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We consider the decay of a particle with some energy E0 > 0 inside the ergosphere of a black hole. After
the first decay, one of particles with the energy E1 < 0 falls towards a black hole while the second one with
E2 > E0 moves in the outward direction. It bounces back from a reflecting shell and, afterwards, the
process repeats. For radial motion of charged particles in the Reissner-Nordstöm metric, the result depends
strongly on a concrete scenario. In particular, an indefinitely large growth of energy inside a shell is
possible that gives rise to a black-hole bomb. We also consider a similar multiple process with neutral
particles in the background of a rotating axially symmetric stationary black hole. We demonstrate that, if
particle decay occurs in the turning point, a black-hole bomb in this case is impossible at all. For a generic
point inside the ergoregion, there is a condition for a black-hole bomb to exist. It relates the to ratio of
masses before and after decay and the velocity of a fragment in the center of mass frame.
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I. INTRODUCTION

There exist two universal mechanisms of energy extrac-
tion from black holes. The first one is the Penrose process.
In the original form, it was found [1] for rotating black-hole
backgrounds. If, in a space-time, there exists a region where
negative Killing energies E < 0 are possible, then a parent
particle 0 can decay to two fragments 1 and 2 in such a way
that E1 < 0 while E2 > E0, so amplification of the original
energy occurs. The ergosphere is realized in the region
when the component of the metric tensor gtt changes the
sign as compared to infinity (t is time). Later on, it turned
out that a similar process occurs in the background of the
Reissner-Nordström (RN) metric as well [2]. In contrast to
the aforementioned rotating case, now the ergosphere is not
a pure geometric entity but depends on the parameters of a
particle. For further development of the Penrose process
with charged particles see, e.g., Refs. [3–9].
On the other hand, there exists a wave analogue of the

Penrose process. This is a so-called super-radiance [10,11]
(for a recent review and list of references see [12]). The
Penrose process is realized with particles, super-radiance—
with waves. In turn, super-radiance leads to the possibility
of one more interesting physical effect—a black-hole
bomb. It occurs if a black hole is surrounded by a reflecting
shell and a wave bounces back in such a way that the
process repeats endlessly; the energy is accumulated with-
out bound giving rise to an explosion. This was shown for
reflection by a concave mirror in [13] and for a convex one
in [14]. (The relation between the existence of such a bomb

and instabilities due to the properties of quasinormal modes
was discussed in [15].)
Strange as it may seem, the question about the possibility

of a black-hole bomb on the basis of processes with particles
was posed only quite recently [16]. The authors considered
the motion of charged particles in the background of the
Reissner-Nordströmmetric with decay of a parent particle to
two fragments with consequent reflection from a shell
backward. The event of decay was chosen to occur in the
turning point. The authors demonstrated convincingly that a
black-hole bomb for such a scenario is impossible. In this
sense, the difference between the standard Penrose process
and its multiple version in a confined system is blurred.
However, such a situation is not universal. In the present

paper we show that for other scenarios within the same
system a black-hole bomb is indeed possible. Apart from
this, we consider a similar problem for rotating axially
symmetric metrics. It turns out that if the process occurs
(similarly to the RN case) in the turning point, the energy
remains bounded, and no black-hole bomb is possible.
However, for more general scenarios, this may happen
and we indicate a simple condition on the parameters of a
system, necessary for an indefinitely large growth of energy.
We use the system of units in which fundamental

constants G ¼ c ¼ 1.

II. PARTICLE MOTION IN THE REISSNER-
NORDSTRÖM METRIC: BASIC EQUATORS

Let us consider the RN metric. It has the form

ds2 ¼ −dt2f þ dr2

f
r2dω2; ð1Þ
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where

f ¼ 1 −
2M
r

þQ2

r2
; ð2Þ

M is the black-hole mass, Q being its electric charge. We
take Q > 0.
For simplicity, we consider pure radial motion, so

equations of motion read

m_t ¼ X
f
; ð3Þ

pr ≡m_r ¼ σP; P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 −m2f

q
; ð4Þ

X ¼ E − qφ; ð5Þ

where the dot denotes differentiation with respect to the
proper time. Here, E is the particle energy, m being its
mass. The electric Coulomb potential

φ ¼ Q
r
: ð6Þ

The forward-in-time condition implies _t > 0, whence

X > 0 ð7Þ

outside the horizon. Hereafter, we will use the notations

ε ¼ E
m
; q̃ ¼ q

m
: ð8Þ

The system can have a turning point rt, where P ¼ 0.
Then

rt ¼
1

ε2 − 1
ðεq̃Q −M �

ffiffiffiffi
C

p
Þ; ð9Þ

C ¼ ðM − εq̃QÞ2 þ ð1 − q̃2ÞQ2ðε2 − 1Þ: ð10Þ

In what follows we will be interested in the case when a
particle has the energy E > m, so ε > 1.

III. GENERAL SCENARIO OF DECAY

Let a parent particle 0 decay in the point with r ¼ r0 to
particles 1 and 2. We assume the conservation laws

E0 ¼ E1 þ E2; ð11Þ

q0 ¼ q1 þ q2; ð12Þ

pr
0 ¼ pr

1 þ pr
2; ð13Þ

whence

X0 ¼ X1 þ X2: ð14Þ

Then, using these equations and (4) and (5), one can
obtain

X1 ¼
1

2m2
0

ðX0b1 þ P0δ
ffiffiffi
d

p
Þ; ð15Þ

X2 ¼
1

2m2
0

ðX0b2 − P0δ
ffiffiffi
d

p
Þ; ð16Þ

b1;2 ¼ m2
0 � ðm2

1 −m2
2Þ; ð17Þ

where i ¼ 0, 1, 2,

d ¼ b21 − 4m2
0m

2
1 ¼ b22 − 4m2

0m
2
2; ð18Þ

δ ¼ �1. For radial momenta one obtains

P1 ¼
����P0b1 þ δX0

ffiffiffi
d

p

2m2
0

����; ð19Þ

P2 ¼
����P0b2 − δX0

ffiffiffi
d

p

2m2
0

����: ð20Þ

Alternatively, one can take advantage of the results
already obtained in Eqs. (19)–(30) of [17]. We use particle
labels 1 and 2 instead of 3 and 4, respectively, in [17].
The direction of motion is characterized by a quantity σ,

where σ ¼ þ1 for motion in the outward direction and
σ ¼ −1 for the inward case. We are mainly interested in the
situation when particle 0 moves towards a black hole from
large radii to smaller ones. Then, at least one of the particles
falls into a black hole.

IV. PARTICULAR SCENARIO OF DECAY

We will mainly concentrate on the case when decay
occurs in the turning point for all three particles, so Pi ¼ 0
for i ¼ 0, 1, 2 and r0 ¼ rt, so that

Xi ¼ mi

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
; ð21Þ

i ¼ 0, 1, 2. It is clear from (14) that this requires

m0 ¼ m1 þm2: ð22Þ

Then, it follows from (4), (17), and (18) that b1 ¼ 2m1m0,
b2 ¼ 2m0m2, d ¼ 0.
Let, in addition, a reflecting shell be placed at some point

at rB > r0. Particle 0 decays to 1 and 2; particle 1 moves
towards a black hole, while particle 2 moves in the outward
direction, bounces back from the shell and decays again to
particles 3 and 4, etc. Similarly to [16], we consider a
scenario in which decay happens in the same point r0.
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We can use the formulas from the previous sections in
which substitutions 0 → 2n, 1 → 2nþ 1, and 2 → 2nþ 2
are made, n ¼ 0; 1; 2… Then, using (5) and (21), we have

E2nþ1 ¼ m2nþ1

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
þ q2nþ1Q

r0
; ð23Þ

E2nþ2 ¼ m2nþ2

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
þ q2nþ2Q

r0
: ð24Þ

The energy E2nþ1 < 0, provided q2nþ1 ¼ −jq2nþ1j,
where jq2nþ1j > q�2nþ1,

q�2nþ1 ¼ γm2nþ1; γ ¼ r0
Q

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
: ð25Þ

As m2n < m0 is finite, the final result depends crucially
on q2n. If limn→∞ qn ¼ q∞ < ∞, E2n is finite as well. This
is just what happens in the scenario considered in [16] (we
call it Scenario 1). Below we compare two qualitatively
different types of scenarios.

A. Scenario 1

To make presentation self-contained, in this Section we
outline briefly the scenario studied in [16]. One can assume
that splitting of the charge to two fragments occurs in such
a way that

q2nþ1 ¼ −ð1þ ΔÞq�2nþ1; q2nþ2 ¼ q2n − q2nþ1; ð26Þ
where Δ is some constant. We assume that in each act
of decay

m2nþ1 ¼ α1m2n; m2nþ2 ¼ α2m2n; ð27Þ
where

α1 þ α2 ¼ 1: ð28Þ

As a result,

m2n ¼ αn2m0; ð29Þ

m2nþ1 ¼ α1α
n
2m0: ð30Þ

To avoid confusion, we use here another notation as
compared to [16], quantities without a tilde and with it
are interchanged. Then, repeating transformations carried
out in [16], we arrive at the expressions

q2nþ1¼−ð1þΔÞm2nþ1

ffiffiffi
f

p
Q

r0¼−m0ð1þΔÞγα1αn2; ð31Þ

E2nþ1 ¼ −m2nþ1

ffiffiffi
f

p
Δ; ð32Þ

ε2nþ1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
Δ: ð33Þ

This means that q2nþ1

m2nþ1
¼ const does not depend on n as well

as ε2nþ1. Then, it follows from the conservation laws that

q2n ¼ q0 þ ð1þ ΔÞγð1 − αn2Þ; ð34Þ

E2n ¼ E0 þm0γΔð1 − αn2Þ
Q
r0
: ð35Þ

Equations (34) corresponds to Eq. (3.32) of [16] and
Eq. (35) corresponds (in our notations) to Eq. (3.31) of
[16]. Then,

lim
n→∞

E2n ¼ E0 þm0γΔ
Q
r0

¼ lim
α2→0

E2n; ð36Þ

lim
n→∞

q2n ¼ q0 þ γð1þ ΔÞ ¼ lim
α2→0

q2n: ð37Þ

Here, the limit α2 → 0 means that all even particles are
photons,

lim
n→∞

m2n ¼ lim
α2→0

m2n ¼ 0: ð38Þ

One can define the efficiency

η ¼ E2n

E0

: ð39Þ

Then,

lim
n→∞

ηn ¼ 1þ γΔ
m0Q
E0r0

¼ 1þm0Δ
E0

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
ð40Þ

which corresponds to Eq. (3.34) of [16].

B. Scenario 2

However, there are also other scenarios. We will consider
one such example. Let us assume the same law for masses
(27)–(30). However, for electric charges we take another
dependence:

q2nþ1 ¼ q2nβ1; ð41Þ

q2nþ2 ¼ q2nβ2; ð42Þ

β1 þ β2 ¼ 1; ð43Þ

due to the conservation of charge. Here, n ¼ 0; 1; 2… As a
result,

q2nþ2 ¼ βnþ1
2 q0 ð44Þ

q2nþ1 ¼ β1β
n
2q0: ð45Þ

We choose
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β1 < 0; β2 > 1: ð46Þ

Then,

E2nþ1 ¼ m2nþ1

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
þ β1β

n
2q0Q
r0

; ð47Þ

E2nþ2 ¼ m2nþ2

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
þ βnþ1

2 q0Q
r0

: ð48Þ

These expressions can be rewritten in the form

E2nþ1 ¼ m2nþ1

� ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
−
jβ1jq0Q
α1r0m0

�
β2
α2

�
n
�
; ð49Þ

E2nþ2 ¼ m2nþ2

� ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
þ
�
β2
α2

�
nþ1 q0Q

m0r0

�
: ð50Þ

There is a difference between Scenarios 1 [16] and 2 in
the following sense. In Scenario 1, the parameters of the
process are chosen in such a way that E1 < 0, so ampli-
fication happens from the very beginning. Meanwhile, for
Scenario 2 this is not mandatory. If one assumes that

jβ1jq0Q
α1r0m0

>
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
; ð51Þ

amplification occurs at every stage starting from the first
decay (n ¼ 0). It can happen that there is no amplification
for all n ≤ n0, where n0 is some number, if

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
−
jβ1jq0Q
α1r0m0

�
β2
α2

�
n
> 0: ð52Þ

As the negative term in (49) grows with n due to the fact
that β2 > 1 and α2 < 1, for sufficiently large n and for any
such β1, β2, the energy E2n becomes arbitrarily large
anyway, so limn→∞ E2n and limn→∞ ηn diverge. In doing
so, E2n grows exponentially with n, so we have a black-
hole bomb.

V. ROTATING BLACK HOLES: METRIC
AND EQUATIONS OF MOTION

Now, we will consider the confined Penrose process for
rotating black holes. We will see that there are some
qualitative differences as compared to the RN case. The
metric has the form

ds2 ¼ −N2dt2 þ gϕðdϕ − ωdtÞ2 þ dr2

A
þ gθdθ2; ð53Þ

where for shortness we use notations gϕ ¼ gϕϕ and
gθ ¼ gθθ. We assume that the metric coefficients may
depend on r and θ only and there is a symmetry with
respect to the plane θ ¼ π

2
. We consider motion of particles

within this plane. Then, the equations of motion read

m_t ¼ X
N2

; ð54Þ

X ¼ E − ωL; ð55Þ

pr ¼ m_r ¼ σP; ð56Þ

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − m̃2N2;

p
ð57Þ

m _ϕ ¼ L
gϕ

þ ωX
N2

: ð58Þ

Here,

m̃2 ¼ m2 þ L2

gϕ
; ð59Þ

and Eq. (7) should be satisfied. Inside the ergoregion
gtt > 0, the particle energy can be negative.

VI. THE TURNING POINT INSIDE
THE ERGOSPHERE

In this Section, we will consider the general scenario
similar to that analyzed above for the RN metric. Namely,
we choose the point of decay to be a turning point in the
radial direction for all three particles 0, 1, 2. (However,
inside the ergoregion the motion along the ϕ direction is
inevitable.) It is seen from (57) that this implies

Xi ¼ m̃iN ð60Þ

for i ¼ 0, 1, 2. It follows from the conservation laws for the
energy (11) and angular momentum,

L0 ¼ L1 þ L2; ð61Þ

that (14) is valid, whence

m̃0 ¼ m̃1 þ m̃2: ð62Þ

For what follows, we will need some general properties
of particle dynamics inside the ergoregion. It is charac-
terized by the condition gtt > 0. According to (53), this
entails

ω
ffiffiffiffiffi
gϕ

p
> N: ð63Þ

Taking into account (63), one can check that inside the
ergoregion the expression ωLþ m̃N is a monotonically
increasing function of L, so Eq. (60) has only one root. This
root obeys the condition (7). Then,
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Liffiffiffiffiffigϕp ¼ ω
ffiffiffiffiffigϕp Ei − N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i þm2

0gtt
p
gtt

; ð64Þ

i ¼ 0, 1, 2.
After simple but somewhat lengthy algebraic transfor-

mations, one finds from (62) and (61) that

L1 ¼
L0b1
2m2

0

−

ffiffiffi
d

p ffiffiffiffiffigϕp
2m2

0

m̃0; ð65Þ

L2 ¼
L0b2
2m2

0

þ
ffiffiffi
d

p ffiffiffiffiffigϕp
2m2

0

m̃0; ð66Þ

E1 ¼ E0

b1
2m2

0

−
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þm2

0gtt

q
; ð67Þ

E2 ¼ E0

b2
2m2

0

þ
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þm2

0gtt

q
; ð68Þ

where b1, b2, and d are defined according to (17) and (18),
and gtt is the corresponding component of the metric tensor
in (53). In Eqs. (65)–(68) we chose the signs before square
roots in such a way that it is particle 1 for which E1 < 0 is
possible. Correspondingly, for E1 ≤ 0, we have also L1 ≤ 0
in agreement with (7) and (64) (see below for more details).
The condition d ≥ 0 entails

m0 ≥ m1 þm2: ð69Þ

Although in (62) the equality sign stands for effective
masses m̃i, a strict inequality is quite possible in (69).
Also, in the turning point one can calculate

m̃ ¼ X
N

¼ −
NE
gtt

þ ω
ffiffiffiffiffigϕp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þm2gtt
p
gtt

> 0 ð70Þ

independently of the sign of E. In the particular case
E0 ¼ m0, m1 ¼ m2 ¼ m we obtain

E1;2 ¼
m0

2
∓ m0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2

m2
0

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gtt

p
; ð71Þ

which coincides with Eq. (3.47) of [12]. The analogues of
the corresponding formulas for the splitting of particles into
two fragments in the turning point in the Schwarzschild
case are listed in [18].
Equations (67) and (68) generalize previously known

formulas for the case of arbitrary E0, m0, m1, m2, and can
be of some use for applications in somewhat different
contexts.

The requirement E1 < 0 leads to the condition

E0 < E�
0 ≡

ffiffiffiffiffiffiffiffi
gttd

p
2m1

: ð72Þ

When E0 → E�
0, the energy E1 → 0,

L0 → L�
0 ¼

ωgϕ
ffiffiffi
d

p
− Nb1

ffiffiffiffiffigϕp
2m1

ffiffiffiffiffi
gtt

p ; ð73Þ

L1 → L�
1 ¼ −

Nm1
ffiffiffiffiffigϕpffiffiffiffiffi

gtt
p < 0: ð74Þ

It is seen from (64) that for E1 ¼ −jE1j < 0 the angular
momentum L1 is a decreasing function of jE1j. In this
sense, the existence of the Penrose process requires the
inequality L1 < L�

1.
One may ask how to obtain, for given m0 and E0, the

maximum E2, i.e., the maximum efficiency (39). Let us
introduce notations yi ¼ m2

i . One can check that

m2
0

∂E2

∂y2
¼ Yffiffiffi

d
p ;

Y¼E0

ffiffiffi
d

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0þm2

0gtt

q
ðy0−y2þy1Þ< 0: ð75Þ

Therefore, the maximum of η occurs when particle 2 has
a minimum possible mass m2 ¼ 0 (photon). This is
completely similar to the situation with the scenario
considered in [16] for the RN case.
The dependence of E2 on coordinates is encoded in (68)

in the term with gtt. If gtt is a monotonically decreasing
function of r (like in the Kerr metric), the maximum is
achieved if decay occurs on the horizon.
For a concrete metric, one can find the additional

conditions for the existence of a turning point. However,
now the goal is different. We simply assume, not specifying
the form of a metric, that a turning point does exist and
analyze whether or not a black-hole bomb due to the
multiple Penrose process is possible in this scenario. We
will see that the main general conclusions can be derived
without appeal to the explicit form of a metric.

VII. MULTIPLE PENROSE PROCESS

Now, let a particle 1 with E1 < 0 fall in the black hole,
particle 2 with E2 > E0 moves in the outward direction. We
can place a reflecting shell, so particle 2 bounces back and
decays again. For simplicity, we assume that new decay
happens in the point with the same r0. Repeating the
process again and again, we obtain the rotating version of
the confined Penrose process. Now, our basic equations
follow from (65)–(68) and read
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L2nþ1 ¼
L0b2nþ1

2m2
2n

−
ffiffiffiffiffiffiffiffiffiffiffi
d2nþ2

p ffiffiffiffiffigϕp
2m2

2n
m̃2n; ð76Þ

L2nþ2 ¼
L2nb2nþ2

2m2
2n

þ
ffiffiffiffiffiffiffiffiffiffiffi
d2nþ2

p ffiffiffiffiffigϕp
2m2

n
m̃2n; ð77Þ

E2nþ1 ¼
b2nþ1

2m2
2n

E2n −
ffiffiffiffiffiffiffiffiffiffiffi
d2nþ2

p
2m2

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2n þm2

2ngtt

q
; ð78Þ

E2nþ2 ¼
b2nþ2

2m2
2n

E2n þ
ffiffiffiffiffiffiffiffiffiffiffi
d2nþ2

p
2m2

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2n þm2

2ngtt

q
; ð79Þ

b2nþ1 ¼ m2
2n þm2

2nþ1 −m2
2nþ2; ð80Þ

b2nþ2 ¼ m2
2n þm2

2nþ2 −m2
2nþ1; ð81Þ

d2nþ2 ¼ b22nþ2 − 4m2nm2nþ2 ¼ b22nþ1 − 4m2
2nm

2
2nþ1: ð82Þ

Equation (72) turns into

E2n < E�
2n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttd2nþ2

p
2m2nþ1

: ð83Þ

Is it possible to obtain divergent E2n when n → ∞?
As m2n ≤ m0 is finite, we would have

E2nþ2 ≈ E2nsn; ð84Þ

where

sn ¼
b2n þ

ffiffiffiffiffiffiffiffiffiffiffi
d2nþ2

p
2m2

2n
: ð85Þ

However,
ffiffiffiffiffiffiffiffiffiffiffi
d2nþ2

p
≤ b2nþ1. As b2nþ1 þ b2nþ2 ¼ 2m2

2n, we
obtain that sn < 1, so the growth of E2n stops for
m2nþ1 ≠ 0. According to (83), this happens when E2n
reaches E�

2n.
If m2nþ1 ¼ 0, m2n ¼ m0,

ffiffiffiffiffiffiffi
d2n

p ¼ b1n, sn ¼ 1. Again,
there is no growth of E2n.

VIII. WALD BOUND AND DECAY
IN AN ARBITRARY POINT

Now we relax the condition that decay inside the
ergoregion occurs just in the turning point. Can this
improve the efficiency to the extent that the confined
Penrose process would lead to a black-hole bomb? In
the present context, it makes sense to remind one of a
universal inequality that is valid when a parent particle 0
decays to two fragments 1 and 2. According to [19], the
upper bound on E2 satisfies the condition

Emax ¼
m2

m0

γ
�
E0 þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þm2

0gtt

q 	
: ð86Þ

Here, v is the velocity of fragment 2 in the frame comoving
with particle 0 before decay (after decay this is the center of
mass frame of debris), γ ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p . This corresponds to the

ejection strictly in the direction of particle 0. If we compare
this to (68), it is clear that

v ¼
ffiffiffi
d

p

b2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
2m

2
0

b22

s
: ð87Þ

One can verify this statement independently. If we
introduce the tetrad attached, say, to the zero angular
momentum observer [20], then

vð3Þ ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þm2gϕ

q : ð88Þ

In particular, this formula can be taken from Eq. (12) of
[21] in combination with (60).
Then, the relativistic law of addition of velocities gives

us that in our stationary frame

v ¼ vð3Þ2 − vð3Þ0

1 − vð3Þ2 vð3Þ0

: ð89Þ

Straightforward calculations with (66) taken into account
show that (87) indeed holds true.
Now we can derive the necessary condition for the black-

hole bomb phenomenon to exist. Let decay occur in some
intermediate point, not in the turning one. Then, v (or, say,
L2) is a free parameter. We want to have the behavior with
E2n → ∞ in the multiple decay. Then, it follows from (86)
(where necessary replacements are made for the n-th event)
that

E2nþ2 ≈ snE2n; ð90Þ

where now

sn ¼
m2nþ2

m2n
γnð1þ vnÞ ¼

m2nþ2

m2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vn
1 − vn

s
: ð91Þ

The process of amplification continues provided
sn > 1, so

vn >
1 − α2n
1þ α2n

; αn ¼
m2nþ2

m2n
< 1: ð92Þ

If the velocity v → 1 is close to that of light, this can be
satisfied easily. However, this is a quite trivial case in which
there is no crucial difference between a single decay or a
multiple one. Additionally, such a condition is not realistic
astrophysically [19]. To have a nontrivial possibility for a
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bomb (not too big v), we must choose α ∼ 1 or, better, α
close to 1.
We can check the inequality under discussion for the

process of decay in the turning point. When particle 0
decays, it follows fromextensionof (87) to an arbitraryn that

sn ¼
b2nþ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22nþ1 − 4m2

2nm
2
2nþ1

q
2m2

2n
≤ 1; ð93Þ

a similar formula holds if we replace 0 with 2n and 2 with
2nþ 2. Thus, a black-hole bomb is impossible in this case in
agreementwith thematerial of the previous Section.One can
say that the scenario with decay in the turning point is too
constrained and dictates quite definite values of particle
characteristics (too low velocity of a fragment) not com-
patible with the existence of a black-hole bomb.
One can try to apply the counterpart of (86) to the RN

case. Then, a standard replacement E → X ¼ E − qφ
should be made. For pure radial motion v ¼ 0 in the
turning point, so the corresponding formula gives us
X2nþ2 ¼ m2nþ2

m2n
X2n which can be obtained from (60) directly.

In this sense, it does not give us new information; the
analysis from Sec. IV applies.

IX. SUMMARY AND CONCLUSIONS

We showed that a black-hole bomb is indeed possible
due to the confined Penrose process but this requires some
additional constraints. For the RN metric, the analysis of
multiple decays in the turning point showed that existence
of a black-hole bomb depends crucially on the type of
scenario. There exist scenarios (like Scenario 2 in our
paper) that do give rise to a black-hole bomb.
We also considered a similar process with neutral

particles in the background of rotating black holes.
When decay occurs in the turning point, the most efficient

process develops when an escaping particle is massless
(photon) and decay occurs just near the horizon. These
features are similar to those in the RN metric [16].
However, as far as the multiple process is concerned, the

situation is different. In the case of particle decay in the
turning point, a black-hole bomb is absent at all. We would
like to stress that this result is model-independent and did
not require the knowledge of the details of metric.
How does one explain this crucial difference between the

RN metric and rotating black holes? If one compares the
static charged black holes and rotating neutral ones, the role
similar to the electric particle charge q is played by the
angular momentum. Meanwhile, the electric charge does
not enter the effective mass m̃ ¼ m in the first case. By
contrast, for the rotating background, it enters the mass m̃
(59) and, through a set of coupled equations, affects
dynamics crucially. As a result, qi remains a free parameter
for the scenario under discussion in the RN metric, whereas
Li are unambiguously defined by Eqs. (65) and (66) for the
case of rotating black holes.
However, new options appear if one relaxes the condition

that decay happens in the turning point. Then, under some
additional conditions that relate the velocity of fragments in
the center of mass frame and the ratio of masses before and
after decay, a black-hole bomb is indeed possible. In doing
so, the issue under discussion has an interesting overlap
with the Wald bounds.
One reservation is in order. What is required for a bomb

in the present context is the existence of the ergosphere, the
horizon itself is not required. Therefore, in principle, the
notion of the bomb under discussion is wider than a black-
hole bomb in a narrow sense. However, one should bear in
mind that the horizonless objects with the ergoregion are, as
a rule, unstable themselves [22].
It would be of interest to generalize our analysis to

combine both the electric charge and rotation.
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