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As a first application of the new adaptive mesh functionality of the pseudospectral numerical relativity
code BAMPS, we evolve twist-free, axisymmetric gravitational waves close to the threshold of collapse. We
consider six different one-parameter families of Brill wave initial data; two centered and four off-centered
families. Of these the latter have not been treated before. Within each family, we tune the parameter towards
the threshold of black hole formation. The results for centered data agree with earlier work. Our key results
are first, that close to the threshold of collapse the global peak in the curvature appears on the symmetry
axis but away from the origin, indicating that in the limit they will collapse around disjoint centers. This is
confirmed in three of the six families by explicitly finding apparent horizons around these large curvature
peaks. Second, we find evidence neither for strict discrete-self-similarity nor for universal power-law
scaling of curvature quantities. Finally, as in Ledvinka and Khirnov’s recent study, we find approximately
universal strong curvature features. These features appear multiple times within individual spacetimes close
to the threshold and are furthermore present within all six families.
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I. INTRODUCTION

Working in spherical symmetry with a massless scalar
field minimally coupled to the Einstein field equations, and
tuning in solution space to the verge of black hole
formation, Choptuik [1] observed behavior with a striking
resemblance to that observed near critical points in other
areas of physics. For instance, near a thermodynamic
critical point, as the correlation length diverges the system
is rendered scale invariant. Order parameters then follow
power laws with universal critical exponents. Universality,
power-law behavior, and scale invariance (also called self-
similarity) are together referred to as critical phenomena.
The discovery of all three in gravitational collapse are thus
known as critical phenomena in gravitational collapse.
Despite the familiarity of the phenomena, what is meant

as the critical point in gravitational collapse has its own
particular definition. The threshold of collapse can be
conveniently identified by considering families of initial
data labeled by a single-parameter p. The parameter
varying within a family is conventionally chosen such that
for small values of the parameter (p < p⋆), the field
content will eventually disperse and lead asymptotically
to flat space. On the other hand, large values of the
parameter (p > p⋆), lead to black hole formation and thus
the presence of a singularity of some description. Of deep
interest is the threshold of collapse p ¼ p⋆. Within the
analogy to statistical physics, the critical point is precisely
the threshold of collapse.

The manifestation of critical phenomena in gravitational
collapse has its own specifics. Regarding for instance scale
invariance, by using a suitable time coordinate close to the
threshold of collapse, Choptuik observed progressively
scaled down, periodic repetitions of a field configuration
that appeared independently of the family under consid-
eration. Closer to the threshold more and more of these
echoes were found. This lead to the conjecture that around
the center of collapse, the threshold spacetime within any
family agrees with that of any other, and that this limiting
spacetime itself is discretely self-similar (DSS). The limit-
ing spacetime is therefore referred to as the critical solution
or Choptuik spacetime. Such a spacetime has been proven
to exist [2]. Universality was also observed in the perio-
dicity of these echoes, as well as in the exponent, γ, of the
power law that the masses of near critical black holes obey,

MBH ≃ jp − p⋆jγ: ð1Þ

In [3], it was argued on dimensional grounds and confirmed
empirically that below the threshold an analogous scaling
relation should hold for the spacetime maximum of curva-
ture scalars such as the Kretschmann scalar I ¼ RabcdRabcd,
so that

Imax
−1=4 ≃ jp − p⋆jγ: ð2Þ

Arguments of [4,5] suggest that if the critical spacetime is
DSS then this power law should occurwith a periodicwiggle
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superimposed. The above properties have been repeatedly
verified for the spherical massless scalar field for many
different families of data. In spherical symmetry various
alternative matter models have been considered and,
although details such as the values of the power-law
parameters or the specific type of self-similarity differ,
the basic ingredients persist (see the canonical review [6]
for details).
Less clear is the precise extent to which critical phenom-

ena extend beyond spherical symmetry. In line with the
conjecture that there is a single strong-field solution lying
between dispersion and collapse, for the original matter
model of a massless scalar field it is known [7] that
nonspherical linear mode perturbations about the critical
solution decay. On the other hand, nonlinear numerical
work in axisymmetry [8,9], which is much more challeng-
ing than the spherical setting, indicates that both power-law
behavior and periodicity vary in the presence of increasing
aspherical perturbations, and furthermore that the single
center of collapse generically splits into two distinct centers
resembling to an extent the Choptuik spacetime. There are
even a small number of studies in full 3d [10,11], which are
again correspondingly more numerically challenging and
thus remain further from the threshold. Keeping the
axisymmetric setup but considering electromagnetic waves
[12,13] as a matter model has proven to show the exact
same difficulty in establishing strict DSS and universal
critical exponents, and again the appearance of multiple
centers of collapse. Evolutions of complex scalar field
content with angular momentum also suggest a more
complicated structure in phase space [8]. Toy models
[14] also suggest that universality could be more subtle
as one moves away from spherical symmetry and more
parameters are needed to parametrize threshold solutions.
These issues demand deeper investigation in axisymmetry
and full 3d.
As the simplest scenario inwhich dynamical gravitational

waves occur, the aforementioned axisymmetric setting is of
special interest in general relativity (GR). By working in
vacuum, we can try to understand the aspect of critical
collapse determined by pure gravity. Two main types of
vacuum initial data have been considered: Brill and
Teukolsky waves. The former were introduced by Brill
[15] and refer to a solution of the constraint equations in
axisymmetric vacuum at a moment of time symmetry. The
latter, constructed first by Teukolsky [16], and generalized
fromquadrupolar to include allmultipoles byRinne [17], are
general vacuum solutions to the linearized Einstein field
equations in transverse-traceless gauge. For a comparison
between these two types of waves at the linear level see [18].
As linearized solutions, Teukolskywave initial data has to be
dressed up to construct solutions of the constraint equations
of GR. There are several strategies to do so [19–24].
Concerning vacuum time evolutions, Abrahams and

Evans [19,20] were the first to study gravitational waves

near the threshold of collapse already in the early 1990s.
Following the basic approach of Choptuik they evolved
members of one-parameter families of (constraint solved)
Teukolsky waves without moment of time symmetry and
tuned to the threshold. They observed echoes and found
that for supercritical data the black hole masses also obey
the power law (1). Since then, numerous authors [24–32]
have evolved gravitational waves to investigate the thresh-
old of collapse, but none have unambiguously recovered
this early success. Two of these deserve special attention
here. First, in [30], the direct precursor to the present
work, a single family of Brill waves was considered. In
qualitative agreement with other axisymmetric simulations
[8,9,12,13], close to the threshold global maxima of the
curvature form away from the origin as the consequence of
large spikes appearing in the curvature. In collapse space-
times, a disjoint pair of horizons was found along the
symmetry axis around the largest of the foregoing curvature
spikes. Tentative evidence for power-law scaling with a
periodic wiggle was found for the Kretschmann scalar, but
nothing could be concluded about universality with only
one family. In important recent work, Ledvinka and
Khirnov [32] directly confirmed these findings using a
different gauge and completely independent code, and
tuning to a comparable neighborhood of the threshold.
Studying now multiple families of initial data, they fur-
thermore found pairs of apparent horizons (AHs) also in
(constraint solved) Teukolsky waves. Once more in quali-
tative agreement with other work in axisymmetry, they also
report that although power-law scaling does appear within
given families, the power itself does not seem to be
universal. There furthermore seems to be no universal
threshold solution. That said, the most important finding of
[32] is the presence of repeated curvature features which
although not appearing in a strictly DSS fashion, do appear
to be universal.
The key obstacle encountered by both [30,32] was in

tuning p to p⋆. For context, in spherical symmetry, either
by using adaptive mesh refinement (AMR) as in [1] or well-
chosen coordinates as in [3,33,34], it is often possible to
tune to machine precision jp − p⋆j ∼ 10−15. In axisym-
metric matter evolutions, values like jp − p⋆j ∼ 10−9 are
often possible, whereas the best that could be managed in
[30] was jp − p⋆j ∼ 10−5. There are several reasons for
this. With less symmetry the numerical cost to reach a given
level of accuracy is necessarily higher. Despite using a
pseudospectral numerical method adapted to axisymmetry
[35,36], the computational cost of the evolutions sky-
rocketed near the threshold of collapse as finer curvature
features form and more resolution is needed. For example
in [30] approximately 106 core hours were used for a single
family. Besides that, it was found that near the threshold,
spacetimes simply could not be classified as the evolution
would fail before an AH could be found. It was unclear
whether this was caused by a lack of resolution, constraint
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violation rendering the solution unphysical, or the forma-
tion of coordinate singularities.
Presently, we return to the problem of vacuum critical

collapse with our pseudospectral code BAMPS. To mitigate
against computational cost the code has undergone a major
redesign since [30], and now employs AMR. Here, we
present evolutions of six different families of Brill wave
initial data. As was done previously, we evolved prolate and
oblate centered Brill waves. We also evolved four off-center
families of Brill waves that have not been treated before.
The paper is structured as follows. In Sec. II, we give a brief
overview of our formulation and numerical methods.
Complete details of our approach to AMR will be given

in a forthcoming sister paper. In Sec. III, we explain our
initial data, approach to tuning and our new apparent
horizon finder. Our numerics are presented in Sec. IV,
before a closing discussion in Sec. V.

II. FORMULATION AND NUMERICAL SETUP

The time evolution of the different sets of initial data was
performed using the BAMPS code. To evolve the spacetime,
we use a first order reduction of the generalized harmonic
gauge (GHG) formulation [37] of the Einstein equations,
with gauge choices as described in [36]. The field equa-
tions are

∂tgab ¼ βi∂igab − αΠab þ γ1β
iCiab

∂tΦiab ¼ βj∂jΦiab − α∂iΠab þ γ2αCiab þ
1

2
αncndΦicdΠab þ αγjkncΦijcΦkab

∂tΠab ¼ βi∂iΠab − αγij∂iΦjab þ γ1γ2β
iCiab þ 2αgcdðγijΦicaΦjdb − ΠcaΠdb − gefΓaceΓbdfÞ

− 2α

�
∇ðaHbÞ þ γ4Γc

abCc −
1

2
γ5gabΓcCc

�
−
1

2
αncndΠcdΠab − αncγijΠciΦjab þ αγ0ð2δcðanbÞ − gabncÞCc: ð3Þ

Here, we denote spacetime component indices by Latin
letters starting from a, with spatial components starting
from i, and use the standard notation for the lapse, shift,
spatial metric and spacetime metric. The reduction con-
straint associated with the first order reduction is given by
Ciab ¼ ∂igab −Φiab. The harmonic constraint Ca is easily
expressed as a combination of our evolved variables
gab;Φiab;Πab, (see Ref. [37]). The constraint damping
parameters were taken to be αγ0 ¼ −γ1 ¼ γ2 ¼ 2γ4 ¼
2γ5 ¼ 1 throughout. The GHG formulation comes with
the freedom to choose gauge source functions Ha. We
choose

naHa ¼ −ηL logðγp=2=αÞ;
γiaHa ¼ −ηS=α2βi; ð4Þ

with free scalar functions ηL, ηS. The free parameters were
initially lifted from the best results of [30] and adjusted as
seemed appropriate from there. As such we started with
p ¼ 1; ηL ¼ η̄L=α2 ¼ 0.4=α2 and ηS ¼ 6. At the outer
boundary we employ radiation controlling, constraint
preserving boundary conditions described in [38], with
our own adjustments described in [36].
Brill wave initial data (see Sec. III A) was constructed

externally and then interpolated onto the computational
domain. BAMPS is a full-3d numerical relativity code, and
development tests are performed without symmetry. In the
treatment of axisymmetric data such as Brill waves how-
ever, we suppress one spatial dimension using the cartoon
method [39], with our implementation following rather the

approach of [40], so that only two-dimensional data on the
x-z-plane is evolved. We further only consider the region
where x > 0 and z > 0, as the other regions are then given
by the symmetry of the problem.
The time evolution is performed with the method of

lines, using a standard RK4 timestepping algorithm. Within
BAMPS, the computational domain is divided into patches in
a cubed-ball fashion [36,41,42], forming a ball comprised
of deformed cubes, each being represented internally
as a unit cube ðu; v; wÞT ∈ ½−1; 1�3 in the patch-local
coordinates.
These patches are further divided into smaller grids,

which contained between 21 to 31 points in each dimension
in the present work. Within each grid, the numerical
solution is represented by a nodal spectral representation
in a Chebyshev basis, using Gauss-Lobatto collocation
points in each dimension. The grids are coupled to each
other using a penalty method as described in [43–45].
The division of the patches into individual grids is driven

by an AMR system, which divides and combines grids
based on heuristics that estimate the quality of the data
representation. This h refinement is implemented subject to
a 1∶2 condition as illustrated in Fig. 1. p-refinement
functionality, in which the number of points per individual
grid is increased is also implemented, but was not utilized
in the work presented here. For most of our simulations, an
estimate of the truncation error of the spectral series
corresponding to the nodal data representation was used
as the refinement indicator, ensuring a grid-local relative
truncation error on the order of no more than 10−9

throughout the domain, at least up to the maximum number
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of refinement levels permitted (19 in this work). We saw in
[36] that with a simple grid setup without mesh refinement,
spectral convergence can be convincingly achieved for
smooth data as the number of points per grid is increased.
Error analysis does however become more complicated
with mesh refinement switched on. A thorough technical
description of our AMR setup is in preparation.
All computations are parallelized at the grid level, using

MPI to distribute computational work across processes. An
integrated load balancing system is employed to ensure an
even distribution of both computations and memory usage
across all processes, redistributing grids as needed when-
ever AMR operations cause a change in the grid structure.

III. THE PHYSICAL MODEL

In this section, we define the type of initial data we
decided to investigate. We then describe the process that
allows us to estimate the threshold amplitude within each
of the evolved families. Finally, we include a description
of the postprocessing tools that have enabled this
estimation.

A. Brill waves as initial data

Brill wave initial data are a gravitational-wave solution
to vacuum Einstein constraint equations. Following the
procedure of Brill [15] it is possible to construct axisym-
metric nonlinear initial data, where the spatial metric takes
the form

dl2 ¼ γijdxidxj ¼ Ψ4½e2qðdρ2 þ dz2Þ þ ρ2dϕ2�; ð5Þ

and, as the data are taken to be at a moment of time
symmetry, the extrinsic curvature vanishes identically. For
the seed function, we always choose a general Gaussian,

qðρ; zÞ ¼ Aρ2e−½ðρ−ρ0Þ2=σ2ρþðz−z0Þ2=σ2z �; ð6Þ

whose parameters differ depending on the studied family.
In the present work, we will focus on six different families
always with z0 ¼ 0, σρ ¼ σz ¼ 1 covering centered
(ρ0 ¼ 0) and off-centered (ρ0 ¼ 4 and ρ0 ¼ 5) Gaussians
both prolate (A > 0) and oblate (A < 0). As the initially
weak wave content has to be propagated inwards, treating
off-center initial data obviously adds to the computational
cost, but on the other hand has the advantage that it can, at
least initially, be understood intuitively using the linear
theory. In practice, with mesh refinement the additional
cost is negligible compared to the expensive dynamics that
follow.
Of these six families, the first (A > 0, ρ0 ¼ 0) is best

studied in the literature, see for example [25,26,30,32,46].
In [32] the centered oblate family was also treated, and so
these two families serve as a point of reference. Khirnov
and Ledvinka conclude that these centered families are
more difficult to treat numerically than their offset (con-
straint solved) Teukolsky wave initial data, which motivates
our use of off-center Brill wave data. (See Ref. [28] for
constrained evolution of alternative Brill wave initial data,
which we would also like to compare with in the future.)

B. Parameter search

In order to study phenomena near the threshold of
collapse, the first step is to identify that threshold as
precisely as we can. With one-parameter families, this is
equivalent to identifying the value of the parameter at the
threshold. In our case, the parameter varying within a
family is the amplitude, A, in Eq. (6). Varying A allows us
to classify initial data depending on the outcome of its
evolution. Initial data whose evolution yields a dispersal of
the fields is classified as subcritical, and data that leads to
black hole formation as supercritical,

Asubcritical < A⋆ < Asupercritical ð7Þ

(and similarly for families with A < 0).
In Fig. 2, one can see how the evolution of the logarithm

of the maximum of the Kretschmann scalar compares
between a subcritical and a supercritical run. This plot
illustrates how similar the evolutions of data from the same
family can be, up to final times where the one parameter
that differentiates them determines dispersal or collapse.
Working with BAMPS and our AH locator enables the

classification as follows:
(i) At least down to a neighborhood of the threshold,

BAMPS is able to evolve subcritical data until they
disperse. We can hence confidently classify the data
as subcritical just by looking at all fields dispersing
at the end of each evolution. The blue line in Fig. 2
shows the field dispersal of a subcritical run.

(ii) Likewise in Fig. 2 one can see how the orange
dashed line, corresponding to a supercritical run,
blows up and stops before time 20. In the present

FIG. 1. Schematic example of a recursively refined grid
structure, of the type BAMPS employs obeying a 1∶2 condition.
This example has five levels of refinement.
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evolutions, we are not excising the trapped region,
and so in the case of black hole formation, BAMPS

can only evolve for a short time after trapped surface
formation. We therefore look for AHs (see Sec. III C)
in the evolved data as a postprocessing step. Only
whenwe reliably find horizons dowe classify the data
as supercritical.

By categorizing the data in this way, we can estimate that
the threshold amplitude lies in the regime between the
highest subcritical amplitude and the lowest supercritical
one. The process of classifying the evolved initial data
proceeds in stages, each increasing the precision of our
estimation of the threshold, thereby tuning closer to A⋆.
We employed a modified bisection method to reduce the

size of the interval that contains A⋆. We started the
bisection with a guess of trivially weak and strong data.
After confirming the limits of the threshold regime, we
evolved data within it to further tune those bounds at
each stage. We increased the precision of these bounds as
far as our methods allowed. Assuming A⋆ ∈ ½A0; A1�, the
basic bisection method would proceed by choosing
A ¼ ðA0 þ A1Þ=2, performing an evolution to determine
whether the data for A is subcritical or supercritical, and
adjusting the boundaries of the search interval accordingly.
In practice, we divided the threshold regime not into two,
but typically into ten subintervals. Such a bracketed-search
strategy can accelerate the search when performing simu-
lations for each A in parallel. (Compare, e.g., branch
prediction methods in CPU execution pipelines, where
different if-clauses are evaluated in parallel, but only the

relevant result is used in the end.) When successful, this
method adds one decimal place per stage to our limiting
amplitudes. This approach furthermore has the advantage
that the data necessary for scaling plots is already prepared
directly at the end of bisection without having to go back
and resample.

C. Apparent horizon locator

To conclusively classify a set of initial data as super-
critical, the AH finder AHLOC3D [47], which is specifically
designed for use with BAMPS AMR data, is used. AHLOC3D
replaces the AH finder employed in [30,36], which had no
functionality with AMR data nor parallelization. During the
development of AHLOC3D thorough consistency checks
were made with the results of the older code.

AHLOC3D uses a Strahlkörper representation to describe
test surfaces as

r ¼ hðθ;ϕÞ ð8Þ

relative to a single center point, and evaluates the expansion

Θ ¼ Disi þ Kijsisj − K; ð9Þ

where si is the outward pointing normal vector on the test
surface andK is the extrinsic curvature of the spacetime slice
under consideration, according to the algorithm described in
[48]. Using two separate search methods, it first obtains a
rough estimate using a flow method using the expansion
flow [49] to shrink a large test surface until an approximate
AH is found, i.e., Θ satisfies a smallness condition. It then
refines this estimate using a Newton-Raphson iteration to
locate the AH (Θ ¼ 0) with high accuracy. The search
algorithm is fully parallelized using Message Passing
Interface. Its main limitation is the Strahlkörper representa-
tion of the test surfaces, which makes it unable to find AHs
that are not radially convex. As we will discuss below, this
has prevented the further fine-tuning of several families of
initial data, as the AHs we found approached such non-
convex shapes.

IV. NUMERICAL RESULTS

In this section, we discuss the outcome of the bisection
search described in Sec. III for each of our six families.

A. Dynamics and threshold amplitudes

Basic evolution within each of the families is similar
and follows the behavior observed in [30] for the centered
A > 0 family. Very weak data disperse rapidly, but as the
strength of the data increases the dynamics become more
interesting. Considering the Kretschmann scalar, the
simplest nonvanishing curvature scalar in our setup, we
see wavelike propagation combined with larger spikes
when waves land on the symmetry axis and oscillate there.

FIG. 2. An illustrative figure to show the different behavior for
two close sets of initial data. The chosen family is a centered
oblate Brill wave ρ0 ¼ 0 with A < 0. One can see that in the case
of the orange dashed line, corresponding to a supercritical
amplitude A ¼ −3.50930, the maximum of the Kretschmann
scalar diverges. On the other hand, in the case of the subcritical
amplitude A ¼ −3.50909 the Kretschmann’s maximum de-
creases as the wave disperses.
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In comparison with the centered data, the off-center
families tend to form these spikes further from the origin,
probably because the curvature propagates further in the�z
directions before hitting the symmetry axis. This difference
would have made evolution of the off-center data prohibi-
tively expensive without AMR. To illustrate the dynamics
qualitatively, in Fig. 3, we show a 2d plot of the logarithm
of the Kretschmann scalar with respect to the symmetry
axis and coordinate time for a set of initial data close to
criticality (A ¼ −3.50909) for the oblate (A < 0) centered
(ρ0 ¼ 0) family. The region shown is relatively small in z,
but big enough to see that several peaks of the curvature
scalar occur away from the origin but along the symmetry
axis before they disperse. The results for all of the other
families are similar, with more and more off-centered peaks
in the Kretschmann scalar appearing as the threshold of
black hole formation is approached.
There is a clear distinction between small initial data that

lead to dispersion and strong data that ends in the formation
of a black hole. The approach, we use to classify the data
(see Sec. III B) is conservative but, given the challenge
these spacetimes pose and the unfortunate occasional
disagreement between different numerics, we feel it impor-
tant to tread lightly, compare carefully with the literature,
and indeed to avoid using another proxy for collapse. The
results of our bisection search are summarized in Table I,
where, we state the highest subcritical and lowest super-
critical amplitudes that we were able to classify before
AHLOC3D failed to find apparent horizons in near threshold
simulations. These bounds are compatible with the pre-
vious works [30,32] for the centered families.

B. Apparent horizons

Within a given (supercritical) member of a family, we
reliably find AHs after the first has appeared during

evolution. In agreement with [30,32] for the centered
prolate family, close to the threshold we find that the
AH for the off-centered oblate families bifurcates (observe
that this is a statement in parameter space, not within an
individual spacetime). The AH forms approximately
around one of the large peaks in the Kretschmann scalar,
along the symmetry axis (forming a binary black hole
spacetime if the event horizon shows two components, but

FIG. 3. In this figure a color map of the logarithm of the
Kretschmann scalar along the symmetry axis and through time is
shown for the oblate centered family A < 0, ρ0 ¼ 0, for the
subcritical amplitude A ¼ −3.50909.

TABLE I. Results for the limits of the bisection search. The
highest subcritical (Asub) and lowest supercritical (Asup) ampli-
tudes for each family are displayed, defining the bounds of the
threshold amplitudes. We have marked by ⋆ those families in
which we find that the AH bifurcates, either in [30] (A > 0,
centered) or in the present study. Of the remainder the centered
oblate family was shown to display the same behavior in [32].
(For details see the discussion in Sec. IV B.).

ρ0 Asub Asup

Prolate (A > 0) 0⋆ 4.69667 4.69680
4 0.09795 0.09870
5 0.0641 0.0645

Oblate (A < 0) 0 −3.50909 −3.50930
4⋆ −0.07546 −0.07570
5⋆ −0.04878 −0.04900

FIG. 4. A pair of apparent horizons found by AHLOC3D. The
horizontal axis represents the x direction and the vertical axis
represents the symmetry axis, z. This is for the specific oblate off-
centered family A < 0, ρ0 ¼ 4 with amplitude A ¼ −0.07570 at
time t ≃ 25.8. Comparing, for example, with Fig. 4 of [30], we
see that the apparent horizons are offset by a greater coordinate
distance.
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we do not investigate event horizons in this work). In Fig. 4,
we show this behavior for the oblate (A < 0), off-centered
family ρ0 ¼ 4 with amplitude A ¼ −0.07570.
Because of the reflection symmetry of the initial data, the

two horizons that appear are perfect copies, symmetric
about the equator. We do not have, however, explicit
evidence from AHLOC3D that the remaining two new
families of this work (off-center ρ0 ¼ 4, 5, prolate
A > 0) also have bifurcated, two-component AHs, nor
for the centered oblate A < 0 family. In the latter case, we
know from [32] that the AH does bifurcate. To find these,
this postprocessing software needs to be run close enough
to the time of formation of the AH, as shortly after trapped
surface formation the underlying numerical evolution will
fail. This makes it difficult to hit the right time to search.
Despite the fact that, we have not found disjoint horizons in
these families, we have strong indications that this is a
common feature for all six of the families we studied. Close
to the threshold the global peak of the maximum of the
Kretschmann scalar always occurs, both for subcritical and
supercritical cases, away from the origin and along the
symmetry axis. Furthermore, when facing the difficulties
with AHLOC3D, we found some abnormal shapes that are
not trustworthy as AH but that seem to indicate that the
formation of disjoint AHs is about to occur, or that it has
already happened, and that the algorithm of the software
needs improvement. Presumably, if we perturbed the initial
data to break reflection symmetry and tuned well enough to
the threshold, an AH would form only on one side of the
equator, whichwould itself have lost any preferred geometric
status. Both of the latter two points need further work.

C. Scaling

According to [3], if critical phenomena are present in the
collapse of gravitational waves, any curvature scalar
invariant should show universal power-law scaling in the
subcritical regime. As we are working in vacuum the Ricci
scalar vanishes, so we investigate the scaling behavior of
the Kretschmann scalar. In Fig. 5, we plot the logarithm of
the maximum of the Kretschmann scalar in the form I1=4

against the logarithmic distance to the critical amplitude.
(The exponent 1

4
is chosen to obtain units of one over

length.) First, it is clear that the maximum value that the
Kretschmann scalar attains depends on the amplitude of the
initial data for each family. Second, for each individual
family this result is compatible with the power-law behav-
ior in Eq. (2), and furthermore agrees very well with
[30,32] for the two centered families. There is, however, no
evidence of a universal exponent. A priori, this result is
compatible with each family having a different exponent,
but, extending these lines further to the right (which is very
computationally expensive and challenging) would be
necessary to make a conclusive statement about universal-
ity. If the exponents were truly different, we could wonder
whether there exists a finite number of such exponents,

leading to a new paradigm of universality, or else, if there
are simply as many exponents as families of initial data.
Evidently more investigation is needed. Referring to DSS,
only one family (the blue curve in Fig. 5) shows enough
periods for us to claim that it behaves as approximately
DSS and more periods are needed in the other families.
This is also the reason why, we postpone treating the errors
and interpret this result as qualitative for now.

D. Echoes and universality

In the case of a massless scalar field collapse in spherical
symmetry [1], the critical solution shows DSS behavior,
however, in the axisymmetric collapse of gravitational
waves in vacuum the picture is more complicated. As
discussed above, we observe that for a near threshold
evolution A≲ A⋆ (flipped for A < 0 families), several large
local peaks in the Kretschmann scalar appear along the
symmetry axis before the data eventually disperse. In
Fig. 6, we plot these peaks against proper time along
timelike curves (the integral curves of the unit normal
vector na) that pass through the maxima (one curve per
peak), and compare their shape by rescaling them with a
constant λ so that, we plot dimensionless quantities on both
axes. In the figure, we take the oblate (A < 0) centered
family ρ0 ¼ 0. We allow ourselves the freedom to flip the
axis for individual curves to take care of features propa-
gating up or down the z axis. The agreement of the four
curves is striking, especially given that the values of λ for
each of the curves vary by a factor of ∼3, corresponding to
a little less than 2 orders of magnitude in the Kretschmann
scalar itself. Four echoes were found for four different
times, in qualitative agreement with [32] where they show

FIG. 5. The scaling of the Kretschmann scalar for all the studied
families is shown. In the horizontal axis, we represent the
logarithmic distance to the critical point and in the vertical axis
the logarithm of the maximum of the Kretschmann as Ið1=4Þ. The
red curve compares with Fig. 4 of [30] and the blue with the green
in Fig. 1 of [32].
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in Fig. 3 a similar plot for a Teukolsky wave. It is important
to remark that this feature is exclusive to near threshold
evolutions. In contrast, for small initial data only one peak
of the Kretschmann scalar occurs, and no such repeated
features appear. Analogous results were found in all of the
other families, however, the echoing is not as clean as for
the displayed family. Given that A − A⋆ has no absolute
meaning, one might argue that for the other families our
data are not close enough to the threshold solution to show
such good results. On the symmetry axis, the scalar
quantity studied by Ledvinka and Khirnov in [32] is
directly related to the Kretschmann scalar. One might
expect their profiles to agree with ours, but, the normal
vector associated with the foliation of [32] does not
coincide with ours, and thus the integral curves along
which we plot do not either. We thus postpone a detailed
comparison. We have not identified clearly whether these
repeated features correspond to true DSS behavior. In our
coordinates they appear without regular time intervals, and
our curvature scaling plots indicate neither universal power
laws nor uniformly periodic wiggles, so we have no reason
to expect true DSS. That said, this is clear evidence of
phenomenology familiar from the spherical setting carry-
ing over.
In order to compare the spacetime behavior among

families, in Fig. 7, we plot the profile of the
Kretschmann scalar against the proper time along a time-
like curve that passes through the maxima, for near critical
data as done in Fig. 6, but for the largest peak within our
best-tuned data within each different family. Each of these
lines corresponds to the most right placed point of Fig. 5 for
each family, being as close to the threshold solution as

possible. Again the shapes around the peaks agree, showing
a common feature that appears when evolving initial data
with amplitude A ≃ A⋆ independently of the chosen family
of initial data, and again, in concordance with [32].

V. SUMMARY AND DISCUSSION

Earlier work [30] on gravitational wave collapse with
BAMPS was severely hampered by the rapidly increasing
computational cost near the threshold. With an allocation of
around 10 million core hours, in that study we were able to
tune just a single family to the threshold of collapse. For
that reason BAMPS has undergone a major overhaul, and
now fully supports adaptive mesh refinement, the details of
which will appear in a stand-alone report. Presently, with a
similar allocation we were able to tune six families to
within a comparable distance to the threshold of collapse.
What is more, it is expected that as we now push even
closer to the threshold and progressively finer spacetime
features appear, this improvement in efficiency will become
ever more pronounced.
The obvious question is then, with this additional

efficiency why have we not already pushed one (or more)
of our families closer to the threshold? The answer is that
we still encounter difficulties in the bisection, and in
particular in classifying spacetimes close to the threshold.
There are two main reasons for this; first, we cannot
preclude the formation of coordinate singularities, which
no amount of AMR could cure, and which would prevent

FIG. 6. Shown are four echoes for the family of initial data
A < 0, ρ0 ¼ 0 with A ¼ −3.50909. Each echo corresponds to a
peak of the maximum of the Kretschmann scalar at different times
against the proper time. Both axes are rescaled for each curve by
the same constant λ which is chosen such that the maximum will
correspond to 2 in the plot. The largest ratio of λs across such
curves is ∼3.

FIG. 7. In this figure, we show the largest peak of the
Kretschmann scalar, for the highest subcritical amplitude of
Table I, for each of the six studied families, against the proper
time along the integral curve of na. As in Fig. 6, both the proper
time and Kretschmann scalar are rescaled by a constant λ chosen
such that the maximum of the Kretschmann scalar occurs at 2 in
the plot. For these curves the largest ratio of λs is around 10,
corresponding to a ratio 104 in the peak of the Kretschmann itself.
The data for the prolate (A > 0) off-centered families and for the
oblate (A < 0) centered family have been flipped along the
horizontal axis for a better match.
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classification if they appear before trapped surface for-
mation. The choice of the gauge parameter ηS as defined in
(4) for instance appears to be highly important. Related to
this is the appearance of constraint violation, which does
get worse in the strong-field regime and especially in the
presence of fine features (but which we believe is not the
leading problem in our present data). Unsurprisingly, we
found that our evolutions were more numerically challeng-
ing close to the threshold. Constraint violation does get
worse near the threshold. Usually the constraint violation
stays in a range of about 10−8 to 10−6 for small initial data.
However, when the Kretschmann scalar grows this viola-
tion might reach (pointwise) up to 10−3, but still remains
several orders of magnitude smaller than the relevant
evolved quantities, namely elements of the state vector
that do not vanish identically by symmetry. The second
issue, we encountered was that, particularly for the off-
centered families, the shapes of the apparent horizons
change drastically the closer we get to the threshold. We
suspect that there may be AHs which cannot be captured by
AHLOC3D due to the Strahlkörper representation described
in Sec. III C. Fortunately, strategies are available to avoid
both of these issues in the future.
Despite these shortcomings, our setup allows careful

examination of the threshold of black hole formation of
axisymmetric gravitational waves, which is, by default,
beyond spherical symmetry in 3þ 1 spacetime dimensions.
Close to the threshold, we find explicitly that three of our
six families form two disjoint apparent horizons. Of these,
two are new families and one was known from [30]. A
fourth family (centered A < 0) was shown to behave
similarly in [32]. In the remaining two families we expect
the same because the spikes in the Kretschmann scalar form
away from the origin. These spikes are further separated for
off-center data than for centered data. In hindsight, this was
perhaps foreseeable because, since our seed functions were
offset in the cylindrical polar direction ρ, the waves have
time to propagate in the z direction before they hit the
symmetry axis. It would be interesting to evolve initial data
families offset in both ρ and z to examine how generic the
appearance of pairs of AHs is within families of reflection
symmetric data. With the (constraint solved) Teukolsky
waves of [32] and the present work, this does however
appear a fairly robust feature.
Our results for the scaling of the Kretschmann scalar

shown in Fig. 5 agree perfectly with [30,32], making us
confident that our code is reliable as we were able to
reproduce results for the centered Brill waves. Our main
objective was to help establish the extent to which the
standard picture of critical collapse extends beyond spheri-
cal symmetry. As discussed in the Introduction, a number of
studies suggest that this story is a subtle one, and the present
work further reinforces this perspective. We examined four
families of off-center initial data for the first time.
Considering the scaling plot for each family individually,

it is tempting to argue that the data take the form of a power
law plus a possibly periodic wiggle. But at least to the level
of tuningwe have presented here, there appears to be neither
a universal power nor period in the wiggle. It is possible that
we simply need greater numerical accuracy, but given the
solid agreement with the independent implementation in
[32] that does seem unlikely. The evidence at hand thus
suggests that the exponents of the respective power laws and
periods of the wiggles, if the latter can even be defined, are
family dependent. Presumably, this corresponds to the
manifestation of different threshold solutions, and so departs
from the standard picture in spherical symmetry. Assuming
this is the case, a natural question is whether threshold
solutions can be well described by a finite, countable, or
uncountable number of parameters. Much more work is
needed to shed light on this question.
Most interestingly, our evidence strongly suggests that

aspects of behavior familiar from the spherical setting do
carry over. Looking at Fig. 7, it is clear that, close enough to
the threshold solution, all six of our families present
strikingly similar behavior for the Kretschmann scalar,
with a peak of practically the same shape appearing at
different scales. This is a clear indication that some kind of
universality still remains. This is furthermore in good
agreement with the findings by [32] for alternative families
of initial data. Likewise we also find, within individual
families, that repeated echoes appear in the curvature scalar.
There are a number of obvious ways in which to extend

our work. First, improvements to AHLOC3D are needed so
that the apparent horizons that do not follow the
Strahlkörper parametrization can be found (see Ref. [50],
where the same problem was faced, for a possible solution).
It could be possible to analyze even the sets of data that
were currently produced within this work to push these
same bisection searches further. Next is the treatment of
alternative families, including radially offset Brill waves
and (constraint solved) Teukolsky waves. We also expect
that finer control of constraint violation and coordinates
would be of benefit. For the latter, we have already
implemented the DF-GHG formulation [51–53], but the
complete generalization of the outer boundary conditions to
that setting is ongoing. A further question, already men-
tioned in passing in [30], is whether or not the curvature
spikes we observe have anything to do with Belinski-
Khalatnikov-Lifshitz behavior. As such, following [54], it
would be interesting to calculate the expected behavior of
the Kretschmann scalar for comparison. Ultimately, as
BAMPS undergoes further development, we aim to relax
our symmetry assumptions, to make full 3d evolutions at
the threshold of vacuum collapse possible. Progress on all
of these fronts will be reported elsewhere.
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