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We propose a braneworld scenario in a modified symmetric teleparallel gravitational theory, where the
dynamics for the gravitational field is encoded in the nonmetricity tensor rather than in the curvature.
Assuming a single real scalar field with a sine-Gordon self-interaction, the generalized quadratic
nonmetricity invariant Q controls the brane width while keeping the shape of the energy density.
By considering power corrections of the invariant Q in the gravitational Lagrangian, the sine-Gordon
potential is modified exhibiting new barriers and false vacuum. As a result, the domain wall brane obtains
an inner structure, and it undergoes a splitting process. In addition, we also propose a nonminimal coupling
between a bulk fermion field and the nonmetricity invariantQ. Such geometric coupling leads to a massless
chiral fermion bound to the 3-brane and a stable tower of nonlocalized massive states.
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I. INTRODUCTION

Despite the great success of general relativity (GR) in
describing the gravitational effects in currently accessible
weak and strong gravity astrophysical scenarios, open
problems at larger scales and the lack of understanding
of the nature of dark matter [1] and dark energy [2] boost
the interest in alternative theories of gravity. Among the
many alternatives explored in the literature, one finds
theories with new scalar and vector dynamical degrees
of freedom [3], others based on massive gravitons [4],
string inspired constructions such as brane worlds [5], and
also geometric scenarios that break with the tradition set by
Riemannian geometry. In this latter case, one can identify
theories based on the Einstein-Cartan geometry [6], metric-
affine (or Palatini) theories of different kinds [7], including
fðRÞ models [8], and also theories whose dynamics is
entirely based on torsion and/or nonmetricity [9,10].
In theories such as the so-called teleparallel equivalent of

general relativity (TEGR), gravity is understood as an effect
of the spacetime torsion, rather than as a manifestation of
curvature [11]. In fact, the Riemann curvature tensor of the
affine connection is assumed to vanish over the whole
spacetime, whereas the torsion tensor is non-null [11].
First proposed by Einstein, as an attempt to geometrize

the electromagnetic field, the TEGR was latter recognized
as a gauge theory of gravity based on the Poincaré group
[12–14]. Instead of the metric tensor, the dynamical variable
of the TEGR is the vielbein field. The vanishing curvature
condition allows one to define a connection entirely in terms
of the vielbeins, known asWeitzenböck connection [11,15].
As a result, the same number of dynamical degrees of
freedom of GR are also present in TEGR. Modifications of
the framework set by TEGR, whose Lagrangian density is
defined in terms of the torsion scalar T, have been studied in
the last years in different forms, including theories of the
fðTÞ type [16,17] and fðT; BÞ type [18], among others.
In the latter ones, B represents a boundary term in the
TEGR case.
Conceptually related to the above, some interest has also

grown recently in relation with what is known as symmetric
teleparallel equivalent of general relativity (STEGR), where
the gravitational degrees of freedom are now described not
in terms of the metric alone or the torsion alone, but by
means of the nonmetricity tensor Qμνρ ¼ ∇μgνρ [19].
Unlike TEGR, the dynamical field in STEGR does involve
the metric tensor, hence the term symmetric. The gravita-
tional action in STEGR is built using contractions of the
metric, and the nonmetricity tensor up to quadratic order
[19,20]. For a specific choice of the coefficients of the
quadratic terms, the resulting theory turns out to lead to the
same equations of motion (EOM) as in GR. As expected,
extensions of the basic STEGR framework were proposed
by generalizing the gravitational action with some free
coefficients, giving rise to what is known as symmetric
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teleparallel gravity (STG) [10,21], based on a scalar
quantity denoted as Q, or even considering fðQÞ modified
Lagrangian terms [22]. STG has more propagating degrees
of freedom than GR depending on the choice of the
coefficients in the Lagrangian [23,24]. The phenomenology
of fðQÞ models has been studied in cosmology [25,26],
black holes, [27] and wormhole [28] scenarios, among
others. Our particular interest about fðQÞ gravity lies in the
fact that this kind of nonlinear extension of STEGR is not
equivalent to fðRÞ gravity, and both the metric and the
affine connection carry physical information since the
dependence on Γλ

μν can no longer be absorbed in a
boundary term [19].
Braneworld models have also offered interesting per-

spectives for high energy problems in the last decades. First
proposed as a geometric solution for the gauge hierarchy
problem, the warped geometry of the five-dimensional
Randall-Sundrum (RS) model showed how the effective
dynamics on a 3-brane can be altered by the dynamics of
gravity in a higher dimensional spacetime (bulk) where the
3-brane is embedded in [29]. In RS models the 3-brane is
considered to be infinitely thin and the bulk is chosen to be
an AdS5 spacetime [29,30]. Soon after, models considering
thick 3-branes as domain walls with one or more scalar
fields as source were proposed [31].
On the other hand, in order to ensure brane stability, the

so-called Bogomolnyi-Prasad-Sommerfield (BPS) solu-
tions were found by employing a first-order formalism
[32–35]. The propagation of gravity and bulk gauge and
matter fields along the extra dimension can be analyzed by
means of their Kaluza-Klein spectrum. Even for an infinite
extra dimension, the bulk curvature allows for the existence
of one gravitational massless normalized mode, reproduc-
ing the usual GR dynamics in the 3-brane. For the
localization of the gauge fields, an additional dilaton
coupling was considered, whereas for the matter (spinor)
fields, a Yukawa-like coupling with a bulk scalar was
proposed [36].
Modified braneworld scenarios exploring wider geo-

metric structures have also been considered, such as in
Einstein-Cartan gravity [37], mimetic gravity [38], Weyl
geometry [39], nontrivial inner manifold [40,41], with
Palatini fðRÞ dynamics [42], etc. In Ref. [43], an fðTÞ
thick braneworld was investigated considering a nonqua-
dratic Lagrangian. As a result, the thick brane exhibited an
inner structure, even for a single scalar field. By varying the
nonquadratic parameter, the brane undergoes a splitting
transition [43–45]. Similar results were found considering
fðT; BÞ dynamics and fðTÞ in six dimensions [46,47].
Recently, an STEGR fðQÞ braneworld has been proposed
in Ref. [48], studying thick brane solutions and the
propagation of gravitons in the extra dimension.
In this work, we propose a general STG codimension one

braneworld scenario, whose quadratic invariant Q depends
on several arbitrary coefficients and the gravitational

Lagrangian is represented by a smooth (arbitrary) function
fðQÞ. We investigate the constraints imposed by the
dimensional reduction and the regularity of the solutions
on the coefficients of Q, and also consider a function of the
form fðQÞ ¼ Qþ kQn, where k and n can be tuned to
explore new phenomenology. For n ¼ 2, we find that the
source scalar field exhibits a hybrid kink-compacton
behavior, and the 3-brane undergoes a splitting process.
In addition, we propose a nonminimal coupling between
the nonmetricity scalarQ and a bulk fermion. We show that
such coupling is equivalent to the commonly used Yukawa
interaction. Furthermore, the effects produced by a given
change in the Q-coefficients and on the nonquadratic term
involving the fermions are considered.
The work is organized as follows. In Sec. II, a brief

review of the symmetric teleparallel gravity is presented, as
well as its STEGR limit. In Sec. III, the fðQÞ braneworld is
introduced, and the respective modified gravitational equa-
tions are studied. The vacuum, thin brane, and thick brane
solutions are found, and their properties are analyzed. In
Sec. IV, we propose a geometric nonminimal coupling
between the nonmetricity invariant Q and a bulk massless
fermion and its effects are investigated. Final remarks are
discussed in Sec. V.

II. SYMMETRIC TELEPARALLELISM

In this work we consider the symmetric teleparallel
gravity theory in a metric-affine approach, whereby the
metric gMN and the connection ΓA

MN represent independent
degrees of freedom.
By parallel transporting the vector VA, the 1-form covar-

iant derivative takes the form∇VA ¼ dvA þ ωA
MVM, where

the connection 1-form is ωA
M ¼ ΓA

NMdxN . The covariant
derivative of the metric gMN leads to the so-called non-
metricity 1-form ∇gMN ¼ dgMN − ωA

MgAN − ωA
NgAM,

where the nonmetricity tensor is defined by [19]

QAMN ≡∇AgMN: ð1Þ

The torsion 2-form TM ¼ ωM
N ∧ dxN is another fundamen-

tal object associated to the affine connection, and its
components define the torsion tensor TA

BC ≡ 2ΓA½BC�
[11,19]. Thus, a general affine connection can be decom-
posed into aLevi-Civita part associated to themetric, and two
more pieces defined in terms of the nonmetricity and the
torsion tensors as [19]

ΓA
BC ¼

n A
BC

o
þ ΓA

BC þ KA
BC; ð2Þ

with f A
BCg≡ 1

2
gADð∂BgDC þ ∂CgDB − ∂DgBCÞ correspond-

ing to the symmetric Levi-Civita connection DA, satisfying
DAgBC ¼ 0. The second (symmetric) term LA

BC, called
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the disformation tensor, is completely determined by the
nonmetricity tensor according to

LA
BC ≡ 1

2
QA

BC −QðBACÞ: ð3Þ

The antisymmetric piece KA
BC is known as the contortion

tensor, and it is solely determined by the torsion tensor as

KA
BC ≡ 1

2
TA

BC þ TðBACÞ: ð4Þ

In symmetric teleparallel theories, torsion is assumed to
vanish everywhere. For this reason, from now on we only
consider torsion free connections.
From the nonmetricity tensor it is possible to define the

trace vectors as [19]

QA ¼ gMNQA
MN; Q̄A ¼ Q̄H

AH; ð5Þ

where the traceless part has been separated as

Q̄ABC ¼ QABC −
1

4
gBCQA: ð6Þ

Moreover, it is convenient to introduce the so-called
superpotential tensor defined as [10,19,20]

PK
MN ¼ c1QK

MN þ c2QðMK
NÞ þ c3QKgMN þ c4δKðMQ̄NÞ

þ c5
2
ðQ̄KgMN þ δKðMQNÞÞ; ð7Þ

where the five coefficients ci are, for the moment, arbitrary
real constants. The contraction of the P and Q tensors
provides a quadratic invariant called the generalized non-
metricity scalar by

Q ¼ QT
MNPT

MN: ð8Þ

For a specific choice of coefficients given by [19]

c1 ¼ −c3 ¼ −
1

4
; c2 ¼ −c5 ¼

1

2
; c4 ¼ 0; ð9Þ

the nonmetricity scalar leads to

Q¼−Q

¼ 1

4
QKMNQKMN −

1

2
QKMNQMNK −

1

4
QKQKþ1

2
QKQ̄K:

ð10Þ

With the above notation, the Ricci scalar for the connection
ΓT
MN can be written in the form,

R ¼ RþQþDAðQA − Q̄AÞ: ð11Þ

In teleparallel theories, the Riemann tensor defined by the
affine connection ΓT

MN vanishes by construction and so
does its associated Ricci scalar R. Thus, the Ricci scalar
corresponding to the Levi-Civita connectionR is related to
the nonmetricity scalar by

R ¼ −Q −DAðQA − Q̄AÞ: ð12Þ
Therefore, the Einstein-Hilbert LagrangianLEH ¼ 1

2κ

ffiffiffiffiffiffi−gp
R

is equivalent to the symmetric teleparallel Lagrangian
LQ ¼ − 1

2κ

ffiffiffiffiffiffi−gp
Q. For this obvious reason the choice of

parameters (9) is called the symmetric teleparallel equivalent
of general relativity (STEGR) [19].
Another consequence of the vanishing Riemann tensor for

the connection ΓT
MN is that we can choose a class of

connections satisfying this condition. A particular choice,
known as the coincident gauge, is achieved by simply
assuming thatΓT

MN¼0.Asa result,LT
MN¼−f T

MNg [19,20,25].
In this work we are interested in modified gravitational

theories inspired by the STEGR and, for this reason, we
consider an action of the form,

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

2κD
fðQÞ − 2Λþ LM

�
; ð13Þ

where κD ¼ 8πGD with GD being the D-dimensional
Newtonian gravitational constant, Λ represents the bulk
cosmological constant, fðQÞ is a smooth function of the
nonmetricity scalar Q, and Lm represents the matter
Lagrangian density. Variation of the action (13) with
respect to the metric leads to the gravitational field
equations (where fQ ≡ df

dQ),

2ffiffiffiffiffiffi−gp ∇Kð
ffiffiffiffiffiffi
−g

p
fQPK

MNÞ −
ðf − 2ΛÞ

2
gMN

þ fQðPMKLQN
KL − 2QKM

LPK
NLÞ ¼ κTMN: ð14Þ

The energy-momentum tensor is given by

TMN ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgMN : ð15Þ

In the following we will use the expressions of above in
scenarios involving braneworlds.

III. SYMMETRIC TELEPARALLEL
BRANEWORLD

Consider a warped five-dimensional spacetime repre-
sented by the following line element,

ds25 ¼ e2AðyÞĝμνðxÞdxμdxν þ e2BðyÞdy2; ð16Þ

where AðyÞ and BðyÞ are warp factors that depend only on
the extra-dimensional coordinate y. The Greek indices
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μ; ν;… run from 0 to 3. The 3-brane metric ĝμν depends
only on the brane coordinates xμ ¼ ðx0; r⃗Þ and for a flat
3-brane, ĝμν ¼ ημν. By assuming a nonflat brane ĝμν,
gravitational effects along the brane can be considered.
Let us now compute the relevant objects for the ansatz

(16) and in the coincident gauge, with ΓA
BC ¼ 0, so that the

covariant derivatives are simply partial derivatives. The
only nonvanishing components of the nonmetricity ten-
sor are

Q4αβ¼2A0e2Aĝαβ; Q444¼2B0e2B; Q̂ρμν¼∂ρĝμν; ð17Þ

where prime stands for derivative with respect to y.
Henceforth we will assume a Gaussian configuration to
generate a thick braneworld where B ¼ 0, then the 5-D
nonmetricity scalar Q is given by

Q ¼ e−2AQ̂þ 16ðc1 þ 4c3ÞA02; ð18Þ

where the induced nonmetricity scalar Q̂ is made up with
the four-dimensional metric and has no dependence on the
extra-dimensional coordinate y. Then, one may consider
the quadratic action,

S ¼ 1

2κ5

Z
d5x

ffiffiffiffiffiffi
−g

p
Q; ð19Þ

and integrating out on the extra dimension we can write the
4-D effective gravitational action in the form,

S4 ¼
1

2κ4

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
Q̂; ð20Þ

where we assume the condition A0ð0Þ ¼ 0 and define

κ4 ≡ k5R∞
−∞ e2Ady

: ð21Þ

Thus, the dimensional reduction leads to a finite 4-Deffective
gravitational constant κ4 provided that

R
∞
−∞ e2Ady is finite.

For a thin brane inAdS5 (RSmodel),AðyÞ ¼ −cjyj and thus,
κ4 ¼ ck5. Since AðyÞ is a solution of the gravitational
equations, κ4 should depend on the coefficients ci of the
gravity Lagrangian. Indeed, in the thin limit of the modified
quadratic field equations we obtained this relation.
Now consider a modified gravitational theory such as

S ¼ 1

2κ5

Z
d5x

ffiffiffiffiffiffi
−g

p
fðQÞ; ð22Þ

where we consider the case of particular interest fðQÞ ¼
Qþ kQn with k being a constant with mass dimension
½k� ¼ M2−2n, and n is a real number. If Q̂ ≠ 0, then the
power-law term leads to an effective 4-D action,

S4 ¼
k
2κ4

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
eð4−2nÞAQ̂n; ð23Þ

which is finite only for n < 2. Thus, an effective four-
dimensional gravitational action can only be well-defined
for n < 2. Therefore, the warped geometry constrains the
possible modified gravitational actions for a bent 3-brane.
That is a noteworthy constrains to be considered in
cosmological branes or to recognize the gravitational
dynamics along the brane as an effective dynamics from
a higher dimensional spacetime.

A. Flat brane with a bulk scalar field

We will now focus on the gravitational effects along the
extra dimension. For this purpose, we consider a flat 3-
brane whose source is a minimally coupled real scalar field
in the form,

SM ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

2
gAB∇Aϕ∇Bϕ − VðϕÞ

�
; ð24Þ

where ϕ≡ ϕðyÞ depends only on the extra dimension y.
The potential V provides domain-wall solutions which
guarantee the stability of the 3-brane.
The equations of motion for the metric and the scalar

field from actions (13) and (24) take the form,

4ðc1 þ 4c3Þ½ðA00 þ 4A02ÞfQ þ A0f0Q�

−
1

2
f þ κ5V þ 1

2
κ5ϕ

02 þ Λ ¼ 0; ð25Þ

8ðc5 þ 2c3ÞðA00fQ þ A0f0QÞ þ 16ðc1 þ 2c5 þ 8c3ÞA02fQ

−
1

2
f þ κ5V −

1

2
κ5ϕ

02 þ Λ ¼ 0; ð26Þ

ϕ00 þ 4ϕ0A0 − Vϕ ¼ 0; ð27Þ

where we use the metric ansatz (16) together with the
conditions ĝμν ¼ ημν and B ¼ 0. It is worth noting that in
the particular case in which we recover GR, when
c1 ¼ −c3 ¼ −1=4, c2 ¼ −c5 ¼ 1=2, c4 ¼ 0, the above
equations coincide with those obtained in1 Ref. [48].
Moreover, it is easy to see that there are only two free
effective parameters in those equations, namely σ0 ¼ c5 þ
2c3 and σ1 ≡ c1 þ 4c3, whose values in the STEGR case
are just σGR0 ¼ 0 and σGR1 ¼ 3=4. Thus, there are still three
parameters in the theory that do not influence the back-
ground brane solution and whose impact in the physics
should be explored by other means.

1We also mention that our analysis here departs from that of
Ref. [48] regarding scalar fields in that we also consider effects
due to a generalized superpotential (7).
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The modified gravitational equations can be recast into a
more familiar form as

6A02 ¼ −
κ5
fQ

�
p4 þ

fQ
κ5

p̃4

�
; ð28Þ

3A00 þ 6A02 ¼ −
κ5
fQ

�
ρþ fQ

κ5
ρ̃

�
; ð29Þ

where we encompassed all the modifications in the func-
tions p̃ and ρ̃ given by

p̃4 ¼ 8σ0A00 þ ½6þ 32σ0�A02 þ 8σ0
f0Q
fQ

−
f

2fQ
; ð30Þ

ρ̃¼ð4σ1−3ÞA00 þ12ð2σ1−1ÞA02þ4σ1
f0Q
fQ

−
f

2fQ
: ð31Þ

Note that p̃ only depends on σ0, while ρ̃ only on σ1. Thus,
fðQÞ theories modify the gravitational equations introduc-
ing geometric energy density ρ̃ and pressure p̃4, though the
degree of differentiability of the equations does not change
as compared to STEGR. In the absence of the terms ρ̃
and p̃4, we recover the GR-based braneworld Einstein
equations [31–33].
Let us analyze the configurations such that ρ̃ ≥ 0.

For the second term in (31) to be non-negative, we impose
that

σ1 ≥ 1=2: ð32Þ

In a warped compactified brane one expects that eA → 0, as
y → �∞. Thus, assuming the conditions,

A0ð0Þ ¼ 0; A00ð0Þ < 0; ð33Þ

the first term is non-negative near the origin (brane core)
provided that

σ1 ≤ 3=4: ð34Þ

We recall that σGR1 ¼ 3=4, which is the case that sets the
upper bound in this inequality. This condition restricts the
range of σ1 to the interval 1=2 ≤ σ1 ≤ 3=4.
As mentioned earlier, we are interested in a deviation of

the STEGR in the form,

fðQÞ ¼ Qþ kQn: ð35Þ

SinceQ ¼ 16σ1A02, the effective gravitational action on the
brane vanishes. Moreover, the third term in Eq. (31) is non-
negative for

σ1k ≤ 0: ð36Þ

The last term in Eq. (31) vanishes at the origin and
asymptotically. For k < 0, the condition fQ > 0 leads to
an upper limit for A0 given by

A0 <
�

1

njkj
�

1=2ðn−1Þ
: ð37Þ

Therefore, assuming a weak energy condition for ρ̃, we
have been able to put some constraints on the possible
values of the coefficients σ1 and k. For the pressurelike
terms p̃, on the other hand, we obtain different equations of
state for different values of the parameters, which may lead
to inner structure effects, as we will see in the following
sections.

B. Quadratic gravity (k= 0)

In this regime, the gravitational Lagrangian is just
determined by the generalized quadratic invariant Q, and
the field equations turn into

4σ1A00 þ 8σ1A02 þ κ5VðϕÞ þ
1

2
κ5ϕ

02 ¼ −Λ; ð38Þ

8σ0A00 þ 8ðσ1 þ 4σ0ÞA02 þ κ5VðϕÞ −
1

2
κ5ϕ

02 ¼ −Λ: ð39Þ

As expected, the conditions (9) lead to the well-known
braneworld gravitational equations of GR [32,33].

1. Outside the core

Outside the brane core, where ϕ0 ¼ 0 ¼ VðϕÞ, the
gravitational equations (38) and (39) boil down to

ðσ1 − 2σ0ÞA00ðyÞ − 8σ0A0ðyÞ2 ¼ 0; ð40Þ

which can be readily solved resulting in

AðyÞ ¼ C1 −
ðσ1 − 2σ0Þ ln ½8σ0jyj þ C2ðσ1 − 2σ0Þ�

8σ0
; ð41Þ

with C1 and C2 arbitrary integration constants. The limiting
case σ0 ¼ 0 must be treated separately, yielding AðyÞ ¼
C̃1 þ C̃2jyj, which is independent of σ1. Since regularity at
infinity demands a decaying e2A as jyj → ∞, we conclude
that for σ0 ¼ 0 we must have C̃2 < 0. For σ0 > 0, the
dominant contribution is given by

e2A ≈ ½8σ0jyj�−
ðσ1−2σ0Þ

4σ0 ; ð42Þ

which guarantees a rapid decay for any solution near the
GR point (σ1 → 3=4; σ0 → 0). Interestingly, for negative
σ0 the bulk is only defined on the interval 0 ≤ jyj <
C2ðσ1 þ 2jσ0jÞ=8jσ0j. Thus, σ0 < 0 leads to a compact
extra dimension whose radius depends on the nonmetricity
coefficients c1,c3 and c5.
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It is worth mentioning that, even though the solution (41)

leads to Q ¼ 16σ1ðσ1−2σ2Þ
y2 , which is singular at the origin, the

solution in Eq. (42) only represents the warp function
outside the brane core, and therefore, the limit y → 0
should be computed using the appropriate solution.
Let us now consider a vacuum solution with bulk

cosmological constant Λ, where the scalar field and the
potential vanish; i.e., ϕ ¼ V ¼ 0. Assuming a RS solution
as A0 ¼ −c [29], the Q-gravity equations lead to

c2 ¼ −
1

8

Λ
ðσ1 þ 2σ0Þ

; ð43Þ

which relates the brane tension c to the bulk cosmological
constant Λ. As long as ðσ1 þ 2σ0Þ > 0, one obtains the
usual AdS5 warped compactified bulk of the RS model,
whereas for ðσ1 þ 2σ0Þ < 0 it describes a dS5 bulk. An
obvious lesson that follows from this is that there exists a
broad region of parameter space around the GR solution
(σ1 → 3=4; σ0 → 0) for which the usual AdS5 RS bulk is
recovered, thus showing that such a solution is quite robust
for not necessarily small departures from GR. The non-
metricity scalar for this solution is given by Q ¼ − 2Λσ1

σ1þ2σ0
,

which is well-behaved everywhere. This result also indi-
cates that the solution (43) can be regarded as a robust RS
thin brane configuration.

2. BPS solutions

Now that we have gained some insight on the modifi-
cations induced by the Q-gravity on the vacuum, it is time
to turn our attention to the changes on the brane core and on
the source (scalar field). This can be accomplished by
means of the first-order formalism, wherein we seek for a
BPS solution of the equations Eq. (27), Eq. (38) and
Eq. (39) without bulk cosmological constant ðΛ ¼ 0Þ.
Consider a potential of the form,

VðΦÞ ¼ α

�
∂W
∂Φ

�
2

−
1

3
W2; ð44Þ

together with the first-order system,

dA
dy

¼ −
1

3
W; ð45Þ

dΦ
dy

¼
ffiffiffiffiffiffi
2α

p ∂W
∂Φ

: ð46Þ

The BPS equations above satisfies the scalar field and the
modified gravitational EOM provided that

α ¼ σ1 þ 2σ0
6

: ð47Þ

For the usual GR equivalent case, the constant α takes the
value α ¼ 1=8 [32,33].
Let us consider the well-known sine-Gordon model,

where the superpotential is given by

WðϕÞ ¼ 3bc sin

� ffiffiffiffiffiffi
2

3b

r
ϕ

�
: ð48Þ

Using Eq. (44), the STG coefficients modified the sine-
Gordon in the form,

VðϕÞ¼ 3bc2

2

�
ð2α−bÞþð2αþbÞcos

�
2

ffiffiffiffiffiffi
2

3b

r
ϕ

��
: ð49Þ

A similar modified sine-Gordon potential was analyzed in
Ref. [49]. As seen in Fig. 1, the vacua structure of the sine-
Gordon potential is kept invariant as we vary the parameter
α. The scalar field solution of the BPS equation (46)
leads to

ϕðyÞ ¼
ffiffiffiffiffiffi
6b

p
arctanðtanhð

ffiffiffiffiffiffi
2α

p
cyÞÞ: ð50Þ

Note that the higher the value of α the faster the scalar field
attains the vacuum, as shown in Fig. 2. By solving Eq. (45)
we obtain the warped function,

AðyÞ ¼ lnðsechðλyÞÞb=
ffiffiffiffi
8α

p
; ð51Þ

where λ ¼ ffiffiffiffiffiffi
2α

p
c. Thus, the width of the thick brane is

controlled by the nonmetricity coefficients c1, c3 and c5
through their combination in the effective parameter α.
As shown in Fig. 3, the Q-gravity controls the width and

the amplitude of the energy density. However, the overall
properties are preserved compared to the GR sine-Gordon
model [32].

FIG. 1. Modified sine-Gordon potential for b ¼ c ¼ 1. For α ¼
1=8 (thick line), α ¼ 1 (thin line) and α ¼ 2 (dotted line) the
vacuum points are preserved.
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C. Nonquadratic gravity k ≠ 0

We will now investigate the effects of additional non-
quadratic gravitational dynamics on the braneworld. For
this purpose, we will first analyze the modifications on the
vacuum solution (exterior). The gravitational equations
lead to

ðσ1 − 2σ0ÞðfQA00 þ f0QA
0Þ − 8σ0fQA02 ¼ 0: ð52Þ

Assuming this conditions and considering Λ ≠ 0 and
A0 ¼ −c, the gravitational equations with cosmological
constant lead to

8σ1c2 þ kððn − 1=2Þ½16σ1c2�nÞ ¼ −Λ: ð53Þ

Curiously, if n ¼ 1
2
, then Eq. (53) coincides with Eq. (43),

regardless of the value of k. Thus, the power n ¼ 1=2
provides no correction to the geometry outside the 3-brane
for Λ ≠ 0. For n ¼ 2, Eq. (53) admits the solution,

σ1c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 192kΛ

p
− 1

96k
; ð54Þ

which for small values of the product kΛ can be approxi-
mated as σ1c2 ≈ Λ. Equation (54) shows how a thin RS
braneworld [29] is modified by the nonquadratic fðQÞ
gravity. Likewise the quadratic solution in Eq. (43), both
AdS5 and dS5 bulk spacetimes are allowed by Eq. (54). For
a dS5 bulk, Eq. (54) constrains the value of the parameter k
to the interval k ≤ 1=192Λ.
Now let us consider thick 3-brane solution for Λ ¼ 0. We

seek for BPS solutions in the nonquadratic dynamics, by
considering a superpotential WðϕÞ such that [32,33,44]

A0 ¼ −
1

3
WðϕÞ: ð55Þ

For arbitrary coefficients ci, and considering fðQÞ ¼
Qþ kQn, the modified gravitational equations (25) and
(26) contain rather intricate combinations of A0, A00 and ϕ0.
However, for σ0 ¼ 2c3 þ c5 ¼ 0, σ1 ¼ c1 þ 4c3 ¼ 3=4,
and κ5 ¼ 2, the gravitational equations (25) and (26)
simplify to

�
1þ ðn − 1Þkð12A02Þn−1

1þ nkð12A02Þn−1
�
A02 ¼ 1

3fQ
ðϕ02 − 2VÞ; ð56Þ

�
1þ32nðn−1Þkðc1−2c5Þð12Þn−1ðA0Þn−1

1þnkð12A02Þn−1
�
A00 ¼−

2

3fQ
ϕ02:

ð57Þ

Note that for k ¼ 0 or n ¼ 1, the usual GR-based gravi-
tational equations are recovered [32,33]. Also, the system
of modified gravitational equations above is similar to the
one found in fðTÞ gravity [44]. We adapted the first-order
formalism developed in Ref. [44] by considering additional
powers of the superpotential in the BPS equation for the
scalar field in the form,

ϕ0 ¼ Wϕ

2
ð1þ kðCn þDnÞW2n−2Þ; ð58Þ

where Cn ¼ n22ðn−1Þ31−n and Dn ¼ nðn − 1Þ×
ðσ1 − 2σ0Þ22nþ131−n. Note that, for n ¼ 1=2, the usual
GR-based BPS equations are recovered [32,33,44]. Using
Eq. (55) and Eq. (58) the Eq. (28) leads to

VðϕÞ ¼ W2
ϕ

8
ð1þ kCnW2n−2Þ½1þ kðCn þDnÞW2n−2�

−
W2

3

�
1þ kCn

�
2 −

1

n

�
W2n−2

�
: ð59Þ

The BPS equations (55), (58) and (59) reduce the second
order EOM into a system of first-order equations. It is

FIG. 2. Scalar field profile for b ¼ c ¼ 1. As α increases from
α ¼ 1=8 (thick line) and α ¼ 1 (thin line) to α ¼ 2 (dotted line)
the field concentrates around the origin.

FIG. 3. Energy density for b ¼ c ¼ 1. As the parameter α
increases the brane width decreases.
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worthwhile to mention that the modified gravitational
equations include new powers of the warp function
derivative A0 and, as a result, the BPS equations get also
modified by new powers of the superpotential. Note that
the modified gravitational dynamics also influences the
scalar field profile and the potential properties. Similar BPS
equations were found in teleparallel fðTÞ [43–45], fðT; BÞ
[46] and fðQÞ [48].
Let us see how the fðQÞ dynamics modifies the scalar

field features in the well-known sine-gordon model, where

WðϕÞ ¼ 3bc sin ½
ffiffiffiffi
2
3b

q
ϕ�.

In Fig. 4(a) we plotted the potential for n ¼ 2 at the GR
point σ0 ¼ and σ1 ¼ 3=4. As k increases the potential is
modified. Indeed, the wells become deeper and the initial
barriers become false vacua. The appearance of new local
minima (but not global minima) seems to suggest meta-
stable braneworld configurations. The stability of the

gravitational modes in the linear regime will be discussed
in the next section.
In Fig. 4(b) we plotted the respective scalar field

solution. The increasing of k leads to the tendency of
forming a plateau around the origin. Moreover, the field
tends to attain the vacuum in a finite distance. These
features reveal that, despite the presence of only one scalar
field, the modified Q-gravity dynamics produces a thick
brane with an inner structure resembling a hybrid defect
[35]. Similar results were found in fðTÞ [44] and fðT; BÞ
[46] braneworlds.
In Fig. 5(a) we plotted the energy density. This figure

reveals another interesting effect. In (a) the energy density
exhibits two distinctive peaks revealing the brane splitting.
Figure 5(b) shows that the transition between the single to
two brane is performed maintaining the geometry smooth.
Moreover, the increasing of k leads to a plateau around the

(a) (b)

FIG. 4. Potential (a) and scalar field (b) for n ¼ 2 and k ¼ 0.005 (thick line), k ¼ 0.05 (thin line), k ¼ 0.5 (dashed line).

(a) (b)

FIG. 5. Plots of the energy density for n ¼ 2. In (a) for k ¼ 0.5 (dashed line). In (b) for k ¼ 0.005 (thin line) and for k ¼ 0.05 (dashed
line).
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origin. Therefore, as k increases the brane undergoes a
smooth transition from one to two branes.
In Fig. 6 we plot the energy density (thick line) and the

pressure (thin line) for k ¼ 0.005 in (a) and for k ¼ 0.5 in
panel (b). For small k the energy density exhibits a
symmetric peak around the origin whereas the pressure
has two peaks displayed from the origin. As k increases, the
energy density also develops two peaks, a hallmark of the
brane splitting. It is worthwhile to mention that, in most of
the point, the source satisfies the weak energy condition
ρ ≥ 0. In addition, the strong energy condition ρþ P ≥ 0 is
satisfied and around the two peaks (brane core) the
dominant energy condition ρ ≥ P.

D. Stability and perturbative analysis: Tensor modes

Now, we will investigate the tensor perturbation of the
thick brane system described above. For this purpose, we
will rewrite the line element as

ðds2Þ5 ¼ e2AðyÞðημν þ hμνÞdxμdxν þ dy2; ð60Þ

where hμν represents the tensorial perturbation. It should be
stressed that the coincident gauge, i.e., ΓK

MN ¼ 0, is
always imposed, even at the perturbation level. The non-
vanishing components of the nonmetricity tensor pertur-
bations are

δQα
μν ¼ ∂

αhμν; ð61Þ

δQ4
μν ¼ 2A0e2Ahμν þ e2A∂4hμν; ð62Þ

and the perturbed traces become

δQμ ¼ ∂μh; δQ4 ¼ ∂4h; ð63Þ

δQμ ¼ ∂
νhμν; δQ4 ¼ 0; ð64Þ

where h≡ ημνhμν. Besides, the perturbed nonmetricity
scalar is δQ ¼ 4σ1A0

∂4h. With the aid of expressions
(61)–(64), the perturbed superpotential tensor takes the
form,

δPα
μν ¼ c1∂αhμν þ

c2
2
ð∂μhαν þ ∂νhαμÞ þ c3ημν∂αh

þ c4
2
ðδαμ∂βhβν þ δαν∂βhβμÞ

þ c5
4
ðδαμ∂νhþ δαν∂μhþ 2ημν∂βhαβÞ; ð65Þ

δP4
μν ¼ c1e2Að∂4hμν þ 2A0hμνÞ þ c3e2Aðημν∂4hþ 8A0hμνÞ;

ð66Þ

δPα
4μ ¼ δPα

μ4 ¼
c2
2
∂4hαμ þ

c5
4
δαμ∂4h; ð67Þ

δP4
4μ ¼ δP4

μ4 ¼
c4
2
∂νhνμ þ

c5
4
∂μh; ð68Þ

δPα
44 ¼ c3e−2A∂αhþ c5

2
e−2A∂βhαβ; ð69Þ

δP4
44 ¼

�
c3 þ

c5
2

�
∂4h: ð70Þ

Taking the scalar field perturbation as ϕ ¼ ϕ̄þ δϕ, one
finds the perturbation of the stress-energy tensor as

δTμν ¼ −e2A
�
1

2
ϕ̄02hμν þ Vhμν þ ϕ̄0δϕ0ημν þ Vϕδϕημν

�
;

ð71Þ

δT4μ ¼ δϕ0
∂μϕ̄þ ϕ̄0

∂μδϕ; ð72Þ

δT44 ¼ ϕ̄0δϕ0 − Vϕδϕ; ð73Þ

(a) (b)

FIG. 6. Plots of the energy density (thick line) and the pressure (thin line) for (a) k ¼ 0.005 and (b) for k ¼ 0.5.
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where ϕ̄ ¼ ϕ̄ðxμÞ, and δϕ ¼ δϕðxμ; yÞ stands for the background scalar field and its perturbation, respectively.
From the above quantities, the equation of motion for the tensor perturbation becomes

− 4c1

�
h00μν þ

�
4A0 þ f0Q

fQ

�
h0μν þ e−2A□ð4Þhμν

�
− 2e−2A½c5∂μ∂νhþ ðc2 þ c4Þð∂μ∂αhαν þ ∂ν∂αhαμÞ�

þ ημν

�
δQ −

2κ

fQ
ðδϕ0ϕ̄0 þ δϕVϕÞ − 2c5e−2A∂α∂βhαβ

−
4c3
fQ

ðfQh00 þ fQe−2A□ð4Þhþ 8ðδQA00 þ δQ0A0 þ 4δQA02ÞfQQ þ h0ð8A0fQ þ f0QÞ þ 8δQA0Q0fQQQÞ

−
4c1
fQ

ðfQA0h0 þ 2δQ0A0fQQ þ 2δQðA00fQQ þ 4A02fQQ þQ0fQQQÞÞ
�
¼ 0; ð74Þ

where fQQ ≡ d2f
dQ2 and fQQQ ≡ d3f

dQ3. Note that in the above
expression only the first term would be nonzero if a trans-
verse, traceless gaugewere possible. In this sense, as pointed
out inRefs. [50,51], onceone adopts the coincident gauge, no
additional gauge symmetry is left to further impose the TT
gauge for arbitrary choices of the parameters ci [19].
Accordingly, the quadratic Q gravity exhibits additional
propagating degrees of freedom for arbitrary coefficients ci,
even in (3þ 1) dimensions [50,51].
Fortunately, one can verify that the fðQÞ theory

expanded up to quadratic order in infinitesimal metric
perturbations around flat spacetime remains invariant under
gauge transformations if the coefficients ci are chosen as
those of the STEGR [we assume that fð0Þ ¼ 0]. This
implies that fðQÞ theories with that choice of coefficients
are also gauge invariant, which allows to impose the TT
gauge condition ∂

μhμν ¼ 0 ¼ ημνhμν. By focusing on that
restricted combination of the ci coefficients, Eq. (74) boils
down to

h00μν þ
�
4A0 þ f0Q

fQ

�
h0μν þ e−2A□ð4Þhμν ¼ 0: ð75Þ

As is evident, the modified gravitational dynamics induces

a new term
f0Q
fQ

into the resulting equations for the tensor

modes. By considering the conformal coordinate
z ¼ R

eAdy, Eq. (75) can be further simplified into

ḧμν þ
�
3 _Aþ

_fQ
fQ

�
_hμν þ□

ð4Þhμν ¼ 0; ð76Þ

where the dot stands for d=dz. In order to study the
propagation of the gravitational tensor modes along the
extra dimension and analyze their stability, we can perform
a Kaluza-Klein (KK) decomposition,

hμνðx; zÞ ¼ φðzÞĥμνðxÞ; ð77Þ

where ĥμνðxÞ satisfies the flat Fiertz-Pauli equation on the

brane □
ð4Þĥμν ¼ −m2ĥμν. Thus, the Eq. (76) leads to a

Schrödinger-like equation of the form,

−Φ̈þ UgΦ ¼ m2Φ; ð78Þ

where ϕðzÞ ¼ ðe3A ffiffiffiffiffiffi
fQ

p Þ−1ΦðzÞ, the supersymmetric
quantum mechanicslike potential Ug has the form,

Ug ¼ W2
g − _Wg; ð79Þ

and Wg is given by

Wg ¼ 3 _Aþ
_fQ
fQ

: ð80Þ

It is worthwhile to mention that, despite the modification
given by the term

_fQ
fQ
, the SUSY-like structure of the KK

equation (78) prevents the existence of tachyonic KK
modes, which is enough guarantee for the stability of
the braneworld solution in the linear regime [48,52].

IV. FERMIONS

After studying the gravitational field and the bulk
geometry for the quadratic Q and modified Qþ kQ2, we
now investigate the features of fermionic matter in these
modified gravitational scenarios. We propose a nonminimal
coupling of a massless bulk spinor and the gravitational
field in the form,

SΨ ¼
Z

d5x
ffiffiffiffiffiffi
−g

p ½ΨiΓMDMΨ − β
ffiffiffiffi
Q

p
Ψ̄Ψ�; ð81Þ

where β is a dimensionless nonminimal coupling constant,
ΓM ¼ eMM̄γ

M̄ are the Dirac matrices in a curved spacetime,

γM̄ are the flat Dirac matrices and the vielbeins eMM̄ satisfy
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gMN ¼ ηM̄ N̄e
M̄
Me

N̄
N . The spinor covariant derivative in non-

metricity spacetimes is given by [21]

DM ¼ ∂M þΩLC
M ; ð82Þ

where ΩLC
M ¼ 1

4
ΓM̄ N̄
M γM̄γN̄ is the torsion-free spinor con-

nection and ΓM̄ N̄
M are 1-form Levi-Civita connection coef-

ficients, i.e., ωM̄
N̄ ¼ ΓM̄

MN̄dx
M. As pointed out in Ref. [21], in

non-Riemaniann spacetimes the nonvanishing term added
to the Riemaniann covariant derivative comes from the
torsion alone. Thus, in the symmetric teleparallel gravity,
the spinor connection structure is preserved.
In order to confine the spin-1=2 massless mode on the 3-

brane, a Yukawa-like interaction with an additional scalar
field is usually adopted. In this work we consider a
nonminimal coupling in Eq. (81) which leads to the
localization of the massless mode by gravitational inter-
actions only. Similar nonminimal couplings involving
torsion scalars were studied in a teleparallel [53] and in
the Lyra geometry [54] braneworlds.
In the conformal coordinate z ¼ R

e−Ady, the metric can
be written as ds2¼ηM̄N̄ θ̂

M̄⊗ θ̂N̄ , where θ̂M̄ ¼ e−AδM̄Mdx
M.

The torsion-free condition dθ̂M̄ þ ωM̄
N̄ θ̂

N̄ ¼ 0 leads to the

nonvanishing 1-form connection coefficients Γμ̄
5ν̄ ¼ _Aδμ̄ν̄

and Γ5
μ̄ ν̄ ¼ _Aημ̄ ν̄, where the dot stands for the derivative

with respect to the conformal coordinate, i.e., d=dz.
Accordingly, the Dirac equation takes the form,

½γμ∂μ þ γzð∂z þ 2 _AÞ − eAðβ ffiffiffiffi
Q

p Þ�Ψ ¼ 0: ð83Þ

Let us perform the Kaluza-Klein decomposition Ψðx; zÞ ¼
fðzÞPψ4RðxÞψRðzÞ þ ψ4LψLðzÞ, where fðzÞ ¼ e2A and
ψR;L are, respectively, the right-handed and left-handed
chiral states with respect to the extra dimension. Assuming
that the spin-1=2 fermion satisfies the on-brane Dirac
equation γμ∂μΨ ¼ mΨ, we obtain

ð∂z þ eAβ
ffiffiffiffi
Q

p ÞψL ¼ mψR;

ð∂z − eAβ
ffiffiffiffi
Q

p ÞψR ¼ −mψL: ð84Þ

It is worthwhile to mention that the _A term stemming from
the connection was absorbed by a field redefinition denoted
by the function fðzÞ [55,56].
Decoupling the Dirac system in Eq. (84), we obtain

Schrödinger-like equations for each chirality, as

−ψ̈R;L þUR;LðzÞψR;L ¼ m2ψR;L; ð85Þ

where the Schrödinger-like potential UR;L is given by

UR;L ¼ W2 � _W; ð86Þ

and WðzÞ ¼ βeAQ is the so-called superpotential of the
SUSY-like quantum mechanics potential in Eq. (86). The
Schrödinger-like Eq. (85) determines the KK states and
their corresponding massive spectrum. The SUSY-like
structure of the potential in Eq. (86) guarantees that
m2 ≥ 0, thus avoiding tachionic KK states [52]. In addition,
the SUSY-like structure also allows for the existence of a
massless mode m ¼ 0 in the form [52,55,56],

ψ0 ¼ e−
R

Wdz: ð87Þ

Next we will study the properties of the spin-1=2 fermion in
two different regimes.

A. Quadratic gravity limit

Considering k ¼ 0 in the gravitational Lagrangian,
the warp function is given by Eq. (51). The corresponding
conformal coordinate, z ¼ R

coshðλyÞb=
ffiffiffiffi
8α

p
dy, can only be

analytically inverted when b=
ffiffiffiffiffiffi
8α

p ¼ 1, wherein z ¼
1
λ sinhðλyÞ. In this case, the warped function has the
expression,

AðzÞ ¼ lnð1þ λ2z2Þ−1=2; ð88Þ

where λ ¼ ffiffiffiffiffiffi
2α

p
c. As a result, the superpotential has the

form,

WðzÞ ¼ −
4βλ2

ffiffiffiffiffi
σ1

p
z

1þ λ2z2
; ð89Þ

which exhibits the behavior shown in the Fig. 7. The left-
handed potential is given by

UL ¼ −
4λ2

ffiffiffiffiffi
σ1

p ð1 − 4σ1λ
2z2Þ

ð1þ λ2z2Þ2 : ð90Þ

Likewise the gravitational field, the potential above depends
explicitly only on the effective parameters σ1 and σ0 (via α).

FIG. 7. Fermion superpotential.
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Using the conditionb2 ¼ 8α and since λ ¼ ffiffiffiffiffiffi
2α

p
c, the values

chosen for the ci coefficients have to satisfy σ1 þ 2σ0 > 0.
We seek for modified solutions around the GR-based
geometry. Thus, we plotted the potential for the GR equiv-
alent case, σ0 ¼ 0 and σ1 ¼ 3=4, corresponding to
c1 ¼ −c3 ¼ − 1

4
, c5 ¼ −1=2 (thick line), σ0 ¼ 1=2,

σ1 ¼ 1, corresponding to c1 ¼ 0, c3 ¼ 1=4, c5 ¼ 2
ffiffi
3

p
3

(thin
line), and σ0 ¼ −1, σ1 ¼ 3, corresponding to c1 ¼ 2, c3 ¼
1=4 and c5 ¼ − 3

2
(dashed line). The graphics for the super-

potential (Fig. 7), for the right-handed potential (Fig. 8), and
for the left-handed massless mode (Fig. 10) were plotted for
the same values just mentioned. The left-handed potential is
plotted in Fig. 9, where it shows the usual volcano shape,
similar to those models with Yukawa interaction
[55,56]. The minimum of the potential is controlled mainly
by the σ1 coefficient according to UR0 ¼ 4λ2

ffiffiffiffiffi
σ1

p
, where

some dependence on σ0 also exists. Therefore, by varying σ1,
it is possible to vary the height of the barriers and the depth of
the potential well. Moreover, the asymptotic behavior of the
potential indicates a continuous tower of massive nonlocal-
ized KK modes.

The corresponding massless mode is given by

ψ0 ¼ Nð1þ λ2z2Þ−2 ffiffiffiffi
σ1

p
; ð91Þ

whose behavior is sketched in Fig. 10. The massless mode
is a bound state to the 3-brane and its behavior is only
slightly modified by the variation of the c coefficients.

B. Nonquadratic regime n= 2

When the parameter that controls the geometric correc-
tions kQn is nonzero, the equations get very messy, and one
must resort to numerical methods in order to solve for
the warp factor AðyÞ and the scalar field ϕðyÞ. The
Schrödinger-like potentials UR;L and the massless mode
α0 can only be obtained and analyzed numerically, as well.
To illustrate the changes, Fig. 11 shows the behavior of
zðyÞ, where a smooth change from y to z is shown.
Figure 12 depicts the behavior of the left-handed massless
mode ψ0. Remarkably, even though the thick 3-brane
undergoes a split transition driven by the change in the
parameter k, the massless mode remains peaked around the

FIG. 8. Fermion potential UR.

FIG. 9. Fermion potential UL.

FIG. 10. Left-handed massless mode Ψ0.

FIG. 11. Conformal coordinate zðyÞ for b ¼ c ¼ 1. For k ¼
0.005 (thick line), k ¼ 0.05 (thin line) and k ¼ 0.5 (dashed line),
zðyÞ is a smooth one to one function.
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origin. All the figures correspond to the GR-like configu-
ration σ0 ¼ 0 and σ1 ¼ 3=4.
The Schrödinger-like potential UL, on the other hand,

undergoes a strong transition. As shown in Fig. 13, for
k ¼ 0.005 (thin line) and k ¼ 0.05 (dashed line), only the
height of the barrier and the width of the potential well do
slightly vary. However, for k ¼ 0.5, as shown in Fig. 14, the
potential well turns into a barrier at the origin, followed by
two deep, symmetrical and thin wells around the origin.
Finally, let us compare the effects of the variation of the

σi coefficients and of the k on the massive modes. In
Figs. 15 and 16, we plotted the squared wave function ψ2

for m ¼ 4. By varying the parameters, we see that the
amplitude of the massive mode outside the brane and the
decay rate of the mode inside the brane increase.
As long as ðσ1 þ 2σ0Þ > 0, one obtains the usual AdS5

warped.

FIG. 12. Left-handed massless mode α0 for b ¼ c ¼ β ¼ 1.
Despite the split undergone by the brane, this KK ground state
keeps the usual bell-shape.

FIG. 13. Left-handed potential UL for b ¼ c ¼ β ¼ 1. For
k ¼ 0.005 (thin line) the potential has the volcanolike shape.
For k ¼ 0.05 (dashed line) the barriers increase their height and
the potential well becomes wider.

FIG. 14. Left-handed potential for λ ¼ 1 and k ¼ 0.5. The
potential still vanishes asymptotically. However, the potential well
undergoes a transition leading to a barrier at the origin, followed by
two symmetric and deep potential wells at both sides of the origin.

FIG. 15. Left-handed massive mode for m ¼ 4. For σ0 ¼ 0;
σ1 ¼ 3=4 (thick line) and for σ0 ¼ 1=2; σ1 ¼ 1 (thin line), the
amplitude of this massive mode varies only a small fraction
around the origin. For σ0 ¼ −1; σ1 ¼ 3, there are two symmetric
peaks around the origin and the massive mode rapidly decays.

FIG. 16. Left-handed massive mode for m ¼ 4. As k increases
from k ¼ 0.005 (thick line), k ¼ 0.05 (thin line) to k ¼ 0.5
(dashed line) this mode keeps the same behavior and the value
ψ2ð0Þ is the same regardless of the value of k.
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V. FINAL REMARKS

In this work we have studied a braneworld model where
the gravitational dynamics is governed by a modified
symmetric teleparallel gravitational theory. A nonminimal
coupling between fermions and gravity, by means of the Q
scalar, has also been investigated.
By considering a quadratic gravitational Lagrangian Q,

the thin brane solutions, as in the RS model, can be
embedded into a dS5 or AdS5 bulk, depending on the sign
for the combination σ1 þ 2σ0 ¼ c1 þ 2c5 þ 8c3. We found
that ðσ1 þ 2σ0Þ > 0 guarantees the existence of robust thin
shell brane configurations in the AdS5 bulk. For Λ ¼ 0, we
also observed that the width of thick brane solutions is
controlled by the effective parameter α ¼ ðσ1 þ 2σ0Þ=6.
The modified nonquadratic Lagrangian fðQÞ¼QþkQ2

introduces new terms into the first-order BPS equations,
leading to a 3-brane with inner structure that resembles a
hybrid brane. Indeed, the potential wells of the sine-Gordon
model become deeper, whereas the source scalar field tends
to form a plateau at the origin. As a result, the brane
undergoes a splitting process as the parameter k is
increased. These features are compatible with results found
in other teleparallel braneworld models, as in fðTÞ
[43,44,46] and fðT; BÞ [53] scenarios.
The BPS braneworld solutions we found reveal a stable

phase transition driven by the modified kQn term. The
respective BPS scalar field potential contains additional
powers of the superpotential. As a result, new minima
appear between two vacua, suggesting the appearance of
metastable states. However, at the linear order, the tensor
gravitational fluctuations are stable, as seem by the absence
of tachyonic modes. Future analysis on the gravitational
spectrum for arbitrary ci, as well as a nonperturbative study
of the thick brane solutions seem an interesting perspective.
The nonminimal coupling between fermions and the

nonmetricity scalar Q in the quadratic regime leads to
results that are similar to those obtained with a standard
Yukawa coupling. Thus, this geometric coupling can be

interpreted as an alternative mechanism to get fermion
localization. For n ¼ 2, the Schrödinger-like potential
undergoes a transition leading to a barrier and two
symmetric wells around the origin. Nevertheless, the
massless mode is still localized at the origin and the
massive KK tower is still stable. This indicates that exotic
couplings between matter and geometry may have mild
effects on key aspects of matter localization in braneworld
models.
Finally, the results presented here indicate that the

different configurations studied are dependent on only
two effective parameters σ0 and σ1, despite the fact that
the scalar Q is constructed using up to five different
coefficients ci. Moreover, key qualitative aspects of the
resulting configurations are robust in large patches of the
configuration space around the GR point (σ0 ¼ 0 and
σ1 ¼ 3=4), which confirms the braneworld scenarios of
GR as suitable phenomenological descriptions that tran-
scend the limits of that theory. It is thus important to
consider further investigations in dynamical scenarios and/
or on nonflat 4D backgrounds, such as brane cosmology,
stellar models, or black hole scenarios, which could help
constrain the additional parameters of these models and put
to a test the robustness of other predictions derived within
the domain of GR. Research in this direction is currently
under way.
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[10] J. Beltrán Jiménez, L. Heisenberg, and T. Koivisto, Phys.
Rev. D 98, 044048 (2018).

[11] R. Aldrovandi and J. Pereira, Teleparallel Gravity: An
Introduction, Fundamental Theories of Physics, Vol. 173
(Springer, Dordrecht, 2014).

[12] J. C. Baez and D. K. Wise, Commun. Math. Phys. 333, 153
(2015).

SILVA, MALUF, OLMO, and ALMEIDA PHYS. REV. D 106, 024033 (2022)

024033-14

https://doi.org/10.1016/S0370-2693(01)01060-7
https://doi.org/10.1016/S0370-2693(01)01060-7
https://doi.org/10.1086/300499
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1103/RevModPhys.84.671
https://doi.org/10.12942/lrr-2010-5
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1016/0370-1573(94)00111-F
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1088/0264-9381/21/22/011
https://doi.org/10.1088/0264-9381/21/22/011
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1007/s00220-014-2178-7
https://doi.org/10.1007/s00220-014-2178-7


[13] M. Hohmann, L. Järv, M. Krššák, and C. Pfeifer, Phys.
Rev. D 97, 104042 (2018).

[14] J. W. Maluf, Ann. Phys. (Berlin) 525, 339 (2013).
[15] R. Weitzenböck, Invarianten Theorie (Nordhoff, Groningen,

1923).
[16] R. Ferraro and F. Fiorini, Phys. Rev. D 75, 084031 (2007).
[17] Y. F. Cai, S. Capozziello, M. De Laurentis, and E. N.

Saridakis, Rep. Prog. Phys. 79, 106901 (2016).
[18] S. Bahamonde and S. Capozziello, Eur. Phys. J. C 77, 107

(2017).
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