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In this article, we conduct a sequential study of possible observable images of black hole simulators
described by two recently obtained rotating geometries in Einstein gravity, minimally coupled to a scalar
field. One of them, “Kerr-like,” can be seen as a legitimate alternative to the rotating Fisher-Janis-Newman-
Winicour solution, and the other (TSL) is a scalar generalization of the Tomimatsu-Sato-like solution.
Unlike the previous version of the rotating Fisher-Janis-Newman-Winicour solution, these solutions do
indeed satisfy the system’s equations of motion. Our study includes both analytical and numerical
calculations of equatorial circular orbits, photon regions, gravitational shadows, and radiation from thin
accretion disks for various values of the object’s angular momentum and scalar charge. The TSL solution
was found to simulate Kerr for all valid parameter values with high accuracy. The maximum difference
between the deviations of shadows from a circle for the Kerr and TSL cases does not exceed 1% and fits
into the experimental observational data M87� and Sgr A�. However, near-extreme objects show two times
smaller peak values of the observed outflow luminosity of the accretion disk than for the Kerr black hole.
The Kerr-like solution cannot be ruled out by the experimental data for small values of the scalar charge
either. As the scalar charge increases, the optical properties change dramatically. The shadow can become
multiply connected, strongly oblate, and the photon region does not hide the singularity, so it should be
classified as a strong singularity.
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I. INTRODUCTION

The recent observation of the shadow of a supermassive
compact object at the center of the M87 galaxy [1,2] and
Sgr A� [3] by the Event Horizon Telescope (EHT) col-
laboration has opened a new window for studying gravity
in its strongest mode [4–9]. Images of black holes are
actually obtained in the microwave range, but since we are
dealing with geometric optics, optical terminology is quite
appropriate. The optical view of a remote ultracompact
object illuminated by external sources can be very different
depending on the geometric position of the source relative
to the line of observation, the angle of inclination to the
angular velocity of the object’s rotation, the lighting
scheme (backlight, radiation from accretion disks, and so
on) [10], the presence of plasma [6], dark matter/energy
[11–15], and many other factors. A common feature is the
presence of a dark spot, corresponding to the absorption of

photons by the object and usually associated with the event
horizon. In the case of uniform illumination from behind,
the dark region limits the directions of null geodesics,
which, being extended backwards, are gravitationally
captured.
In principle, the presence of an event horizon is not

absolutely necessary for the formation of such images.
Shadows can arise from naked singularities or wormholes,
so an important task is to find differences between the
shadows of real black holes and their mimickers [16–18].
As a matter of fact, while the size of the shadow M87� and
Sgr A� can be consistently interpreted within the frame-
work of the general theory of relativity with known
estimates of the mass and distance from the central black
hole in the M87 galaxy or Milky Way, the error interval is
still large enough to match the predictions of various
theories involving scalar and vector fields with minimal
and nonminimal interactions with gravity. Deviations from
Einstein’s gravity can be parametrized using phenomeno-
logical non-Kerr metrics [19], which, when interpreted in
terms of standard Einstein’s equations, can violate funda-
mental principles such as energy conditions, cosmic cen-
sorship, and no-hair theorems. The results of the EHT
impose limitations on the parameters of such violations
[20]. Using shadows, one can extract the information about
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the object’s mass, rotation parameter [21], electric/mag-
netic charge [22–25], non-Kerr distortion parameters
[26,27], the presence of scalar hair [28–32], thermody-
namics [33], dark matter/energy [34,35] or try to find new
physics [36–40]. Hypothetical ultracompact objects
(UCOs) such as wormholes, regular black holes [41],
gravastars, or naked singularities can be distinguished from
each other by their shadows [42–45], especially in the
presence of luminous accretion disks [24,29,46–51] or
plasma [52]. These perspectives have strongly stimulated
the development of new methods for visualizing the
shadows of black holes, both analytical and numerical.
From a mathematical point of view, general patterns of

shadow formation can be understood not only based on the
study of photon orbits, i.e., one-dimensional submanifolds
of spacetime, but also on the basis of the geometry of two-
dimensional surfaces, an example of which is a photon
sphere of radius 3M in Schwarzschild space [53–60]. In
four-dimensional spacetime this is an umbilical hypersur-
face: for it the first and second quadratic forms are
proportional. In the Kerr spacetime there are no photon
surfaces, but there are spherical surfaces of constant radius
in Boyer-Lindquist coordinates on which the spherical
orbits of constant radius lie [61], which do not fill these
surfaces densely, but form a web at a certain angle of
inclination of the thread, determined by the impact param-
eter. As three-dimensional hypersurfaces in spacetime,
such spheres can be called partially umbilical [62]: for
them, the first and second quadratic forms are proportional
not for all tangent vectors, but for their part corresponding
to a certain ratio of polar and azimuthal momenta, which
can be related to the impact parameter. This understanding
can be useful if the geodesic equations are not inte-
grable [63]. This leads to an alternative visualization of
gravitational fields, allowing you to see properties inde-
pendent of the choice of the observer and light sources
when casting shadows. It is also possible to introduce
nonclosed umbilical and partially umbilical surfaces that
visualize the properties of photons escape from the region
of a strong gravitational field. A detailed study of the
geometry of such photon surfaces was given for the
Plebanski-Demianski family of metrics [64] containing
both black holes and naked singularities, as well as
asymptotically nonflat spaces.
For decades, the alternative gravity of the first choice was

the scalar-tensor theory, the simplest model being
Einstein’s general relativity with a minimally coupled
massless scalar field (MES). This raises attention to the
cosmic censorship hypothesis [65,66], which is often
violated in the presence of a scalar field, remember the
famous scalar no-hair theorems for black holes. The static
spherically symmetric MES solution is a family para-
metrized by mass and scalar charge and is a naked
singularity. Depending on the value of the scalar charge,
this singularity can be invisible (weak) or visible (strong)

from infinity, depending on whether the singularity is
surrounded by a photon sphere or not [67]. This solution
is known as the Fisher-Janis-Newman-Winicour (FJNW)
solution [68–74], sometimes also called the gamma-metric
(for a more recent discussion, see [75]). Recently, there has
been renewed interest in this solution due to various
dualities linking MES to nonminimal scalar-tensor theories
such as Horndesky and DHOST and others [76–82], where
it can correspond to nonsingular metrics or wormholes
[83]. Shadows and accretion disk profiles around a static
FJNW were studied in [46,84] (see also [16]), where
various differences from the case of a black hole were
found. Other identifiers for naked singularities can be
strong lens properties [18,85] and negative precession of
elliptical orbits [86,87].
Especially interesting in scalar-tensor theories are Kerr-

like naked singularities. Efforts to find rotating general-
izations of the FJNW solution have a long history. The first
rotating solution, proposed in [88], was obtained using the
Janis-Newman (JN) algorithm, [89], previously proposed
as a formal way to obtain the Kerr metric from
Schwarzschild. But, it is worth noting that the JN method
was originally conceived as just a formal trick without a
deep mathematical justification. Later it turned out that
although the algorithm works in a number of supergravity
models [90], there are doubts about its applicability in
general scalar-tensor theories, and an explicit check of the
solution [88] led to negative results [91–93]). Still, this
metric allows interpretation as a solution with additional
matter sources, so its many applications in astrophysical
modeling [17,18,85,94] can be considered from this point
of view.
Attempts to construct a rotating solution (and solutions

with NUT) were also made in the framework of the Brans-
Dicke theory [95–97]. Note that these solutions do not
reproduce the FJNW metric in the Einstein frame. A
rotating version of the Brans-Dicke analog of the FJNW
solution was proposed in [98] again using the JN trick, but
the result turned out to be in conflict with some of the
equations of motion [92]. Other stationary solutions to
minimally coupled Einstein-scalar theory have recently
been proposed in [92,99–102] based on known and new
generation methods. The aim of this work is to study the
photon structure, the shadows, and optical images of
accretion disks for two new solutions constructed in
[92]. A recent comparison of the observational predictions
of one of them with the Kerr case are presented in [103].
The work plan is the following. In Sec. II we recall the

basic ideas and tools of the analysis of the equatorial
circular orbits, photon regions, gravitational shadows, and
radiation from thin accretion disks. In Sec. III we present
two recently obtained rotating geometries in Einstein
gravity minimally coupled to the scalar field and briefly
describe their basic features. In Sec. IV we give a fully
analytical description of the equatorial circular orbits in
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order to define accretion disks and circular photon orbits
further. In Sec. V we develop a comprehensive study of the
photon structure of these geometries, including the con-
struction of photon surfaces and photon regions. In Sec. VI
we study the features of the gravitational shadows and the
lensing patterns observed by a distant ZAMO. In Sec. VII
we numerically obtain the apparent images of thin accretion
disk for both considered solutions and analyze them.

II. BRIEF REVIEW

In this section, we recall methods of the analysis of the
different observable optical properties of spacetimes, namely
gravitational shadows, relativistic images, and radiation from
thin accretion disks. Besides, we recall the ideas of the
equatorial circular orbits and photon regions that are helpful
for the description of the optical properties. For Kerr-like
solutions, one assumes the general form of axially symmetric
metric with signature ð−þþþÞ given by

ds2 ¼ gμνdxμdxν ¼ gttdt2 þ 2gtϕdtdϕþ grrdr2

þ gθθdθ2 þ gϕϕdϕ2; ð1Þ
which is also equipped with the standard Killing vectors ∂t
and ∂ϕ along the time coordinate t and the angular direction
ϕ, respectively. This leads to ðr; θÞ dependence of the metric
coefficients. Since we also assume the Z2 symmetry with
respect to the equatorial plane, in the approximation ðjθ −
π=2j ≪ 1Þ the metric tensor gμν in Eq. (1) is a function of r
up to Oððθ − π=2Þ2Þ.

A. Equatorial circular orbits

Consider equatorial circular orbits θ ¼ π=2 in a given
metric (1). The geodesic equations in the equatorial plane
take the following form:

dt
dτ

¼ Egϕϕ þ Lgtϕ
g2tϕ − gttgϕϕ

;
dϕ
dτ

¼ −
Egtϕ þ Lgtt
g2tϕ − gttgϕϕ

;

grr

�
dr
dτ

�
2

¼ VðrÞ; ð2Þ

where τ is an affine parameter, E and L are the specific
energy and specific angular momentum of the particles
moving along the timelike or null geodesics γμ

E ¼ −_γμgμt; L ¼ _γμgμϕ; _γμ ¼ dγμ=dτ; ð3Þ

and the radial potential VðrÞ is defined from the condition
_γμ _γ

μ ¼ ε by

VðrÞ ¼ εþ E2gϕϕ þ 2ELgtϕ þ L2gtt
g2tϕ − gttgϕϕ

; ð4Þ

with ε ¼ −1 for timelike and ε ¼ 0 for null geodesics.
Quantities E and L are conserved since they are associated

with Killing vectors ∂t and ∂ϕ, respectively. For circular
orbits in the equatorial plane, the following conditions must
hold: VðrÞ ¼ 0 and ∂rVðrÞ ¼ 0. In the case of the timelike
geodesic, these determine the specific energy E, the specific
angular momentum L, and the angular velocity Ω of the
particles moving on circular orbits:

E ¼ −
gtt þ gtϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtϕΩ − gϕϕΩ2
q ; ð5aÞ

L ¼ gtϕ þ gϕϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕΩ − gϕϕΩ2

q ; ð5bÞ

Ω ¼ dϕ
dt

¼
−∂rgtϕ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtϕÞ2 − ∂rgtt∂rgϕϕ

q
∂rgϕϕ

: ð5cÞ

Timelike circular orbits in the equatorial plane exist only if
the following inequality holds (see Ref. [104] for details):

gtt þ 2gtϕΩþ gϕϕΩ2 < 0: ð6Þ

For all stable circular orbits, the condition ∂
2
rVðrÞ < 0

holds. The innermost timelike stable circular orbits
rISCO are determined by the limit of this inequality
∂
2
rVðrÞjr¼rISCO ¼ 0, i.e.,

E2
∂
2
rgϕϕþ2EL∂2rgtϕþL2

∂
2
rgtt−∂

2
rðg2tϕ−gttgϕϕÞ¼0: ð7Þ

When inequality (6) saturates (i.e., the left-hand side is
strictly equal to zero), one obtains the innermost unstable
null circular orbits for massless particles ε ¼ 0, called
photon orbits with radius rph. More generally, for an
arbitrary null circular orbit the conditions VðrphÞ ¼ 0

and ∂rVðrphÞ ¼ 0 with ε ¼ 0 leads to

ρ2gtt þ 2ρgtϕ þ gϕϕ ¼ 0;

ρ ¼ 1

∂rgtt

�
−∂rgtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂rg2tϕ − ∂rgtt∂rgϕϕ

q �
; ð8Þ

where we introduce an impact parameter ρ ¼ L=E instead
Ω, which is more suitable for describing null geodesics.
Such orbits can be both stable and unstable.

B. Photon region

Consider now more general photon structures such as
fundamental photon surfaces (FPSs) and a photon region
(see Refs. [56,57,62] for details). According to Ref. [62],
null geodesics with a fixed value of the conserved impact
parameter ρ can propagate only in the regions defined by
the inequality
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ρ2gtt þ 2ρgtϕ þ gϕϕ ≥ 0: ð9Þ

For example, a gravitational shadow for an asymptotic
observer can be formed by null geodesic only with impact
parameter ρ such that the regions (9) are connected and
contains both the horizon and spatial infinity. Thus, the
determination of the range of the impact parameters, where
the shadow is capable to be formed, can be considered as a
preliminary estimation for further insights. As a rule, if the
solution exhibits additional equatorial mirror symmetry Z2

(i.e., θ → π − θ), then the acceptable values ρ lie in
intervals ρi ≤ ρ ≤ ρj, where ρi corresponds to different
equatorial circular photon orbits riph described by Eq. (8)
[54].1 Solving the first Eq. (8) with respect to ρ we find an
alternative expression

ρi ¼
1

gtt

�
−gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gttgϕϕ

q ����
r¼riph;θ¼π=2

: ð10Þ

After one has determined the acceptable range of the
impact parameter ρ, we can proceed to the determination of
the FPSs [62,105–107], which play a key role in the process
of shadow formation since they capture null geodesics with
a fixed value of the impact parameter. Consider an arbitrary
hypersurface S of the form r ¼ fðθÞ. To determine the
fundamental photon surfaces and regions, we will use the
master equation [106,107] with the vector ξμ normal to S,
i.e., ξμ∂μ ¼ N−1ð∂r − ðgrr=gθθÞf0∂θÞ up to some factorN−1.
The master equation can be written as a nonlinear differ-
ential equation of the second order (up to the multiplicative
factors)

CðρÞf00 þ 1

2

X4
n¼1

X3
m¼1

Pnmðρ − ωÞm−1ðf0Þn−1 ¼ 0; ð11aÞ

CðρÞ ¼ ρ2gtt þ 2ρgtϕ þ gϕϕ; ð11bÞ

Pnm ¼

0
BBBBB@

gθθg̃ϕϕgrr · ∂r lnðgttgθθÞ 2gttgθθgrr · ∂rω gttgθθgrr · ∂r lnðg̃ϕϕgθθÞ
−g̃ϕϕ · ∂θ lnðgttgθθðgrrÞ2Þ −2gtt · ∂θω −gtt · ∂θ lnðgθθg̃ϕϕðgrrÞ2Þ
g̃ϕϕ · ∂r lnðgttgrrðgθθÞ2Þ 2gtt · ∂rω gtt · ∂r lnðgrrg̃ϕϕðgθθÞ2Þ
−g̃ϕϕgrrgθθ · ∂θ lnðgttgrrÞ −2gttgrrgθθ · ∂θω −gttgrrgθθ · ∂θ lnðg̃ϕϕgrrÞ

1
CCCCCA; ð11cÞ

where

g̃ϕϕ ¼ gϕϕ − g2tϕ=gtt; ω ¼ −gtϕ=gtt: ð12Þ

The metric tensor depends on the coordinate θ and function
fðθÞ, and the problem is a second-order nonlinear ordinary
differential equation. The inequality CðρÞ ≥ 0 coincides
with definition (9). The additional equatorial mirror sym-
metry Z2 implies the same FPS symmetry. In this case, one
of boundary conditions is formulated as f0ðπ=2Þ ¼ 0. The
condition that FPSs orthogonally intersect the boundary of
the region defined by Eq. (9) [62] ensures the compactness
of FPS spatial section. The photon region is obtained as a
union of the fundamental photon surfaces for all values of ρ
from the acceptable range. As in the case of the photon
surface, geodesics winding around the FPSs form the
boundary of the gravitational shadow and set of the
relativistic images. In many sophisticated spacetimes,

the differential Eq. (11a) can be solved only numerically.
For a chosen value ρ, the equation is solved with the finite
difference method with condition f0ðπ=2Þ ¼ 0 and
fðπ=2Þ ¼ f0, where f0 is a subject of the shooting method.
The parameter f0 is considered to be correct if FPSs
intersect the boundary of the region defined by Eq. (9)
orthogonally up to a predefined precision.

C. Local observer basis and conserved quantities

Generally, the axially symmetric spacetimes do not
permit to construct their shadows or accretion disk image
analytically unless they posses the third constant of motion
[56,57]. To overcome this issue, we will construct the
gravitational shadows and thin accretion disk image
numerically. In order to generate the image of the sky
observed by a distant observer in the vicinity of the image
of a gravitating object, we use the backward ray-tracing
method [4,28]. The observer with a camera is placed at
some point rO, θO, ϕO [e.g., the red dot in Fig. 1(a)]. Null
geodesics are integrated in the backward direction starting
from the camera towards the gravitating object [schemati-
cally, the black sphere in Fig. 1(a)]. At some step, the

1This follows from the fact that the circular equatorial orbits
correspond to the local extremum on the left-hand side of
inequality (9).
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geodesic can intersect a thin accretion disk or a distant
sphere at rC. Also, it can achieve a point that is very close to
the horizon/singularity. The condition of the proximity to
the horizon/singularity, where the geodesic is considered
captured, is chosen as r < rH;S þ ϵ, where rH;S is the
coordinate of the horizon/singularity and ϵ is some small
positive number. The tolerance ϵ is chosen in a such way
that the final image is not changed appreciably for a further
decrease of ϵ. The distant sphere at rC or accretion disk is
considered to be a source of light.
The initial position of all geodesics is just the camera

position. The initial momentum pμ differs for each

geodesic curve and depends on the angle at which it enters
the camera. We express the momentum in terms of the local
reference frame fêðtÞ; êðrÞ; êðθÞ; êðϕÞg, where

(i) êðtÞν is the observer’s four-velocity, which is a
timelike vector;

(ii) êðrÞν is the direction opposite to the one the camera is
pointing to. For example, the direction away from
the gravitating object. This direction is opposite to
the zenith of the observer’s celestial sphere;

(iii) êðθÞν is the “upward” direction for the camera;
(iv) êðϕÞν is the “rightward” direction for the camera.

Usually, one parametrizes the projection of geodesics onto
the observer’s sky by a pair of celestial coordinates α ∈ ½0; π�
and β ∈ ½−π=2; π=2�, which are related to the 4-momentum
of the photon as [108]

pμ ¼ êðtÞμ þ sinαêðθÞμ þ sinβ cosαêðϕÞμ þ cosβ cosαêðrÞμ:

ð13Þ

It is also convenient to introduce the coordinates ðX; YÞ of the
stereographic projection of the celestial sphere onto the plane

X ¼ 2 cos α sin β
1þ cosα cos β

; Y ¼ 2 sinα
1þ cos α cos β

; ð14Þ

and the 4-momentum of the photon reads as

pμ ¼ 1

X2 þ Y2 þ 4
ððX2 þ Y2 þ 4ÞêðtÞμ − ðX2 þ Y2 − 4ÞêðrÞμ þ 4YêðθÞμ þ 4XêðϕÞμÞ: ð15Þ

The general stationary observer’s basis can be expanded in the coordinate basis f∂t; ∂r; ∂θ; ∂ϕg as follows (see
Ref. [109]):

êðθÞ ¼ Aθ
∂θ; êðrÞ ¼ Ar

∂r; êðϕÞ ¼ Aϕ
∂ϕ þ ξ∂t; êðtÞ ¼ ζ∂t þ γ∂ϕ; ð16Þ

imposing an orthonormal condition êðμÞλêðνÞλ ¼ ημν. The angular momentum of the observer is defined as

LO ¼ êðtÞμgμϕ ¼ ζgtϕ þ γgϕϕ: ð17Þ

The locally measured linear momentum of any particular photon is given by pðtÞ ¼ −êðtÞμpμ and pðiÞ ¼ êðiÞμpμ (where
i ¼ 1, 2, 3), hence:

pðtÞ ¼ ζE − γL; pðθÞ ¼ Aθpθ; pðϕÞ ¼ AϕL − ξE; pðrÞ ¼ Arpr: ð18Þ

The conserved quantities E ¼ −pt and L ¼ pϕ, defined in Eq. (5), describe, respectively, the energy and the angular
momentum of the photon measured by an observer at spatial infinity [110].
In this article, we will consider the zero angular momentum observers (ZAMOs) reference frame LO ¼ 0 (see

Ref. [109]). In this particular case

Aθ ¼ 1ffiffiffiffiffiffi
gθθ

p ; Ar ¼ 1ffiffiffiffiffiffi
grr

p ; Aϕ ¼ 1ffiffiffiffiffiffiffigϕϕ
p ; ζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕ

g2tϕ − gttgϕϕ

s
; γ ¼ −

gtϕ
gϕϕ

ζ; ξ ¼ 0; ð19Þ

FIG. 1. (a) the sphere coloring and a schematic example of the
ray tracing, the red dot is an observer, the black sphere represent
schematically a horizon or singularity (or another light-absorbing
surface), the outer sphere is a distant surface emitting the light
with the corresponding color, depending on its position θ, ϕ;
(b) an image of the flat space obtained by an observer θO ¼ π=2.
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and

pðθÞ ¼ ffiffiffiffiffiffi
gθθ

p
sin α; L ¼ ffiffiffiffiffiffiffi

gϕϕ
p

sin β cos α;

pðrÞ ¼
ffiffiffiffiffiffi
grr

p
cos β cos α; E ¼ 1þ γ

ffiffiffiffiffiffiffigϕϕ
p sin β cos α

ζ
:

ð20Þ

D. Shadow

This allows us to build a mapping from the celestial
sphere of the camera to the distant sphere decoded by some
color S2O → S2C, i.e., to assign a certain color to each point
of the observer’s celestial sphere S2O. For example, if the
observer captures an image of an empty spacetime (i.e.,
Minkowski spacetime parametrized by the spherical coor-
dinates), he or she will get the frame depicted in Fig. 1(b). In
the flat spacetime, we see the undistorted image of the
celestial sphere. However, the situation changes significantly
in the presence of a strong gravitational field, where the light
path significantly deviates [red geodesic in Fig. 1(a)],
creating pronounced effects of gravitational lensing (shadow,
relativistic images, and Einstein rings) [4].
If the shadow (set of geodesics caught by the horizon,

singularity or another absorbing surface) forms some
simply connected domain DSH in plane (X, Y), we will
characterize it by the following parameters: the vertical ΔY
and horizontal ΔX sizes of the shadow, the average radius
Rc, and the deviation from a circle ΔC [28]. Let us
introduce polar coordinates ðR;φÞ in the camera plane
as follows

X ¼ R cosφ; Y ¼ R sinφ: ð21Þ

Then, the simply connected boundary of the shadow can be
parametrized by the function R ¼ FSHðφÞ (which is con-
venient for the numerical interpolation). Additionally, one
can introduce functions XSHðφÞ ¼ FSHðφÞ cosφ and
YSHðφÞ ¼ FSHðφÞ sinφ. The horizontal and vertical sizes
can be found from the difference

ΔX ¼ Xmax
SH − Xmin

SH ; ΔY ¼ Ymax
SH − Ymin

SH ; ð22Þ

where max/min denote global maximum/minimum of the
corresponding quantities. The center of mass ðXc; YcÞ of
the shadow can be estimated as

Xc ¼
R
DSH

XdAR
DSH

dA
¼ 2

H
XSHF2

SHdφ
3
H
F2
SHdφ

;

Yc ¼
R
DSH

YdAR
DSH

dA
¼ 2

H
YSHF2

SHdφ
3
H
F2
SHdφ

; ð23Þ

where dA is the area element of the shadow domain DSH,
and similar formula is used for Yc. One can construct a
circle with a center in ðXc; YcÞ and radius Rc defined from
the following expression

R2
c¼

1

2π

I
dφfðXSHðφÞ−XcÞ2þðYSHðφÞ−YcÞ2g: ð24Þ

The dimensionless deviation from the circle is given by (see
Ref. [28])

ΔC2 ¼ 1

2πR2
c

I
dφ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXSHðφÞ − XcÞ2 þ ðYSHðφÞ − YcÞ2

q
− Rc

�2

: ð25Þ

The latter characteristic depends on the distance from the
observer to the gravitating object weakly and deserves
attention as reliable. Similarly, since absolute character-
istics ΔY, ΔX, and Rc depend on the position of the
observer strongly, it is useful to introduce more suitable
ratios

μY=R¼ΔY=ð2RcÞ; μX=R¼ΔX=ð2RcÞ; μY=X¼ΔY=ΔX:

ð26Þ

Note that for an equatorial (θO ¼ π=2) ZAMO the
equatorial size ΔX of the Z2-symmetric shadow can be
calculated analytically if the equatorial photon orbits are
known. Indeed, for a Z2-symmetric shadow, we can expect
that the shadow will have a maximum size at the middle of

the shadow Y ¼ 0 [54]. Therefore comparing the impact
parameter for the circular null orbit and for the equatorial
geodesic in the ZAMOs’ point, we can obtain the explicit
expression for the horizontal shadow size (Y ¼ 0) since
circular null orbits correspond to the boundary of the
shadow.

ΔX ¼ jXi − Xjj; Xi ¼
2 sin βi

1þ cos βi
;

sin βi ¼
ρi

gϕϕ þ gtϕρi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gttgϕϕ

q
; ð27Þ

where ρi and ρj correspond to forward and backward
equatorial circular null orbits [56,57] obtained from the
equations (8). For an asymptotic observer in an
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asymptotically flat spacetime, the horizontal size can be
estimated as

ΔX ¼ jρi − ρjj=rO þOðr−2O Þ: ð28Þ

Therefore, it is convenient to define a dimensional char-
acteristics such as Δx ¼ ΔXðrO − rHÞ (and similarly for
other quantities from the stereographic projection), where
the shift is introduced to get rid of the divergence near the
horizon or singularity at r ¼ rH. Such quantity is finite for
an infinitely distant observer and the corrections for a finite
rO are of the order Oðr−1O Þ.

E. Radiation from the accretion disk

The method that generates an image of the accretion disk
is similar to the method for shadows and relativistic images,
but the source of light is an accretion disk instead of a
distant sphere. The accretion disk is considered to consist of
stable circular timelike orbits in the equatorial plane θ ¼
π=2 and in the range rISCO ≤ r ≤ 30M. The set of celestial
angles α and β, which correspond to the null geodesics that
goes through the accretion disk forms the image of the
accretion disk on the observer’s sky within an initially
defined precision. The numerical ray-tracing algorithm
reproduces the complete image of the disk composed of
all relativistic images of different orders.
We consider thin accretion disk formed by a neutral

anisotropic fluid moving in the equatorial plane. The disk
height is considered negligible compared to its extension in
the horizontal direction. The model was studied by
Novikov and Thorne in [111,112], where they derived
an expression for the radiation flux from the surface of the
disk as a function of the radial coordinate r:

FðrÞ¼−
_M0

4π
ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

p ∂rΩ
ðE−ΩLÞ2

Z
r

rISCO

ðE−ΩLÞ∂rLdr: ð29Þ

Here, gð3Þ is the determinant of the induced metric of the
equatorial plane and _M0 is a constant representing the mass
accretion rate. The specific energy E, specific angular
momentum L, and angular velocity Ω of the particles on
a given circular orbit are given in the general form for a
stationary axisymmetric spacetime in Eq. (5). The observ-
able radiation flux for a distant observer is modified by the
gravitational redshift. The apparent intensity FO in each
point of the observer’s sky is given by

FO ¼ F
ð1þ zÞ4 ; ð30Þ

where z is the gravitational redshift. For a general stationary
and axially symmetric metric, z can be expressed in the
following form [113]:

1þ z ¼ 1þ Ωρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕΩ − gϕϕΩ2

q ; ð31Þ

whereΩ is the angular velocity on the circular orbit, and the
impact parameter ρ is related to the celestial coordinates α
and β for ZAMO reference frame by

ρ ¼ L
E
¼

ffiffiffiffiffiffiffigϕϕ
p

ζ sin β cos α

1þ ffiffiffiffiffiffiffigϕϕ
p

γ sin β cos α
: ð32Þ

F. Analysis of solutions

In what follows, we analyze two rotating solutions of the
scalar-tensor gravity from Ref. [92] performing the follow-
ing steps.
Step one: Analyze the equatorial circular orbits.

Both considered solutions have nonintegrable geodesic
dynamical systems (such as the Zipoy-Voorhees
metric [63]), but they still admit analytical description
of the equatorial circular orbits, which provide important
information about various physical phenomena. In par-
ticular, null circular orbits usually correspond to the
maximum and minimum values of the impact parameter
at which geodesics from the vicinity of the horizon/
singularity can reach spatial infinity, i.e., in principle
be observable. For an equatorial observer, such
orbits correspond to the equatorial dimensions of the
shadows (27). The results are described in Sec. IV.
Step two: Analyze the fundamental photon surfaces and

regions. As is well known, knowledge of the properties of
circular orbits is not enough to understand all the features of
the optical behavior of geometries. Hence, we need to
analyze the structure of photon surfaces, regions and their
generalizations [62], which are closely related to determin-
ing the shape of the gravitational shadow. To visualize the
photon regions, we use the standard diagram method
[56,57]. The results are described in Sec. V.
Step three: Construct the relativistic images and shadows

for these gravitating objects for different values of the
solution parameters. At this stage, we carry out a complete
numerical simulation of the shadows and patterns of
gravitational lensing arising under external illumination
of the gravitating object [4,28]. The results are described
in Sec. VI.
Step four: Study the observable radiation emitted by a

geometrically thin and optically thick accretion disk.
Astrophysical ultracompact objects are supposed to possess
accretion disks, e.g., the accretion disk was directly
observed in the vicinity of M87� [1]. Understanding the
features of accretion disks near compact objects that go
beyond the Kerr paradigm can help find new physics. The
results are described in Sec. VII.
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III. SOLUTIONS

Solutions that go beyond the Kerr paradigm are of
interest for searching for new physics and obtaining
constraints on a wide variety of extended theories of
gravity. Einstein gravity, minimally coupled to a scalar
field, often appears as a consistent truncation of many
larger theories. Assuming primary scalar hair, a rotating
generalization of FJNW static solutions becomes nontrivial
both for their analytic expression and for their interpreta-
tion. We consider here two such generalizations recently
proposed in Ref. [92]. One of them has a metric tensor in
the form of a Kerr solution with an additional conformal
factor in the sector ðr; θÞ. The other exists only for a
phantom scalar field and looks like the Tomimatsu-Sato
solution with an additional factor in the same sector ðr; θÞ.
The first will be called “Kerr-like” (KL) and the second
“Tomimatsu-Sato-like” (TSL). The first one is mostly
similar to the Kerr solution, while the second exhibits
new interesting physical features (see Ref. [92] for details).

A. Kerr-like geometry

One of the new rotating solutions for gravity with
minimally coupled scalar field given in Ref. [92] reads

ds2 ¼ −
Δ − a2sin2θ
r2 þ a2cos2θ

ðdt − ωdϕÞ2 þHðdr2 þ Δdθ2Þ

þ r2 þ a2cos2θ
Δ − a2sin2θ

Δsin2θdϕ2; ð33Þ

where

ω¼−
2aMrsin2θ
Δ−a2sin2θ

; H¼r2þa2cos2θ
Δ

�
1þb2

Δ
sin2θ

�−Σ2=b2

;

Δ¼ðr−MÞ2−b2; b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p
: ð34Þ

The solution is a rotating generalization of the Fisher
solution with the Zipoy-Voorhees oblateness parameter δ
constrained by the condition Mδ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 þM2

p
. The outer

horizon/singularity is at the point rH ¼ M þ b. A scalar
field can be either normal or phantom (for imaginary Σ).
The solution has the form of a Kerr black hole with
an additional common factor for dr2 and dθ2. The Ricci
scalar is

R ¼ 2Σ2

Δðr2 þ a2 cos2 θÞ
�
1þ b2

Δ
sin2 θ

�Σ2=b2

: ð35Þ

Near the horizon Δ ∼ 0, Ricci scalar is R ∼ Δ−1−Σ2=b2 . If
Σ2=b2 > −1 and Σ ≠ 0, then the solution is a naked
singularity. If Σ ¼ 0, then the solution is the vacuum

Kerr solution. Since
ffiffiffiffiffiffi
grr

p
dr ∼ Δ−1þΣ2=b2 is not an

integrable function for Σ2=b2 < 0 near rH, in this case
the point rH is infinitely far, and it is not a genuine
“horizon.” However, we will call this surface “horizon” for
Σ2=b2 > 0 since this solution generates a shadow similar to
the Kerr ones.

B. Tomimatsu-Sato-like geometry

A method for obtaining rotating generalizations of
FJNW using the Tomimatsu-Sato metric was presented
in Ref. [92]. The oblateness parameter δ ¼ 2 of the
Tomimatsu-Sato metric fixes the value of the phantom
scalar charge. As an example, the following rotating FJNW
solution with the constrained phantom scalar charge Σ2 ¼
−3ðM2 − a2Þ was generated

ds2 ¼ −
A
B
ðdt − ωdϕÞ2 þ B

p4W8
−
dr2 þ Bk2

p4W6
−
dθ2

þ B
A
k2W2

−sin2θdϕ2; ð36Þ

where

A ¼ p4W8
− þ q4sin8θ

− 2p2q2W2
−sin2θ½2W4

− þ 2sin4θ þ 3W2
−sin2θ�; ð37aÞ

B ¼ ½p2W2þW2
− − q2ðcos2θ þ 1Þsin2θ þ 2pWW2

−�2
þ 4q2cos2θ½pWW2

− þ ðpW þ 1Þsin2θ�2; ð37bÞ

C¼−p3WW2
−½2W2þW2

−þðW2þ3Þsin2θ�
−p2W2

−½4W2W2
−þð3W2þ1Þsin2θ�þq2ðpWþ1Þsin6θ;

ω¼2qMsin2θC
A

; W¼ðr−MÞ=k; W2
�¼W2�1; ð37cÞ

k¼Mp=2; q¼a=M; p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2=M2

q
; ð37dÞ

with M and a being mass and rotation parameter, respec-
tively. The constants p, q satisfy a constraint p2 þ q2 ¼ 1.
The regular “horizon” is placed at rH ¼ M þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

As we will see further, this surface is infinitely distant from
any point with finite r, so this is not a genuine horizon.
However, we will call this surface “horizon” for the same
reason as for the KL solution. The scalar field is purely
imaginary (phantom) and has a singularity at the horizon.
The curvature scalar is

R ¼ −24
M2 − a2

M4

W4
−

B
: ð38Þ

The function B has zero at the equatorial plane (the ring
singularity), where the scalar field is regular. The ring
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singularity is always outside the horizon for 0 < a=M < 1
and is defined by the equation

ð2rS − 3MÞð2rS −MÞ3 þMa2ð4rS − 3MÞ ¼ 0: ð39Þ

The largest difference between the singularity radius and
horizon radius is maxa=M

rS−rH
M ≈ 0.054 at a=M ≈ 0.95. In

the extremal limit, this solution has a trivial scalar field
[92], which gives the extremal vacuum Tomimatsu-Sato
δ ¼ 2 solution, which is known to coincide with the
extremal Kerr one.
The near-horizon geometry is not typical for standard

black holes

ds2 ¼ −f1ðdt − f5dϕÞ2 þ f2ðδrÞ−4dðδrÞ2
þ f3ðδrÞ−3dθ2 þ f4ðδrÞdϕ2; ð40Þ

where fi are some functions of θ and δr is a small deviation
from the horizon r − rH ¼ δr. The line element along the
radial direction is ds ¼ ffiffiffiffiffiffi

grr
p

dr ∼ ðδrÞ−2dr, which is not
integrable, and the “horizon” is infinitely far. In the static
limit, the near-horizon geometry has another asymptotic
behavior

ds2¼−ðδrÞ2dt2þðδrÞ−2dðδrÞ2þðδrÞ−1ðdθ2þsin2θdϕ2Þ:
ð41Þ

The chronology boundary defined by gϕϕ ¼ 0 is com-
pact and covers the horizon. The boundary at the equator is
defined by one of the following equations:

16ðr −MÞ3r −Ma2ð4r − 3MÞ ¼ 0; ð42aÞ

16ðr −MÞr3 þMa2ð4r −MÞ ¼ 0; ð42bÞ

64r6 þ 3Ma4ð4r − 7MÞ þ 4a2rðr −MÞ
× ð4r2 þ 20rM − 25M2Þ ¼ 0; ð42cÞ

where the second equation defines the root of multiplicity
two (but outside the equator it splits into two roots of
multiplicity one). Nevertheless, gϕϕ → 0 for cos θ → �1,
so there are no Misner strings.

IV. CIRCULAR ORBIT

A. KL geometry

In the KL geometry (33) Eq. (5) becomes

EðrÞ ¼ 1 − 2M
r þ a

M ðMr Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M

r þ 2a
M ðMr Þ3=2

q ; ð43aÞ

LðrÞ ¼
1 − 2a

M

�
M
r

�
3=2 þ a2

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M

r þ 2a
M

�
M
r

�
3=2

r ffiffiffiffiffiffiffi
Mr

p
; ð43bÞ

ΩðrÞ ¼
ffiffiffiffiffi
M

p

r3=2 þ a
ffiffiffiffiffi
M

p : ð43cÞ

One notes that E, L, and Ω do not depend on the scalar
charge Σ, i.e., they coincide with those from the traditional
Kerr black hole solution. Equation (7) for the ISCO takes
the form:

ðE2ðrÞ − 1Þr3 þ 2a2ME2ðrÞ − 4aMEðrÞLðrÞ
þ 2ML2ðrÞ ¼ 0; ð44Þ

which again coincides with the one in the Kerr black hole
case. The numerical values of the location of the event
horizon/curvature singularity rh=cs, the equatorial circular
photon orbit rph, and the inner marginally stable orbits
rISCO are shown in Fig. 2(a) as a function of the specific
angular momentum of the solution a. The figure includes
both prograde and retrograde motion of the massive
particles from the disk. In the extremal case a ¼ M, these
three functions approach each other. Because of that, we
consider only orbits that are in the vicinity of the curvature
singularity. In this case, our numerical method produces
physically meaningful results starting from a radial coor-
dinate at least ∼10−16M away from rh=cs. Throughout the
paper, we will assume that a > 0 for prograde2 motion of
particles of the thin accretion disk. Moreover, the full image
of the disk, constructed by the ray-tracing solver, includes
the path of both prograde and retrograde photons emitted
by the surface of the disk.
We note that the scalar charge Σ has no impact on the

equatorial circular orbits for KL solution, thus Fig. 2(a)
depicts also the Kerr case. However, the scalar charge Σ, as
a part of the oblateness parameter δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Σ2=M2

p
entering explicitly grr and gθθ, highly influences the overall
disk image creation as the ray-tracing procedure shows
further. In the static case a ¼ 0 the ISCO of the massive
particles coincides with that for the Schwarzschild black
hole at rISCO ¼ 6M.

2Prograde motion of particles from the thin accretion disk
requires the same signs of the particle’s angular momentum L and
the specific angular momentum a of the compact object, i.e.,
La ≥ 0. On the other hand, for retrograde orbits one has La ≤ 0.
Traditionally, we consider L > 0, thus the left-hand side of
Fig. 2(a) a < 0 represents retrograde orbits and the right-hand
side a > 0 represents prograde orbits.
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B. TSL geometry

In the TSL geometry (36) the ISCO equation (7)
becomes very complicated, hence we solve it numerically
as shown in Fig. 2(b). The structure of the diagram is
qualitatively similar to the previous case. For comparison
we have also presented the location of the horizon, the
equatorial photon orbit and the ISCO for the Kerr black
hole observing only minimal deviations in these quantities
for the two solutions. As in the previous case positive
values of the specific angular momentum a > 0 correspond
to prograde orbits, approaching the compact object more
closely. On the other hand, negative values of specific
angular momentum a < 0 denote retrograde orbits of the
particles, which appear further away from the central
object.

V. PHOTON REGION

A. KL geometry

The inequality (9) depends on the components of the
tensor metric along the Killing vectors ∂t, ∂φ. As far as they
are the same for solution (33) and for the Kerr metric, the
inequality does not depend on the scalar charge Σ and
coincides for both of them. First, we find values of ρ when
the horizon/singularity is not accessible from the spatial
infinity. Null geodesics with such ρ cannot get into the
horizon/singularity, so they will not correspond to the
shadow. From Eq. (8) we find

ρ� ¼ −a − 6M sin

�
1

3
arccosða=MÞ − πð1� 4Þ

6

�
;

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2� − a2

q
=

ffiffiffi
3

p
; ð45Þ

where r� corresponds to forward and backward equatorial
circular orbits.

In the subextreme case jaj ≤ M null geodesics arriving
from the infinity can reach the horizon/singularity only for
the following interval of the impact parameters

ρ− < ρ < ρþ: ð46Þ
In particular, since the position of these orbits does not
depend on Σ, the horizontal size of the shadow remains the
same for different values of the scalar charge at least for an
observer with θO ¼ π=2. However, the shadow changes as
the structure of the surfaces of the photon region changes.
In the trivial case a ¼ 0 and Σ ¼ 0, the circular orbits r�

coincide and correspond to the standard photon sphere of
the Schwarzschild metric r� ¼ rPS ¼ 3M. At nonzero Σ
even in static regime (a ¼ 0), the photon sphere immedi-
ately decays into the photon region (similarly to the Zipoy-
Voorhees solution [54]).
In order to construct the photon region, first we numeri-

cally construct the continuous family of fundamental
photon surfaces (11) for all ρ from the range (46) as
described before. The result of the numerical study is
shown in Fig. 3. Here we use the standard method for
photon region visualizations proposed in Refs. [56,57]. The
left part of each panel in Fig. 3 is an illustration of a photon
region for the Kerr metric, while the right one illustrates the
photon region of the solution (33) with various nonzero Σ
and the same rotation parameter a ¼ 0.4.
For the real scalar field [Figs. 3(a)–3(c)], the photon

region shrinks vertically for higher values of the scalar
charge Σ. Phantom field behaves differently—the photon
region enlarges for higher Σ [Figs. 3(d)–(f)]. As a result, the
shadow created by this gravitational source is deformed in
comparison with the Kerr metric. Since the equatorial
circular orbits are not changed, the horizontal size ΔX
of the shadow remains the same and the entire shadow is
flatter/elongated. At the same time, the presence of a well-
defined Kerr-like photon region indicates that the singu-
larity is a weak one (in the sense of Ref. [67]) and the

FIG. 2. Location of the event horizon/curvature singularity rh=cs (black dashed curve) of (a) the KL and (b) TSL geometries, location
of the event horizon/curvature singularity rh=cs (black dashed curve), the equatorial circular photon orbit rph (blue curve), and the inner
marginally stable orbits rISCO (red curve) as a function of the specific angular momentum a. In the extremal limit a ¼ M the positions of
the curvature singularity, the equatorial circular photon orbit and the inner marginally stable orbit approach each other similar to the Kerr
black hole. The positive values of the specific angular momentum a correspond to prograde orbits, while the negative values of a
correspond to retrograde orbits of the particles. Mass M is considered to be equal to 1.
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corresponding shadow has a more or less smooth boundary
and a set of relativistic images near the shadow [114].
Nevertheless, as we will see further, some additional optical
structure may appear inside the shadow.
At large values of the parameter Σ, the fundamental

photon surfaces in the photon region turn out to be more
and more deformed and displaced in comparison with Kerr.
For example, for the KL solution with a ¼ 0.4M,
Σ ¼ 1.1M, the maximal deviation from r ¼ const surfaces
is of the order of 10−1M. For the real scalar field, the
surfaces are curved toward the singularity, and the photon
region is not covered in a one-to-one manner by funda-
mental photon surfaces since there are such points in the
photon region that correspond to FPSs with different ρ
[since the photon region goes beyond the boundary points
of individual FPSs depicted with blue lines in Fig. 3(c)], as
it was in the case of the Zipoy-Voorhees or Tomimatsu-Sato
metrics. Particularly, in the static case, the photon region
will be two-sheeted since each photon surface in the photon
region corresponds to two impact parameters ρ and −ρ.
Such many-valuedness of the photon region foliation by

FPSs is apparently an important feature of nonintegrable
dynamical systems. In particular, in all integrable dynamical
systems of the Kerr type, the photon region is single-valued.
As shown in Ref. [62], in the case of two-sheeted photon

region, the fundamental photon function is more instructive,
representing a mapping from the impact parameter to the
corresponding fundamental photon surface (see a visualiza-
tion of the function in Fig. 4). A slice ρ ¼ const represent an

FIG. 3. Photon regions of the KL solution (33) in comparison with Kerr metric with the same M ¼ 1, a ¼ 0.4: (a)–(c) for the scalar
field, (d)–(f) for the phantom scalar field (Σ → iΣ). Red lines denote the fundamental photon surface, the blue line is formed by the
boundaries of the fundamental photon surfaces, the brown line denotes the ergoregion, and the blue region denotes the interior region of
the UCO.

FIG. 4. Photon function for (a) Kerr, (b) TSL, (c) KL with real
scalar field, and (d) KL with phantom scalar field with
M ¼ 1, a ¼ 0.4.
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individual FPS. From Fig. 4(c) it follows that the minimal
distance between singularity and photon region corresponds
not to a circular orbit with ρ� but to an FPS with some
intermediate value of the impact parameter. For such inter-
mediate values of ρ, the corresponding null geodesics are not
equatorial. This leads to the fact that the shadow created by
the solution (33) with the real scalar field for an equatorial
observer has aminimal deviation from the center of theobject
not at the equator since the nonequatorial geodesics forming
the shadow pass closest to the gravitational source. For a
phantom solution, the situation is opposite [Fig. 4(d)]. At a
sufficiently large Σ, the photon region and FPSs differ
significantly from the case of KL.
In the case of the real scalar field, if the scalar charge is

large enoughΣ > ΣcrðM; aÞ, FPSs can partially sink into the
singularity. As a result, a part of the outer shadow contour
ceases to create relativistic images and even disappears since
there are no longer photon surfaces on which geodesic can
wind. In this case, the singularity becomes stronger [67] as it
is no longer covered by photon surfaces for all validρ. For the
higher rotation parametera, the critical valueΣ is smaller and
tends to zero in the extreme limit.

B. TSL geometry

In the static case, two null circular orbits coincide and
correspond to the photon surface

r� ¼ rPS ¼ 3M; ρ� ¼ � 25

6

ffiffiffi
5

3

r
M: ð47Þ

Expressions for the null circular orbits in the extreme limit
can be evaluated explicitly as well

r− ¼ 4M; rþ ¼M; ρ− ¼−7M; ρþ ¼ 2M: ð48Þ

In the general rotating case, values r� and ρ� are different
and do not have a simple analytical expression and are
determined from Eq. (8). Their numerical values as a
function of parameter a are shown in Fig. 5(a) (red curves).
For comparison, the circular orbits in the Kerr metric are
depicted with blue curves, while the black dashed lines
correspond to the horizons. The plots of the impact
parameters ρ� are very close to each other as well and
coincide in the extreme limit [Fig. 5(b)]. Note that at a value
of a=M ≈ 0.686714, the circular photon orbit r− coincides
with rISCO and subsequently for greater a=M exceeds it
r− > rISCO. As a consequence, the accretion disks will fall
into the photon region which can lead to a change in the
shape of the images generated by such a light source.
The continuous family of FPSs for all ρ from the range

found numerically is depicted in Fig. 6. The photon region
almost exactly resembles the case of the Kerr metric. In
particular, the photon function is almost one sheeted, and
each FPS can be approximated with the surfaces r ¼ const
with good precision. For example, for a ¼ 0.9M the
deviation from the r ¼ const surfaces has the order of
10−3M, which is two orders smaller than the deformation of
surfaces in KL geometry.
This can also be observed from the structure of the

photon function in Fig. 4(b). Thus, this solution belongs to
the class of Kerr mimickers, and one can expect that the
shadow of this solution is difficult to distinguish from the
Kerr one.

FIG. 5. Radius r (a) and parameter ρ (b) for the circular orbits as a
function of the rotating parameter a for Kerr (blue), and rotating
TSL (red),M ¼ 1. Dashed black lines denote the horizons for Kerr
and TSL.

FIG. 6. Photon regions of the TSL solution (36) in comparison with Kerr metric with the same parametersM ¼ 1, a for: (a) a ¼ 0.2,
(b) a ¼ 0.4, (c) a ¼ 0.8. Red lines denote the fundamental photon surface, blue line is formed by the boundaries of the fundamental
photon surfaces, gray denotes the ergoregion, the blue region denotes the interior region of the UCO (under horizon or singularity),
green encodes the region of causality violation.
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VI. SHADOWS

A. KL geometry

Let us estimate the equatorial size of the shadow for an
equatorial observer using the analytical result (27). The
horizontal size does not depend on the scalar charge Σ and
is given by the following analytical formula [56,57]:

ΔX ¼ jXþ − X−j; X� ¼ 2 sin β�
1þ cos β�

;

sin β� ¼ rO
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðrOÞ

p
ρ�

rOðr2O þ a2Þ þ 2aMða − ρ�Þ
: ð49Þ

The dependence of quantities ΔX and Δx as a function of
the rotation parameter a and the position of the observer rO
is shown in Fig. 7. For an asymptotic observer rO ≫ M
functionΔx tends to some finite limit and we can obtain the
following asymptotic series

ΔX ¼ 6
ffiffiffi
3

p
cos

�
1

3
arccosða=MÞ − π

6

��
M
rO

−
M2

r2O

�

þO

�
M3

r3O

�
: ð50Þ

For static and extreme limits, there is a simple, precise
analytical expression for the horizontal size of the shadow

ΔXstatic ¼ 6
ffiffiffi
3

p
M=rO; ΔXextreme ¼ 9M=rO: ð51Þ

First, consider the strong gravitational lensing image for
the static limit. The zero scalar charge Σ ¼ 0 corresponds to
the Schwarzschild solution whose shadow is shown in
Fig. 12(a), where one can find the main features of strong
gravitational lensing—shadow formation (black area) and
relativistic images.
For the case with a small nonzero scalar charge

Σ ≤ b ¼ M, the corresponding image of the strong gravi-
tational lensing is shown in Fig. 12(b). As expected, the
shadow and the image of gravitational lensing slightly
differ from the ones for Schwarzschild solution. The main
difference is that the shadow is flattened in comparison
with the Schwarzschild case. In particular, deviation from
the circle ΔC increases monotonically for the higher Σ.

FIG. 7. The dependence of (a) the horizontal size ΔX for KL,
(b) the normalized horizontal size Δx for KL, (c) the horizontal
size ΔX for TSL, (d) the normalized horizontal size Δx for TSL
as a function of the observer’s position rO for different parameters
a with M ¼ 1.

FIG. 8. Shadow boundaries for (a) Kerr and (b) the TSL
solution (36) with M ¼ 1 and a ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 for
an equatorial observer rO=M ¼ 10 000, θO ¼ π=2.

FIG. 9. Comparison of the shadows between Kerr and the TSL
solutions (36) for an equatorial observer rO=M ¼ 10 000,
θO ¼ π=2: (a) deviation from the circle, (c) difference between
deviations, (b) ratios μY=X (red dashed), μX=R (blue), and μY=R
(green), and (d) horizontal and vertical shadow size and average
radius. Black dots denote values calculated numerically and other
curves are obtained with interpolation.
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The evolution of the image with different Σ is similar
to one for Zipoy-Voorhees metric with another δ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Σ2=M2

p
> 1 [16,54]. Thus, the solution in this range

of parameters mimics the Schwarzschild solution and has
the type of weakly naked singularities.
However, further increase of the scalar charge Σ leads to

more appreciable effects associated with the presence of a
scalar field. The shadow does not represent a (more or less
deformed) solid disk, and one can find narrow regions with
scattered (not absorbed) geodesics inside the convex
envelope of the shadow [Fig. 12(c)]. There are geodesics
scattered inside the shadow (e.g., narrow colored regions
inside the shadow disk) since these photons enter the
photon region, fly through the region sufficiently close

to the singularity (i.e., without FPSs), and then they can
leave the trapped region. This case fundamentally differs
from the Schwarzschild or Kerr cases [53].
For some large value Σ, the outer shadow contour merges

with the inner contours [Figs. 12(d)–12(i)]. In these cases,
the shadow drastically differs from the Kerr one due to the
fact that the FPSs are very deformed and very close to the
singularity as explained in the previous section.
For a rotating solution, the result is similar. At small

values of Σ, the shadow and the picture of gravitational
lensing slightly differ from Kerr [see Figs. 13(a)–13(b)],
but shadow becomes more circular than for the Kerr
solution, i.e., the deviation from the circle ΔC decreases
and reaches a certain minimum value and then monoton-
ically increases (we use a convex hull of the shadow to
calculate circularity since the shadow boundary has a very
noncircular shape).
At large valuesΣ, the solution is strongly deformed and its

boundary is not well defined in numerical solutions [Figs. 13
(c)–13(f)]. The transitionvalueΣ at which the shadow differs
significantly from the Kerr’s shadow (i.e., the shadow is not
ellipselike and it is not simply connected) occurs at lower
values than in the nonrotating limit. Particularly, in the
extreme limit, the shadow differs from the extreme Kerr
shadow significantly even for small values ofΣ [Figs. 14(a)–
14(c)]. This optical behavior confirms our previous analysis
of fundamental photon surfaces and functions.
As expected from the previous analysis, solutions with

phantom scalar fields demonstrate shadows with an oppo-
site behavior—shadows elongate in the vertical direction

FIG. 10. Dependence of the radiation energy flux over the disk on the radial distance in the KL geometry. (a) Static case a ¼ 0 and
Σ2=M2 in the range f−0.5; 0; 0.8; 1.2; 2.0g (dashed black, black, red, green, blue). In this case, the reference is the black solid curve,
corresponding to the Schwarzschild black hole with the maximum of the flux function FðrÞ given by FSch

max ¼ 1.37 × 10−5M _M.
(b) Rotating case for a=M ¼ 0.5 and Σ2=M2 in the range f−0.5; 0; 0.8; 1.2; 2.0g (dashed black, black, red, green, blue). (c) Rotating
case for a=M ¼ 0.9 and Σ2=M2 in the range f−0.5; 0; 0.8; 1.2; 2.0g (dashed black, black, red, green, blue). (d) Near-extremal case for
a=M ¼ 0.998 and Σ2=M2 in the range f−0.5; 0; 0.1; 0.2; 0.3g (dashed black, black, red, green, blue).

FIG. 11. Dependence of the radiation energy flux over the disk on
the radial distance in theTSLgeometry: static casea=M ¼ 0 (black
curve), rotating case a=M ¼ 0.5 (red curve), rotating case a=M ¼
0.9 (green curve), near-extremal case a=M ¼ 0.998 (blue curve).
In all cases, the flux function FðrÞ is normalized to the maximal
flux FSch

max ¼ 1.37 × 10−5M _M of the Schwarzschild black hole.
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(see Figs. 15 and 16). For all values of Σ, the shadow does
not have additional internal structure, but deforms stronger
for the larger value of Σ. Thus, this solution is a good Kerr
mimicker if Σ is not very large.

B. TSL geometry

Let us consider a shadow from the solution (36) observed
by an equatorial observer. Using Eq. (27), we can deter-
mine the equatorial size of the shadow. Since there is no
simple analytical expression for ρ, the function of the
equatorial size of the shadowΔx is constructed numerically
in Figs. 7(c)–7(d). An asymptotic observer of a rotating
solution far from the extreme limit beholds a larger shadow
for the solution (36) than for the Kerr solution.
For static and extreme limits, the precise analytical

expressions for the equatorial size of the shadow are

ΔXstatic ¼
25

3

ffiffiffi
5

3

r
M=rO; ΔXextreme ¼ 9M=rO: ð52Þ

The sizes ΔX of the shadow of the extreme solution (36)
and Kerr solution completely coincide as expected. For a
static solution, the equatorial size differs even for an
asymptotic observer, namely, it is 3.5% larger for the
solution (36) than for the Kerr solution. Furthermore, we
analyze size ratios (e.g., μX=R) as they are less dependent on
the observer’s position (which is inevitably finite in
numerical calculations).
The result of the numerical modeling of the shadow is

shown in Fig. 17. For the sake for comparison, we also
present an image of a gravitational lensing in the Kerr
metric with the same values of the rotation parameter a. As
expected from the aforesaid analysis of the photon region,
the image of gravitational lensing is almost identical to the
Kerr metric. However, there are a number of differences,
whose investigation requires a more detailed analysis.
In order to clarify these differences, we construct a

family of shadow boundaries for different values of the
rotation parameter (Fig. 8) as well as the corresponding
fitted circles. These families look quite similar, but in fact
they differ in the following way. The ratios μY=X (red
dashed), μX=R (blue), and μY=R (green) from Eq. (26) are
shown in Fig. 9(b), as well as the deviation from a circle
ΔC (25) in percents as a function of the rotation parameter
in Fig. 9(a). The difference between the family of Kerr and
TSL metrics becomes more obvious. The shadow boundary
of the solution (36) is more circular than the corresponding
shadow of the Kerr metric for all rotation values. In fact, the
difference between deviations has a maximum at a ≈ 0.9M
equal to ≈0.79% as shown in Fig. 9(c). Note that, the
deviation from circle does not exceed 10%, which is
consistent with the observations of M87 [1]. Thus, at the
given level of observation precision, this solution is
optically indistinguishable from the Kerr solution.
Figure 9(d) illustrates more observer dependent character-
istics such as the vertical ΔY and ΔX horizontal size of the
shadow and its average radius Rc. The shadow of the TSL

solution is generally larger, and the vertical size of the
shadow decreases with increasing a, in contrast to the Kerr
family. In the extreme limit, the shadows coincides as
expected, since both solutions coincide for a ¼ M.

VII. IMAGE OF THIN ACCRETION DISK IN THE
GEOMETRY OF KL AND TSL SOLUTIONS

In this section we will numerically obtain the apparent
images of thin accretion disk for the KL and TSL solutions.
The accretion process is modeled by the collectivemovement
of neutral massive particles (dust) on stable circular orbits in
the equatorial plane. It is assumed also that the radiation from
the disk occurs isotropically [111]. Our study is going to
consider restricted values for the scalar charge tomass ratio in
the range −9 ≤ Σ2=M2 ≤ 50 and values of the specific
angular momentum a=M ¼ f0; 0.5; 0.9; 0.998g. The latter
corresponds to the static, the rotating, and the near-extremal
cases. In order to capture the strongest relativistic effects
around a compact object the physical extension of the disk is
taken up to the radial distance r=M ¼ 30. The inner edge of
the disk is defined by a particular ISCO as depicted in
Fig. 2(a). The observer is assumed to be positioned at
rO=M ¼ 10 000, which represents an effective asymptotic
infinity in the spacetime.

A. KL geometry

The radial distribution of the radiation energy flux over
the surface of the disk is depicted in Fig. 10. In the static
case a ¼ 0 [Fig. 10(a)] the flux FðrÞ depends on the values
of the scalar charge Σ. Compared to the Schwarzschild case
(Σ2=M2 ¼ 0) the maximum value of FðrÞ increases slowly
for larger positive values of Σ2=M2 and also slowly
decreases for Σ2=M2 < 0 (the phantom case). The flux
values are normalized to the maximum energy flux FSch

max ¼
1.37 × 10−5M _M of the Schwarzschild black hole. The
radial location of the peak values of the flux function tend
to get closer to the ISCO (rISCO ¼ 6M) for an increasingly
positive Σ2=M2, while in the phantom case the peak is
shifted away from ISCO. This behavior is shown in Table I.
Similar situation occurs in the rotating case. For exam-

ple, at a=M ¼ 0.5 [Fig. 10(b)] the peaks of the flux are at
least three times larger than the Schwarzschild peak FSch

max.
However, the peaks occur closer to the compact object
between r=M ¼ 5.42, corresponding to Σ2=M2 ¼ 50, and
r=M ¼ 6.88, corresponding to Σ2=M2 ¼ −9 (Table I). For
comparison, the ISCO for the Kerr black hole (Σ2=M2 ¼ 0,
a=M ¼ 0.5) is located at r=M ¼ 4.23, while its flux peak is
at r=M ¼ 6.62, (Table I).
Increasing the specific angular momentum of the com-

pact object to a=M ¼ 0.9 the peaks of the flux function
increase at least 10 times that of the Schwarzschild case
[Fig. 10(c)]. The radial location of the peaks occurs in
2.41 ≤ r=M ≤ 4.15 for −9 ≤ Σ2=M ≤ 50. The ISCO for
the Kerr black hole (Σ2=M2 ¼ 0, a=M ¼ 0.5) is located at
r=M ¼ 2.32, while its flux peak is at r=M ¼ 3.44.
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Although this tendency also holds in the near-extremal
case a=M ¼ 0.998, the maximal values of the flux function
increase very fast when increasing the scalar charge. The
location of these peaks is almost at the ISCO (r=M ¼ 1),
which in this case approaches the event horizon/curvature
singularity.
InTable II,wehavecompared the radial flux functionpeaks

of theKerraccretiondiskconcerningthoseintheKLgeometry
for a=M ¼ 0, 0.5, 0.9, and 0.998. In the static case a=M ¼ 0,
the phantom scalar field suppresses the maximal values of
radiationenergyflux in theKLgeometrycompared to theKerr
solution.Contrary to thephantomcase, thepresenceof the real
scalar field strengthens the radial energy flux peak compared
to theKerrgeometry. Intherotatingcase,botheffectsavailable
in the static case are enhancedwith the increases in the angular
momentum of the compact object. Moreover, the maximal
boost of the radiated flux is especially significant at both near-
extremal value of the angular momentum a=M ¼ 0.998 and
large value of the scalar charge Σ2=M2 ¼ 50.
Lookingat the apparent images of thedisks in the staticKL

case, one notes that the observable energy flux FO is more
widely distributed over the surface of the disk around its
corresponding peaks. Unlike the static case, in the rotating
case the most significant part of FO tends to be distributed

over smaller areas around the peaks, thus making the
apparent image of the rest of the disk to look darker.
For the rotating compact objects the maximal values of

the observable flux FO are significantly larger than in the
static case. However, most of the radiation is concentrated
around the vicinity of the peak and there exists a larger
discrepancy between the value of the flux maximum and
the remaining part of the flux distribution. Since the
observable flux in our images is normalized by its maxi-
mum value, it causes the disks to appear dimmer than in the
static case. We should note however, that this is a relative
effect characterizing the flux distribution in each particular
case. The apparent brightness of the disk images should not
be compared for different values of the solution parameters
due to different normalization of the presented observable
flux. In order to be able to draw conclusions about the disk
luminosity when we vary the spin or the oblateness of the
compact objects, we have tabulated the absolute value of
the maximum observable flux in Tables III and VI.
The study of the observable images of thin accretion

disks, as seen by a distant observer, is presented in the
following subsections.

1. Static case a=M=0

Here we consider the apparent images of a thin accretion
disk for −9 ≤ Σ2=M2 ≤ 3.9 in the static KL geometry
(Figs. 18–20). The asymptotic observer is located at r=M ¼
10 000 and the inclination angle is θO ¼ π=2. In all cases
the disk extends from ISCO at r=M ¼ 6 to r=M ¼ 30. This
interval places the matter of the disk in the strong part of the
gravitational field, where the most interesting relativistic
effects can be captured.
Disk images in the static case, shown in Fig. 19, have the

same qualitative behavior as the obtained images of the
shadows from Fig. 12. For a small scalar charge, there is a
visible difference between KL and Kerr solution only in the
central part of the disk image, where we observe multiple
bright rings. Looking at Fig. 18 one notes that for small
charges in the interval 0 ≤ Σ2=M2 ≤ 1 the apparent image
of the disk in the KL case mimics the image of the
Schwarzschild accretion disk. The only difference is that

TABLE I. The location of the energy flux peak of the disk in the KL geometry shown for different values of the specific angular
momentum a=M and the scalar charge Σ=M.

a=M

Σ2=M2 0.0 0.5 0.9 0.998

r=M F=FSch
max r=M F=FSch

max r=M F=FSch
max r=M F=FSch

max

−9.0 9.72 0.94 6.88 2.71 4.15 13.7 3.28 35.2
−0.5 9.56 0.99 6.63 3.09 3.48 23.7 1.84 212
0 (Kerr) 9.55 1.00 6.62 3.11 3.44 24.7 1.58 350
0.8 9.54 1.00 6.59 3.15 3.38 26.6 1.27 11807
1.2 9.53 1.01 6.58 3.17 3.34 27.5 1.26 214670
2.0 9.52 1.01 6.56 3.22 3.28 29.7 1.25 1.27 × 108

50 8.70 1.47 5.42 8.88 2.41 970036 1.24 7.24 × 10197

TABLE II. The relative difference δF ¼ jFmax
ðKLÞ − Fmax

ðKerrÞj=Fmax
ðKerrÞ

of the radial flux function peaks between Kerr and KL geometry.
The arrow ↑ indicates Fmax

ðKLÞ > Fmax
ðKerrÞ, while ↓ indicates

Fmax
ðKLÞ < Fmax

ðKerrÞ. The values of the F
max
ðKerrÞ are given in Table I.

a=M

0.0 0.5 0.9 0.998

Σ2=M2 δF; ½%� δF; ½%� δF; ½%� δF; ½%�
−9.0 6.0↓ 13↓ 45↓ 90↓
−0.5 1.0↓ 0.6↓ 4.0↓ 39↓
0 (Kerr) 0 0 0 0
0.8 0 1.3↑ 7.7↑ 3.3 × 103↑
1.2 1.0↑ 1.9↑ 11↑ 6.1 × 104↑
2.0 1.0↑ 3.5↑ 20↑ 3.6 × 107↑
50 47↑ 186↑ 3.9 × 106↑ 2.1 × 10197↑
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the disk becomes more oblate with the subsequent increas-
ing of the charge. For Σ2=M2 > 1, more higher-order
images appear in the central part of the overall image,
and their structure tends to become more complicated.
The additional increase of the scalar charge Σ has no further
significant effect on the direct (zeroth order) imageof thedisk
and its energy flux distribution. Still, it leads to a noticeable
change in the shape of the higher-order images, as shown in
Fig. 19. In the presence of a real scalar field, the relativistic
images of the accretion disk become more and more oblate
due to the deformation of the photon region surface toward
the singularity. The formed images appear symmetrically
above and below with respect to the plane of the accretion
disk, and for relatively small values of the scalar charge, they
are simply connected. At a scalar charge near Σ2=M2 ¼ 1.6,
the images of the third and higher orders become nonsimply
connected. For a scalar chargeΣ2=M2 > 2, the direct images
begin to split, and at higher scalar charge values above
Σ2=M2 > 3.8, separate sets of symmetrically distributed
multiconnected images begin to form.
The presence of a phantom scalar field leads to distortion

of the photon region surface in the direction opposite to the
singularity, leading to the formation of vertically elongated

images of all orders (Fig. 20). The distribution of the
observed energy flux at the disk surface does not change
significantly and follows the structural deformations of the
images. Unlike the cases with a real scalar field, in the
presence of the phantom field, the increase of the scalar
charge does not lead to the formation of relativistic images
with nontrivial morphology. The indirect image, together
with the higher-order images, remain stacked around the
shadow’s visible boundary, similar to the Schwarzschild
case,with the difference that the images are highly elongated.
In all cases, the flux distribution function is normalized by

the maximal value of the observable flux Fmax
O , which is

different for different values of the scalar charge Σ2=M2 as
shown in Table III. This means that every disk image shown
in Fig. 18 is normalized by the maximum value of its own
observable flux. In this way, due to the fact that some of disks
have several times larger observable flux from other disks,
we can avoid some images to appear darker and risk loosing
information about their flux distribution. The observable flux
of the disk does not change significantly when varying the
scalar charge in the range −9 ≤ Σ2=M2 ≤ 2.
In Tables III and IVwe have compared the observable flux

of the Kerr accretion disk with respect to those in the KL

TABLE III. Numerical estimation of the maximal value of the observable energy flux shown for different values of
the scalar charge Σ2=M2 and specific angular momentum a=M for the KL geometry. The grid step size of the ray
tracing solver for α and β is 10−2M.

a=M ¼ 0

Σ2=M2 −9 0 0.9 1.35 1.6 2.0

Fmax
O

_M0 × 10−5, θO ¼ π=2 2.223 2.232 2.230 2.230 2.229 2.228

Fmax
O

_M0 × 10−5, θO ¼ 4π=9 3.585 3.841 3.869 3.882 3.889 3.902

a=M ¼ 0.9

Σ2=M2 −9 0 0.2 0.4 0.8 2.0

Fmax
O

_M0 × 10−5, θO ¼ π=2 60.90 96.96 97.37 97.66 97.84 93.33

Fmax
O

_M0 × 10−5, θO ¼ 4π=9 70.13 137.4 140.2 142.9 148.8 169.2

TABLE IV. Relative flux difference δFO ¼ jFmax
OðKerrÞ − Fmax

OðKLÞj=Fmax
OðKerrÞ between Kerr and KL solutions. Here

Fmax
OðKerrÞ for θO ¼ π=2 and θO ¼ 4π=9 is given in Table III for Σ2=M2 ¼ 0. The ↑ indicates Fmax

OðKLÞ > Fmax
OðKerrÞ, while

↓ indicates Fmax
OðKLÞ < Fmax

OðKerrÞ.

Relative flux difference between Kerr and KL solutions for a=M ¼ 0

Σ2=M2 −9 0 0.9 1.35 1.6 2.0

δFO; ½%�, θO ¼ π=2 0.40↓ 0 0.32↑ 0.32↑ 0.27↑ 0.23↑
δFO; ½%�, θO ¼ 4π=9 6.66↓ 0 0.76↑ 1.10↑ 1.30↑ 1.60↑

Relative flux difference between Kerr and KL solutions for a=M ¼ 0.9

Σ2=M2 −9 0 0.2 0.4 0.8 2.0

δFO; ½%�, θO ¼ π=2 37.2↓ 0 0.42↑ 0.72↑ 0.91↑ 3.74↑
δFO; ½%�, θO ¼ 4π=9 49.0↓ 0 2.0↑ 4.00↑ 8.30↑ 23.1↑
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solution for a=M ¼ 0 and a=M ¼ 0.9. In the static case
a=M ¼ 0, the disk in the KL solution is almost indistin-
guishable (atmost 6.6%difference) from theKerr disk. In the
rotating case a=M ¼ 0.9, the accretion disk for the KL
solution gradually increases its maximum of the observable
flux from that of the Kerr disk for positive scalar charge
and decreases its maximum peak for negative Σ2=M2.
Nevertheless, we observe that the phantom scalar field tends
to suppress the maximum of the observable flux, while the
presence of a real scalar field amplifies it. These effects
become more noticeable for larger values of the specific
angular momentum.
The apparent images of the thin accretion disk in the KL

geometry for small enough scalar charge Σ2=M2 < 30, as
seen by an asymptotic observer with an inclination angle
θO ¼ 4π=9, resemble the structure of the observable disk,
presented in the previous subsection. This situation is
depicted in [Figs. 24(a)–24(d)]. However, for large charges
Σ2=M2 > 30 [Figs. 24(e)–24(f)] the disk image undergoes
a drastic change even in the zeroth order. The direct images
become extremely oblate and disjoint in the upper part,
while the higher-order images are almost or entirely
missing from the picture.
In the presence of a phantom field, larger negative charge

Σ2=M2 < 0 leads to more prolate look of the apparent disk
image (Fig. 25).

2. Rotating case

In the rotating case a=M ¼ 0.9, for an asymptotic
observer at an inclination angle θO ¼ π=2, the apparent
images of the disk become dislocated to the left in the x
direction due to the frame dragging generated by the
rotation of the compact object. The oblateness of the disk
image does not change significantly for different values of
the scalar charge. The observable flux FO peaks closer to
the ISCO of the disk and at higher values with respect to the
same quantity in the static case (Fig. 21).
In the near-extremal case a=M ¼ 0.998 (Fig. 22) the

disk image becomes significantly darker from all other
cases. Here, the peak of the observable flux FO is
concentrated very close to the ISCO. The most intensive
observable radiation is distributed in a very small area
around the peak, thus only a small portion of the flux can be
depicted in a high contrast. This is true for all values of the
scalar charge.

Finally, the phantom scalar field continuous to stretch the
disk image in the y direction, when the scalar charge tends
to larger negative values, thus making the image looks more
prolate (Fig. 23), as in the previous cases.
The situation for θO ¼ 4π=9 is similar to the one

presented in the static case. The difference now is that
due to the rotation of the compact object the entire image of
the disk is shifted to the left in the x axis (Fig. 26).
Furthermore, the disk image appears dimmer, because the
maximal values of the observable flux, although much
higher (see Table III), are distributed in a smaller area as
compared to the disks in the static case.
In the near-extremal case a=M ¼ 0.998 (Fig. 27) the

peak of the observable flux FO is concentrated very close to
the ISCO and the brightest part appears only in a small area
around the peak. For this reason the rest of the disk looks
predominately darker.
As in the previous cases the phantom scalar field

influences the image of disk to assume a more prolate
form in the y direction for larger negative values of the
scalar charge (Fig. 28).

B. TSL geometry

In this section we present the apparent images of the thin
accretion disk in the TSL geometry. The situation is similar to
the previous considerations, where we show the disk at
inclination angles θO ¼ π=2 (Fig. 29) and θO ¼ 4π=9
(Fig. 30). The values of the specific angular momentum
are given by a=M ¼ f0; 0.5; 0.998g. The images of the disks
are compared to the corresponding ones in the Schwarzschild
and Kerr cases. Following Figs. 29 and 30, the Kerr and TSL
accretion disk images are very similar for small angular
momenta. For fast rotation some visible differences arise, for
example in the near extreme mode for a ¼ 0.998. The main
difference is the appearance of additional disk images inside
the usual shadow of the Kerr solution. This effect can be
explained by the fact that the lower edge of the accretion disk
is located near the ring singularity inside the photon region.
Note that this additional structure did not appear in the
previous Sec. VI because the shadows were created by an
external light source outside of the photon region.
A more significant difference is observed from the

analysis of the radial flux. Indeed, the peaks of the radial
flux function for the Kerr black hole are larger than the
corresponding values of the flux function in the TSL case

TABLE V. The location of the disk’s energy flux peak in the TSL geometry, shown for different values of the
specific angular momentum a=M; δF ¼ jFmax

ðTSLÞ − Fmax
ðKerrÞj=Fmax

ðKerrÞ. The ↓ indicates Fmax
ðTSLÞ < Fmax

ðKerrÞ.

0.0 0.5 0.9 0.998

a=M r=M F=FSch
max r=M F=FSch

max r=M F=FSch
max r=M F=FSch

max

TSL 9.40 0.89 6.58 2.52 3.38 17.1 1.81 224
Kerr 9.55 1 6.62 3.11 3.44 24.7 1.58 350
δF; ½%� � � � 11↓ � � � 19↓ � � � 31↓ � � � 36↓
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for all values of their angular momentum (Table V). The
deviation increases when the spin parameter grows reach-
ing up to 36% for fast rotation. The radial distribution of the
flux function FðrÞ is shown in Fig. 11 where the peaks for
the TSL solution occur at similar radial distances as for the
Kerr black hole.
Both solutions continue to differ notably when comparing

the observable fluxes of their corresponding disks. From the
relative observable flux difference between Kerr and TSL
solutions, shown in Table VI, one can make several obser-
vations. First, one notes that the observable flux of TSL is
always smaller than the corresponding flux in the Kerr case
for all values of the specific angular momentum. Second, the
difference is about 12% for the static case (for θO ¼ π=2 and
4π=9) and then gradually increases up to 31% for θO ¼ π=2
and 80% for θO ¼ 4π=9 when approaching the near-
extremal situation. This suggests that for fast rotation
astrophysical observations can strongly discern between
Kerr and TSL solutions both by means of the substantial
deviation in the disk luminosity and by the appearance of
additional optical structure at the central part of the image.

VIII. CONCLUSIONS

The aim of this article was to give detailed optical
pictures for shadows and accretion disks around two black
hole mimickers described by solutions of Einstein gravity
minimally coupled to scalar field [92]. Both of them can be
considered as rotating generalizations of FJNW static
naked singularities, which, in contrast to the previously
known ones, are legitimate solutions that satisfy the full set
of equations of motion of the theory.
For both considered solutions, the geodesic equations are

nonintegrable, but for the TSL solution, numerical

integration shows only small deviations from the results
of the integrable Kerr case. The corresponding fundamental
photon surfaces approach spherical ones, and the optical
properties of spacetime resemble those of the Kerr solution.
Thus, in this case, we get ultracompact objects that can be
considered as good simulators of ordinary vacuum black
holes in general relativity. The edge of the shadow is even
closer to the circle than in the Kerr metric for all values of the
rotation parameter. In fact, its deviation from the circle does
not exceed 10%, which agrees with the observations of M87
[1] and Sgr A� [3] and differs by less than 1% from the Kerr
case. Thus, at the level of accuracy of the EHTobservations,
TSL solutions are practically indistinguishable from Kerr.
Note that the maximum difference is observed in the near-
extreme regime with a ≈ 0.9M and can, in principle, be
observed when greater experimental accuracy will be
achieved. Furthermore, the shadow of the TSL solution is
generally larger, and the vertical size of the shadow decreases
with increasing a, in contrast to the Kerr family.
Considering the optical appearance of the accretion disks

around the TSL compact objects, we reach similar con-
clusions. We have investigated the geometrically thin and
optically thick disk in their vicinity, and showed that its
image, as seen by a distant observer, does not exhibit
observationally relevant qualitative distinctions with accre-
tion in the Kerr case. The largest visible difference in disk
images occurs in the near-extreme regime, when the lower
edge of the accretion disk is near the ring singularity and we
can observe the appearance of new disk images inside the
classical Kerr shadow. Moreover, significant deviations can
be detected by measuring the luminosity of the accretion
disk. For slow rotation the two types of compact object still
look similar with deviations in their observable radiation
within 20%. However, for fast rotation, which is considered

TABLE VI. Numerical estimation of the maximal value of the observable energy flux shown for different values of
the specific angular momentum a=M. Here δFO ¼ jFmax

OðKerrÞ − Fmax
OðTSLÞj=Fmax

OðKerrÞ. The grid step size of the ray
tracing solver for α and β is 10−2M. The ↑ indicates Fmax

OðTSLÞ > Fmax
OðKerrÞ, while ↓ indicates Fmax

OðTSLÞ < Fmax
OðKerrÞ.

Kerr

a=M 0 0.5 0.7 0.8 0.9 0.95 0.998

Fmax
O

_M0 × 10−5, θO ¼ π=2 2.232 7.991 18.91 35.77 96.96 235.2 3302

Fmax
O

_M0 × 10−5, θO ¼ 4π=9 3.840 13.77 31.63 57.19 137.4 280.4 1445

TSL

a=M 0 0.5 0.7 0.8 0.9 0.95 0.998

Fmax
O

_M0 × 10−5, θO ¼ π=2 1.976 6.283 13.66 24.22 59.38 132.2 1838

Fmax
O

_M0 × 10−5, θO ¼ 4π=9 3.375 10.81 22.81 39.96 90.85 180.9 1106

Relative flux difference between Kerr and TSL solutions

a=M 0 0.5 0.7 0.8 0.9 0.95 0.998

δFO; ½%�, θO ¼ π=2 11.5↓ 21.4↓ 27.8↓ 32.3↓ 38.7↓ 43.8↓ 80.0↓
δFO; ½%�, θO ¼ 4π=9 12.1↓ 21.5↓ 27.9↓ 30.1↓ 33.9↓ 35.5↓ 31.0↓
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to be an astrophysically relevant scenario, we can measure
about twice larger the observed flux peak values for the
Kerr black hole than for its mimicker.
The KL solution with the scalar-induced oblateness

parameter cannot be ruled out by experimental data either,
if the value of the scalar charge is less than the transitional
value of the existence of the photon region. However, as the
charge increases, the difference from the Kerr case
increases rapidly. For phantom scalar fields, the deviations
are still small and only show up in elongated shadow
images as the deformation increases with the absolute value
of the scalar charge. However, for real scalar fields, we can
observe significant effects such as the formation of multiple
shadow images.
The optical appearance of thin accretion disks around

KL solution reproduces the qualitative features of shadow
images. Disks for the phantom scalar field are more
elongated and the effect becomes more pronounced as
we increase the absolute value of the scalar charge. The real
scalar field may lead to the formation of a complex optical
pattern in the central part of the disk image, which
resembles multiply connected shadow images. These
qualitative effects occur in a similar way with two com-
pletely different light source settings. Thus, we can expect

them to appear in other physical scenarios as well, e.g., for
more diverse models of accretion.
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APPENDIX: SHADOWS, RELATIVISTIC IMAGES,
AND ACCRETION DISKS

Using the numerical integration of null geodesics, we
have obtained shadows, relativistic images (Figs. 12–17),
and images of the accretion disks (Figs. 18–30) of KL and
TSL solutions. Details of the image construction are
presented in Sec. II. The results of the numerical simu-
lations are discussed in Secs. VI and VII.

FIG. 12. Shadows of the KL solution (33) in the nonrotating limit for an equatorial observer rO=M ¼ 10 000, θO ¼ π=2 for different
values of the scalar charge Σ2=M2: (a) 0, (b) 0.9, (c) 1.35, (d) 1.5, (e) 1.6, (f) 2.0, (g) 3.5, (h) 4, (i) 5.
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FIG. 13. Shadows of the KL solution (33) with a ¼ 0.9M for an equatorial observer rO=M ¼ 10 000, θO ¼ π=2 for different values of
the scalar charge Σ2=M2: (a) 0, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.8, (f) 2.0.

FIG. 14. Shadows of the near-extreme KL solution (33) with a ¼ 0.998M for an observer rO=M ¼ 10 000 with the observation angle
θO equal to (a–c) π=2 and (d–f) 4π=9 and the scalar charge Σ2=M2 equal to 0 (a) and (d), 0.2 (b) and (e), 1 (c), and (f).
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FIG. 15. Shadows of the static KL solution (33) with a ¼ 0 for an equatorial observer rO=M ¼ 10 000, θO ¼ π=2 for different values
of the phantom scalar charge Σ2=M2: (a) 0, (b) −1, (c) −1.5.

FIG. 16. Shadows of the extreme KL solution (33) with a ¼ 0.9M for an equatorial observer rO=M ¼ 10 000, θO ¼ π=2 for different
values of the phantom scalar charge Σ2=M2: (a) 0, (b) −0.5, (c) −2.

FIG. 17. Shadows of (d)–(f) the TSL solution (36) and (a)–(c) Kerr metric for an equatorial observer rO=M ¼ 10 000, θO ¼ π=2 for
M ¼ 1 and different values of a: 0 (a) and (d), 0.5 (b) and (e), 0.998 (c), and (f).
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FIG. 18. Continuous distribution of the apparent radiation flux for the KL black hole/naked singularity in the static case a ¼ 0 with
scalar charge Σ2=M2 equal to 0 (a), 0.9 (b), 1.35 (c), 1.5 (d), 1.6 (e), 2.0 (f), 3.5 (g), 3.8 (h), and 3.9 (i). The accretion disk is placed in the
range rISCO < r < 30M, where rISCO ¼ 6M coincide with Schwarzschild for any Σ. The observer is located at θO ¼ π=2,
rO=M ¼ 10 000. The flux distribution function is normalized by the maximal value of the observable flux Fmax

O . The darkest red/
blue colors correspond to the minimum/maximum value of the apparent radiation flux.
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FIG. 19. Optical appearance of the thin accretion disk around the KL black hole/naked singularity in the static case a ¼ 0with scalar
charge Σ2=M2 equal to 0 (a), 0.9 (b), 1.35 (c), 1.5 (d), 1.6 (e), 2.0 (f), 3.5 (g), 3.8 (h), and 3.9 (i). The inclination angle of the observer is
θO ¼ π=2. We use the same conventions as in Fig. 18.

FIG. 20. Continuous distribution of the apparent radiation flux for the static KL black hole/naked singularity with phantom scalar
charge Σ2=M2 equal to 0 (a), –1.5 (b), and –9 (c). The inclination angle of the observer is θO ¼ π=2, and their radial position is
rO=M ¼ 10 000. The flux is normalized by the maximal value of the observable flux distribution for every individual disk. We use the
same conventions as in Fig. 18.
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FIG. 21. Continuous distribution of the apparent radiation flux for the KL black hole/naked singularity for a specific angular
momentum a=M ¼ 0.9 with scalar charge Σ2=M2 equal to 0 (a), 0.2 (b), 0.3 (c), 0.4 (d), 0.8 (e), and 2 (f). The innermost stable circular
orbit does not depend on the scalar charge and is located at rISCO=M ¼ 2.32. The inclination angle of the observer is θO ¼ π=2 located at
radial position rO=M ¼ 10 000.

FIG. 22. Continuous distribution of the apparent radiation flux for the near-extremal KL black hole/naked singularity a=M ¼ 0.998
with scalar charge Σ2=M2 equal to 0 (a), 0.2 (b), and 1 (c). The innermost stable circular orbit does not depend on the scalar charge and is
located at rISCO=M ¼ 1.24. The inclination angle of the observer is θO ¼ π=2, and their radial position is rO=M ¼ 10 000. The flux is
normalized by the maximal value of the observable flux distribution for every individual accretion disk. We use the same conventions as
in Fig. 21.
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FIG. 24. Continuous distribution of the apparent radiation flux for the KL black hole/naked singularity with scalar charge Σ2=M2

equal to 0 (a), 0.9 (b), 1.6 (c), 2 (d), 31.8 (e) and 50 (f). The inclination angle of the observer is θO ¼ 4π=9, and their radial position is
rO=M ¼ 10 000. The flux distribution is normalized by the maximal value of the observable flux for every individual disk. We use the
same conventions as in Fig. 18.

FIG. 23. Continuous distribution of the apparent radiation flux for the KL black hole/naked singularity for a specific angular
momentum a=M ¼ 0.9 with phantom scalar charge Σ2=M2 equal to 0 (a), –1.5 (b), and –9 (c). The inclination angle of the observer is
θO ¼ π=2, and their radial position is rO=M ¼ 10 000. The flux distribution is normalized by the maximal value of the observable flux
for each individual disk.
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FIG. 25. Continuous distribution of the apparent radiation flux for the static KL black hole/naked singularity with phantom scalar
charge Σ2=M2 equal to 0 (a) and –9 (b). The inclination angle of the observer is θO ¼ 4π=9, and their radial position is rO=M ¼ 10 000.
The flux distribution is normalized by the maximal value of the observable flux for every individual disk. We use the same conventions
as in Fig. 18.

FIG. 26. Continuous distribution of the apparent radiation flux for the KL black hole/naked singularity for a specific angular
momentum a=M ¼ 0.9 with scalar charge Σ2=M2 equal to 0 (a), 0.3 (b), 0.4 (c), and 0.8 (d). The inclination angle of the observer is
θO ¼ 4π=9, and their radial position is rO=M ¼ 10 000.
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FIG. 27. Continuous distribution of the apparent radiation flux for the near-extremal KL black hole/naked singularity a=M ¼ 0.998
with scalar charge Σ2=M2 equal to 0 (a), 0.2 (b), and 1 (c). The innermost stable circular orbit does not depend on the scalar charge and is
located at rISCO=M ¼ 1.24. The inclination angle of the observer is θO ¼ 4π=9, and their radial position is rO=M ¼ 10 000. The flux is
normalized by the maximal value of the observable flux distribution for every individual accretion disk.

FIG. 28. Continuous distribution of the apparent radiation flux for the KL black hole/naked singularity for a specific angular
momentum a=M ¼ 0.9with phantom scalar charge Σ2=M2 equal to 0 (a) and –9 (b). The inclination angle of the observer is θO ¼ 4π=9,
and their radial position is rO=M ¼ 10 000.
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FIG. 29. Continuous distribution of the apparent radiation flux for Kerr black hole (first row) and TSL naked singularity/naked
singularity (second row) for a specific angular momentum a equal to 0 (a) and (d), 0.5 (b) and (e), 0.998 (c) and (f). The inclination angle
of the observer is θO ¼ π=2 and their radial position is rO=M ¼ 10 000.

FIG. 30. Continuous distribution of the apparent radiation flux for Kerr black hole (left column) and TSL naked singularity (right
column) for a specific angular momentum a equal to 0 (a) and (d), 0.5 (b) and (e), 0.998 (c) and (f). The inclination angle of the observer
is θO ¼ 4π=9, and their radial position is rO=M ¼ 10 000.
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