32), while on the
other handmay drastically change the causal structure
of the spacetime including a new asymptotic region at
the point inwhich it diverges. The position of this pole
depends on the sign of the mass parameter and
accordingly to the location of the curvature singularity
provides the following spacetimes:
(a) rþ0 : The domain of the radial coordinate is given

by ðrþ0 ;∞Þ. On the other hand, the conformal
factor exhibits a pole either at r ¼ M or r ¼
−jMj depending if the mass parameter is positive
or negative. For M > 0 and, as long as
rþ0 < r ¼ M, a new asymptotic region emerges
dividing the spacetime into two regions we have
dubbed R− ∈ ðrþ0 ;MÞ and Rþ ∈ ðM;∞Þ. For
observers located inRþ the access to regionR−

is not allowed, being this portion of the space-
time replaced by a new asymptotic region with
its own constant curvature. Similarly occurs for
observers located in R−, their access to Rþ is
not permited. This happens for the first of the
conditions in (33). For the second case contained
in (33) we observe that rþ0 > r ¼ M, and in
consequence the pole of the conformal factor
does not belong to the domain of the radial
coordinate. Similarly occurs forM < 0, then the
pole is located at r ¼ −jMj and again does not
belong to the possible values the radial coor-
dinate can take. Thus, for the last two cases
exposed in (33) no extra asymptotic region takes
place and the region ðrþ0 ;∞Þ is not divided.

(b) r−0 : The domain of the radial coordinate is given
by ðr−0 ;∞Þ. Again, the pole of the conformal
factor depends on the sign of the mass param-
eter, given either by r ¼ M or r ¼ −jMj. For the
first of the conditions contained in (34) the mass
parameter is positive and in consequence the
pole located at r ¼ M satisfies r ¼ M > r−0 .
This pole induces the presence of a new asymp-
totic region which divides the spacetime into
the regions R− ∈ ðr−0 ;MÞ and Rþ ∈ ðM;∞Þ,
which as in the previous case are causally
disconnected. For the second case of (34) we
observe that r−0 > r ¼ −jMj and then the pole of
the conformal factor does not belong to the
domain ðr−0 ;∞Þ. The spacetime is not divided
in this case. Finally, for the third condition we
observe that the singularity satisfies r−0 < r ¼
−jMj, and then the pole of the conformal factor
induces a new asymptotic region, this time loca-
ted at r¼ −jMj, that splits the spacetime into the
regions R− ∈ ðr−0 ;−jMjÞ and Rþ ∈ ð−jMj;∞Þ.

(c) These spacetimes might have different geometric
interpretations depending on the space of param-
eters under consideration and on the relative
position of the Killing horizons that this set of
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parameters defines. As matter of fact, the posi-
tion of the Killing horizons is affected by the
sign of the mass parameter, and in consequence
their distribution varies from case to case ac-
cordingly to the position of the singularity and
the position of an eventual new asymptotic
region.

(2) For the cases in which the conformal factor induces
a splitting of the spacetime we observe that the
new asymptotic regions possess their own constant
curvature with respect to asymptotic infinity. As
inherited from the seed solution, the asymptotic
behavior of the metric is of the Taub-NUT type
and then it is only locally asymptotically equivalent
to (anti)-de Sitter spacetime. The Riemann tensor
components associated to the electric part of the
Weyl tensor behave as

lim
M>0
r→∞

R̄μν
σρ ¼ lim

M<0
r→∞

R̄μν
σρ ¼

Λ
3
δμνσρ;

lim
r→M>0

R̄μν
σρ ¼ lim

r→M<0
R̄μν

σρ ¼
Λ

3a2b2
δμνσρ: ð35Þ

(3) The scalar field configuration diverges precisely at
the curvature singularity, namely, at the zero of the
conformal factor. Then, the scalar field is unbounded
either at r−0 or rþ0 , depending on the case under
consideration. The expectation value of the scalar on
each of the possible boundaries, for positive and

negative mass parameter, is given by ϕ̄ðMÞ ∼
ffiffi
6
κ

q
1
a

and ϕ̄ð∞Þ ∼
ffiffi
6
κ

q
a.

(4) The Killing horizons of these geometries are still
given by (20), namely, the Killing horizons of the
seed metric. However, their relative locations as well
as their location with respect to the new asymptotic
region and the curvature singularities depend now on
the sign of the mass parameter.

(5) The a → 0 limit, of course, brings the solutions into
the seed [44]. On the other hand, keeping a but
going to the vanishing NUT charge case, the families
of solutions described in [52,54] are recovered
depending on whether or not the electric charge is
present. In the vanishing Λ case the latter two
solutions corresponds to Barcelo’s solution [53]
with or without charge. Finally, for n ¼ a ¼ 0,
the BBMB [34,35] and MTZ [40,41] solutions are
recovered depending on the absence or the presence
of a cosmological constant and the corresponding
self-interaction.

Some of these general considerations are holistically shared
by the n → 0 solutions [52,54]. We refer to [52] for more
details regarding generic features of these kind of geom-
etries in a more simple setup. In the next subsections we

proceed with the analysis of the causal structures contained
in our new solution (28), for positive and negative cosmo-
logical constant and for spherical, hyperbolic, and planar
base manifolds.

A. Λ ≠ 0 solutions

In agreement with the analysis performed on the seed
configuration, here we connect with a specific analysis of
each of the new geometries pertaining to (28). The analysis
is carried out in the following fashion: First it is defined
the sign of the seed cosmological constant Λ and the
topology of the black hole horizon K. Then, for every
ðΛ; KÞ combination we separately describe the cases with
curvature singularities at rþ0 and r−0 . We explore all the
possibilities contained in (33) and (34). Due to the presence
of these curvature singularities the mass parameter takes
positive and negatives values. This implies that the appear-
ance of all Killing horizons is more involved. As stated for
the seed solution it is needed to ensure the reality of the
quantity l̄, then the generic existence of these horizons will
depend on the values the mass parameter can take. For
positive and negative values of M we have:
M > 0: In this case it is observed that all four Killing

horizons appear as long as the mass parameter satisfies
0 < M < l̄

4
− n2

l̄
. This condition must be complemented

with two requirements: l̄ ∈ R and l̄
4
− n2

l̄
> 0. Both require-

ments are fulfilled by 0 < jΛj < 3=8n2 for positive and
negative cosmological constant.
M < 0: In this case the situation is more subtle. Not all

the roots for FðrÞ are real simultaneously, thus not all
Killing horizons appear at the same time. It is observed that
both horizons rþ and rþþ exist for jMj > n2

l̄
− l̄

4
. Then

conditions l̄ ∈ R and n2

l̄
− l̄

4
> 0 are simultaneously accom-

plished by requiring 3=8n2 < jΛj < 3=4n2 for positive and
negative cosmological. In this case the horizons r− and r−−
do not emerge. Now, for the horizons r− and r−− to exist it
is observed that the mass parameter needs to satisfy
0 < jMj < l̄

4
− n2

l̄
. The conditions l̄ ∈ R and l̄

4
− n2

l̄
> 0

are then satisfied by 0 < jΛj < 3=8n2 for positive and
negative cosmological constant. Here, both horizons rþ and
rþþ do not emerge.
In the next subsections the cosmological constant is

accordingly subjected to these conditions. We explicitly
determine the existence or absence of Killing horizons
controlling the mass parameter only.

1. Λ > 0 and K = 1

The curvature singularities depend on the mass param-
eter and on the values the combination ab can take. We
tackle first the rþ0 cases.
rþ0 : When the curvature singularity rþ0 takes place the

radial coordinate assumes positive values in the range
ðrþ0 ;∞Þ. Hence, according to (33) three cases arise.
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Case I: Here, the mass parameter is positive and it is
bounded from below M > abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p , with 0 < ab < 1. This

implies that the pole of the conformal factor located at
r ¼ M satisfies r ¼ M > rþ0 ¼ M − ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
. Hence,

the two regions R− ∈ ðrþ0 ;MÞ and Rþ ∈ ðM;∞Þ emerge,
dividing the spacetime into two causally disconnected
regions with different geometric properties according with
the relative position of the Killing horizons. The number of
possible Killing horizons depends on the mass parameter.
The most generic case corresponds to abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p < M < l̄

4
− n2

l̄

which ensures the existence of the four Killing horizons
(20), three of them in the positive range of the radial
coordinate. These obey rþ0 < r− < M < rþ < rþþ. The
interpretation of each of the regions proceeds as follows:
Rþ: This region is limited by the boundaries r ¼ M and

r ¼ ∞, whose constant curvatures are given by (35). Two
Killing horizons are present, the event horizon rþ and the
cosmological horizon rþþ. The spacetime region lying in
between is recognized as the exterior of a regular stationary
black hole, with no pole for the scalar field neither a
curvature singularity. This is a consequence of the presence
of the new boundary at r ¼ M that forbids the access toR−

where rþ0 lies. The causal structure of this black hole
resembles the one encountered in the Reissner-Nordström
de Sitter black hole but with the timelike singularity
replaced by the new asymptotic region at r ¼ M and with
a different distribution of the Killing horizons, see Fig. 1.
Instead of the appearance of a cosmological, event and
Cauchy horizons, only the first two emerge. For instance,
the outer region VI and the inner region I that is found when
the cosmological horizon is crossed are identical to the ones
found for the Reissner-Nordström de Sitter black hole.
Nevertheless, once the event horizon of solution (37) is
crossed an observer will encounter the new asymptotic
region at r ¼ M instead of the region lying between the
event and Cauchy horizons that would face in the Reissner-
Nordström de Sitter geometry. In the context of regular
black holes this is an interesting feature, Cauchy horizons

are known to be unstable [60] or for suffering from mass
inflation [61]. It is then appealing to investigate how the
event horizon behaves in this solution and to test how
robust it is under perturbations.
Now, forM > l̄

4
− n2

l̄
, rþ and rþþ do not emerge andRþ

is devoid of Killing horizons, indeed r− belongs toR−. The
metric is everywhere regular and the scalar field has no pole
in contrast with the seed counterpart. Due to the absence of
horizons the metric function FðrÞ is always negative, the r
coordinate is timelike and so the spacetime is cosmological.
This case is particularly interesting and it offers an explicit
example in which the effect of the transformation is
notorious. It transforms the seed solution, which behaves
as a cosmological model outside of r− only, into a fully
regular bouncing cosmology with no horizons whatsoever
and with no divergences for the scalar field. This can be
seen by investigating the two dimensional determinant for
t ¼ r ¼ constant surfaces

g2 ¼ ΩðrÞ2ðr2 þ n2Þ
�
ðr2 þ n2Þsin2θ − 16n2FðrÞsin4 θ

2

�
;

ð36Þ
which provides a measurement of the 2-dimensional
volume of the transverse manifold. Due to the fact that
FðrÞ is everywhere negative this volume never vanishes, no
matter the values of the radial and polar coordinates. This
provides a bouncing cosmology that interpolates between
two de Sitter Universes with cosmological constants given
by Λ

3a2b2 and
Λ
3
, respectively (35). The location of the bounce

corresponds to a minimum of g2 which can be graphically
observed to occur for an open set of parameter Λ,M, and n,
such that all the conditions that defines this spacetime are
satisfied, see Fig. 2.
Let us now notice that the mass parameter might saturate

the previous inequalities, namely, M ¼ l̄
4
− n2

l̄
. For such

scenario the cosmological and event horizons merge and
only one cosmological horizon rþ ¼ rþþ ≔ rc takes place.

FIG. 1. Penrose diagram of the de Sitter regular black hole with event and cosmological horizons contained in solution (37). The new
asymptotic region r ¼ M is specially highlighted.
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This case is particularly interesting, it might define either a
de Sitter wormhole that connects the two asymptotic
regions r ¼ M and r ¼ ∞ when the minimum of g2, the
throat, is located behind the cosmological horizon rc or a
bouncing cosmology connecting two de Sitter Universes
when the minimum of g2, in this case the bounce, is located
outside the cosmological horizon. The bouncing cosmol-
ogy is clearer, FðrÞ is always negative outside the cosmo-
logical horizon an so the bounce is guaranteed. However,
for the wormhole case the situation is less trivial due to the
fact that inside the cosmological horizon FðrÞ is actually
always positive. Nonetheless, in the space parameter that
defines this solution it is possible to find a set in which the
nontrivial minimum volume is preserved in the wormhole
case as well. Both cases are graphically shown to occur, see
Fig. 3. The conformal diagram of these solutions is given in
Fig. 4. The diagram on the left side shows the conformal

structure of the bouncing cosmology. The bounce, repre-
sented by the dashed line, connects the time dependent
region I with the stationary region II. Once the bounce is
surpassed an observer will encounter the cosmological
horizon rc, which after being crossed gives access to the
stationary region II, latter bounded by the asymptotic
region r ¼ M. On the other hand, the diagram on the right
side shows the de Sitter wormhole. The throat is located in
region II and connects the two asymptotic boundaries at
r ¼ ∞ and r ¼ M.
Finally, region Rþ represents an exact de Sitter black

bounce which smoothly transits from a regular stationary
black hole to a bouncing cosmology that interpolates
between two de Sitter Universes. An intermediate phase
represented by two different configurations is observed. A
bouncing cosmology or a de Sitter wormhole, both con-
necting the asymptotic regions r ¼ M and r ¼ ∞.

dS black bounce →

8>>><
>>>:

abnffiffiffiffiffiffiffiffiffiffiffi
1−a2b2

p < M < l̄
4
− n2

l̄
→ regular stationary black hole

M ¼ l̄
4
− n2

l̄
→ bouncing cosmology or wormhole

l̄
4
− n2

l̄
< M < ∞ → bouncing cosmology:

ð37Þ

FIG. 3. The first two diagrams on the left hand side represent locations of the bounces for the bouncing cosmology. On the other hand,
the next two diagrams on the right hand side represent positions for the wormhole throat. In both cases different values of the parameters
Λ, M and n and several values of the polar coordinate θ are shown. The location of the cosmological horizon is explicitly indicated.

FIG. 2. Position of the bounce for different set of parameters Λ, M, and n and for several values of the polar coordinate θ. rþ0 Case I.
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R−: This region lies between rþ0 and the asymptotic
region r ¼ M. Only the cosmological horizon r− might be
present when M < l̄

4
− n2

l̄
. Two cases arise, rþ0 < r− and

rþ0 > r−, both representing naked singularities.
Case II: This case is defined by M > 0 and ab < 0. The

curvature singularity satisfies rþ0 ¼ M þ jabj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
>

r ¼ M and in consequence the conformal factor pole does
not belong to the domain of the radial coordinate ðrþ0 ;∞Þ.
Hence, only one region takes place which might be dres-
sed by up to three Killing horizons depending on whether
or not the mass parameter satisfies 0 < M < l̄

4
− n2

l̄
. The

location of the curvature singularity with respect to the
Killing horizons opens three possible cases: (i) rþ0 < rþ <
rþþ, (ii) rþ0 < rþþ, and (iii) rþþ < rþ0 . It is always
observed that r− < rþ0 . (i) represents a black hole with
two horizons, the event horizon rþ and the cosmological
horizon rþþ. (ii) exhibits only one horizon, the cosmo-
logical horizon rþþ, while (iii) is free of horizons. The last
two cases correspond to spacetimes with naked singular-
ities. Finally, forM > l̄

4
− n2

l̄
no Killing horizons appear and

all cases represent naked singularities.
Case III: This case possesses a negative mass satis-

fying jMj < jabjnffiffiffiffiffiffiffiffiffiffiffi
1−jabj2

p , provided that 0 < jabj < 1 holds.

Once again, the conformal factor diverges outside of the
domain of the radial coordinate r ¼ −jMj < rþ0 ¼ −jMj þ
jabj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
. We rewrite the Killing horizons by per-

forming the change M → −jMj on (20)

r−− ¼ l̄
2

 
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
− 4

jMj
l̄

s !
ð38Þ

r− ¼ l̄
2

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
− 4

jMj
l̄

s !
ð39Þ

rþ ¼ l̄
2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
þ 4

jMj
l̄

s !
ð40Þ

rþþ ¼ l̄
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

n2

l̄2
þ 4

jMj
l̄

s !
: ð41Þ

It is observed that the Killing horizons r−− and r− always lie
outside of the domain ðrþ0 ;∞Þ. Thus, the spacetime contains
a curvature singularity at rþ0 whichmight be covered by up to
two horizons rþ and rþþ as long as jMj > n2

l̄
− l̄

4
. Two cases

arise: (i) rþ0 < rþ < rþþ and (ii) rþ0 < rþþ. Again, the first
case represents a stationary black holewith two horizons, the
event horizon rþ and the cosmological horizon rþþ. On the
other hand, the second case exhibits only the cosmological
horizon and the singularity remains naked. Naked singular-
ities are obtained for 0 < jMj < n2

l̄
− l̄

4
.

r−0 : When the curvature singularity r−0 takes place the
radial coordinate assumes negative and positive values in the
range ðr−0 ;∞Þ. Hence, according to (34) three cases arises.
Case I: This case is defined by 0 < M < abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p with

0 < ab < 1. The pole of the conformal factor satisfies
r ¼ M > r−0 ¼ M − ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
, and in consequence

belongs to the allowed domain of the radial coordinate.
The spacetime is thus divided into the two regions R− ∈
ðr−0 ;MÞ and Rþ ∈ ðM;∞Þ, which are again causally
disconnected. All Killing horizons exist for M < l̄

4
− n2

l̄
.

In contrast to the first case in (33), here the radial coordinate
also takes negative values and in principle up to four Killing
horizons might take part in the causal structure of this
solution. However, it is observed that only r−, rþ, and rþþ
belong to the domain of the radial coordinate. For each of
the regions we have:
Rþ: This region is composed by the boundaries r ¼ M

and r ¼ ∞. The event rþ and the cosmological rþþ
horizons are englobed, and a regular stationary black hole
with a similar horizon structure to the one of the Reissner-
Nordström de Sitter black hole is again obtained. The
causal structure is fairly represented by the conformal
diagram of Fig. 1. Notice that in this case to make rþ
and rþþ disappear the mass parameter must satisfies
l̄
4
− n2

l̄
< M < abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p . A new bouncing cosmology similar

to the one previously reported is obtained in this case

FIG. 4. Conformal diagrams for the bouncing cosmology and the de Sitter wormhole configurations. The asymptotic region r ¼ M,
and the bounce and throat locations are specially highlighted.
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as well, now in a different subset of the parameter space.
See Fig. 5. Again, the two configurations explained in the
previous black bounce are obtained when saturating the

value of the mass parameter. We do not provide a new plot
for this case. The following exact de Sitter black bounce is
then identified

dS black bounce →

8>>><
>>>:

0 < M < l̄
4
− n2

l̄
≤ abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p → regular stationary black hole

M ¼ l̄
4
− n2

l̄
→ bouncing cosmology or wormhole

l̄
4
− n2

l̄
< M < abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p → bouncing cosmology:

ð42Þ

R−: This region lies between r−0 and the asymptotic
region r ¼ M. Two cases arise: r−0 < r− < 0 < M and
r−0 < 0 < r− < M. In both scenarios the curvature singu-
larity is covered by the cosmological horizon r−, then
observers outside r− are not protected from the singularity.
Case II: The mass parameter satisfies jMj > jabjnffiffiffiffiffiffiffiffiffiffiffi

1−jabj2
p ,

where 0 < jabj < 1. The pole of the conformal factor is
situated at r ¼ −jMj, and it satisfies r ¼ −jMj < r−0 ¼
−jMj þ jabj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jMj2

p
. It does not belong to the domain

ðr−0 ;∞Þ and no split of the spacetime occurs. Only the
horizons rþ and rþþ take place as soon as the mass
parameter obeys jabjnffiffiffiffiffiffiffiffiffiffiffi

1−jabj2
p ≤ n2

l̄
− l̄

4
< jMj. Hence, the fol-

lowing cases arise: A stationary black hole with a curvature
singularity covered by the event rþ and cosmological rþþ
horizons, where r−0 < rþ < 0 < rþþ or r−0 < 0 < rþ <
rþþ and a curvature singularity covered by the cosmologi-
cal horizon rþþ only, the latter representing a naked
singularity. For jabjnffiffiffiffiffiffiffiffiffiffiffi

1−jabj2
p < jMj < n2

l̄
− l̄

4
both horizons dis-

appear and only naked singularities take place.

Case III: The mass parameter is negative M < 0 and
ab > 0. In this case the pole of the conformal factor
satisfies r ¼ −jMj > r−0 ¼ −jMj − ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
, belong-

ing to the domain ðr−0 ;∞Þ and thus dividing the spacetime
into the regions R− ∈ ðr−0 ;−jMjÞ and Rþ ∈ ð−jMj;∞Þ.
Each region proceeds as follows.
Rþ: This region is limited by r ¼ −jMj and r ¼ ∞. For

values of the mass such that jMj > n2

l̄
− l̄

4
the two Killing

horizons rþ and rþþ emerge, which satisfy either −jMj <
0 < rþ < rþþ or −jMj < rþ < 0 < rþþ. The spacetime
contained in between the event and cosmological horizons
is recognized once again as the exterior of a stationary
regular black hole with a similar structure to the one of the
Reissner-Nordström de Sitter geometry, see Fig. 2. Moving
the mass parameter such that 0 < jMj < n2

l̄
− l̄

4
is achieved,

then both horizons disappear and once again a bouncing
cosmology interpolating between two de Sitter Universes is
obtained. See Fig. 6. Saturating the mass inequality the
bouncing cosmology or the de Sitter wormhole previously
explained emerge. Ultimately, the spacetime describes the
de Sitter black bounce

dS black bounce →

8>>><
>>>:

n2

l̄
− l̄

4
< jMj < ∞ → regular stationary black hole

jMj ¼ n2

l̄
− l̄

4
→ bouncing cosmology or wormhole

0 < jMj < n2

l̄
− l̄

4
→ bouncing cosmology:

ð43Þ

FIG. 5. Position of the bounce for different sets of parameters Λ, M and n and for several values of the polar coordinate θ, now for
Case I contained in r−0 .
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R−: This region is limited by r ¼ r−0 and r ¼ −jMj.
For a mass parameter jMj < l̄

4
− n2

l̄
the two Killing horizons

r−− and r− take place defining two possible cases:
(i) r−0 < r−− < r− < −jMj and (ii) r−0 < r− < −jMj. In
the first case the region between the event horizon r−− and
the cosmological horizon r− defines the exterior of a
stationary black hole, while on the other hand the second
case in which only r− is present defines a naked singularity.

2. Λ < 0 and K = − 1

rþ0 : The radial coordinate assumes positive values in the
range ðrþ0 ;∞Þ. We consider each of the cases contained in
(33). We do not repeat here all constraints on M and ab
regarding the position of this singularity.
Case I: The pole of the conformal factor satisfies

r ¼ M > rþ0 ¼ M − ab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
. The spacetime splits

into the regions R− ∈ ðrþ0 ;MÞ and Rþ ∈ ðM;∞Þ. For
mass parameter values such that 0 < M < l̄

4
− n2

l̄
three

horizons in the domain of the radial coordinate take place,
rþ0 < r− < M < rþ < rþþ. These horizons are now free of
cosmological behavior, the cosmological constant is
negative.
Rþ: This region is limited by r ¼ M and r ¼ ∞ and it

encloses the inner and event horizons rþ and rþþ. Again,
the asymptotic region r ¼ M replaces the singularity and
provides a regular metric with no poles for the scalar field.
The spacetime is interpreted as a regular stationary black
hole with a similar causal structure to the one of the
Reissner-Nordström anti–de Sitter black hole. Its con-
formal diagram is depicted in Fig. 7.
From Fig. 7 it is again observed how the asymptotic

region at r ¼ M replaces the singularity. This diagram does
not radically differ from the one describing the de Sitter
case. The main differences are two: First, the outer region is
now stationary, rþþ plays the role of an event horizon.
Second, the inner horizon rþ appears beyond which the
asymptotic region is encountered.
Particularly appealing is the case in which the mass

obeys the bound M ¼ l̄
4
− n2

l̄
, for which both horizons

merge in a single event horizon rþ ¼ rþþ ≔ rH. It is
observed that rH takes place at the right-hand side of the
asymptotic region r ¼ M and so it belongs to Rþ. This
occurs for several open sets of the corresponding param-
eters Λ, M, and n. Therefore, two possible configurations
might emerge. The first possible configuration corresponds
to a regular anti–de Sitter black hole with a single event

FIG. 7. Penrose diagram of the anti–de Sitter regular black hole
with inner and event horizons contained in solution (46). The new
asymptotic region r ¼ M is specially highlighted.

FIG. 6. Position of the bounce for different set of parameters Λ, M and n and for several values of the polar coordinate θ, now for
Case III contained in r−0 .
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horizon which lies inside of an anti–de Sitter wormhole. On
the other hand, the second configuration represents a
bouncing cosmology lying at the interior of a regular
anti–de Sitter black hole with a single event horizon.
The location of the bounce for the latter configuration is
trivial to obtain, namely, FðrÞ is everywhere negative inside
the event horizon rH. Conversely, due to the positivity of
FðrÞ outside rH the appearance of the wormhole throat is
less trivial, see the discussion below Eq. (44). Nonetheless,
in Fig. 8 we show the existence of both, the bounce and the
throat, for different sets of the parameters Λ, M, and n.
The conformal diagram of these solutions is depicted in

Fig. 9. For both cases the general picture is very similar and
it resembles the causal structure encountered in the
Schwarzschild anti–de Sitter black hole however with
the central singularity replaced by the asymptotic region
r ¼ M. This converts the solution into a fully regular black
hole with one single event horizon. The latter is a very
exciting feature for a regular black hole, indeed most of
regular black hole solutions include Cauchy horizons as
well which are known for being subjected to different types
of instabilities. This solution represents an excellent can-
didate for a fully regular black hole with no perturbative
instabilities. The diagram on the left-hand side of Fig. 9
shows the case in which the regular black hole is immersed

in an anti–de Sitter wormhole. Thus, an observer coming
from asymptotic infinity in region I first observe a worm-
hole which once is crossed leads to an anti–de Sitter regular
black hole. Region II represents the interior of this black
hole where no singularity takes place. Such an observer
stays trapped in region I. The diagram on the right-hand
side of Fig. 9 represents the same regular black hole but
with a cosmological bounce in its interior. Thus, after the
observer has crossed the event horizon the interior of the
black hole is given by a bouncing cosmology that leads to
the asymptotic region r ¼ M, a region from which the
observer cannot escape.
Now, as for the de Sitter solutions previously analyzed it

is desirable to understand what occurs for M > l̄
4
− n2

l̄
. In

such a case both horizons rþ and rþþ disappear and the
spacetime represents a regular gravitational soliton. The
metric function is everywhere positive and the spacetime
remains stationary. In this case the effect of the trans-
formations is also decisive. The two dimensional determi-
nant g2 is now given by

g2 ¼ ΩðrÞ2ðr2 þ n2Þ
�
ðr2 þ n2Þsinh2θ − 16n2FðrÞsinh4 θ

2

�
:

ð44Þ

FIG. 8. The first two diagrams in the left hand side represent locations for the bounce of the bouncing cosmology inside the anti–de
Sitter black hole. On the other hand, the next two diagrams in the right hand side represent the position of the wormhole throat inside of
which lies the anti–de Sitter black hole. In both cases different values of the parameters Λ, M, and n and several values of the θ
coordinate are shown. The location of the event horizon is explicitly indicated.

FIG. 9. Conformal diagrams for the bouncing cosmology inside of the anti–de Sitter regular black hole and for the anti–de Sitter
regular black hole inside of the anti–de Sitter wormhole. The asymptotic region r ¼ M, and the bounce and throat locations are
especially highlighted.
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Contrary to the cases with spherical foliation, the metric
function FðrÞ is everywhere positive and in principle g2
may vanish and even more take negative values. A negative
g2 is a consequence of the appearance of closed timelike
curves as can be seen from

ḡφφ ¼ ΩðrÞ
�
ðr2 þ n2Þsinh2θ − 16n2FðrÞsinh4 θ

2

�
: ð45Þ

In spite of this, ḡφφ will always remain positive if the
cosmological constant is restricted to jΛj < 3=4n2 (see the
seed case), implying at the same time a nontrivial minimum
for the 2-dimensional volume of the transverse manifold for
all values of the coordinates r and θ. Our spacetime then

represents a hyperbolic wormhole connecting two asymp-
totically locally anti–de Sitter boundaries at r ¼ M and r ¼
∞ with asymptotic constant curvatures given by (35). The
throat of the wormhole can be graphically observed for a
wide set of parameters, see Fig. 10.
Finally, regionRþ provides an exact anti–de Sitter black

bounce that interpolates between a regular black hole with
inner rþ and event rþþ horizons and a wormhole. The
intermediate phase is given by a regular black hole with a
single event horizon rH which might appear in two different
configurations, inside an anti–de Sitter wormhole or with
an interior given by a cosmological bounce. Again, all these
transitions are smoothly connected by the mass param-
eter only.

AdS black bounce →

8>>><
>>>:

0 < M < l̄
4
− n2

l̄
→ regular black holewith inner and event horizons

M ¼ l̄
4
− n2

l̄
→ regular black holewith one event horizon

M > l̄
4
− n2

l̄
→ wormhole:

ð46Þ

R−: This region is bounded by rþ0 and the asymptotic
region r ¼ M. For mass parameter satisfying 0 < M <
l̄
4
− n2

l̄
the singularity is covered by the event horizon r−.

The spacetime represents an anti–de Sitter black hole with a
single event horizon which is locally isomorphic to H2.
Case II: Here, the curvature singularity satisfies rþ0 ¼

M þ jabj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
> r ¼ M and then no division of the

spacetime is performed. The region ðrþ0 ;∞Þ might be then
dressed by up to three horizons as soon as the mass
parameter follows 0 < M < l̄

4
− n2

l̄
. The distribution of

the inner and event horizons with respect to the singularity
opens three cases: (i) rþ0 < rþ < rþþ, (ii) rþ0 < rþþ, and
(iii) rþþ < rþ0 . r− < rþ0 always holds. (i) represents a black
hole with two horizons, the inner horizon rþ and the event
horizon rþþ. (ii) provides a black hole with a single
horizon, the event horizon rþþ, while (iii) is free of
horizons. The last case corresponds to a naked singularity.

Finally, for M > l̄
4
− n2

l̄
the horizons rþ and rþþ are not

present and rþ0 remains naked.
Case III: In this case we have r ¼ −jMj < rþ0 ¼

−jMj þ jabj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
, thus the conformal factor diverges

outside of the domain of the radial coordinate. No new
asymptotic region takes place. All Killing horizons are
given by (41). The Killing horizons r− and r−− always lie
outside the domain ðrþ0 ;∞Þ. For jMj > n2

l̄
− l̄

4
two cases

arise: (i) rþ0 < rþ < rþþ and (ii) rþ0 < rþþ. The first case
corresponds to a black hole with two horizons, the internal
and event horizons rþ and rþþ while the second case
represents a black hole with one single event horizon rþþ.
As soon as 0 < jMj < n2

l̄
− l̄

4
both horizons disappear and

the singularity remains naked.
r−0 : The radial coordinate assumes negative values in

the range ðr−0 ;∞Þ. We consider each of the cases contained
in (34). Again, we do not repeat all constraints on M
and ab.

FIG. 10. Position of the wormhole throat for different set of parameters Λ, M and n and for several values of the coordinate θ.
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Case I: Here we have r ¼ M > r−0 ¼ M − ab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
,

as a consequence the pole of the conformal factor belongs
to the domain of the radial coordinate. Once again our
spacetime splits into the causally disconnected regions
R− ∈ ðr−0 ;MÞ and Rþ ∈ ðM;∞Þ. Three Killing horizons
might take part of the causal structure, as long as
M < l̄

4
− n2

l̄
. It is always observed that r−− < r−0 . Thus:

Rþ: The boundaries r ¼ M and r ¼ ∞ encompass two
Killing horizons, the inner and event horizons rþ and rþþ,
giving the spacetime the interpretation of a stationary
regular black hole with a similar causal structure to the
Reissner-Nordström anti–de Sitter black hole. Its causal
structure can be seen from Fig. 7. For M ¼ l̄

4
− n2

l̄
the

aforementioned horizons merge and a black hole with one
single horizon rH appears. Again, this horizon satisfies
rH > r ¼ M. The same configurations previously dis-
cussed in this context are again present, see Fig. 9.
Finally, for l̄

4
− n2

l̄
< M < abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p both horizons disappear

and the spacetime represents a wormhole connecting the
two locally asymptotically anti–de Sitter boundaries with
constant curvatures Λ

3a2b2 and
Λ
3
, respectively. The wormhole

throat is graphically observable in Fig. 11. This region
represents an anti–de Sitter black bounce smoothly con-
necting, through the mass parameter, a regular black hole
with two horizons, a single event horizon black hole and a
hyperbolic wormhole.

AdS black bounce →

8>>><
>>>:

0 < M < l̄
4
− n2

l̄
≤ abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p → regular black holewith inner and event horizons

M ¼ l̄
4
− n2

l̄
→ regular black holewith one event horizon

l̄
4
− n2

l̄
< M < abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p → wormhole:

ð47Þ

R−: For 0 < M < l̄
4
− n2

l̄
≤ abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p two cases may arise,

r−0 < r− < 0 < M and r−0 < 0 < r− < M. In both scenar-
ios the curvature singularity is covered by the event horizon
r−, then a black hole with one event horizon locally
isomorphic to H2 is identified.
Case II: The pole of the conformal factor does not

belong to the radial coordinate domain ðr−0 ;∞Þ, r ¼
−jMj < r−0 ¼ −jMj þ jabj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jMj2

p
. r−0 is always

greater than r− and r−−. Then, for values of the mass
parameter jabjnffiffiffiffiffiffiffiffiffiffiffi

1−jabj2
p ≤ n2

l̄
− l̄

4
< jMj the two Killing horizons

rþ and rþþ emerge defining three cases: (i) r−0 < rþ <
0 < rþþ, (ii) r−0 < 0 < rþ < rþþ, and (iii) r−0 < rþþ. The
first two cases define a stationary black hole with inner and
event horizons while the third case represents a single event
horizon black hole.

Case III: Here we have r ¼ −jMj > r−0 ¼ −jMj −
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2

p
and thus the spacetime divides into the

regionsR− ∈ ðr−0 ;−jMjÞ andRþ ∈ ð−jMj;∞Þ. Therefore:
Rþ: This region is bounded by r ¼ −jMj and r ¼ ∞.

For jMj > n2

l̄
− l̄

4
the following two cases display:

(i) −jMj < 0 < rþ < rþþ and (ii) −jMj < rþ < 0 < rþþ,
both representing stationary regular black holes with a
similar causal structure to the one of the Reissner-
Nordström anti–de Sitter black hole, see Fig. 7. By
saturating the mass bound both horizons merge and the
solution represents a regular black hole with one event
horizon, Fig. 9. Finally, if 0 < jMj < n2

l̄
− l̄

4
the spacetime is

devoid of Killing horizons and it transforms into a worm-
hole connecting two anti–de Sitter boundaries. See Fig. 12.
The following anti–de Sitter black bounce is thus observed

FIG. 11. Position of the wormhole throat for different set of parameters Λ, M and n and for several values of the coordinate θ.
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AdS black bounce →

8>>><
>>>:

n2

l̄
− l̄

4
< jMj < ∞ → regular black holewith inner and event horizons

jMj ¼ n2

l̄
− l̄

4
→ regular black holewith one event horizon

0 < jMj < n2

l̄
− l̄

4
→ wormhole:

ð48Þ

R−: If the mass parameter satisfies jMj < l̄
4
− n2

l̄
then

both horizons r− and r−− appear. The following two
cases are displayed: (i) r−0 < r−− < r− < −jMj and
(ii) r−0 < r− < −jMj. Both cases represent black holes,
with inner and event or only event horizons, respectively.

3. Λ > 0 and K = − 1

The combination Λ > 0 and K ¼ −1 always provides a
complex l̄. Therefore, the spacetime is devoid of Killing
horizons and the curvature singularity as well as the pole of
the conformal factor are, in principle, naked. This situation
will occur for all the cases contained in (33) and (34) in
which the pole of the conformal factor does not belong to
the corresponding domains of the radial coordinate. On the
other hand, for all cases in which the spacetime is divided
into the regions R− and Rþ the situation differs. As a
matter of fact, the curvature singularity and the pole of the
scalar field will always belong to the region R− and in
consequence region Rþ will be free of pathologies. There

is only one possible configuration, a bouncing cosmology
connecting two de Sitter Universes with cosmological
constants Λ

3a2b2 and Λ
3
, no matter the value of the mass

parameter. This can be directly observed from the deter-
minant of the two dimensional t ¼ r ¼ constant sections
(44). The metric function is everywhere negative and in
consequence this determinant never vanishes. This will be
observed in three of the cases previously studied, Case I
when rþ0 takes places and Cases I and III when r−0 appears.
Here we provide a graphical proof of the bounce for the
case in which rþ0 takes place. See Fig. 13. Due to the
hyperbolic nature of the transverse section this geometry is
free of Misner strings, and moreover does not possess any
kind of closed timelike curves as long as Λ > 3=4n2, see
the seed analysis.

4. Λ < 0 and K = 1

This combination possesses complex l̄ as well as in the
previous case. No Killing horizons take place and the

FIG. 13. Position of the bounce for different set of parameters Λ, M and n and for several values of the coordinate θ.

FIG. 12. Position of the wormhole throats for different set of parameters Λ, M, and n and for several values of the coordinate θ.
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curvature singularity and scalar field pole will be naked in
all those cases in which the conformal factor pole does not
belong to the domain of the radial coordinate. For those
cases in which the spacetime is divided into the regionsR−

and Rþ the spacetime Rþ will represent an anti–de Sitter
wormhole connecting to asymptotic boundaries with con-
stant curvatures Λ

3a2b2 and
Λ
3
. For a non geodesic observer the

Misner string is unavoidable as well as the occurrence of
closed timelike curves. As a consequence of the existence
of closed timelike curves the throat of the wormhole can be
graphically observed only for a narrow set of parameters.
See Fig. 14 for Case I with rþ0 .

5. K = 0 cases

For the cases inwhich the basemanifold is flat the absence
of Killing horizons always takes place. Then, the metric
function is either everywhere negative or everywhere pos-
itive depending if the cosmological constant is positive or
negative. Again, generically the curvature singularity and the
scalar field pole might be naked unless the conformal factor
includes a new asymptotic region that provides a spacetime
Rþ for which no singularities appear. In such cases the
solution is interpreted as a bouncing cosmology connecting
to de Sitter Universes or as a wormhole connecting two
locally anti–de Sitter boundaries. The Misner string is not
present, for planar base manifold geometries these are pulled
out to infinity. The presence of closed timelike curves is a
generic feature for nongeodesic observers. These are not
going to affect the cosmological solution, nevertheless
severally restricts the existence of the throat in the wormhole
case, narrowing the set of parameters in which the latter
might take place.

IV. CONCLUSIONS AND FURTHER
DEVELOPMENTS

In the present paper we have constructed and analyzed a
new family of Taub-NUT spacetimes representing regular
black holes, wormholes, and bouncing cosmologies in
Einstein-Λ theory in which a self-interacting conformally

coupled scalar field is considered. The self-interaction
deviates from the usual conformal potential by including
all power-counting super-renormalizable contributions. The
construction is based on the use of a specific set of trans-
formations [54], that once applied to a seed solution that
solves the field equations of a conformally coupled scalar-
tensor theory with a conformal potential (4), provides a new
set of geometries that drastically enlarge the causal structure
of the spacetime. These solutions solves the new set of field
equations (6) where the scalar field action enjoys conformal
invariance up to thepresence of a nonconformal potential that
exhibits all power-counting superrenormalizable contribu-
tions. Additionally, the cosmological constant is also modi-
fied. Comparison with the seed spacetime is direct. Table I
summarizes our most relevant findings.
The first four solutions contained in Table I possess a

spherical foliation and the seed cosmological constant is
positive. In this scenario the seed solution represents a
Taub-NUT black hole in de Sitter space with three Killing
horizons. Its black hole interpretation is subjected to the
arguments of [23,24], this due to the presence of the Misner
string and closed timelike curves which might generically
appear. Then, we adopted this interpretation for geodesic
observers only. Our new solutions drastically differ from
this causal structure. The presence of the conformal factor
pole divides the spacetime into two regions from which the
most relevant is Rþ. This region is interpreted as a regular
black hole with two horizons only, the event horizon rþ and
the cosmological horizon rþþ, which by smoothly moving
the mass parameter transits to a bouncing cosmology
connecting two de Sitter Universes. It is shown the
existence of an intermediate phase in which a de Sitter
wormhole or a de Sitter bouncing cosmology might appear,
this under the presence of a cosmological horizon. Less
attractive is region R−, which mostly represents naked
singularities with the exception of Case III in the presence
of r−0 . This case represents a de Sitter black hole with event
rþ and cosmological rþþ horizons. It is important to stress
that for all the cosmological configurations the absence
of closed timelike curves is ensured beyond geodesic

FIG. 14. Position of the wormhole throat for different set of parameters and for different values of the polar coordinate. Notice that for
this case it is not possible to access the wormhole throat for θ ¼ π.
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observers. Nonetheless, the Misner string is still visible for
them. All these solutions are completely regular in terms of
their curvature invariants and the scalar field profile is
everywhere nondivergent.
The next six solutions contained in Table I possess a

hyperbolic foliation and the seed cosmological constant is
negative. Among all the solutions contained in the seed

metric this is the most relevant. For hyperbolic foliation this
spacetime does not contain a Misner string, and moreover it
is shown that by properly restricting the cosmological
constant in terms of the NUT parameter it is possible to
remove any trace of closed timelike curves. This geometry
represents an anti–de Sitter regular black hole with three
horizons. Our solutions enhance this geometry in the

TABLE I. Summary of the most significant results for different values of K and Λ.

ðK;ΛÞ Singularity Region/Mass Interpretation

K ¼ 1 0 < Λ < 3
8n2

rþ0 Case I

Rþ∶

8>><
>>:

abnffiffiffiffiffiffiffiffiffiffiffi
1−a2b2

p < M < l̄
4
− n2

l̄

M ¼ l̄
4
− n2

l̄
l̄
4
− n2

l̄
< M < ∞

de Sitter black bounce: regular black hole with event
rþ and cosmological rþþ horizons, de Sitter
wormhole or bouncing cosmology with a single
cosmological horizon rc and free horizons
bouncing cosmology.

K ¼ 1 0 < Λ < 3
8n2

r−0 Case I

Rþ∶

8>><
>>:

0 < M < l̄
4
− n2

l̄
≤ abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p

M ¼ l̄
4
− n2

l̄
l̄
4
− n2

l̄
< M < abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p

de Sitter black bounce: regular black hole with event
rþ and cosmological rþþ horizons, de Sitter
wormhole or bouncing cosmology with a single
cosmological horizon rc and free horizons
bouncing cosmology.

K ¼ 1 3
8n2 < Λ < 3

4n2
r−0 Case III

Rþ∶

8>><
>>:

n2

l̄
− l̄

4
< jMj < ∞

jMj ¼ n2

l̄
− l̄

4

0 < jMj < n2

l̄
− l̄

4

de Sitter black bounce: regular black hole with event
rþ and cosmological rþþ horizons, de Sitter
wormhole or bouncing cosmology with a single
cosmological horizon rc and free horizons
bouncing cosmology.

K ¼ 1 0 < jΛj < 3
8n2

r−0 Case III R−∶f jMj < l̄
4
− n2

l̄
de Sitter black hole with two horizons, event rþ and
cosmological rþþ.

K ¼ −1 0 < jΛj < 3
8n2

rþ0 Case I

Rþ∶

8>><
>>:

0 < M < l̄
4
− n2

l̄

M ¼ l̄
4
− n2

l̄

M > l̄
4
− n2

l̄

anti–de Sitter black bounce: regular black hole with
inner rþ and event rþþ horizons, regular black
hole with one event horizon rH either inside of a
wormhole or with an interior cosmological
bounce, and anti–de Sitter wormhole.

K ¼ −1 0 < jΛj < 3
8n2

r−0 Case I

Rþ∶

8>><
>>:

0 < M < l̄
4
− n2

l̄
≤ abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p

M ¼ l̄
4
− n2

l̄
l̄
4
− n2

l̄
< M < abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p

anti–de Sitter black bounce: regular black hole with
inner rþ and event rþþ horizons, regular black
hole with one event horizon rH either inside of a
wormhole or with an interior cosmological
bounce, and anti–de Sitter wormhole.

K ¼ −1 3
8n2 < jΛj < 3

4n2
r−0 Case III

Rþ∶

8>><
>>:

n2

l̄
− l̄

4
< jMj < ∞

jMj ¼ n2

l̄
− l̄

4

0 < jMj < n2

l̄
− l̄

4

anti–de Sitter black bounce: regular black hole with
inner rþ and event rþþ horizons, regular black
hole with one event horizon rH either inside of a
wormhole or with an interior cosmological
bounce, and anti–de Sitter wormhole.

K ¼ −1 0 < jΛj < 3
8n2

rþ0 Case I R−∶f 0 < M < l̄
4
− n2

l̄
anti–de Sitter black hole with a single event horizon
locally isomorphic to H2: r−0 < r− < 0 < M.

K ¼ −1 0 < jΛj < 3
8n2

r−0 Case I R−∶f 0 < M < l̄
4
− n2

l̄
≤ abnffiffiffiffiffiffiffiffiffiffiffi

1−a2b2
p anti–de Sitter black hole with a single event horizon

locally isomorphic toH2. Two cases: r−0 < r− <
0 < M and r−0 < 0 < r− < M.

K ¼ −1 0 < jΛj < 3
8n2

r−0 Case III R−∶f jMj < l̄
4
− n2

l̄
anti–de Sitter black hole with one or two horizons
locally isomorphics to H2. Two cases: r−0 < r −
− < r− < −jMj and r−0 < r− < −jMj.

K ¼ −1 , Λ > 3
4n2

rþ0 Case I Rþ∶fM > 0 de Sitter bouncing cosmology

K ¼ 1 , Λ < 0 rþ0 Case I R−∶fM > 0 anti–de Sitter wormhole.
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following manner: again, the presence of a pole in the
conformal factor implies the division of the spacetime into
the regions R− and Rþ. Region Rþ represents a regular
black hole with inner and event horizons rþ and rþþ, which
by smoothly moving the mass parameter transits to a
wormhole configuration that connects two anti–de Sitter
asymptotic boundaries with different constant curvatures.
An intermediate phase given by a regular black hole with a
single event horizon rH is observed. This phase might
appear in two different setups, either as a regular black hole
inside an anti–de Sitter wormhole or as a regular black hole
of which its interior is given by a cosmological bounce. In
both scenarios this phase shows an interesting character-
istic: it possesses only one horizon, the event horizon, and
in consequence is free of Cauchy horizons which are
known for suffering from instabilities. On the other hand,
region R− provides anti–de Sitter black holes with inner
and event horizons. It is important to stress that all these
solutions are free of Misner strings and of any closed
timelike curves for any observer, geodesic or nongeodesic.
Other solutions might be highlighted as well, nonethe-

less none of them representing black bounce transitions.
These are the case with positive cosmological constant and
hyperbolic base manifold that represents a bouncing
cosmology and the case with negative cosmological con-
stant and spherical base manifold that represents a worm-
hole. The latter case being valid for a restricted set of the
parameter space. Additionally, several cases represent
black holes with different horizons distributions when no
pole of the conformal factor takes place. These latter are not
included in Table I.
An important aspect to be discussed in all these solutions

is whether or not they satisfy reasonable energy conditions.
Due to the complexity of our solutions explicit expressions
for the energy density or for the pressures are rather
involved, nevertheless some general conclusions can be
drawn by casting the energy momentum tensor of our
matter fields in the form of a perfect fluid, in this case an
anisotropic fluid which in an orthonormal frame is given by
Tab ≔ ðρ; p1; p2; p2Þ. It is realized to be useful to consider
the case inwhich the electric chargevanishes. From the point
of view of the solutions this does not produce any substantial
change, besides a fine tune between the cosmological con-
stant Λ and the conformal coupling α. It is observed that the
null energy condition given by ρþ p1 ≥ 0 and ρþ p2 ≥ 0
is always satisfy for bouncing cosmologies. On the other
hand, wormhole configurations requires, as usual, the
presence of exotic matter, which in our cases is represented
by our scalar fields not obeying the aforementioned energy
condition. For black holes energy conditions are not satisfied
everywhere due to the change of sign of the metric function
FðrÞ. However, several cases respect the null energy con-
dition in the domain of outer communications.
Many appealing directions might be further explored.

Remaining in the context of Taub-NUT spacetimes it would

be interesting to study the Euclidean version of our
solutions. These gravitational instantons will certainly
exhibit interesting new geometric and topological features
healing the pathologies associated with the Misner string
and the closed timelike curves [58]. Additionally, either in
their Lorentzian or Euclidean versions, our solutions offer
an interesting arena to study black hole thermodynamic
[62–67]. It would be worth studying the existence of phase
transitions in the presence of scalar fields not only in
standard black hole thermodynamic but also in the context
of black hole chemistry [68,69] and to understand how the
presence or absence of the Misner string affects the usual
charges. On the other hand it is clear that the set of
transformations defined in [54] do not depend on the
particular symmetries the metric or the scalar field enjoy.
Namely, for any solution of a conformally coupled theory
with a conformal potential a new conformally related
family of the type found here can be constructed. A
concrete example is to take the C-metric solution with a
conformally coupled scalar found in [42] and construct a
new family of accelerating geometries. The transformations
affect in a highly nontrivial manner the geometric structure
of this spacetime providing interesting new phenomena to
be explored [70]. Even more, a full new Plebański-
Demiański family of solutions can be constructed along
the lines of [46] to explore how the transformation modifies
the corresponding limits that provide specific spacetimes
with a desirable specific symmetry. It is known that the
Plebański-Demiański solutions found in [46] does not
provide a healthy limit when turning off the acceleration
while keeping rotation, this in the presence of the cosmo-
logical constant. An interesting path to follow would be to
investigate whether or not this limit might be cured by the
effect of the transformations. This can be pushed further by
including higher order corrections to the original action that
do not spoil the initial conformal symmetry of the seed
theory [47]. The same conclusions are valid for solutions
with external magnetic fields [48,49], for pp/AdS-waves
metrics [71] or conformally coupled solutions in higher or
lower dimensions [72–74].
Finally, specifically in the context of the black bounce

solutions described here it would be interesting to explore
all kinds of applications. The most obvious, again, black
hole thermodynamic since now they represent solutions
with a sensible action principle with a clear field content.8

On the other hand, it is possible to study several astrophysi-
cally relevant aspects of these black holes, as for example
black hole shadows [77,78], gravitational lensing [79,80],
black hole mimickers [81,82], quasinormal modes and

8Recently, following a bottom up approach these type of
models have been embedded in higher order scalar-tensor
theories [75]. In there, the parameter that controls the bounce
emerges in the action principle when integrating out the theory
that supports the desired solution. Similar strategy has been also
applied in the context of nonlinear electrodynamics [76].
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echoes [83–86], to mention a few examples. We expect to
report along these lines in our upcoming contributions.
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APPENDIX: Λ= 0 CASE

When the seed cosmological constant vanishes consis-
tence of the seed solution (11) requires the absence of the
seed quartic self-interaction, α ¼ 0. The seed scalar field
integrates in a slightly different manner. In this case no
potential Vðϕ̄Þ appears after the transformation neither an
effective cosmological constant λ. The lapse function takes
a very simple form possessing one single root at r ¼ M,
same point at which the conformal factor has a pole. The
solution reads

ds̄2 ¼
	
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2 − κQ̄2

2ð1−a2Þ
q

þ r −M


2

ðr −MÞ2
�
−
Kðr −MÞ2
r2 þ n2

ðdtþ BÞ2 þ dr2

Kðr−MÞ2
r2þn2

þ ðr2 þ n2ÞdΣ2
K

�
; Ā ¼ Q̄r

r2 þ n2
ðdtþ BÞ

ϕ̄ðrÞ ¼
�
6

κ

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2 − κQ̄2

2ð1−a2Þ
q

þ aðr −MÞ
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2 − κQ̄2

2ð1−a2Þ
q

þ r −M
: ðA1Þ

As explained before the zero of the conformal factor
induces a curvature singularity, now located at

r0 ¼ M − a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þM2 −

κQ̄2

2ð1 − a2Þ

s
; ðA2Þ

which, depending on the signs of M and a will be
either located in the positive or negative range of the
radial coordinate. The electric charge must accomplish

Q̄2 < 2ð1−a2Þðn2þM2Þ
κ such that the conformal factor remains

real. In comparison with the previous cases in which the
cosmological constant was nonvanishing here the presence
of the conformal factor pole is fundamental, otherwise the
spacetimewill always exhibit a naked singularity. The region
Rþ will represent either a wormhole or a cosmological
bounce depending on the horizon geometry. No black hole
horizons will exists. This solution represents the charged
Taub-NUTextension of Barcelo’s wormhole [53] forK ¼ 1.
Region R− contains a naked singularity.
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