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We present a covariant model of a spherically symmetric black hole with corrections motivated by loop
quantum gravity. The effective modifications, parametrized by a positive constant λ, are implemented
through a canonical transformation and a linear combination of the constraints of general relativity, in such
a way that the theory remains free of anomalies and general relativity is recovered for λ ¼ 0. In addition,
the corresponding metric is constructed in a fully covariant way to ensure that gauge transformations on
phase space correspond to coordinate changes. The solution for each gauge choice provides a chart and
corresponding line element of a spacetime solution whose geometry is unambiguously determined in terms
of the parameter λ and a constant of motion m. For positive values of m, the solution is asymptotically flat
and contains a globally hyperbolic black-hole/white-hole region with a minimal spacelike hypersurface that
replaces the Schwarzschild singularity. The corresponding exterior regions are isometric and, in particular,
allow the computation of the Arnowitt-Deser-Misner mass. The procedure to obtain the global causal
structure of the solution yields also its maximal analytic extension.
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I. INTRODUCTION

Singularities of general relativity (GR) are expected to
disappear once a complete quantum description of gravity
is achieved. For instance, a candidate such as loop quantum
gravity predicts a quantized spacetime, which presumably
mends those defects. However, as yet, we must content
ourselves with effective models implementing the expected
discrete quantum corrections and try to reconcile them with
the continuous notion of diffeomorphism symmetry of GR.
The accuracy shown by the effective polymerized homo-
geneous models when compared to the full quantum
dynamics [1–3] suggests that this approach might also
provide an accurate description of the main features of
nonhomogeneous models quantized in the context of loop
quantum gravity (see, for instance, the introductory reviews
on loop quantum gravity [4,5]).
Considering nonhomogeneous spacetimes, spherically

symmetric vacuum is the most simple, though interesting,
scenario (for a review on fundamental issues of black-hole
horizons in loop quantum gravity we refer to [6]). Several
studies have analyzed the polymerization of such models,
particularly focusing on the interior of the black hole,
whose geometry is described by a Kantowski-Sachs metric.
Making use of the available effective techniques for

homogeneous spacetimes, it turns out that bouncing scale
factors are a general feature of such models. Nonetheless,
this approach is only partially satisfactory. First, it dis-
misses many factors arising from the lack of homogeneity
and the possibility to provide a description of the exterior
region. Second, these bounces do not necessarily imply
a tunneling into a white hole. Therefore, control over
the complete modified spacetime metric is necessary in
order to be able to perform a comprehensive geometrical
analysis.
In particular, the description of the exterior static region

involves several problems regarding the asymptotic flat-
ness, the slicing independence and the matching at the
horizon. There are recent proposals that address some of
the mentioned problems [7–15] and predict the formation
of either an inner horizon or a spacelike transition surface
towards a white hole. However, every model so far
violates the usual notion of covariance [16,17], particu-
larly when introducing matter fields [18,19]. The use of
self-dual variables has been suggested as a possible way
out for these no-go results [20] but we will work with real
Ashtekar-Barbero variables and, more precisely, with their
spherical reduction [21,22]. Some vacuum studies follow-
ing the consistent constraint deformation approach predict
the formation of an Euclidean region in the deep quantum
regime [23], where the notion of causality would be lost.
This result shows that a priori geometry should not be
assumed but rather derived from the modified phase
space [17,23–26].
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Following the anomaly-free polymerization presented in
[27] both for vacuum and matter fields with local degrees of
freedom, in this paper we study the physical implications of
such model in the vacuum case, extending and completing
the results announced in [26]. We show, in particular, that
the polymerization, which can be achieved by performing a
certain canonical transformation and linear combination
of classical constraints, can be naturally associated to a
geometry, ensuring that gauge transformations on phase
space correspond to coordinate transformations on the
spacetime solution. This is, different gauge choices on
phase space lead to different charts of the same spacetime.
As it will be detailed below, see Fig. 5, the resulting

spacetime replaces the Schwarzschild singularity with a
minimal spacelike hypersurface inside the horizon, placed
between a trapped and antitrapped regions. This interior
domain thus consists of a black-hole region that smoothly
emerges into a white-hole region. The exterior asymptoti-
cally flat regions are all isometric, and the fall-off properties
of the Ricci tensor allow the computation of different global
and quasilocal versions of mass, in particular the Arnowitt-
Deser-Misner (ADM) mass. As a result all exterior regions
are of equal mass.
The article is organized as follows. In Sec. II, we

introduce the effective Hamiltonian. In Sec. III, we con-
struct the metric associated to that modified Hamiltonian.
Then, in Sec. IV, we compute the explicit form of the
metric in different charts that correspond to different
gauge choices on phase space. We obtain a static region
(Sec. IVA), a homogeneous region (Sec. IV B), and three
domains (Sec. IV C) that cover the black-hole horizon and
the transition surface between the black-hole/white-hole
regions. In Sec. V, we take one of the domains, which
covers all the rest, and use it to study the global structure of
the spacetime solution, which eventually yields the maxi-
mal analytic extension (see Sec. V F). In Sec. VI, we point
out some of the relevant geometrical and physical proper-
ties of the model. More precisely, we study the causal
structure (Sec. VI A), the curvature (Sec. VI B), some
particular concepts of mass (Sec. VI C), measurable effects
outside the horizon (Sec. VI D), and the Schwarzschild and
Minkowski limits (Sec. VI E). We end the paper with a brief
summary and discussion of the results in Sec. VII.

II. THE POLYMERIZED HAMILTONIAN

In order to construct the canonical formulation of GR
we start with a time-oriented manifold M foliated by the
spacelike level surfaces of a given time function t. The
usual analysis shows then that the Hamiltonian of general
relativity turns out to be a linear combination of four
constraints and thus vanishes on shell. These constraints are
the so-called Hamiltonian and diffeomorphism constraints.
In spherical symmetry one can introduce yet another

function x (such that dx vanishes nowhere) on M to be
constant on the orbits of the spherical symmetry group.

Outside the fixed points of the group, x defines a radial
direction. By choosing these adapted coordinates (and the
usual angular coordinates on the symmetry orbits), the
angular components of the diffeomorphism constraint are
trivially vanishing and, in terms of Ashtekar-Barbero
variables, its radial component reads as follows,

D ¼ −ðẼxÞ0K̃x þ ẼφðK̃φÞ0; ð1Þ

where the prime stands for the derivative with respect to x.
On the other hand, the Hamiltonian constraint takes the
form

H̃ ¼ −
Ẽφ

2
ffiffiffiffiffiffi
Ẽx

p ð1þ K̃2
φÞ − 2

ffiffiffiffiffiffi
Ẽx

p
K̃xK̃φ

þ 1

2

�
Ẽx0

2Ẽφ
ð
ffiffiffiffiffiffi
Ẽx

p
Þ0 þ

ffiffiffiffiffiffi
Ẽx

p �
Ẽx0

Ẽφ

�0�
; ð2Þ

where Ẽx > 0 is chosen to define the positive orientation of
the triad. The model is completely described in terms of
four dynamical variables: two independent components
of a densitized triad, Ẽx and Ẽφ, and their respective
conjugate momenta, K̃x and K̃φ. Their Poisson brackets
are given by the canonical forms,

fK̃xðxaÞ; ẼxðxbÞg ¼ δðxa − xbÞ;
fK̃φðxaÞ; ẼφðxbÞg ¼ δðxa − xbÞ:

Concerning the algebraic structure, the above constraints
form the algebra

fD½f1�; D½f2�g ¼ D½f1f02 − f01f2�; ð3aÞ

fD½f1�; H̃½f2�g ¼ H̃½f1f02�; ð3bÞ

fH̃½f1�; H̃½f2�g ¼ D½ẼxðẼφÞ−2ðf1f02 − f01f2Þ�; ð3cÞ

where we have defined the smeared form of the constraints
D½f� ≔ R dxfD and H̃½f� ≔ R

dxfH̃. This explicitly shows
that they are first-class constraints and thus generators of
gauge transformations. More precisely, the diffeomorphism
constraint generates deformations within each spacelike leaf
of the foliation, whereas the Hamiltonian constraint gen-
erates deformations of the hypersurfaces (as a set). The
bracket (3c) is of particular relevance. On the one hand, as it
will be explicitly detailed below, the structure function on the
right-hand side, i.e., Ẽx=ðẼφÞ2, encodes the information
about the geometry on each hypersurface and the spacetime
signature. On the other hand, it ensures that the set of three-
dimensional spacelike hypersurfaces can be embedded in the
spacetime manifold providing a foliation [28]. In summary,
the above hypersurface deformation algebra reflects the
covariance of GR in this canonical setting, in which the
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Hamiltonian is given by the combination H̃½N� þD½Nx�,
with the Lagrange multipliers N and Nx being the lapse and
shift of the 3þ 1 decomposition, respectively. To be precise,
let us recall that given the functions t and x onM, endowed
with a metric g, the lapse and shift are obtained as follows.
The normal direction of the slices is given by the unit
timelike vector n ¼ −N∇t (where∇t is the vector metrically
associated to the form dt), with N ≔ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gð∇t;∇tÞp

> 0

the lapse function. We also take n as the representative
of the future-pointing direction. The shift is then defined as
Nx ≔ −nðxÞ=nðtÞ and, in terms of the natural basis of vector
fields from t and x, ∂t and ∂x, we explicitly have
n ¼ N−1ð∂t − Nx

∂xÞ.
The quantization prescribed by loop quantum gravity

makes use of holonomies of the connections and fluxes of
the triads as elementary variables. Therefore, in order to
construct effective models that would describe some of the
expected features of such a quantization, one usually follows
a polymerization procedure. In the context of the present
symmetry-reduced model, this amounts to the replacement
of the component K̃φ by a certain periodic function fðK̃φÞ in
the classical Hamiltonian. Nonetheless, this deformation
function f can not be completely arbitrary if one does
not wish to introduce anomalies, this is, to spoil the first-
class nature of the constraints. In the vacuum case it is well
known how to choose this deformation function in order to
produce an anomaly-free deformed theory [18,23]. But for
dynamical spacetimes coupled to matter with local degrees
of freedom, such a simple procedure does not provide a
closed algebra [18,19], and further modifications are needed.
In particular, in [27] a family of anomaly-free deformed

Hamiltonian constraints was obtained by performing a
systematic study under the only assumption that those
constraints should be quadratic in radial derivatives of the
basic variables. Each of the Hamiltonian constraints in that
family forms an algebra with the classical diffeomorphism
constraint under the presence of a scalar matter field, and
thus also trivially in vacuum. As explained in [27],
the anomaly-free requirement still leaves much freedom
left in the modified Hamiltonian constraint in the form of
unspecified free functions. Nevertheless, by following a
“least deformation” principle, a specific subfamily of
Hamiltonian constraints was obtained and characterized
by a free function fðK̃φÞ. That “least deformation” prin-
ciple consists of requesting that the modified Hamiltonian
remains in form as close as possible to its GR counterpart
while retaining some freedom that could be interpreted as a
holonomy correction. It turns out that this subfamily of
Hamiltonian constraints can also be obtained by perform-
ing the canonical transformation of the classical variables
presented in [29], followed by a regularization procedure
considered in [27]. For the sake of brevity, we introduce
next the construction of the deformed constraint in this
latter way.

First the following canonical transformation is per-
formed,

Ẽx→Ex; K̃x→Kx; Ẽφ→
Eφ

cosðλKφÞ
; K̃φ→

sinðλKφÞ
λ

;

ð4Þ

for some real λ ≠ 0, which leaves the ðEx; KxÞ pair
invariant. This transformation introduces a trigonometric
function of Kφ, as expected for holonomy corrections, and
amounts to a specific choice of the free function mentioned
above. Note that, as opposed to the usual polymerization
procedure, not only the variable Kφ but also its conjugate
Eφ is changed by the above transformation in order to
ensure that it is canonical and thus the same constraint
algebra is guaranteed. The parameter λ, which can be taken
to be positive for convenience without loss of generality, is
a dimensionless constant that, in this interpretation, is
related to the fiducial length of the holonomies. In
particular, in the λ → 0 limit the transformation is the
identity and this will be the limit where one recovers GR. In
addition, this canonical transformation is bijective as long
as cosðλKφÞ does not vanish. Hence, this transformation
introduces the boundaries cosðλKφÞ ¼ 0 on the classical
phase space, which separate regions where the dynamical
trajectories can be mapped one to one to those given by GR
[25]. Concerning the form of the constraints in terms of
these new variables, the functional form of the diffeo-
morphism constraint is unaltered, i.e.,

D ¼ −Ex0Kx þ EφK0
φ; ð5Þ

whereas the Hamiltonian constraint does change and in
particular gets some inverse terms of cosðλKφÞ. Therefore,
in order to regularize the poles cosðλKφÞ ¼ 0, and include
those surfaces in our analysis, we consider the regularized
constraint C ≔ cosðλKφÞH̃ along with its smeared form
C½f� ≔ R

fCdx. Even if vanishing on shell, the Poisson
bracket of this constraint with itself,

fC½f1�; C½f2�g ¼ D

�
Ex

Eφ2 cos
4ðλKφÞðf1f02 − f01f2Þ

�

− C

�
λ
ffiffiffiffiffiffi
Ex

p
Ex0

4Eφ2 sinð2λKφÞðf1f02 − f01f2Þ
�
;

produces an additional term as compared to (3c). However,
it is possible to perform a linear combination with the
diffeomorphism constraint so that the algebra takes its
canonical form (see [27] for more details). More precisely,
we define the deformed Hamiltonian constraint as
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H ≔
�
H̃þ λ sinðλKφÞ

ffiffiffiffiffiffi
Ex

p
Ex0

2ðEφÞ2 D
�
cosðλKφÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p ;

¼ −
Eφ

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
1þ sin2ðλKφÞ

λ2

�

−
ffiffiffiffiffiffi
Ex

p
Kx

sinð2λKφÞ
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
1þ

�
λEx0

2Eφ

�
2
�

þ cos2ðλKφÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
Ex0

2Eφ ð
ffiffiffiffiffiffi
Ex

p
Þ0 þ

ffiffiffiffiffiffi
Ex

p �
Ex0

Eφ

�0�
; ð6Þ

along with its smeared formH½f� ≔ R fHdx. Note that this
linear combination with phase-space dependent coeffi-
cients may produce modifications of the dynamics of the
theory (see, e.g., [30]). Nonetheless, an important property
of this construction is that in the limit λ → 0 GR is
recovered since both the canonical transformation (4)
and the linear combination above are identities.
The constraint algebra takes the canonical form

fD½f1�; D½f2�g ¼ D½f1f20 − f10f2�;
fD½f1�; H½f2�g ¼ H½f1f02�;
fH½f1�; H½f2�g ¼ D½Fðf1f20 − f10f2Þ�; ð7Þ

with the structure function

F ≔
cos2ðλKφÞ
1þ λ2

�
1þ

�
λEx0

2Eφ

�
2
�

Ex

ðEφÞ2 : ð8Þ

This function is non-negative. As its classical counterpart,
it vanishes at Ex ¼ 0, where the singularity is located in
Schwarzschild, but also at the surfaces defined by
cosðλKφÞ ¼ 0. In order to obtain the geometry associated
to this modified canonical system, the transformation
properties of this structure function will be of particular
relevance. But, before detailing those properties, let us
introduce the following object,

m ≔
ffiffiffiffiffiffi
Ex

p

2

�
1þ sin2ðλKφÞ

λ2
−
�
Ex0

2Eφ

�
2

cos2ðλKφÞ
�
; ð9Þ

which commutes on shell with the modified Hamiltonian
H½N� þD½Nx� and it is thus a constant of motion. This
quantity can be obtained as a direct polymerization of the

Hawking mass [27], and can be interpreted as the mass of
the model (see Sec. VI C below). In addition to its physical
relevance, the importance of this observable is that it
explicitly shows that the zeros of the structure function
F given by the vanishing of cosðλKφÞ are indeed cova-
riantly defined. Note that, since Kφ is not a scalar quantity,
i.e., it does not define a function on M, in general
cosðλKφÞ ¼ 0 is a gauge-dependent condition and there-
fore does not covariantly define surfaces onM. However, if
one introduces this condition in the above definition of
mass (9), it is straightforward to obtain that cosðλKφÞ ¼ 0 if

and only if
ffiffiffiffiffiffi
Ex

p ¼ 2mλ2=ð1þ λ2Þ, which is a gauge-
independent statement because Ex is a scalar. In addition,
looking at this last relation, it is natural to introduce the new
length scale

r0 ≔ 2m
λ2

1þ λ2
;

which will define a minimum area r20 of the model (see
below). Furthermore, in terms of r0 the structure function F
takes the simpler expression

F ¼
�
1 −

r0ffiffiffiffiffiffi
Ex

p
�

Ex

ðEφÞ2 : ð10Þ

In summary, we have introduced our modified
Hamiltonian constraint by performing the canonical trans-
formation (4) and the regularization (6). The canonical
transformation introduces trigonometric functions of Kφ

in the constraints, as expected from loop quantum gravity,
but also imposes artificial boundaries cosðλKφÞ ¼ 0 in the
classical phase space, which can not be described in terms of
the new variables. In this respect, the regularization achieves
two important goals. First, it removes the pole of the
Hamiltonian constraint on these surfaces, and thus allows
to describe dynamical trajectories crossing these boundaries.
Second, the structure function F of the corresponding
modified algebra has just the right transformation properties
in order to provide the system with a geometrical interpre-
tation, as we will show explicitly in the next section.
To end this section, we write explicitly the equations of

motion of the system, which are given by the Poisson
brackets of the different variables with the Hamiltonian,

_Ex ¼ fEx;D½Nx� þH½N�g ¼ NxEx0 þ N
ffiffiffiffiffiffi
Ex

p sinð2λKφÞ
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
1þ

�
λEx0

2Eφ

�
2
�
; ð11aÞ

_Eφ ¼ fEφ; D½Nx� þH½N�g ¼ ðNxEφÞ0 þ 2N
ffiffiffiffiffiffi
Ex

p
Kx

cosð2λKφÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
1þ

�
λEx0

2Eφ

�
2
�

þ N
sinð2λKφÞ
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�

Eφ

2
ffiffiffiffiffiffi
Ex

p þ λ2

2

�
Ex0

2Eφ ð
ffiffiffiffiffiffi
Ex

p
Þ0 þ

ffiffiffiffiffiffi
Ex

p �
Ex0

Eφ

�0��
; ð11bÞ

ALONSO-BARDAJI, BRIZUELA, and VERA PHYS. REV. D 106, 024035 (2022)

024035-4



_Kx ¼ fKx;D½Nx� þH½N�g ¼ ðNxKxÞ0 þ N00
ffiffiffiffiffiffi
Ex

p
cos2ðλKφÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Eφ

þ N0 ffiffiffiffiffiffiEx
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Eφ2

�
λ sinð2λKφÞðEx0Kx − 2EφK0

φÞ þ cos2ðλKφÞ
�
EφEx0

2Ex − Eφ0
��

þ Nffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
Eφðsin2ðλKφÞ þ λ2Þ

4λ2Ex3=2 þ cos2ðλKφÞ
4
ffiffiffiffiffiffi
Ex

p
Eφ

�
Ex00 −

ðEx0Þ2
4Ex −

Ex0Eφ0

Eφ

�

−
Kx sinð2λKφÞ

2λ
ffiffiffiffiffiffi
Ex

p
�
1þ

�
λEx0

2Eφ

�
2
�
−
�
sinð2λKφÞ

λ
ffiffiffiffiffiffi
Ex

p

2Eφ2 D
�0�

; ð11cÞ

_Kφ ¼ fKφ; D½Nx� þH½N�g ¼ NxK0
φ þ N0

ffiffiffiffiffiffi
Ex

p
Ex0

2Eφ2

cos2ðλKφÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p − N
sin2ðλKφÞ þ λ2

2λ2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p

þ N
ðEx0Þ2

8
ffiffiffiffiffiffi
Ex

p
Eφ2

cos2ðλKφÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p − N
sinð2λKφÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p λ

ffiffiffiffiffiffi
Ex

p
Ex0

2Eφ3 D; ð11dÞ

in combination with the constraint equations D ¼ 0 and H ¼ 0.

III. THE CONSTRUCTION OF THE METRIC

As explained at the beginning of the previous section, let
us recall that we are given a time-oriented spherically
symmetric manifold M foliated by the function t with
spherically symmetric spacelike level hypersurfaces, and
that we use x (with dx ≠ 0) to denote some function which
is constant on the orbits of the spherical symmetry group.
We want to endowM with a metric tensor g. We can use the
pair ðt; xÞ to produce a chart (that we denote in the
following by ft; xg1) on some domain in M such that g
is given by the line element

ds2 ¼ −Lðt; xÞ2dt2 þ qxxðt; xÞðdxþ Sðt; xÞdtÞ2
þ qφφðt; xÞdΩ2; ð12Þ

where L and S are, respectively, the lapse and the radial
component of the shift vector of the usual 3þ 1 decom-
position, and dΩ2 denotes the metric of the unit sphere.
The goal is to reconstruct this metric from the objects

defined on the modified phase space. That is, one needs to
express the metric quantities L, S, qxx, and qφφ in terms of
N, Nx, Ex, Eφ, Kx, and Kφ. For such a purpose, we will
impose two natural conditions:

(i) The functions t and x define the Lagrange multi-
pliers of the new Hamiltonian in the same way as
they do in GR.

(ii) Gauge transformations on the phase space corre-
spond to coordinate changes (over the corresponding
domains) in the spacetime manifold.

Following the derivation of the lapse and shift from t and x
in the GR case (see above) the first condition is equivalent
to requiring that the lapse and the shift obtained from (12)
correspond to the Lagrange multipliers of the Hamiltonian,
that is Lðt; xÞ ¼ Nðt; xÞ and Sðt; xÞ ¼ Nxðt; xÞ as functions
on the image of the chart ft; xg of M.
The second condition is more difficult to implement

[28,31], so let us analyze in detail this requirement by
following the developments in [23].
On the one hand, if we perform an infinitesimal change

of coordinates ðtþ ξt; xþ ξxÞ, each component of the line
element (12) transforms as follows,

δN ¼ _Nξt þ N0ξx þ Nð_ξt − Nxξt0Þ; ð13Þ

δNx¼ _NxξtþNx0ξxþNxð_ξt−ξx0Þ−
�
N2

qxx
þðNxÞ2

�
ξt0 þ _ξx;

ð14Þ

δqxx ¼ _qxxξt þ q0xxξx þ 2qxxðNxξt þ ξx0Þ; ð15Þ

δqφφ ¼ _qφφξt þ q0φφξx; ð16Þ

which simply correspond to the components of the Lie
derivative of the metric along the vector ξ ¼ ξt∂t þ ξx∂x.
On the other hand, since they are first-class constraints,

H and D are gauge generators. In particular, the gauge
transformation of any phase-space function G ¼ GðEx; Eφ;
Kx; KφÞ is given by the Poisson bracket δϵG ¼
fG;H½ϵ0� þD½ϵx�g, where ϵ0 and ϵx are the gauge para-
meters. Thus, concerning the variables ðEx; Eφ; Kx; KφÞ,
their gauge transformation can be directly computed
by these Poisson brackets. In fact, in the same way as in
GR, the time evolution is just a gauge transformation

1The symbol f·; ·g, which from now on will denote particular
coordinate charts (ignoring the angular part), is not to be mistaken
with the Poisson brackets in the previous section.
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parametrized by the lapse N and shift Nx. Therefore, one
can immediately read the gauge transformation of each of
these phase-space variables from their evolution equa-
tions (11) simply by performing the replacements N → ϵ0

and Nx → ϵx. However, as they are not phase-space
variables, obtaining the expression for the gauge trans-
formation of the Lagrange multipliers N and Nx is not so
straightforward. One can enlarge the phase space, as in
[31], or analyze the covariance of the equations generated
by H½N� þD½Nx� by an explicit computation (see [32]). In
either way, one obtains that the gauge transformation of
these multipliers is given by

δϵN ¼ _ϵ0 þ ϵx∂xN − Nx
∂xϵ

0; ð17Þ

δϵNx ¼ _ϵx þ ϵxNx0 − Nxϵx0 − FðNϵ00 − ϵ0N0Þ: ð18Þ

Now, the gauge transformation parametrized by ϵ0 and ϵx

should coincide with the coordinate transformation (the Lie
dragging) along the vector ξ if those parameters correspond
to the normal decomposition of this vector, that is, ξ ¼
ϵ0nþ ϵx∂x with n ¼ ð∂t − Nx

∂xÞ=N being the future-point-
ing unit normal to the hypersurfaces of constant t. This
condition implies the relations between components ϵ0 ¼
Nξt and ϵx ¼ ξx þ ξtNx. Writing (17)–(18) in terms of the
components of the generator of spacetime deformations,

δϵN ¼ _Nξt þ N0ξx þ Nð _ξt − Nxξt0Þ; ð19Þ

δϵNx ¼ _Nxξt þ Nx0ξx þ Nxð_ξt − ξx0Þ
− ½FN2 þ ðNxÞ2�ξt0 þ _ξx; ð20Þ

it is then clear that these gauge transformations are identical
to the above coordinate transformations (13)–(14) if one
defines qxx ¼ 1=F. In order to check whether this is
consistent, one also needs to analyze the transformation
properties of 1=F with F defined in (10). The bracket
f1=F;H½ϵ0� þD½ϵx�g gives the gauge transformation

δϵð1=FÞ ¼
ϵ0

N
ð1=FÞ_þ

�
ϵx −

Nx

N
ϵ0
�
ð1=FÞ0

þ 2

�
ϵx0 −

ϵ0

N
Nx0
�
ð1=FÞ;

¼ ð1=FÞ_ξt þ ð1=FÞ0ξx þ 2ð1=FÞðNxξt0 þ ξx0Þ;
ð21Þ

after using the equations of motion (11) and the relation
between the components ϵ0 ¼ Nξt and ϵx ¼ ξx þ ξtNx

given above. Comparing this last expression with the
transformation of qxx (15), it is then clear that the choice
qxx ¼ 1=F is consistent and will lead to a covariant line
element.

Finally, we are just left with the angular component of
the metric qφφ. This object, as (16) shows, transforms as a
scalar, so any scalar phase-space function could be chosen
to define it. Nonetheless, in order not to introduce any
strictly necessary deformation, and taking into account that
the variable Ex has remained unaltered in the process of
construction of the deformed Hamiltonian constraint, we
will consider qφφ to have its classical form qφφ ¼ Ex. This
can be equally argued by demanding that in our new setting
the phase-space function Ex determines, as in GR, the area
of the orbits of the spherical symmetry group by 4πEx, that
is, we keep

ffiffiffiffiffiffi
Ex

p
being the intrinsically defined area-radius

function. To sum up, this requirement on Ex plus conditions
i. and ii. above leads to the construction of the metric tensor

ds2 ¼ −Nðt; xÞ2dt2 þ 1

Fðt; xÞ ðdxþ Nxðt; xÞdtÞ2

þ Exðt; xÞdΩ2; ð22Þ

which, after introducing (10), reads explicitly

ds2 ¼ −Nðt; xÞ2dt2 þ
�
1 −

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exðt; xÞp �

−1 Eφðt; xÞ2
Exðt; xÞ

× ðdxþ Nxðt; xÞdtÞ2 þ Exðt; xÞdΩ2: ð23Þ

Alternatively, in Ref. [23] there is another proposal for a
line element in the context of a related polymerized model,
relaxing the condition i. above. The choice presented in that
paper can be derived by considering a scalar conformal
factor multiplying the last line element. That way one could
also arrive to a covariant line element in the sense of
condition ii., even if, for instance, the unit normal ceases to
be unit with the deformed metric. Nonetheless, the explicit
model eventually constructed in [23] turns out not to be
covariant as the conformal factor considered there is not a
scalar quantity, as we show in the Appendix.

IV. THE SOLUTION IN DIFFERENT DOMAINS

In this section we start with the chart ft; xg (plus the
angular coordinates) on some domain of M in which the
metric tensor g is given by the line element (23). The gauge
freedom inherent to the problem allows us to fix two
relations (gauge choice) between the functions on phase
space. For each gauge choice the solution to the system of
equations (11) will yield a corresponding line element of
the form (23). Since our construction is consistent, different
gauge choices will simply lead to different charts (with
different domains in M in general) and corresponding
expressions (line elements) for the same metric, thus
providing a unique spacetime solution.
In order to illustrate how the gauge choices relate to the

charts and the geometry, thus checking the consistency of
the construction, and to find the global structure of the
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solution, we will make five specific gauge choices, solve
the system of equations and produce the explicit form of the
metric in the respective charts on their domains. In each
case we will relabel t and x to distinguish the charts. Before
moving on to solve the system of equations, let us remark
that we will exclude degenerate solutions with identically
vanishing N or Eφ.
This section is divided in three subsections. In Sec. IVA

we introduce a static gauge, which will provide an exterior
region. Section IVB presents a homogeneous gauge,
which will describe (half of) the interior region. Finally,
in Sec. IV C we will consider three gauges that cover the
previous cases. In particular, one of the three gauges will
produce a chart with a covering domain U, which will be
used in Sec. V to analyze the global causal structure of
the spacetime solution and obtain its maximal analytic
extension.

A. Static region

We start by choosing the gauge condition sinðλKφÞ ¼ 0,
so that sinð2λKφÞ ¼ 0 and cosð2λKφÞ ¼ 1, which leads to
the explicit form of the equations of motion,

_Ex ¼ NxEx0; ð24aÞ

_Eφ ¼ ðNxEφÞ0 þ 2N

ffiffiffiffiffiffi
Ex

p
Kxffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p

�
1þ

�
λEx0

2Eφ

�
2
�
; ð24bÞ

_Kx ¼ ðNxKxÞ0 þ
�

N0 ffiffiffiffiffiffiEx
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Eφ

�0

þ N

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ffiffiffiffiffiffi
Ex

p
�
Eφ

Ex þ
Ex00

Eφ −
ðEx0Þ2
4ExEφ −

Ex0Eφ0

Eφ2

�
;

ð24cÞ

0 ¼ _Kφ ¼ N0 ffiffiffiffiffiffiEx
p

Ex0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Eφ2

−
N

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ffiffiffiffiffiffi
Ex

p
�
1 −

ðEx0Þ2
4Eφ2

�
;

ð24dÞ

0 ¼ D ¼ −KxEx0; ð24eÞ

0 ¼ H ¼ −
Eφ

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
1

2

Ex0

Eφ ð
ffiffiffiffiffiffi
Ex

p
Þ0 þ

ffiffiffiffiffiffi
Ex

p �
Ex0

Eφ

�0�
: ð24fÞ

If we further impose Ex ¼ x2, then the vanishing of the
diffeomorphism constraint (24e) yields xKx ¼ 0,
while _Ex ¼ 0 demands xNx ¼ 0 on (24a). The remaining
equations are

0 ¼ _Eφ; ð25aÞ

0 ¼ _Kx ¼
�

N0x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Eφ

�0

þ N

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
x

�
Eφ

x2
þ 2

Eφ −
1

Eφ −
2xEφ0

Eφ2

�
; ð25bÞ

0 ¼ _Kφ ¼ N0x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Eφ2

−
N

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
x

�
1 −

x2

Eφ2

�
; ð25cÞ

0 ¼ H ¼ −
Eφ

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p þ x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Eφ

�
3 −

2xEφ0

Eφ

�
;

ð25dÞ

where x has been chosen positive without loss of generality.
From (9) we obtain,

Eφ ¼ ε0x

�
1 −

2m
x

�
−1=2

; ð26Þ

with ε20 ¼ 1, and (25a) and (25d) are thence automatically
satisfied. Therefore, the solution will only be valid for
x > 2m. Now, we can integrate (25c) for the lapse, so that

N ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
x

r
; ð27Þ

with a nonzero constant c1. One can check that the only
remaining Eq. (25b) is now automatically satisfied.
We now relabel ðt; xÞ as the pair of real functions ðt̃; r̃Þ

on M that define a chart (in addition to the angular
coordinate functions) with ranges given by the domain
of existence of the solutions. Explicitly, the domain DS

of the chart ΨDS ¼ ft̃; r̃g on M is only restricted by
r̃ ∈ ð2m;∞Þ. The line element (23) in this chart thus reads

ds2 ¼ −
�
1 −

2m
r̃

�
dt̃2 þ

�
1 −

r0
r̃

�
−1
�
1 −

2m
r̃

�
−1
dr̃2

þ r̃2dΩ2; ð28Þ

where we have trivially absorbed c1 into t̃. As it will be
detailed below, this domain describes one exterior (asymp-
totically flat) region.

B. Homogeneous region

Now we start by demanding Ex0 ¼ Eφ0 ¼ 0. The vanish-
ing of the diffeomorphism constraintD ¼ 0, cf. (5), implies
K0

φ ¼ 0. Then, the radial derivative of the equation H ¼ 0,
cf. (6), implies, in turn, that K0

x ¼ 0. The radial derivatives
of Eqs. (11a) and (11b) therefore imply N0 ¼ 0 and
Nx0 ¼ 0. We can now partially use the gauge freedom left
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to impose Nx ¼ 0.2 The final form of the equations is then
given by

_Ex ¼ N
ffiffiffiffiffiffi
Ex

p sinð2λKφÞ
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ; ð29aÞ

_Eφ ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
2
ffiffiffiffiffiffi
Ex

p
Kxcosð2λKφÞ þ

Eφ sinð2λKφÞ
2λ

ffiffiffiffiffiffi
Ex

p
�
;

ð29bÞ

_Kx ¼
N

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
Eφ

2Ex

�
1þ sin2ðλKφÞ

λ2

�

− Kx
sinð2λKφÞ

λ

�
; ð29cÞ

_Kφ ¼ −
N

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
1þ sin2ðλKφÞ

λ2

�
; ð29dÞ

0 ¼ H ¼ −
Eφ

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�
1þ sin2ðλKφÞ

λ2

�

−
ffiffiffiffiffiffi
Ex

p
Kx

sinð2λKφÞ
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p : ð29eÞ

Interestingly, these are the same equations as those
obtained with the usual (anomaly-free) holonomy correc-
tions [7], up to the additional global

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
constant.

However, at this point it is important to note that in this
gauge a bouncing behavior is a general feature of some of
the individual variables, but it is not necessarily of the
spacetime metric. For instance, for N

ffiffiffiffiffiffi
Ex

p
> 0 the points

2λKφ ¼ ð2nþ 1Þπ with integer n are minima of Ex since
the right-hand side of (29a) vanishes and one can show that
Ëx > 0. Conversely, 2λKφ ¼ 2nπ are maxima of Ex. But
such a statement is certainly gauge dependent and one
needs to construct the metric in order to extract the physical
significance, if any, of those bounces.
In order to continue with such construction, we use the

freedom left in the gauge choice at this point to set Ex ¼ t2

and restrict the range of t to non-negative values t ≥ 0. The
constant of motion (9) can now be used to obtain Kφ by

sinðλKφÞ
λ

¼ ε1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
t

− 1

r
; ð30Þ

where ε21 ¼ 1, from where

sinð2λKφÞ ¼ 2ε2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
t

− 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

�
2m
t

− 1

�s

¼ 2ε2

ffiffiffiffiffiffiffiffiffiffiffi
2mr0

p
2m − r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
t

− 1

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
t

r
; ð31Þ

with ε22 ¼ 1. In the last step (as we will do in the following)
we have used the definition of r0. To ensure the existence of
the solution, relations (30) and (31) impose in particular the
restriction r0 ≤ t ≤ 2m.
With the above expressions, Eq. (29a) reads explicitly

ε2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
t

− 1

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
t

r
N ¼ 1;

that we solve for the lapse N. Note that this solution further
restricts the range of t to r0 < t < 2m. From (29b) we get

_Eφ ¼ Eφ

2

2mþ r0 − 2t
ð2m − tÞðt − r0Þ

;

which yields

Eφ ¼ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − t

p ffiffiffiffiffiffiffiffiffiffiffi
t − r0

p
; ð32Þ

for some constant c2 ≠ 0. Finally, equation H ¼ 0,
cf. (29e), allows us to obtain

Kx ¼−ε2
Eφ

4t2

ffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m− r0

pffiffiffiffiffiffiffiffiffiffiffiffiffi
2m− t

p ffiffiffiffiffiffiffiffiffiffiffi
t− r0

p ¼−ε2c2
ffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m− r0

p 1

4t2
:

This time we relabel ðt; xÞ as a pair of real functions
ðT; YÞ on M so that the domain Dh of the chart ΨDh ¼
fT; Yg on R2 is restricted by the points where
T ∈ ðr0; 2mÞ. The metric (23) in that chart, after absorbing
c2 in Y, thus reads

ds2 ¼ −
�
1 −

r0
T

�
−1
�
2m
T

− 1

�
−1
dT2

þ
�
2m
T

− 1

�
dY2 þ T2dΩ2: ð33Þ

This domain corresponds to a Kantowski-Sachs (homo-
geneous) type and will describe one half of an interior
region, as will be shown later.

C. Covering domains

The regions defined by the charts in the previous two
subsections, DS and Dh, cover different ranges of the area-
radius function

ffiffiffiffiffiffi
Ex

p
. In particular, the static region DS is

defined for the range ð2m;∞Þ, whereas in the homo-
geneous region Dh the function

ffiffiffiffiffiffi
Ex

p
takes values in the

interval ðr0; 2mÞ. As a result, Dh and DS do not intersect.

2Let us note that, from the spacetime perspective, this amounts
to the fact that, because Nx0 ¼ 0, there is a function Y such that
dxþ NxðtÞdt ¼ dY.

ALONSO-BARDAJI, BRIZUELA, and VERA PHYS. REV. D 106, 024035 (2022)

024035-8



Furthermore,DS does not cover the horizon that, as we will
see, forms at the limit where r̃ → 2m, and Dh does not
cover the instant T ¼ r0. The three gauge choices that we
introduce in this subsection will produce three charts on
respective domains DH, DEF, and U. The domain DH will
cover two regions isometric to Dh. DEF will cover any
region isometric to DS and Dh, while U will cover any
region isometric toDEF andDH. In the next section we will
use the covering domain U to study the global causal
structure of the spacetime solution and obtain its maximal
analytic extension.

1. The whole homogeneous interior domain DH

We start with the same requirement as in the homo-
geneous region, that is, Ex0 ¼ Eφ0 ¼ 0. We recall that this
implies K0

x¼K0
φ¼N0 ¼0 and that we can choose Nx ¼ 0.

The final choice we take now is to impose Kφ ¼ t=λ. The
solution of the system (29a)–(29e) for a suitable choice of
constants of integration is then given by

N ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p

mλ
Ex; Ex ¼

�
2mλ2

λ2 þ sin2t

�
2

;

Eφ ¼ −
λm sinð2tÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p

ðλ2 þ sin2tÞ ; Kx ¼
ðλ2 þ sin2tÞ2
8mλ4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ;

where t is restricted by the roots of Eφ. Because of the
periodicity of the solution, we can stick to the range
t ∈ ð0; πÞ without loss of generality. We relabel ðt; xÞ as
the pair of real functions ðT; ȲÞ on M so that the domain
DH of the chart ΨH ¼ fT̄; Ȳg is the preimage of the stripe
T̄ ∈ ð0; πÞ in R2. After naming

ffiffiffiffiffiffi
Ex

p
≕ r̄, and using the

definition of r0, the metric (23) in that chart thus reads

ds2 ¼ −
2

mr0
r̄ðT̄Þ4dT̄2 þ

�
2m
r̄ðT̄Þ − 1

�
dȲ2 þ r̄ðT̄Þ2dΩ2;

ð34Þ

with

r̄ðT̄Þ¼ 2mr0
r0þð2m−r0Þsin2T̄

⇔
2m
r̄ðT̄Þ−1¼

�
2m
r0

−1

�
sin2T̄:

ð35Þ

This region contains the spacelike hypersurface r̄ ¼ r0
located at T̄ ¼ π=2. We will show later how this region
covers two homogeneous regions Dh, and that it describes
the globally hyperbolic (in that sense, “whole”) homo-
geneous Kantowski-Sachs interior region of the solution.

2. The covering domain U

For the next gauge choice we demand that _Ex ¼ 0 and
_Eφ ¼ 0. We start writing the diffeomorphism constraint

D ¼ 0, cf. (5), and the constant of motion (9) in explicit
form as

Ex0Kx ¼ EφK0
φ; ð36aÞ

cos2ðλKφÞ ¼ ð1þ λ2Þ
�
1þ

�
λEx0

2Eφ

�
2
�

−1
�
1 −

r0ffiffiffiffiffiffi
Ex

p
�
;

ð36bÞ

where we have used λ2 ¼ r0=ð2m − r0Þ to remove λ from
the last factor. We check first that if Ex0 ¼ 0 then the
vanishing of the Hamiltonian constraint (6),H ¼ 0, implies
that sinð2λKφÞ cannot vanish identically, and therefore
Eq. (11a) for _Eφ ¼ 0 yields N ¼ 0. We thus assume that
Ex0 does not vanish identically in the following. This, used
in (36b), implies in particular that cos2ðλKφÞ cannot vanish
identically. Moreover, since we want to avoid the case
sinðλKφÞ ¼ 0, which has been treated already in Sec. IVA,
we shall also assume in the following that sinð2λKφÞ does
not vanish identically.
The solution for the lapse and shift is found from the

system of evolution equations (11a) and (11b) with _Ex ¼ 0

and _Eφ ¼ 0 as follows. We first isolate Nx from (11a) and
introduce it, together with (36a), into (11b), from where we
obtain

sinð2λKφÞEx

�
1þ

�
λEx0

2Eφ

�
2
�

× ðN0Ex0Eφ þ NðEφ0Ex0 − EφEx00ÞÞ ¼ 0:

Therefore,

N ¼ c4
2

Ex0

Eφ ; ð37Þ

for some non-zero constant c4. Introducing this in (11a), in
combination with (36b), we obtain

Nx ¼ ε3c4

ffiffiffiffiffiffi
Ex

p

Eφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0ffiffiffiffiffiffi
Ex

p
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mffiffiffiffiffiffi
Ex

p − 1þ
�
Ex0

2Eφ

�
2

s
; ð38Þ

where ε23 ¼ 1 corresponds to minus the sign of sinð2λKφÞ.
It can be checked that all the remaining equations are now
satisfied. At this point let us denote, for compactness,
Ex and Eφ as

ffiffiffiffiffiffi
Ex

p
≕ r and Eφ ≕ s. Note that this is just

notation to describe the two free functions that are still to be
fixed, and that we use r to denote, as usual, the area-radius
function. In terms of these, the family of line elements takes
the form
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ds2 ¼ −
�
1 −

2m
rðxÞ

�
dt2 þ 2

�
1 −

r0
rðxÞ

�
−1=2 sðxÞ

rðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
rðxÞr0ðxÞ
sðxÞ

�
2

þ 2m
rðxÞ − 1

s
dtdx

þ
�
1 −

r0
rðxÞ

�
−1
�
sðxÞ
rðxÞ

�
2

dx2 þ rðxÞ2dΩ2; ð39Þ

where we have set ε3c4 ¼ 1 with no loss of generality by a constant rescaling (and change of sign) of t.

Observe that the function sðxÞ could be absorbed by
performing a change sðxÞdx → dX, but it is convenient to
keep that freedom to find convenient charts later. The
values of x ought to be restricted, in particular, by the form
of the functions rðxÞ and sðxÞ so that the line element (39)
and Kφ [see (36b)] are well defined. Next we will use the
freedom left in rðxÞ and sðxÞ to produce two different
gauge choices, which will thence provide two charts. This
time the domains relative to these two charts will present a
nonempty intersection.
We want to find a chart that contains the points reaching

the minimum r ¼ r0 > 0. Since some of the divergences in
the line element (39) come from qxx (the coefficient of dx2),
let us try the choice s2 ¼ r2ð1 − r0=rÞ, so that qxx ¼ 1.
Thus, the factor in front of dx2 in (39), also present with
dtdx, equals one, and the only possible divergences appear
in the argument of the square root,�

1 −
r0
rðxÞ

�
−1
r0ðxÞ2 þ 2m

rðxÞ − 1: ð40Þ

The option we take is to choose the following particular
condition [after relabeling ðt; xÞ to ðτ; zÞ],3

drðzÞ
dz

¼ sgnðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
rðzÞ

r
with rð0Þ ¼ r0; ð41Þ

so that the argument of the square root (40) reduces to
2m=r. Defined in this way, rðzÞ is an analytic function onR
such that rð−zÞ ¼ rðzÞ, it attains a minimum positive value
r0 ¼ rð0Þ > 0 at z ¼ 0, and it is given implicitly by

z ¼
ffiffiffiffiffiffiffiffi
rðzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðzÞ − r0

p
þ r0 log

 ffiffiffiffiffiffiffiffi
rðzÞ
r0

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðzÞ
r0

− 1

s !
;

for z > 0: ð42Þ

Observe that r → jzj as z → �∞. With these choices we
end up with a chart ΨU

τ;z ¼ fτ; zg defined on some domain
U in which the metric reads

ds2 ¼ −
�
1−

2m
rðzÞ

�
dτ2 þ 2

ffiffiffiffiffiffiffiffi
2m
rðzÞ

s
dτdzþ dz2 þ rðzÞ2dΩ2:

ð43Þ

The ranges of coordinates are given by ðτ; zÞ ∈ R2, that is,
the image of the domain U through the chart ΨU

τz is the
whole plane, and the function r as a function on U, that
is r∶ U → R, is bounded from below by r0 > 0.

3. Eddington-Finkelstein-like domain

Another, simpler, choice to impose on the free functions
of the line element (39) is to take rðxÞ ¼ x and sðxÞ ¼ x.
After a convenient relabeling ðt; xÞ as ðτ̃; ρ̃Þ, we thus obtain

ds2 ¼ −
�
1 −

2m
ρ̃

�
dτ̃2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2m

ρ̃ − r0

s
dτ̃dρ̃

þ
�
1 −

r0
ρ̃

�
−1
dρ̃2 þ ρ̃2dΩ2: ð44Þ

The range of the chart ΨEF ¼ fτ̃; ρ̃g, defined on some
domain DEF ⊂ M, is the half plane defined by ρ̃ > r0.
Therefore this chart fails to describe the hypersurface
r ¼ r0. It is straightforward to show that a subdomain of
U that does not contain the hypersurface r ¼ r0 is isometric
to DEF. For that, it suffices to perform the change of
coordinates fτ̃; ρ̃g → fτ; zg defined by τ̃ðτÞ ¼ τ and
ρ̃ðzÞ ¼ rðzÞ with rðzÞ given above. We may choose the
positive branch of (41), so that z is restricted by z > 0. It is
immediate then to obtain from (44) the line element (43)
restricted to the half plane z > 0. As a result, the domain
DEF is isometric to the subdomain Ujz>0 of U.
On the other hand, the change fτ̃; ρ̃g → ft̃; r̃g defined by

ρ̃ ¼ r̃ and

t̃ ¼ τ þ
ffiffiffiffiffiffiffi
2m

p �
2
ffiffiffiffiffiffiffiffiffiffiffiffi
r̃ − r0

p

þ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

p log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
r̃ − r0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
r̃ − r0

p
��

;

which is defined for ρ̃ ¼ r̃ > 2m, brings (44) to the form
(28). That is, the subdomain DEFjρ̃>2m of DEF is isometric
to DS. Of course, as a result, the subdomain Ujz>zs ,

3We employ the usual definition of the sign function sgn, so
that as a function we use sgnðzÞ ¼ 0where z ¼ 0. Observe that it
is not differentiable there. In a distributional sense, though, we
use sgnðzÞ2 ¼ 1, so that higher (even) derivatives of rðzÞ, as
functions, attain their limiting values at z ¼ 0.
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where zs is the positive root of rðzÞ ¼ 2m, is isometric to
DS. At this point we know that U coversDEF, which in turn
covers DS, but we do not know yet the causal structure
of any.
In the next section we focus on the domain U and find its

global structure in the form of a Penrose diagram. On the
way we will obtain the diffeomorphisms relating the
previously mentioned charts, and thus the causal structure
of DEF, DS, and Dh.

V. DOMAIN U AND GLOBAL STRUCTURE OF
THE SPACETIME SOLUTION

Up to this point, we have a spherically symmetric
spacetime ðM; gÞ such that in the chart ΨU

τz ¼ fτ; zg,
defined over some domain U ⊂ M, the line element is
given by (43) and the area-radius function r, rðzÞ, satisfies
(41) [or equivalently (42) with rð−zÞ ¼ rðzÞ and rð0Þ ¼ r0]
with r0 > 0 and m > 0. The domain U is foliated by the
level surfaces (spacelike hypersurfaces) of τ, and we recall
we take minus the normalized gradient of τ, which reads
explicitly n ¼ −N∇τ ¼ ∂τ −

ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
∂z on U, as the rep-

resentative of the future-pointing direction.
In this section we look for the global structure of ðU; gÞ.

On the way, we will produce appropriate coordinate
transformations from ðτ; zÞ to null coordinates so that
the metric (43) takes the explicit conformally flat form
on the ðτ; zÞ plane. By doing that in different regions of the
domain U we will obtain the previous line elements (28),
(33), (34), and (44) on their corresponding domains. This
will show that ðU; gÞ covers any such static DS, homo-
geneous Dh and DH, and Eddington-Finkelstein regions
DEF. The procedure will end by proving that ðU; gÞ
contains exactly one globally hyperbolic interior homo-
geneous domain isometric to a region DH and two static
exterior regions, both isometric to a region DS. Moreover,
we find the maximal analytic extension. This whole
process, along with the resulting Penrose diagram, is
sketched in Figs. 4 and 5. The rest of this section presents
the technical details of such construction, so the reader not
interested in those details can move on to the next section,
where we present the physical and geometrical properties
of the solution.
Before continuing, let us first define the relevant subsets

of U and the notation we will need in the following. Using
the values of the area-radius function r, which we take
as a function defined on M, we start by defining three sets
on U as E ≔ fr > 2mg ∩ U, I ≔ fr < 2mg ∩ U and
Z ≔ fr ¼ 2mg ∩ U. On the other hand, the condition
rðzÞ > 2m defines for z the intervals z ∈ ð−∞;−zsÞ ∪
ðzs;∞Þ for all τ, where zs, let us recall, denotes the positive
root of rðzsÞ ¼ 2m. We denote the regions that correspond
to z ∈ ðzs;∞Þ and z ∈ ð−∞;−zsÞ by the chart ΨU

τz as Eþ
and E−, respectively, so that E ¼ Eþ ∪ E−, which is thus a
disconnected region. Analogously, we define Iþ and I− to

be the domains in I with positive and negative values of z,
respectively. Observe thatZ contains two disconnected sets
that correspond to z ¼ zs and z ¼ −zs by the chart ΨU

τz,
which we will denote by Zþ and Z− correspondingly.
Finally, we denote by T ⊂ I the set of points fr ¼ r0g ∩ U,
which is connected and mapped to z ¼ 0 by ΨU

τz. Let us
note that I ¼ Iþ ∪ T ∪ I− is a connected domain in U
mapped to the stripe z ∈ ð−zs; zsÞ inR2. We will reduce the
set of expressions at the cost of introducing some extra
notation as follows. We define the auxiliary variable σ with
possible values þ1 and −1, or þ and − when convenient.
Given a value for σ we will denote by Dσ ≔ DjsgnðzÞ¼σ the
restriction of some set D taking the points where the
coordinate function z satisfies sgnðzÞ ¼ σ, and we will
also use σ to label their corresponding charts. Not to
overwhelm the notation, when convenient, we will denote
also by E, Eσ , I, etc., the images of the domains on R2

under any chart.

A. Geodesics

The radial geodesics of the metric (43), parametrized as
fτðsÞ; zðsÞg with affine parameter s, are determined by the
two equations

γ ¼ −
�
1 −

2m
rðzÞ

��
dτ
ds

�
2

þ
�
dz
ds

�
2

þ 2

ffiffiffiffiffiffiffiffi
2m
rðzÞ

s
dτ
ds

dz
ds

;

E ¼ −
�
1 −

2m
rðzÞ

�
dτ
ds

þ
ffiffiffiffiffiffiffiffi
2m
rðzÞ

s
dz
ds

; ð45Þ

where γ ¼ 0; 1;−1 for null, spacelike, and timelike geo-
desics, respectively, and E denotes the energy, which is the
conserved quantity associated with the timelike Killing
vector field ∂τ. The two equations can be combined to
obtain �

dz
ds

�
2

¼ E2 þ γ

�
1 −

2m
rðzÞ

�
: ð46Þ

We focus now on the null geodesics, with γ ¼ 0. If
dz=ds ≠ 0 (nonzero energy), then we choose the parameter
s so that dz=ds ¼ ε ¼ �1. The two possible values of ε
produce the “outgoing” k (ε ¼ 1) and “ingoing” l (ε ¼ −1)
geodesic vectors explicitly as

l ¼
 
1þ

ffiffiffiffiffiffiffi
2m
r

r !−1

∂τ − ∂z; k ¼
 
1 −

ffiffiffiffiffiffiffi
2m
r

r !−1

∂τ þ ∂z:

Observe first that the affine parametrization implies dl ¼ 0
anddk ¼ 0, wherewe use the boldface to denote 1-forms, so
that l ¼ lμdxμ and k ¼ kμdxμ. We must stress that “out-
going” and “ingoing” are names that only make sense in the
exterior region E. Moreover, l, which is future pointing
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everywhere because gðl;nÞ¼−ð1þ ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p Þ−1<0, is
ingoing in Eþ while it is outgoing in E−.
If dz=ds ¼ 0 (zero energy, E ¼ 0), then dτ=ds cannot be

vanishing, and thus those geodesic radial curves are
z ¼ �zs, that is they lie on Z− and Zþ, and the tangent
vector is ∂τjr¼2m, which is null there. The expression for l
defines a smooth vector field for all values of z, and thus at

all points in U. On the other hand, k is not defined at
z ¼ �zs, and, because gðk; nÞ ¼ −ð1 − ffiffiffiffiffiffiffiffiffiffiffi

2m=r
p Þ−1, it is

future pointing on E and past pointing on I. Observe that z
is the affine parameter (up to a constant scaling factor) of
the radial null geodesics on U. This clearly recovers the fact
that r is the affine parameter of the radial null geodesics in
Schwarzschild.

B. Half-null chart for U

We can now use l to define all over U the usual
Eddington-Finkelstein coordinates by performing the
change fτ; zg → fU;Xg determined by X ¼ z and

l ¼ −dτ −

 
1þ

ffiffiffiffiffiffiffiffi
2m
rðzÞ

s !−1

dz ¼ −dU;

that is,

∂Uðτ; zÞ
∂τ

¼ 1;
∂Uðτ; zÞ

∂z
¼
 
1þ

ffiffiffiffiffiffiffiffi
2m
rðzÞ

s !−1

:

Using the relation (41) we then find

Uðτ; zÞ ¼ τ þ sgnðzÞRUðrðzÞÞ; ð47Þ

with

RUðrÞ ¼
Z

r

r0

 ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
s

r  
1þ

ffiffiffiffiffiffiffi
2m
s

r !!−1

ds;

so that this function vanishes at r0, RUðr0Þ ¼
RUðrð0ÞÞ ¼ 0, and hence provides a function Uðτ; zÞ
analytic on the whole plane ðτ; zÞ ∈ R2. The above integral
can be explicitly performed, leading to

RUðrÞ ¼ 4m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r �−1
log

� ffiffiffiffiffi
r0

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

pffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p þ ffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

p
�

þð ffiffiffi
r

p
− 2

ffiffiffiffiffiffiffi
2m

p
Þ ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
p þ ð4mþ r0Þ log

� ffiffiffiffiffi
r
r0

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r �
:

This function is strictly increasing and it can be checked
that limr→∞RUðrÞ=r ¼ 1. The change of coordinates
ΦU∶ fτ; zg → fU;Xg thus constructed,

ΦU ¼ fXðτ; zÞ ¼ z; Uðτ; zÞ ¼ τ þ sgnðzÞRUðzÞg;

provides a diffeomorphism from R2 to R2. Therefore the
chart ΨU

UX ¼ fU;Xg given by ΨU
UX ¼ ΦU∘ΨU

τz is defined
all over U and the metric (43) reads in that chart

ds2 ¼ −
�
1 −

2m
rðXÞ

�
dU2 þ 2dUdX þ rðXÞ2dΩ2; ð48Þ

where r in this new chart rðXÞ is just rðzÞ, cf. (42),
replacing z by X. The hypersurfaces of constant U are
obviously null, while those of constant X are spacelike on I,
timelike on E and null on Z. We depict in Fig. 1 a
qualitative diagram of the image of U under the chart ΨU

UX.

FIG. 1. A diagram of the image of U under ΨU
UX, omitting the

angular part. Hypersurfaces of constant U are depicted as parallel
lines at −45 degrees, while those of constant X correspond to the
rest of curves in black, plus the curve X ¼ 0 in violet and the lines
X ¼ −zs and X ¼ zs, corresponding to Z− and Zþ respectively,
in red.
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C. Null coordinates

In order to produce the Penrose diagram for U we now
perform the change to null coordinates on each disjointed
domain Eþ, E−, and I in U. We start with the domains Eσ.
For each Eσ we construct the corresponding change
Φ̂σ∶fτ; zgjEσ

→ fUσ; Vσg, where zjEþ ¼ ðzs;∞Þ and
zjE−

¼ ð−∞;−zsÞ, by taking Uσ to be the restriction of
U (47) on Eσ, i.e., Uσ ¼ UjEσ

, so that

Uσðτ; zÞ ¼ τ þ σRUðrðzÞÞ

on each Eσ , and Vσ to satisfy

kjEσ
¼ −dτ þ

�
1 −

ffiffiffiffiffiffiffiffi
2m
rðzÞ

s �−1

dzjEσ
¼ −dVσ:

After using (41) we thus have, on each Eσ,

Vσðτ; zÞ ¼ τ − σRE
VðrðzÞÞ;

where

RE
VðrÞ ¼

Z � ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r �
1 −

ffiffiffiffiffiffiffi
2m
r

r ��−1

drþ CV:

A convenient choice of constant CV leads to the
explicit form

RE
VðrÞ ¼ 4m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r �−1
log

� ffiffiffiffiffi
r0

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

pffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p þ ffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

p
�

þð ffiffiffi
r

p þ 2
ffiffiffiffiffiffiffi
2m

p
Þ ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
p þ ð4mþ r0Þ log

� ffiffiffiffiffi
r
r0

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r �
;

which is analytic in its domain of definition r ∈ ð2m;∞Þ.
This function is clearly strictly increasing in its domain, and
it is straightforward to check that limr→∞RE

VðrÞ=r ¼ 1 and
limr→2mRE

VðrÞ ¼ −∞. Each of the diffeomorphisms Φ̂σ

thus maps the half plane r ∈ ð2m;∞Þ in R2 to the whole
plane. As a result, the image of each one of the charts
Ψ̂E

σ ¼ fUσ; Vσg, given by Ψ̂E
σ ¼ Φ̂σ∘ΨU

τzjEσ
, covers R2.

Null infinity J is reached as jzj → ∞ (r → ∞) and, given
the orientations of l and k on each Eσ , J � are located as
follows. On Eþ, J þ is reached as Uþ → þ∞ and fixed
Vþ, and J − as Vþ → −∞ with fixed Uþ. On E−, J − is
reached as U− → −∞ with fixed V− and J þ as V− → þ∞
with fixed U−. In addition, as jzj → ∞ with fixed τ (spatial
infinity i0) we have ðUþ; VþÞ → ð∞;−∞Þ on Eþ, whereas
ðU−; V−Þ → ð−∞;∞Þ on E−. Finally, τ → �∞ with fixed
z (i�) correspond to ðUσ; VσÞ → ð�∞;�∞Þ, respectively.
Let us now analyze the domain I. To do that we construct

the change Φ̂I∶fτ; zgjI → fUI; VIg, where zjI ¼ ð−zs; zsÞ,
by taking UI ¼ UjI , so that

UIðτ; zÞ ¼ τ þ sgnðzÞRUðrðzÞÞ

on I, while we request VI to satisfy

−kjI ¼ dτ −
�
1 −

ffiffiffiffiffiffiffiffi
2m
rðzÞ

s �−1

dzjI ¼ −dVI;

where we have introduced the minus sign because the null
vector field k on I, kjI, is past pointing. We thus have that

VIðτ; zÞ ¼ −τ þ sgnðzÞRI
VðrðzÞÞ

on I with RI
VðrÞ, which satisfies the same equation that

RE
VðrÞ, given by

RI
VðrÞ ¼

Z
r

r0

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
s

r �
1 −

ffiffiffiffiffiffiffi
2m
s

r ��−1

ds;

so that RI
Vðr0Þ ¼ 0 and its domain of definition is the

interval r ∈ ½r0; 2mÞ, ensuring that VIðτ; zÞ is analytic on
z ∈ ð−zs; zsÞ. Its explicit form reads

RI
VðrÞ ¼ 4m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r �−1
log

� ffiffiffiffiffi
r0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m − r0

p
− ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
pffiffiffiffiffiffiffi

2m
p ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
p þ ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m − r0
p

�

þð ffiffiffi
r

p þ 2
ffiffiffiffiffiffiffi
2m

p
Þ ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
p þ ð4mþ r0Þ log

� ffiffiffiffiffi
r
r0

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r �
:
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This function is strictly decreasing with RI
Vðr0Þ ¼ 0, and it

is therefore negative on its domain of definition. Since
limr→2mRI

VðrÞ ¼ −∞, for finite values of τ, as one ap-
proaches the values z → zs or z → −zs the function UI

remains bounded while VI diverges as VI → −sgnðzÞ∞.
Further, boundedness of RUðrÞ on r ∈ ðr0; 2mÞ also im-
plies that UI is bounded for finite values of τ, and that the
limits τ → �∞ are equivalent to UI → �∞, respectively.
The diffeomorphism Φ̂I thus maps the stripe z ∈ ð−zs; zsÞ
in R2 to the whole plane, and therefore the chart Ψ̂I ¼
fUI; VIg given by Ψ̂I ¼ Φ̂I∘ΨU

τzjI maps I to the whole R2.

So far we have constructed three changes of coordinates
from fτ; zg that produce three charts, Ψ̂E

σ ¼ fUσ; Vσg and
Ψ̂I ¼ fUI; VIg, each mapping their respective (disjointed)
domains to the whole R2. If we drop the indexes for U and
V, the metric in the respective charts has the form

ds2 ¼ −
����1 − 2m

rðU;VÞ
����dUdV þ rðU;VÞ2dΩ2; ð49Þ

where rðU;VÞ, the form of the area-radius function r in the
corresponding chart, is obtained implicitly in each case from

Uσ − Vσ ¼ σðRUðrÞ þ RE
VðrÞÞ;

¼ σ

(
4m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r �−1
"
log

�
r
2m

− 1

�
− 2 log

 ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r
þ

ffiffiffiffiffiffiffi
r
2m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r0

− 1

s !#

þ 2
ffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p þ 2ð4mþ r0Þ log
� ffiffiffiffiffi

r
r0

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r �)
; ð50Þ

in the exterior Eσ domains, and from

UI þ VI ¼ sgnðzÞðRUðrÞ þ RI
VðrÞÞ;

¼ sgnðzÞ
(
4m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r �−1
"
log

�
1 −

r
2m

�
− 2 log

 ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r
þ

ffiffiffiffiffiffiffi
r
2m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r0

− 1

s !#

þ 2
ffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p þ 2ð4mþ r0Þ log
� ffiffiffiffiffi

r
r0

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r �)
; ð51Þ

in the interior I domain.
Let us remark that the terms RU þ RE

V and RU þ RI
V ,

each at its corresponding domain of definition, satisfy the
same differential equation

1

2

dðRU þ RVÞ
dr

¼
�
1 −

r0
r

�
−1=2

�
1 −

2m
r

�
−1
; ð52Þ

where the superindices E and I have been removed. In
particular, RU þ RI

V is a strictly decreasing function of r on
its domain ðr0; 2mÞ with RUðr0Þ þ RI

Vðr0Þ ¼ 0, and it is
thus negative. Therefore, (51) implies sgnðUI þ VIÞ ¼
−sgnðzÞ. Conversely, RU þ RE

V is strictly increasing in
its domain r ∈ ð2m;∞Þ and its image covers the real line.
For convenience, we shall denote by r� the function on E

defined by

r� ≔
1

2
ðRU þ RE

VÞ; ð53Þ

see (50), which reduces to the usual tortoise coordinate in
the Schwarzschild limit r0 → 0, that is

lim
r0→0

r� ¼ rþ 2m log

�
r
2m

− 1

�
: ð54Þ

In the following two subsections we proceed to find a
convenient compactification for each of the three charts.

D. Compactification of the two exterior domains

Following the standard procedure4 for the two exterior
domains Eσ we perform the changes Θσ∶fUσ; Vσg →
fuσ; vσg by defining

Θσ ¼
�
uσ ¼ σ arctan exp

�
σ

4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
Uσ

�
;

vσ ¼ −σ arctan exp
�
−

σ

4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
Vσ

�	
:

4By standard we refer to the procedure used, e.g., in [33]. In
that case the conformal mapping procedure only extends con-
tinuously to the boundary. That is enough for our purposes here,
although alternative differentiable (and analytic) approaches used
in Schwarzschild, see, e.g., [34] and references therein, could be
translated to the present case in an analogous manner.
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The map Θþ takes R2 to the (open) square Aþ≔fðuþ;vþÞ;
uþ∈ ð0;π=2Þ;vþ∈ ð−π=2;0Þg, while the image of Θ− is
A−≔fðu−;v−Þ;u− ∈ ð−π=2;0Þ;v− ∈ ð0;π=2Þg. The metric
in the charts ΨE

σ ¼ fuσ; vσg ¼ Θσ∘Ψ̂E
σ thus constructed

reads, cf. (49),

ds2 ¼ 1

cos2uσcos2vσ
Γðrðuσ; vσÞÞduσdvσ þ rðuσ; vσÞ2dΩ2;

ð55Þ

with

ΓðrÞ ≔ −
32m3

r

�
1 −

r0
2m

�
−1
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 −
r0
r

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r �
2

× exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r
r
2m

�

×

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r �−
ffiffiffiffiffiffiffiffi
1−r0

2m

p
ð2þr0

2mÞ�r0
r

� ffiffiffiffiffiffiffiffi
1−r0

2m

p
ð1þr0

4mÞ−1
;

ð56Þ

and where the function rðuσ; vσÞ is determined implicitly
by the relation

tan uσ tan vσ ¼
�
1 −

2m
r

�
32m3

2m − r0

1

ΓðrÞ ≕ϒðrÞ: ð57Þ

Although we have constructed the function Γ on
the exterior region E, it is important to note that the
definition (56) is valid for r ∈ ½r0;∞Þ, that is, all over U.
In addition, ΓðrÞ is negative, and satisfies Γϒ0 ¼
8mð1 − r0=2mÞ−1=2ð1 − r0=rÞ−1=2. As a result, ϒ is a
strictly decreasing function of r with ϒð2mÞ ¼ 0, and thus
negative for r ∈ ð2m;∞Þ.
To see the explicit analogy with the Schwarzschild case,

it may be useful to remark that the function ΓðrÞ on
r ∈ ð2m;∞Þ can be written in terms of the function r�
defined in (53) as

ΓðrÞ ¼ −16m2

�
1 −

2m
r

��
1 −

r0
2m

�
−1

× exp

�
−

1

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
r�ðrÞ

�
;

from where

ϒðrÞ ¼ − exp

�
1

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
r�ðrÞ

�
; for r ∈ ð2m;∞Þ:

The limit (54) leads to

lim
r0→0

ΓðrÞ ¼ −
32m3

r
e−r=2m; ð58Þ

yielding the usual Kruskal-Szekeres line element of
Schwarzschild.
Given (57), the sets of constant r correspond, one to

one, to constant values of the product tan uσ tan vσ and,
since r > 2m on both Eσ , this is in agreement with
tan uσ tan vσ < 0 for both σ in the ranges of the images
of the charts ΨE

σ given above. The horizon, located at the
limit r → 2m, corresponds to the segments defined by
tan uσ tan vσ ¼ 0, that is uσ ¼ 0 and vσ ¼ 0 on the respec-
tive Aσ . From the location of the respective limits in the
charts fUσ; Vσg, null infinity corresponds to z → −∞ on
A−, and thus to the segments u− ¼ −π=2 (J −) and v− ¼
π=2 (J þ) there; and to z → þ∞ on Aþ, and thus to the
segments uþ ¼ π=2 (J þ) and vþ ¼ −π=2 (J −) there.
Moreover, i0 is attained on ðu−; v−Þ ¼ ð−π=2; π=2Þ and
ðuþ; vþÞ ¼ ðπ=2;−π=2Þ. On the other hand, iþ is to be
located on ðu−; v−Þ ¼ ð0; π=2Þ and ðuþ; vþÞ ¼ (π=2, 0),
while i− is on ðu−; v−Þ ¼ ð−π=2; 0Þ and ðuþ; vþÞ ¼
ð0;−π=2Þ on A− and Aþ, respectively.
The full changes of coordinates Φσ ≔ ΨE

σ ∘ðΨU
τzÞ−1jEσ

¼
Θσ∘Φ̂σ∶fτ; zgjEσ

→ fuσ; vσg read

Φσ¼
8<
:
uσ¼σarctanexp

h
1
4m

ffiffiffiffiffiffiffiffiffiffiffi
1− r0

2m

p ðστþRUðrðzÞÞÞ
i
;

vσ¼−σarctanexp
h

1
4m

ffiffiffiffiffiffiffiffiffiffiffi
1− r0

2m

p ð−στþRE
VðrðzÞÞÞ

i
9=
;:

ð59Þ

It is direct to check, for consistency, that the maps Φσ

preserve the time orientation (future is upwards in the
diagram) by computing the scalar products of the vector
fields ∂uσ and ∂vσ with n on each respective Aσ. This
completes the construction of the Penrose diagram for each
of the domains Eσ as depicted in Fig. 2 and shows, in turn,
that both Eσ are asymptotically flat and thus the exterior, in
the sense that the boundaries of the compactified domains
Aσ at infinity have the structure of Minkowski. Let us
remark (see Sec. VI B) that the Ricci tensor vanishes on the
boundary at infinity, but not on a neighborhood.
It is now straightforward to check that on each Eσ

the change fτ; zgjEσ
→ ft̃; r̃g, given by r̃ ¼ r̃ðzÞ and

t̃ ¼ τ þ σ
2
ðRUðrðzÞÞ − RE

VðrðzÞÞÞ, renders the metric (43),
restricted to r > 2m, in the form (28). Therefore both Eσ

are isometric to DS. This shows that U covers two exterior
regions (one for each value of σ) isometric to DS.

E. Compactification of the interior domain

Let us now focus on the domain I. We produce a
convenient compact form of the chart Ψ̂I for I by using
the change ΘI∶fUI; VIg → fu; v̄g given by
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ΘI ¼
�
ū ¼ tanh

�
1

8m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
UI

�
;

v̄ ¼ tanh

�
1

8m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
VI

�	
:

The map ΘI takes the whole R2 plane to the (open) square
C ≔ fðū; v̄Þ; ū; v̄ ∈ ð−1; 1Þg. The metric (49) in the chart
ΨI ¼ fū; v̄g given by ΨI ¼ ΘI∘Ψ̂I ¼ ΘI∘Φ̂I∘ΨU

τzjI reads

ds2 ¼
�
1 −

2m
rðū; v̄Þ

�
1

ð1 − ū2Þð1 − v̄2Þ
128m3

2m − r0
dūdv̄

þ rðū; v̄Þ2dΩ2; ð60Þ

where rðū; v̄Þ satisfies

−
���� ūþ v̄
1þ ū v̄

���� ¼ tanh

�
1

8m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
ðRUðrÞ þ RI

VðrÞÞ
�
: ð61Þ

A more explicit expression can be obtained by using (51).
Since RUðr0Þ ¼ RI

Vðr0Þ ¼ 0 the curve r ¼ r0 corresponds
to the line ūþ v̄ ¼ 0. Moreover, since sgnðUI þ VIÞ ¼
sgnðūþ v̄Þ, and hence sgnðūþ v̄Þ ¼ −sgnðzÞ, the curves
of constant r ∈ ðr0; 2mÞ correspond now to ūv̄ < 1 and
thus to two curves of constant ðūþ v̄Þ=ð1þ ūv̄Þ that go
from ðū; v̄Þ ¼ ð−1; 1Þ to ð1;−1Þ, one through positive
values of ūþ v̄ (for sgnðzÞ ¼ −1) and the other through
negative values of ūþ v̄ (for sgnðzÞ ¼ 1). As a result, the
images Cσ of the restrictions ofΨIjIσ∶Iσ → Cσ are given by
Cþ ¼ fC; ūþ v̄ < 0g and C− ¼ fC; ūþ v̄ > 0g. On the
one hand, since as r → 2m the function RU remains
bounded and RI

V → −∞, for finite values of τ we have
that ū remains bounded and v̄ → −sgnðzÞ. Therefore, the
curves in I approaching Zþ must approach v̄ → −1 in the
image of the chart ΨI , whereas those approaching Z− must
tend to v̄ → 1. In other words, Z− and Zþ are part of
the boundary of I and correspond to the part v̄ ¼ þ1 and
v̄ ¼ −1 [with ū ∈ ð−1; 1Þ] of the boundary of C, respec-
tively. On the other hand, recalling the behavior of τ and
UI , we have that the limits τ → �∞ are located at ū ¼ �1.
In Fig. 3 we depict the image C of the domain I through
the chart ΨI .

The full change of coordinates ΦI ≔ ΨI∘ðΨU
τzÞ−1jI ¼

ΘI∘Φ̂I∶fτ; zgjI → fū; v̄g reads

ΦI ¼

8>><
>>:

ū ¼ tanh
h

1
8m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r0

2m

p ðτ þ sgnðzÞRUðrðzÞÞÞ
i

v̄ ¼ tanh
h

1
8m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r0

2m

p ð−τ þ sgnðzÞRI
VðrðzÞÞÞ

i
9>>=
>>;:

ð62Þ

As in the exterior cases, it is straightforward to check that
the vector fields ∂ū and ∂v̄ on I are future pointing because
they have negative scalar product with n, that is, ΦI

preserves the time orientation.
Now, the change fτ; zgjI → fT̄; Ȳg, given by τ ¼ Ȳ −

sgnðzÞ
2

ðRUðr̄ðT̄ÞÞ − RI
Vðr̄ðT̄ÞÞÞ and r̄ðT̄Þ ¼ rðzÞ, that implies

sgnðzÞ ¼ sgnðcos T̄Þ and reads, in a more explicit form,

τ¼ Ȳ−4m

�
1−

r0
2m

�
−1
2

artanh

� ffiffiffiffiffiffiffiffiffi
r̄ðT̄Þ
2m

r
cosT̄

�

þ4m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r0
2m

r ffiffiffiffiffiffiffiffiffi
r̄ðT̄Þ
2m

r
cosT̄;

z¼ r0artanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r0
2m

r
cosT̄

�
þ 1

2m

�
1−

r0
2m

�
−1
2

r̄ðT̄ÞcosT̄;

FIG. 2. The domains Aσ are the images of the exterior domains Eσ through the charts ΨE
σ . The whole diagrams correspond to

Q− and Qþ, the images of the extended charts ΨVσ , so that Aσ ¼ ΨE
σ ðEσÞ ¼ ΨVσ ðEσÞ.

FIG. 3. Diagram of the image C of the domain I under Ψ̂I.
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with r̄ðT̄Þ given by relation (35), is a diffeomorphism
between the stripe z ∈ ð−zs; zsÞ on R2 and the stripe
T̄ ∈ ð0; πÞ on R2 that takes the line element (43) to the
form (34). This shows that I ⊂ U is isometric to the region
DH. Observe that Zþ (z ¼ zs) is recovered for T̄ ¼ 0;
Z− (z ¼ −zs) for T̄ ¼ π; and T (z ¼ 0) for T̄ ¼ π=2.
Finally, on each Iσ the change fτ; zgjIσ → fT; Yg given

by T ¼ rðzÞ and Y ¼ τ þ σ
2
ðRUðrðzÞÞ − RI

VðrðzÞÞÞ brings
(43) to the form (33). Therefore I, and thus U, covers two
interior regions isometric to Dh. Note that the change
for σ ¼ 1 preserves the time orientation, whereas that for
σ ¼ −1 does not.
The null radial geodesics clearly spend a finite amount of

affine parameter to cross the interior domain I. The timelike
radial curves, as it will be shown in Sec. VI by a direct
calculation, spend also a finite proper time going from z ¼
zs to z ¼ −zs.

F. Full Penrose diagram and maximal
analytic extension

To sum up, starting from the original chart ΨU
τz with line

element (43), in the previous subsections we have con-
structed charts for the disjoint domains Eσ and I with
images on R2 producing corresponding explicit Penrose
diagrams. We have also shown how both Eσ are isometric
to the previous domain DS and each one of the Iσ ⊂ I are
isometric to Dh. In order to, first, construct the full
diagram for U and, second, obtain its maximal analytic
extension, we need to extend the charts of the domains Eσ

within U.
Recalling that ΓðrÞ (56) is defined all over r ∈ ½r0;∞Þ,

and given the properties ofϒðrÞ, Eq. (57) has a solution for
rðu; vÞ for all pairs of values ðu; vÞ in R2 for which r ≥ r0.
In particular, since Γðr0Þ ¼ −32m3=r0 then ϒðr0Þ ¼ 1 and
we have from (57) that tan uσ tan vσjr¼r0 ¼ 1. Therefore
ðuσ þ vσÞjr¼r0 ¼ �π=2. Also, we have rðuσ; vσÞ ¼ 2m if
and only if tan uσ tan vσ ¼ 0. As a result, we can extend the
domains of the charts ΨE

σ across the sets where r ¼ 2m to
two domains Vσ ⊂ M as the preimages of two charts
ΨVσ∶Vσð⊂MÞ→Qσð⊂R2Þ with Qσ ¼fðuσ;vσÞ;uσ;vσ ∈
ð−π=2;π=2Þ;juσþvσj<π=2g, with boundaries juσþvσj¼
π=2 located at points where r ¼ r0. We will also need the
convenient definitions of the open triangles Bσ ⊂ Qσ as
Bþ ≔ fðuþ; vþÞ; uþ; vþ ∈ ð0; π=2Þ; uþ þ vþ < π=2g and
B− ≔ fðu−; v−Þ; u−; v− ∈ ð−π=2; 0Þ; u− þ v− > −π=2g.
In order to construct the full diagram for U we need to

request that the relevant parts of the extensions of Eσ

correspond to part of the interior domain within our original
U, that is, Vσ ∩ I ¼ Iσ, so that the conformal diagram
for U consists of the diagram of I patched to the relevant
part of the conformal diagram of Vþ and V−. This is
done constructively by producing the diffeomorphisms
Λσ∶ Cσ → Bσ as

Λσ ¼
�
uσ ¼σarctan

�
1þ ūσ
1− ūσ

�
σ

;vσ ¼σarctan

�
1þ v̄σ
1− v̄σ

�
σ
	
;

where we use ūσ ¼ ūjIσ and v̄σ ¼ v̄jIσ . Now, we only need
to build the charts ΨVσ by demanding that for any point
p ∈ Iσ we have ΨVσðpÞ ¼ Λσ∘ΨIðpÞ. By construction, the
change of coordinates between the charts ΨI and ΨVσ

restricted to Iσ are given by Λσ, and the image of each Iσ is
indeed their respective Bσ.
The horizons Zþ and Z− are clearly included in Vσ by

continuity. In fact it is easy to see that the charts ΨI can be
extended to maps that include Zþ and Z− so that these sets
are, respectively, mapped to v̄ ¼ −1 and v̄ ¼ 1 at the
boundary of C. Those points can be mapped, in turn, to the
corresponding boundaries of Bσ by adding the relations
fvσ ¼ σπ=2 ⇔ v̄σ ¼ −σg to Λσ for each value of σ.
With the above construction, sketched in Fig. 4, we

have shown how the initial domain U can be conformally
mapped to the Penrose diagram depicted in Fig. 5, and
how it covers all the domains presented in the previous
section. The procedure has provided in a direct manner
the causal diagrams of the regions Dh, DH, and DS. As for
the region DEF, it only remains to recall that DEF is
isometric to the subdomain Ujz>0 ⊂ U that, looking at the
diagram for U, corresponds to the same trapezoidal
diagram as the Eddington-Finkelstein chart provides for
Schwarzschild.
Finally, we can now use the Kruskal-Szekeres type

extensions Qσ to analytically extend U to the two
domains Vσ . Making use of the usual periodic construc-
tion we can build up the maximal analytic extension, that
we denote by M for simplicity, see Fig. 5, so that any of
the domains Vσ constitutes the fundamental domain of M.
Moreover, given that the boundary of the diagram is
exclusively given by sets of the type i0, i�, and J �, we
can infer from the Penrose diagram that M is geodesically
complete.

VI. GEOMETRICAL AND PHYSICAL
PROPERTIES OF THE SOLUTION

In this section we analyze some relevant properties of the
spacetime solution ðM; gÞ. We start with a review of its
causal structure (Sec. VI A), study the curvature (Sec. VI B),
compare different geometrical masses (Sec. VI C) and
compute the effects on a scalar field propagating on the
exterior region (Sec. VI D). Finally, we will explicitly obtain
the GR limit of the model (Sec. VI E).

A. Trapped and antitrapped regions

The key difference between the manifold M and that of
Schwarzschild is that the function r attains a minimum
r0 > 0 at a certain spacelike hypersurface T , and that
prevents the singular behavior there. The hypersurface T ,
given by r ¼ r0, is in fact minimal, that is, it has vanishing
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extrinsic curvature. Moreover, the mean curvature vector
of the spheres (surfaces with constant r and τ), given by5

H ¼ ð2=rÞ∇r, reads explicitly

H ¼ sgnðzÞ 2
r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r
ð
ffiffiffiffiffiffiffiffiffi
2mr

p
∂τ − ð2m − rÞ∂zÞ:

Therefore the scalar products

gðH;HÞ ¼ 4

r4
ðr − r0Þðr − 2mÞ;

gðH; nÞ ¼ −2
ffiffiffiffiffiffiffi
2m

p

r2
sgnðzÞ ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
p

establish that H is spacelike for r > 2m, this is at E, null at
the horizon Z (r ¼ 2m), and timelike for r0 < r < 2m,
where it is future pointing for z > 0, i.e., on Iþ, and
past pointing for z < 0, i.e., on I−. This means that the
spheres are nontrapped in the exterior regions, marginally
trapped at the horizon, and trapped to the future in Iþ (the
black-hole region) and trapped to the past (antitrapped) in
I− (the white-hole region), as expected (see Fig. 5).
Remarkably, the hypersurface r ¼ r0 is characterized by
the vanishing of H, meaning that the transition hypersur-
face T is foliated by totally geodesic surfaces of the
same area 4πr20. More explicitly, T is R × S2 with metric
ð2m=r0 − 1Þdτ2 þ r20dΩ2. Therefore, r0 encodes the min-
imal area of the orbits of the SOð3Þ group that acts onM by
isometry.

FIG. 4. The construction of the Penrose diagram of ðU; gÞ.

5We take the convention used, e.g., in [35].
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1. Proper time in crossing the homogeneous region

Let us recall that z is, up to a constant multiplicative
factor, the affine parameter of the radial null geodesics, and
therefore, they traverse the interior homogeneous region I
in a finite amount 2zs of the affine parameter. For
completeness, and to provide another check of the regular
behavior of the spacetime inside the horizon, we compute
the time spent by a radial free falling particle to cross I. For
particles initially at rest at infinity, so that γ ¼ −1 and
E ¼ −1, (46) yields

dz
ds

¼ −

ffiffiffiffiffiffiffiffi
2m
rðzÞ

s
;

where we have chosen the sign so that z decreases as
the affine parameter s increases. As a result, the proper time
Δs spent to cross from r ¼ 2m at z ¼ zs to r ¼ 2m at
z ¼ −zs is

Δs¼
Z

−zs

zs

ds¼
Z

zs

−zs

ffiffiffiffiffiffiffiffi
rðzÞ
2m

r
dz¼ 2

Z
zs

0

ffiffiffiffiffiffiffiffi
rðzÞ
2m

r
dz

¼ 2

Z
2m

r0

ffiffiffiffiffiffiffi
r
2m

r �
1−

r0
r

�
−1=2

dr¼ 8

3
ðmþ r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r0
2m

r
;

after using rð−zÞ ¼ rðzÞ in the third equality and (41) in the
fourth. This result can be compared with the time spent by
an analogous geodesic in Schwarzschild, that takes 4m=3

to fall in the singularity. The GR limit of this result,
Δsjr0¼0 ¼ 8m=3, corresponds to twice the time spent by a
radial free-falling observer (initially at rest at infinity) to go
from the horizon to the singularity.

B. Curvature

Given the trapped nature of the black-hole region Iþ, one
expects the Einstein tensor Ga

b to have eigenvalues that
become negative there as to avoid the singularity. Indeed,
the Einstein tensor on U, which in the chart fτ; zg has the
form

Gμνdxμdxν ¼ r0
2m
r5

ðr − 2mÞdτ2 − 2r0

�
2m
r3

�3
2

dτdz

−
r0
r4
ðrþ 2mÞdz2 þ r0

r −m
2r2

dΩ2;

has two eigenvalues given by μ1¼−r0=r3, μ2 ¼ −2mr0=r4

at the Lorentzian part fτ; zg, plus μφ ¼ r0ðr −mÞ=ð2r4Þ at
the angular part. The eigendirections relative to μ1 and μ2
are given by v1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
∂τ þ ð1 − 2m=rÞ∂x and v2 ¼ ∂τ,

with moduli gðv1; v1Þ ¼ 1–2m=r ¼ −gðv2; v2Þ. Therefore,
interpreting Ga

b as an effective energy-momentum tensor
on the exterior region E would correspond to a positive
“effective energy” density ρ̃E ¼ −μ2 ¼ 2mr0=r4 and a
negative effective radial pressure p̃E

r ¼ μ1 ¼ −r0=r3, while
on the interior region I the effective energy density would
turn to be ρ̃I ¼ −μ1 ¼ r0=r3 and the effective radial
pressure p̃I

r ¼ μ2 ¼ −2mr0=r4. As a result, since μ1 − μ2
is negative on E and μ2 − μ1 is negative on I, none of the
“effective energy” conditions is satisfied anywhere outside
the horizon. Let us stress that ðM; gÞ solves the vacuum
equations and therefore satisfies trivially all the physical
energy conditions by construction.
It is remarkable, however, that on the horizon the

Einstein tensor has a double null eigendirection along
∂τjr¼2m, so that the effective energy density and the radial
pressure are equal up to a sign, that is ðμ1 − μ2Þjr¼2m ¼ 0.
Moreover, the effective energy density and the effective
angular pressure on r ¼ 2m are positive, and satisfy
ρ̃jr¼2m ¼ −μ1jr¼2m ¼ −μ2jr¼2m ¼ 4μφjr¼2m ¼ r0=ð2mÞ3.
Therefore, all the “effective energy” conditions are fulfilled
on the horizon.
Furthermore, the four eigenvalues of the Einstein tensor

decay (at least) as Oðr−3Þ. Hence all the “effective energy”
conditions are fulfilled also at infinity, although not in a
neighborhood.
The Ricci scalar reads

R ¼ 3mr0
r4

;

so that it is everywherepositive andattains itsmaximumvalue
on the transition hypersurface T , given by RjT ¼ 3m=r30.

FIG. 5. Penrose diagram of ðU; gÞ (shaded), and its maximal
extension ðM; gÞ (outlined). The curves of constant z and constant
τ (denoting also Στ) are drawn in white, and correspond to the
white lines depicted on R2 in Fig. 4.
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To finish with the components of the curvature, the only
nonvanishing component of the Weyl tensor is

Ψ2 ¼ −
m
r3

þ r0
4r4

ð5m − rÞ

in the usual null frame adapted to the spherical symmetry. For
completeness, and to compare with Schwarzschild, let us
include the Kretschmann scalar,

RabcdRabcd ¼ 48m2 þ 24mr0 þ 6r20
r6

−
120m2r0 þ 32mr20

r7

þ 81m2r20
r8

;

which is always positive and attains its maximum value
9m2=ð2r60Þ on T .

C. Mass

We refer to the constant of motion m as the “mass”
mainly because (9) is a constant of motion and coincides
with the expression for the Schwarzschild mass in phase-
space variables upon the canonical transformation (4) (see
[27]). In addition, the relation between the radius of the
horizon Z andm is rjZ ¼ 2m. However, the meaning ofm,
as well as the discussion on the mass, needs a more detailed
analysis. Clearly, the addition to m of any function of r0
provides a constant of motion as well. To get a proper
understanding of these parameters, we devote this sub-
section to present the expressions of some usual geomet-
rical definitions of mass and energy applied to this solution.
It is important first to stress that the Hawking mass MH

and the Komar mass MK do not need to coincide, both
locally and at infinity, because g does not solve the Einstein
equations [36] (see also [37]). A direct calculation shows
that the Komar mass on any sphere S of constant radius
r̃ ¼ rjE > 2m and t̃ in any exterior (static) region depends
on r̃, and reads [38]

MKðr̃Þ ≔ −
1

8π

Z
S
ϵabcd∇cð∂t̃Þd ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r̃

r
; ð63Þ

where ϵ is the volume element of ðM; gÞ. The dependence
of the Komar mass on r̃ comes from the fact that the Ricci
tensor on ðM; gÞ, in fact its part orthogonal to the spherical
orbits, is not zero. The limit of the Komar mass at infinity is
precisely half of the radius of the horizon, that is, it
coincides with the constant of motion (9),

m ¼ lim
r→∞

MKðrÞ: ð64Þ

On the other hand, the Hawking mass computed on
any sphere of radius r ∈ ½r0;∞Þ (equivalently, the
Misner-Sharp mass) also depends on r and is given by

MHðrÞ ¼
r
2
ð1 − gð∇r;∇rÞÞ ¼ r

2

�
1 −

r2

4
gðH;HÞ

�

¼ mþ r0
2
−
mr0
r

: ð65Þ

This is always positive and, in particular, coincides with m
at the horizon (and only there). The existence of a non-
vanishing Ricci tensor affects the Komar and Hawking
masses in a different manner.
To further discuss other definitions of energy we con-

sider next the computation of the ADM mass in two
slicings: the hypersurfaces Σt̃ for constant values of t̃ on
any exterior domain Eσ, and the hypersurfaces Στ on U
defined as those of constant τ.
The hypersurfaces Σt̃ are ð2m;∞Þ × S2 with metric

dσ2t̃ ¼ ð1 − r0=r̃Þ−1ð1 − 2m=r̃Þ−1dr̃2 þ r̃2dΩ2 and vanish-
ing extrinsic curvature. In the Penrose diagram, each Σt̃
reaches from the bifurcation of the horizon to spatial
infinity i0. The hypersurfaces Σt̃ satisfy the suitable fall-
off conditions for asymptotic flatness, and the Ricci scalar,
given by ð3ÞRt̃ ¼ 4mr0=r4, is integrable. Therefore the
ADMmass is a geometric invariant [39], and it corresponds
to the limit of the Hawking mass at i0 [37],

Mt̃
ADM ¼ lim

r→∞
MHðrÞ ¼ mþ r0

2
: ð66Þ

This result as well as the expression (65) are to be expected,
because the hypersurfaces Σt̃ can be embedded, with
vanishing extrinsic curvature, in Reissner-Nordström
spacetime with mass MRN ¼ mþ r0=2 and charge Q2 ¼
2mr0 (observe M2

RN −Q2 ¼ ðm − r0=2Þ2 is positive
because 0 < r0 < 2m). The fact that the asymptotic proper-
ties of the Ricci tensor allow the computation of the ADM
mass on some slicing with the proper fall-off conditions, so
that it is indeed a proper invariant quantity, is another
interesting property of the solution. Let us stress that this
property ought not to be taken for granted, see, e.g., [40].
Regarding the hypersurfaces Στ, they are R × S2, now

reaching from one to another component of i0 crossing the
hypersurface T , as depicted in Fig. 5. Their metric reads
dσ2τ ¼ dz2 þ rðzÞ2dΩ2, the Ricci scalar ð3ÞRτ vanishes (but
not the whole Ricci tensor), and the extrinsic curvature Kab
is given by

Kμνdxμdxν ¼ sgnðzÞ ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p ffiffiffiffiffiffiffi
2m

p �
1

2r2
dz2 − dΩ2

�
:

While the metric goes as Oð1=rÞ at infinity, Kab goes as
Oðr−3=2Þ, and therefore Στ do not satisfy the fall-off
conditions for asymptotic flatness [37]. As a consequence,
the ADM mass does not correspond necessarily to the limit
of the Hawking mass. In fact, in the Schwarzschild limit the
hypersurfaces Στ are defined by constant τ in the Painlevé-
Gullstrand coordinates, go from (one component of) i0 to
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the component of iþ that belongs to the other asymptotic
end, and are known to be flat (see, e.g., [41]) and therefore
have vanishing ADM mass. In the present case a direct
calculation of the ADM mass on any Στ provides

Mτ
ADM ¼ r0

2
:

This recovers the result in the GR limit and provides a
characterization of the parameter r0.
We can also consider the Geroch energy. Let us briefly

introduce its motivation, as explained in [37]. The Hawking
mass on some closed codimension two surface S in M
depends, by construction, only on the module of the mean
curvature vector H. Now, given some Σ, the Hawking mass
can be split into a non-negative term containing part of
the trace of the extrinsic curvature of Σ in M plus the
remainder, that contains the trace of the extrinsic curvature
of S in Σ, say trΣðkÞ. This remainder, which thus provides a
lower bound for the Hawking mass, is the Geroch energy,
and it is defined explicitly as [37]

EGðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AreaðSÞ
16π

r �
1 −

1

16π

Z
S
ðtrΣðkÞÞ2dS2

�
;

where dS2 is the surface element of S. In the case of
spheres on Σt̃ the Geroch and Hawking energies coincide
because Σt̃ are minimal. The application to spheres of
constant r on Στ yields

Eτ
GðrÞ ¼

r0
2
;

which is a constant Geroch energy for all r and equal to the
ADM mass of Στ. The remarkable point here is that the
Geroch mass is a quasilocal quantity, it does not depend on
the asymptotic behavior (nor any other global property) of
the hypersurface (Στ in this case). Therefore, its constancy
on all Στ provides a quasilocal characterization of the
parameter r0. This characterization of r0 as some constant
property on the hypersurfaces Στ plays an analogous role as
m being constant on the asymptotically flat hypersurfaces
in Schwarzschild.
It is important to note that whatever notion of mass we

choose that mass is the same on all exterior regions of the
maximal extension M. This is in contrast to what happens
in many effective descriptions of quantum spherical models
in the literature, where different exterior domains possess
different masses (see, e.g., [12]).
It is also noticeable that the level hypersurfaces of the

function τ on U, which cross the transition hypersurface T ,
have a topology R × S2. In fact, all spacelike slicings in M
share that same topology, as opposed to what happens in
other geometrical constructions of nonsingular black holes,
in which different slicings can have different topologies,
see, e.g., [42–44].

All in all, in this section we have seen that the parameter
r0, being the minimum of the area of the orbits of the
spherical symmetry can also be characterized in a global
manner by the difference

r0 ¼ 2 lim
r→∞

ðMH −MKÞ; ð67Þ

as well as by the value of (twice) the ADM mass Mτ
ADM of

the hypersurfaces Στ, and also quasilocally as (twice) the
value of the Geroch energy on any sphere of constant r on
any Στ. If the Einstein equations are satisfied, then the limit
on the right-hand side of (67) vanishes, and therefore r0
must also vanish as expected (see Sec. VI E below).
For completeness, the surface gravity κ, defined by

∇∂τ
ð∂τÞ ¼ κ∂τ on each component Zσ of the horizon with

the Killing vector field ∂τ, reads

κ ¼ σ

4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
:

This satisfies the usual relation jκj ¼ r−2MKjr¼2m (see, e.g.,
[38]). Observe that in the limit case r0 → 2m we would
obtain a vanishing surface gravity, in analogy with the
extremal Reisner-Nordström spacetime. The appearance of
a minimum area makes the surface gravity smaller than that
of a Schwarzschild black hole of mass m.

D. A test scalar field propagating on the exterior region

Although the transition surface T is well beyond the
reach of an outside observer, the modifications performed
to the theory through the polymerization (4) and the linear
combination of constraints (6) have effects on the exterior
regions. We have already seen how geometrically r0
appears in quasilocal energy definitions. That information
is carried out, of course, by the nonvanishing of the Ricci
tensor everywhere, and that leaves traces that may be
measurable from the asymptotic region by looking at
effects on other physical fields. These effects, which could
yield observational consequences, could be used to discard
the model. As an example, we next consider the modifi-
cation of the potential of a massless scalar field.
The dynamics of such a test scalar field is given by the

Klein-Gordon equation,

□Φ ¼ 0:

By using t̃ and r� (53) as coordinates in the exterior
region DS and decomposing the scalar field in spherical
harmonics,

Φðt̃; r�; θ;ϕÞ ¼
1

rðr�Þ
X
l;m

ψ lðt̃; r�ÞYlmðθ;ϕÞ;

we can write the Klein-Gordon equation above as
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∂
2ψ l

∂r2�
−
∂
2ψ l

∂t̃2
¼ Vðrðr�ÞÞψ l;

with the potential term

VðrÞ ¼
�
1 −

2m
r

�
lðlþ 1Þ

r2
þ 1

r
d2r
dr2�

¼
�
1 −

2m
r

��
lðlþ 1Þ

r2
þ 4mþ r0

2r3
−
3mr0
r4

�

¼
�
1 −

2m
r

��
lðlþ 1Þ

r2
− 2Ψ2 −

R
6

�
: ð68Þ

We can compare this potential with the one obtained for
the Schwarzschild spacetime VSch by means of their

difference,

VðrÞ − VSchðrÞ ¼ VðrÞ −
�
1 −

2m
r

��
lðlþ 1Þ

r2
þ 2m

r3

�

¼ r0
r3

�
1 −

2m
r

��
1

2
−
3m
r

�
;

that decays asymptotically as r0=r3. This difference is
independent of l and therefore all the modes are affected in
the same way.
On the other hand, given that the appearance of r0 in the

geometry has consequences on the modifications of the
mass that could be interpreted as a Reissner-Nordström
geometry with mass MRN ¼ mþ r0=2 and charge Q2 ¼
2mr0, we compare VðrÞ with the corresponding potential
VRN. Their difference is nonzero and explicitly given by

VðrÞ−VRNðrÞ

¼VðrÞ−
�
1−

2m
r

��
1−

r0
r

��
lðlþ1Þ

r2
þ2mþr0

r3
−
4mr0
r4

�

¼ r0
r3

�
1−

2m
r

��
lðlþ1Þ−1

2
þ3mþr0

r
−
4mr0
r2

�
;

for which the leading term for any l for large radius goes
as r0=r3. Note that, contrary to the previous case, the
centrifugal term in the potential VðrÞ differs from that in
Reissner-Nordström with the aforementioned mass and
charge.
This shows that the parameter r0, and thus λ, has a

measurable imprint on the behavior of scalar fields that
differs from both Schwarzschild and Reissner-Nordström
far away from the horizon, in the asymptotic regions. It is
then to be expected that for more general fields we may
have a way to put this geometry to test.

E. Schwarzschild and Minkowski limits

When λ ¼ 0 we recover the Hamiltonian formalism for
vacuum in spherical symmetry in GR and, by definition, r0

vanishes. Conversely, we need r0 ¼ 0 to have an identically
vanishing Ricci tensor. Therefore r0 ¼ 0 if and only if the
spacetime solves the equations of GR for spherically
symmetric vacuum, and hence the limit r0 → 0 of the
solution with m > 0 must clearly correspond to
Schwarzschild with that m. Checking this in the static
region DS, where the metric reads (28), is trivial, and we
recover the usual form of the Schwarzschild metric in one
exterior domain. In the homogeneous region Dh, with the
line element given by (33), by setting r0 ¼ 0we recover the
usual interior geometry of the black-hole (or white-hole)
region in Schwarzschild. We must keep in mind that now
the range of the coordinate T is given by T ∈ ð0; 2mÞ, and
that the curvature diverges as T → 0 (see Sec. VI B). A
nontrivial limit of spacetimes must be really taken if
we consider the covering domain U with the form of the
metric (43). When r0 ¼ 0 we have, from (41), that r ¼ jzj.
The differentiability is lost at z ¼ 0, which makes (39) ill
defined there. In addition, the positive lower bound of the
function r is lost since it reaches r ¼ 0 and the transition
hypersurface T becomes unavailable (singularity).
Therefore U must be split in two: one domain in which
z ¼ r and another where z ¼ −r. In the case z ¼ r we
readily recover the Eddington-Finkelstein domainDEF with
the metric (44) with r0 ¼ 0 and the range ρ̃ ∈ ð0;∞Þ
(Gullstrand-Painlevé coordinates); while in the case z ¼ −r
we recover the equivalent domain and metric up to a trivial
change of sign in the crossed term that amounts to an
inversion of time. Recalling (58), the metric (55) (for both
values of σ) on each respective extended domain Vσ

corresponds to the usual null coordinates of the Kruskal-
Szekeres chart of Schwarzschild.
Finally, the limitm → 0 is Minkowski for any value of λ,

and thus this limit holds in the full generalized Hamiltonian
model. The limit follows from the fact that m → 0 implies
r0 → 0 for any value of λ, and thus the limit m → 0 of
ðM; gÞ corresponds to the limit m → 0 of Schwarzschild,
hence Minkowski, from above.

VII. CONCLUDING REMARKS

It is known that the inclusion of holonomy corrections in
the description of nonhomogeneous models usually con-
flicts with the covariance of the theory. In the present work,
we have modified the Hamiltonian of spherical GR in such
a way that it still obeys the Dirac hypersurface deformation
algebra. We have done so through the canonical trans-
formation (4) and the linear combination with phase-space
dependent coefficients (6) of the GR constraints. These
changes are regulated by a positive constant, the polym-
erization parameter λ. The limit λ → 0 leads to the GR
Hamiltonian. In combination with the Dirac observable m,
this polymerization parameter defines a length scale r0,
which turns out to be fundamental in the geometrical
description of the model.
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We have then constructed the line element (23) asso-
ciated to the modified Hamiltonian, so that the correspond-
ing geometry is described covariantly, that is, coordinate
changes coincide with gauge transformations on the phase
space. We have performed a number of specific gauge
choices that lead to different forms of the metric tensor,
see (28), (33), (34), (43), and (44), and describe different
regions of the spacetime. In particular, we have found a
single chart ðU; gÞ that covers a globally hyperbolic interior
homogeneous region and two exterior static regions, as
depicted in Fig. 4. We have produced the Penrose diagram
of the domain U and have found the maximal analytic
extension M (see Fig. 5).
The classical singularity is fully resolved and replaced by

a transition hypersurface T , where the spheres attain their
minimal area given by 4πr20. This hypersurface is minimal
and separates a trapped and an antitrapped region inside the
horizon. Any free falling particle that crosses the black-hole
horizon Zþ from the exterior region Eþ (see Fig. 5) enters
the homogeneous interior region I, spends a finite amount
of time there, and crosses the white-hole horizon Z− to
emerge to the new asymptotically flat region E−. All
curvature scalars are finite everywhere and attain their
maximum values on T . Some eigenvalues of the Einstein
tensor become negative, as one would expect for a
singularity resolution. In fact, when defining the “effective
energy-momentum tensor” Ga

b, all its corresponding
standard energy conditions are violated everywhere except
at the event horizon and at infinity, where they are all
satisfied.
The effects produced by the polymerization of the

Hamiltonian and the linear combination of the constraints
resolve the singularity inside the black-hole horizon,
but also leave specific traces in the exterior region. In
order to see this in more detail, we have computed the
energy content of the spacetime through different defi-
nitions of mass, and we have also considered a test scalar
field propagating on this background spacetime. Let us
remark that the present work studies a symmetry-reduced
vacuum model and, therefore, a phenomenological analy-
sis (say on the lines of, e.g., [45]) of this solution would
require full control over a perturbation scheme outside
spherical symmetry, which is beyond the scope of
this work.
Concerning the masses, contrary to what happens in GR,

the Hawking and Komar masses do not coincide since the
Einstein equations do not hold. Both depend on the area-
radius function, but change in a different way due to the
presence of quantum-gravity effects parametrized by r0.
The Hawking mass coincides with the constant of motionm
on the horizon, whereas the Komar mass attains this precise
value at infinity. The difference of these two masses at
infinity turns out to be r0=2. Furthermore, the fall-off
conditions of the Ricci scalar turns out to be enough to
define the ADMmass (66), which is a nontrivial feature for

modified theories of gravity (see, e.g., [40]). We note also
that the limitm → 0, for any value of λ, leads to Minkowski
in the full generalized Hamiltonian model.
Regarding the test scalar field, it has been assumed to obey

theKlein-Gordonequation.After decomposing it in spherical
harmonics, its potential (68) has been obtained and compared
with the corresponding potential for Schwarzschild and a
compatible Reissner-Nördstrom backgrounds.
To finish the conclusions, let us comment about the

relation between the polymerization constructed here and
others that have been presented in the literature. In
particular, in the context of homogeneous models, there
are three main strategies to deal with the polymerization
parameter. It might be considered to be constant over the
whole phase space (the so-called μ0 scheme), to be constant
on solutions, or to depend on some of the triad components
(μ̄ scheme). Each of these approaches has advantages and
drawbacks, mainly regarding the confinement of quantum
effects to large-curvature regions. As commented above, in
the present model we have the constant polymerization
parameter λ and the fundamental length scale r0, which are
related by relation (67) in terms of the constant of motion
m. Therefore, the first two schemes are included in the
present model, but not the μ̄ scheme. More precisely, in the
μ0 scheme λ would be a universal constant (on the whole
phase space), and thus r0 would change linearly with the
massm of the black hole. In contrast, if we define r0 to be a
universal length scale, independent of the specific solution,
then the polymerization parameter λwould be a constant on
each solution, but would change with the mass m. In any
case, all the presented features of the model turn out to be
insensitive to the particular choice between these two
schemes and, in particular, the transition surface is always
hidden inside the horizon ðr0 < 2mÞ.
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APPENDIX: ALTERNATIVE LINE ELEMENTS
AND THE BOJOWALD-BRAHMA-YEOM MODEL

Let us consider the following variation of the line
element (22),

ds2 ¼ −fðt; xÞNðt; xÞ2dt2 þ fðt; xÞ
Fðt; xÞ ðdxþ Nxðt; xÞdtÞ2

þ Exðt; xÞdΩ2; ðA1Þ
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fðt; xÞ ≠ 1 being an arbitrary scalar function. This line
element does not obey the condition i. from Sec. III but, as
we are going to show below, it is covariant in the sense of
condition ii., i.e., gauge transformations correspond to
coordinate transformations.
Since f is a scalar, it transforms as

δf ¼ _fξt þ f0ξx: ðA2Þ
Therefore, under a coordinate transformation of (A1) the
change of N̄ ≔

ffiffiffi
f

p
N is in fact the same as (13), that is,

δN̄ ¼ _̄Nξt þ N̄0ξx þ N̄ð_ξt − Nxξt0Þ: ðA3Þ
The new spatial component of the metric q̄xx ≔ f=F
changes in the same way as (15),

δq̄xx ¼ _̄qxxξt þ q̄0xxξx þ 2q̄xxðNxξt0 þ ξx0Þ; ðA4Þ
whereas the change of Nx is given by

δNx ¼ _NxξtþNx0ξxþNxð_ξt−ξx0Þ−
�
N̄2

q̄xx
þðNxÞ2

�
ξt0 þ _ξx

¼ _NxξtþNx0ξxþNxð_ξt−ξx0Þ− ½FN2þðNxÞ2�ξt0 þ _ξx:

ðA5Þ
If one then assumes that the Hamiltonian of the system is
H½N� þD½Nx�, the gauge transformations of the lapse N
and the shift Nx are given by (19) and (20), respectively,
which fit with (A3) and (A5).
In summary, instead of (22), one may consider the metric

(A1) to describe the geometry of the model in the sense that
gauge transformations in phase space correspond to space-
time coordinate transformations. However, the price to pay
to use (A1) is that the time vector ∂t (used to perform the
canonical analysis) is modified and, in particular, the
normal vector n ceases to be unit for the deformed metric.
In Ref. [23] a line element of the form (A1) is presented

to provide the geometric interpretation of a different
polymerized canonical system. However, the problem is
that the corresponding factor f finally chosen to explicitly
work out the model is not a scalar quantity. More precisely,
in the polymerized model constructed in [23] the structure
function that appears in the bracket between two
Hamiltonian constraints is given by F ¼ βðKφÞEx=ðEφÞ2,
whereas the considered line element is

ds2BBY ¼ −βðKφÞN2dt2 þ ðEφÞ2
Ex ðdxþ NxdtÞ2 þ ExdΩ2;

ðA6Þ
which corresponds to (A1) by setting f ¼ β. But, since Kφ

is not a scalar quantity, βðKφÞ does not transform as a scalar
either, and the line element (A6) turns out not to be
covariant. In the following we show this fact explicitly
by presenting the solution to the equations of the model of

Ref. [23] in two different gauges. We will construct
the line element (A6) for each gauge choice and show
that they can not be related by a coordinate transformation
since they provide two different families of geometries: one
with a vanishing and the other with a nonvanishing Ricci
scalar.
The evolution equations to be considered are Eqs. (19)–

(22) inRef. [23],with the specific choice (15)–(16) for the free
functions, which in turn makes β ¼ cosð2δKφÞ with δ a
nonvanishing polymerization parameter. The first gauge
choice is the one already considered in [23] for the exterior
region, that is Ex ¼ x2 and Kφ ¼ 0, which provides the
Schwarzschild metric [see Eq. (63) in [23] ],

ds2BBYð1Þ ¼ −
�
1 −

2M
x

�
dt2 þ

�
1 −

2M
x

�
−1
dx2 þ x2dΩ2;

ðA7Þ

for a constantM. Thismetric, of course, has a vanishingRicci
scalar RBBYð1Þ ¼ 0.
The second gauge choice consists on taking Ex ¼ x2 and

Eφ ¼ x. The general solution of Eqs. (19)–(22) in [23] is
then given by

Kx ¼
ϵ

2x

ffiffiffiffiffiffiffi
2M̃
x

s �
1 −

2M̃δ2

x

�−1=2
; sin2ðδKφÞ ¼

2M̃δ2

x
;

N ¼ N0; Nx ¼ ϵN0

ffiffiffiffiffiffiffi
2M̃
x

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M̃δ2

x

s
;

where we have defined ϵ ≔ −sgnðsinð2δKφÞÞ, N0 and M̃
are integration constants, whereas x is restricted to have the
same sign as M̃ and to obey 2δ2jM̃j < jxj. Therefore, for
this gauge, the line element (A6) takes the form

ds2BBYð2Þ ¼ −
�
1 −

2M̃
x

−
4M̃δ2

x

�
1 −

M̃
x

��
dτ2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M̃
x

�
1 −

2M̃δ2

x

�s
dτdxþ dx2 þ x2dΩ2;

ðA8Þ

where, without loss of generality, N0 and ϵ have been
absorbed in the definition of τ. This line element
presents Euclidean ð2δ2jM̃j< jxj< 4δ2jM̃jÞ and Lorentzian
ð4δ2jM̃j < jxjÞ regions, with Ricci scalar

RBBYð2Þ ¼ 4M̃2δ2
2δ2ðxþ 2M̃Þ − 3x

x3ðx − 4M̃δ2Þ2 ; ðA9Þ

which only vanishes identically in the case M̃ ¼ 0
that corresponds to Minkowski. Therefore, we conclude
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that, for δ ≠ 0, even in the Lorentzian regions,
there is no coordinate transformation that rela-
tes the line elements (A7) and (A8), and thus they
correspond to two different metric tensors. As a result,

two different gauge choices in the construction pro-
vide two different geometries and the line element (A6)
is not covariant, that is, it does not satisfy condi-
tion ii. above.
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