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As previously proposed in Simpson and Visser [J. Cosmol. Astropart. Phys. 02 (2019) 042], Mazza et al.
[J. Cosmol. Astropart. Phys. 04 (2021) 082], Franzin et al. [J. Cosmol. Astropart. Phys. 07 (2021) 036], and
Lobo et al. [Phys. Rev. D 103, 084052 (2021), the “black bounce” spacetimes are an interesting type of
globally regular modifications of the ordinary black holes (such as the Kerr-Newman geometry and its
particular cases) which generically contain a spacetime singularity (usually of the curvature type) at their
center. To transforms a static, spherically symmetric and asymptotically flat black hole (SSS-AF-BH)
geometry regular everywhere except its center of symmetry r ¼ 0 (where r stands for the “areal radius” of
the two-dimensional spheres of symmetry) and with (outer) event horizon at r ¼ rh > 0, into a black

bounce spacetime, is to simply replace r with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
and dr with dρ, being ρ a new radial coordinate,

and a is some real constant nonzero. As long as rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2h þ a2

p
> jaj, the result is a globally regular (or

singularity-free) black hole spacetime (called black bounce) where the singularity that occurs in the
ordinary SSS-AF-BH geometry at r ¼ 0 now in the transformed geometry turns into a regular spacetime
region determined by the two-dimensional spheres of symmetry of radius jaj, while the areal radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ a2
p

always remains positive for all ρ ∈ ð−∞;∞Þ and has a minimum at ρ ¼ 0 given by jaj. Hence,
in the transformed spacetime, the areal radius has a minimum, decreasing before and increasing after this
minimum (defining two SSS-AF regions that bounce). In this work we will present several black-bounces
exact solutions of General Relativity. Among them is a novel type of black-bounce solution, which in
contrast to the Simpson-Visser type {[Simpson and Visser, J. Cosmol. Astropart. Phys. 02 (2019) 042],
[Mazza et al., J. Cosmol. Astropart. Phys. 04 (2021) 082], [Franzin et al., J. Cosmol. Astropart. Phys. 07
(2021) 036], [Lobo et al., Phys. Rev. D 103, 084052 (2021)]}, does not have the Ellis wormhole metric as a
particular case. The source of these solutions is linear superposition of phantom scalar fields and nonlinear
electromagnetic fields.

DOI: 10.1103/PhysRevD.106.024031

I. INTRODUCTION

Einstein’s theory of General Relativity (GR) is a metric
theory of gravity, designed to describe spacetime, which
has become the most accepted definition of classical
gravity in modern physics.1 However, many important
physical solutions of the GR field equations [among them
we can mention the Kerr-Newman black hole metric and its
particular cases, and the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric or Standard Cosmological Model]

contain a gravitational singularity2 where some relevant
curvature invariants (either constructed from the Riemann
tensor, such as R≡ Rα

α, RαβRαβ, RαβμνRαβμν, or formed by
polynomial expressions in covariant derivatives of the
Riemann tensor) diverge. Concerning the physical meaning
of these types of spacetimes, since the singularities occur-
ring in the spacetime denote a grave issue3 for GR as
their presence signals a regime where predictability breaks
down and the theory does not hold (see Refs. [6–8] for a
review), a number of proposals in classical and quantum
contexts have been suggested to get rid of the singularity
(see Refs. [9–13] and the references therein).

*pcannate@gmail.com
1Since the foundation of GR theory in 1915, it has been

subjected to innumerable tests (some of which have been passed
very successfully), for instance in the solar system or binary
pulsars (see Refs. [1–5] and references therein).

2Also referred to as physical singularity.
3Also known as the singularity problem in gravitation theory.
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The construction of regular black holes has been studied
using nonlinear electrodynamics (NLED) as source.
Specifically, motivated by the Bardeen model [14] several
regular black holes,4 in the sense that none of them have
curvature singularities,5 have been constructed in the
framework of Einstein’s theory of general relativity coupled
to nonlinear electrodynamics (GR-NLED) [16,17].
Although these solutions obey the weak energy condition
(WEC), they can avoid the singularity theorems [18–21]
because they are not globally hyperbolic. Let us remark that
since the regular black hole metrics described in [16] are
constructed with pure electric charges, this requires differ-
ent NLED Lagrangians in different parts of spacetime; see
Refs. [22,23] for details.
On the other hand, recently, the NLED has been gaining

attention to generate primordial magnetic fields in the early
Universe,6 as a source of gravity that can drive the Universe
into a state of accelerated expansion, and also to resolve
cosmological singularity problem; see Refs. [26–29] for
review.
As mentioned at the beginning of the paper, the black

bounce spacetimes [30–33] represent a new alternative to
the black hole singularity problem. To date, all the known
static, spherically symmetric, and asymptotically flat black-
bounce (SSS-AF-BB) metrics belong to the Simpson-
Visser type, and have the form

ds2 ¼ −nðrÞdt2 þ n−1ðrÞdρ2 þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

with areal radius function r ¼ rðρÞ given by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
being a ¼ constant ∈ R. Therefore, the areal radius func-
tion has a global minimum value at ρ ¼ 0 given by
rmin ¼ rð0Þ ¼ jaj, whereas nðrÞ is a smooth function on
ρ ∈ ð−∞;∞Þ, such that nðrÞ → 1 as ρ → �∞ [this implies
the existence of two asymptotically flat regions connected
at ρ ¼ 0, that is, one for each side of the bounce; (−) for the
side ρ < 0; and (þ) for the side ρ > 0], and where the event
horizons at ρ ¼ �ρh [two horizons of identical area radii
rh, one on each side of the bounce, fulfilling nðrhÞ ¼ 0 and
such that for all r > rh the nðrÞ function must be finite
nonzero and positive definite] exist whenever ρh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h − a2

p
is finite nonzero. Thus, starting from the region

ρ > 0, since the spacetime is regular at ρ ¼ 0, this can be
extended to ρ < 0. I.e., ρ ¼ 0 corresponds to a one-way

spacelike throat (of finite nonzero areal radius jaj) that
connects two SSS-AF-BH regions: the region ρ ∈ ð−∞; 0Þ
with ρ ∈ ð0;∞Þ and hence avoiding the regionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
¼ 0 where the curvature singularity is formed.

The above describes a novel type of regular black hole
known as a black bounce.
The first black bounce model was proposed by Simpson

and Visser in their paper [30]. This model smoothly
interpolates between the Schwarzschild black hole and
the traversable Ellis Wormhole and is described by the
static, spherically symmetric and asymptotically flat (SSS-
AF) metric given by

ds2 ¼ −
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p �
dt2 þ

�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p �
−1
dρ2

þ ðρ2 þ a2ÞdΩ2; ð2Þ

being that m and a are real parameters; t and ρ are the
temporal and radial7 coordinates, respectively; while
ðρ2 þ a2ÞdΩ2, being dΩ2 ¼ dθ2 þ sin2 θdφ2, is the line
element of a two-dimensional sphere of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
.

The ranges of the coordinates are t ∈ ð−∞;∞Þ, θ ∈ ½0; π�,
and φ ∈ ½0; 2πÞ, whereas the ρ-coordinate as long as a ≠ 0
has range ρ ∈ ð−∞;∞Þ. Furthermore, in [30], the space-
time metric (2) was introduced as a minimalist modification
of the ordinary Schwarzschild spacetime, such that when
adjusting the parameters a and m, this metric represents
either: the ordinary Schwarzschild spacetime if a ¼ 0 ≠ m;
whereas if a ≠ 0, depending on the relation between m and
a, it is either a traversable wormhole in the Morris-Thorne
sense (if 2m < jaj, which implies the absence of event
horizons); or becomes a one-way wormhole geometry with
an extremal null throat (if 2m ¼ jaj, which implies the
absence of traversable wormhole throat); whereas it
becomes a regular black hole of the black bounce type
(if 2m > jaj, which implies the existence of event horizons
at ρ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − a2

p
one on each side ρ > 0, or ρ < 0, of

the bounce). Specifically, in this case, since for the region
ρ ∈ ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − a2

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − a2

p
Þ the nðρÞ-function is neg-

ative-definite, it follows that there the metric (2) describes a
Kantowski-Sachs type cosmology, with ρ a temporal
coordinate and t a radial coordinate, being that ρ ¼ 0 is
a spacelike hypersurface that corresponds to a bounce in the
time-dependent quantity rðρÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
, which is in fact

one of the scale factors of a Kantowski-Sachs cosmological
model inside a black hole. Here, it is important to
emphasize that a black bounce is also a necessary feature
of all black-universe models [34–37], that is, nonsingular
black holes that contain an expanding asymptotically
isotropic cosmology beyond the horizon.

4The regular black holes are an interesting type of singularity-
free spacetimes, which play an important role in order to study the
quantum corrected black holes (see Ref. [15] for details).

5I.e., all invariants constructed from the Riemann curvature
tensor R¼Rαβμνdxα⊗dxβ⊗dxμ⊗dxν, e.g., R≡ Rα

α, RαβRαβ,
RαβμνRαβμν, and similar scalars formed by polynomial expres-
sions in covariant derivatives of the curvature tensor are well
defined everywhere.

6Cosmological magnetic fields have become more important
since the wealth of observations of magnetic fields in the
Universe [24,25]. 7In the reference [30] the ρ coordinate was called r.
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Nowadays, a growing interest in generalizing theSimpson-
Visser black-bounce model has arisen: black-bounce Kerr
model [31]; black-bounce Reissner-Nordström model [32];
black-bounce Kerr-Newman model [32]; new black-bounce
spacetime model [33].
In this work, several black-bounce solutions in the

context of Einstein-nonlinear electrodynamics gravity
coupled to a self-interacting scalar field (GR-NLED-SF)
are discussed. Furthermore, we obtain a novel black-
bounce solution that does not belong to the Simpson-
Visser type.
This paper is structured as follows. In the next section the

canonical metric of a static spherically symmetric asymp-
totically flat black bounce is discussed. In Sec. III the field
equations for the GR-NLED-SF are derived; we show that
the line element for the Simpson-Visser black bounce is a
pure magnetic exact solution of a GR-NLED-SF model;
also, two novel black-bounce metrics of the Simpson-
Visser type are presented as pure magnetic exact solutions
of GR-NLED-SF; and some features of the solutions in the
GR-NLED-SF frame are discussed. In Sec. IV we obtain a
novel black-bounce solution, which is not of the Simpson-
Visser type, since does not admit the Ellis wormhole
solution as a particular case. Final conclusions are given
in the last Section. In this paper we use units where
G ¼ kB ¼ c ¼ ℏ ¼ 1, and the metric signature ð−þþþÞ
is used throughout.

II. THE CANONICAL METRIC OF
A STATIC SPHERICALLY SYMMETRIC

ASYMPTOTICALLY FLAT BLACK-BOUNCE
SPACETIME: BEYOND THE
SIMPSON-VISSER MODELS

In what follows, we will describe a simple way to
combine two SSS-AF spacetime geometries, one of the
traversable wormhole (T-WH) type with one of the BH
type, in order that a novel spacetime geometry of the
SSS-AF black-bounce type be generated.
Method to generate black-bounce models: Given a

generic SSS-AF T-WH metric,

ds2WH ¼ −e2ΦðrÞdt2 þ dr2

1 − bðrÞ
r

þ r2dΩ2; ð3Þ

where ΦðrÞ and bðrÞ are smooth functions8 on r > 0,
respectively known as redshift and shape functions, with
wormhole throat radius, r0 ¼ jaj ∈ Rþ − f0g, defined by
bðr0Þ ¼ r0, and for the which the T-WH properties

Wormhole domain∶ 1 −
bðrÞ
r

≥ 0 ∀ r ≥ jaj ð4Þ

Absence of horizons∶ e2ΦðrÞ ∈ Rþ − f0g ∀ r ≥ jaj
and Φðr → ∞Þ ¼ 0 ð5Þ

Flaring out condition∶ b0ðrÞjr¼jaj < 1; ð6Þ

with 0 denoting derivative with respect to r, are satisfied
(see Refs. [38–40] for details) and given a generic SSS-AF-
BH metric,

ds2BH ¼ −
�
1 −

2MðrÞ
r

�
e2δðrÞdt2 þ

�
1 −

2MðrÞ
r

�
−1
dr2

þ r2dΩ2; ð7Þ

with δðrÞ andMðrÞ smooth function9 on r > 0, with event
horizon radius, r ¼ rh ≠ 0, such that

MðrhÞ ¼
rh
2
; MðrÞ < r

2
∀ r > rh;

Mðr → ∞Þ ¼ constant ≥ 0 and δðr → ∞Þ ¼ 0: ð8Þ

In addition, as long as

1 −
bðrÞ
r

< 0 ∀ r ∈ ½0; jajÞ; ð9Þ

a SSS-AF black-bounce model can be established by

ds2BB ¼ −
�
1 −

2MðrÞ
r

�
eΨðrÞdt2 þ dr2

ð1 − bðrÞ
r Þð1 − 2MðrÞ

r Þ
þ r2dΩ2; with ΨðrÞ ¼ 2δðrÞ þ 2ΦðrÞ; ð10Þ

which by construction admits Lorentz signature only at
r ≥ bðr0Þ, i.e., for r ≥ jaj, whereas at r < bðr0Þ, i.e., for
r < jaj, the metric becomes a non-Lorentzian metric,
implying that the region 0 ≤ r < jaj is not part of space-
time. In other words, this metric only admits physical
interpretation in the region r ∈ ½jaj;∞Þ, while in the region
r ∈ ð0; jajÞ the metric suffers an unacceptable signature
change, i.e., in the region r ∈ ð0; jajÞ the metric signature
could be either ðþþþþÞ or ð−−þþÞ, depending of the
behavior ofMðrÞ. In the metric theories of gravity [as GR,
fðRÞ gravity, scalar-tensor theories, conformal gravity, for
instance] the spacetime is modeled by a manifold with a
metric of Lorentz signature at any point of the spacetime
manifold. Thus, a region with a signature different from
Lorentz signature would have no physical interpretation.
Usually, the subset on which the signature changes to an
unphysical one is, in one sense or another, an “edge” of the
manifold or of the allowed coordinate patch [41]. Therefore
for the line element (10) the curvature singularity at r ¼ 0 is

8I.e., ΦðrÞ and bðrÞ are functions of class C∞ for r > 0. 9I.e., δðrÞ and MðrÞ are functions of class C∞ for r > 0.
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nonpathological since the region r ∈ ð0; jajÞ lacks of
physical interpretation.
In consequence, the radial coordinate r has a range that

increases from a minimum value at r ¼ jaj to r → ∞.
Thus, in the spacetime geometry (10), the r-coordinate has
a special geometric significance, where 4πr2 is the area of a
sphere of radius r centered at the origin, being that the
origin of symmetries (staticity and spherical) is the two-
dimensional spheres of radius r ¼ jaj. On the other hand,
for the metric (10) the curvature invariants R, RαβRαβ, and
RαβμνRαβμν are given by (A1)–(A3), indicating that all of
them are regular everywhere except at r ¼ 0, and the reason
is because b ¼ bðrÞ, Ψ ¼ ΨðrÞ, M ¼ MðrÞ are functions
of class C∞ for all r > 0. However, since the region
0 ≤ r < jaj is not part of spacetime yields that the curvature
invariants (A1)–(A3) are well defined in the whole
Lorentzian range10 r ≥ jaj. Therefore, we conclude that
the geometry (10), with bðrÞ, MðrÞ, and ΨðrÞ nontrivial
functions that satisfy (4)–(6), (8), and (9), describes a
spacetime with curvature regular everywhere. Finally, the
metric (10) written in terms of the radial bounce coordinate
ρ, defined as r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
≥ jaj, takes the form:

ds2BB ¼ −
�
1 −

2MðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p �
eΨðrÞdt2

þ ρ2dρ2

ðρ2 þ a2Þ
�
1 − bðrÞffiffiffiffiffiffiffiffiffi

ρ2þa2
p

��
1 − 2MðrÞffiffiffiffiffiffiffiffiffi

ρ2þa2
p

�
þ ðρ2 þ a2ÞdΩ2: ð11Þ

The determinant of this metric is given by

g ¼ detðgαβÞ ¼ −
ρ2ðρ2 þ a2Þ32eΨðrÞ
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
− bðrÞ�

: ð12Þ

Since (4) and the requirement that Ψ is a function of class
C∞ for all r > jaj, or what is the same, Ψ ∈ C∞ for all real
values of ρ defined by r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
≥ jaj yields that the

determinant (12) is finite nonzero and negative definite for
all ρ ∈ ð−∞;∞Þ. In particular for ρ ¼ 0 this determinant11

reduces to limρ→0 detðgαβÞ ¼ − 2a4eΨðjajÞ
1−b0ðjajÞ ∈ R− − f0g as long

as (6). Hence, the metric (11), for the case with a ≠ 0, is
well defined for all ρ ∈ ð−∞;∞Þ.
Therefore, the spacetime described by metric (11)≡ (10)

has been carefully designed to be a minimalist modification

of the ordinary black hole spacetime (7); when adjusting a,
rh,M ¼ MðrÞ and b ¼ bðrÞ, this metric represents either:

(i) If (M ¼ 0 ≠ b) becomes a traversable wormhole
of the Morris-Thorne type, with throat of radius
r0 ¼ jaj located at ρ0 ¼ 0 (in the radial bounce
coordinate ρ).

(ii) If (M ≠ 0 ≠ b), such that bðr0Þ > 2MðrhÞ (which
implies absence of horizon), becomes a traversable
wormhole of the Morris-Thorne type, with throat of
radius r0 ¼ jaj located at ρ0 ¼ 0.

(iii) If (M ≠ 0 ≠ b), such that bðr0Þ ¼ 2MðrhÞ i.e.,
r0 ¼ rh (which implies absence of a T-WH throat)
becomes a one-way wormhole with a null throat of
radius r0 ¼ jaj located at ρ0 ¼ 0.

(iv) If (M ≠ 0 ¼ b) becomes an ordinary black hole
spacetime with event horizon radius given by
rh ¼ 2MðrhÞ.

(v) If (M ≠ 0 ≠ b), such thatbðr0Þ < 2MðrhÞ, becomes
a regular black hole (black bounce) with a one-way
spacelike throat at ρ0 ¼ 0 (of radius r0 ¼ jaj), and
with two (outer) event horizons of radio rh ¼
2MðrhÞ > jaj, located at ρh ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h − a2

p
≠ 0.

Particular case: black bounces of the Simpson-Visser
type. For the case bðrÞ ¼ a2=r with ΨðrÞ ¼ 2δðrÞ þ
2ΦðrÞ ¼ 0 the line element (10) takes the form:

ds2BB ¼ −
�
1 −

2MðrÞ
r

�
dt2 þ dr2

ð1 − a2

r2Þ
�
1 − 2MðrÞ

r

�
þ r2dΩ2; ð13Þ

whereas in terms of the radial ρ-coordinate
(ρ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − a2

p
), it becomes

ds2BB ¼ −
�
1 −

2MðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p �
dt2 þ dρ2�

1 − 2MðrÞffiffiffiffiffiffiffiffiffi
ρ2þa2

p
�

þ ðρ2 þ a2ÞdΩ2: ð14Þ

For this case the determinant (12) becomes

g ¼ detðgαβÞ ¼ −ðρ2 þ a2Þ2; ð15Þ

which is finite nonzero and negative definite for all ρ real.
The spacetime metric (14) ≡ (13) describes a generic
black-bounce geometry of the Simpson-Visser type. In
particularly, this type of black-bounce spacetimes are such
that for a ≠ 0 ¼ MðrÞ becomes the traversable Ellis WH
metric presented originally in [42]. Adjusting a, rh and
M ¼ MðrÞ, this metric represents either:

(i) The ordinary traversable Ellis wormhole spacetime
if (M ¼ 0 ≠ a).

(ii) A traversable wormhole in the Morris-Thorne sense
if (M ≠ 0 ≠ a with jaj > rh).

10I.e., the curvature of spacetime is regular in all spacetime
geometry.

11Note that
dρ2

dρ

d
dρ½
ffiffiffiffiffiffiffiffiffi
ρ2þa2

p
−bðrÞ�

¼ 2
ffiffiffiffiffiffiffiffiffi
ρ2þa2

p
1−b0ðrÞ , implying

limρ→0
ρ2ffiffiffiffiffiffiffiffiffi

ρ2þa2
p

−bðrÞ
¼ 2jaj

1−b0ðjajÞ.
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(iii) An one-way wormhole with a null throat if
(M ≠ 0 ≠ a with jaj ¼ rh).

(iv) An ordinary black hole spacetime if (M ≠ 0 ¼ a).
(v) A black bounce with a one-way spacelike throat if

(M ≠ 0 ≠ a with rh > jaj).

III. FIELD EQUATIONS FOR A GENERIC STATIC
SPHERICALLY SYMMETRIC, PURELY

MAGNETIC SPACETIME CONFIGURATION

The GR-NLED-SF theory is defined by the following
action:

S½gab;ϕ; Ac� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π

�
R−

1

2
∂μϕ∂

μϕ− 2UðϕÞ
�

þ 1

4π
LðF Þ

�
; ð16Þ

where R is the scalar curvature, ϕ is a scalar field which is
minimally coupled to gravity, U ¼ UðϕÞ is the scalar
potential, whereas L ¼ LðF Þ is a function of the electro-
magnetic invariant F ≡ 1

4
FαβFαβ, being Fab ¼ 2∂½aAb� the

components of the electromagnetic field tensor F ¼
1
2
Fαβdxα ∧ dxβ and Aa are the components of the electro-

magnetic potential.
The GR-NLED-SF field equations arising from action

(16) are

Gα
β ¼ 8πðEα

βÞSF þ 8πðEα
βÞNLED;

∇μðLFFμνÞ ¼ 0 ¼ dF; ∇2ϕ ¼ 2 _U; ð17Þ

where LF ≡ dL
dF and _U ¼ dU

dϕ, whereas Gα
β ¼ Rα

β − R
2
δα

β

denotes the components of the Einstein tensor, ðEα
βÞSF are

the components of the energy-momentum tensor of self-
interacting scalar field,

8πðEα
βÞSF ¼ −

1

4
ð∂μϕ∂μϕÞδαβ þ

1

2
∂αϕ∂

βϕ − Uδαβ; ð18Þ

whereas, ðEα
βÞNLED are the components of the NLED

energy-momentum tensor,

8πðEα
βÞNLED ¼ 2LFFαμFβμ − 2Lδαβ: ð19Þ

Our aim is to find a solution of the set of Eqs. (17), that
describes a SSS-AF charged black-bounce solution with a
nontrivial scalar field. Therefore, we will assume that the
scalar field is static and spherically symmetric, ϕ ¼ ϕðrÞ,
and also that the metric takes the static and spherically
symmetric form

ds2 ¼ −eAðrÞdt2 þ eBðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð20Þ

with A ¼ AðrÞ and B ¼ BðrÞ being unknown functions
depending only on r.
Below, we include the explicit form of the field equations

assuming both the SSS for the metric (20), SSS scalar field
ϕðrÞ, and an arbitrary NLED LðF Þ model. For a generic
SSS spacetime metric ansatz (20) the non-null components
of the Einstein tensor are given by

Gt
t¼ e−B

r2
ð−rB0−eBþ1Þ; Gr

r¼ e−B

r2
ðrA0−eBþ1Þ;

Gθ
θ ¼Gφ

φ ¼ e−B

4r
ðrA02− rA0B0 þ2rA00 þ2A0−2B0Þ: ð21Þ

The nontrivial components of the energy-momentum tensor
of self-interacting scalar field are

8πEt
t ¼ 8πEθ

θ ¼ 8πEφ
φ ¼ −

1

4
e−Bϕ02 − U;

8πEr
r ¼ 1

4
e−Bϕ02 − U: ð22Þ

Regarding the electromagnetic field tensor, since the
spacetime is SSS, we can restrict ourselves to purely
magnetic field; i.e., E ¼ 0 and B ≠ 0, thus the electromag-
netic field tensor has the form Fαβ ¼ Bðδθαδφβ − δφαδθβÞ.
In this way, for a SSS spacetime with line element (20),
the general solution of the equations ∇μðLFFμνÞ ¼ 0 is
given by

Fθφ ¼ r4QðrÞ sin θ: ð23Þ

Then, F ¼ r4QðrÞ sin θdθ ∧ dφ, therefore dF ¼ 0 ¼
ðr4QðrÞÞ0 sin θdr ∧ dθ ∧ dφ, yields QðrÞ ¼ ffiffiffi

2
p

q=r4,
where

ffiffiffi
2

p
q is an integration constant, in which it plays

the role of the magnetic charge. Hence, the components of
the electromagnetic field tensor, and the invariant F are
respectively given by

Fαβ ¼
ffiffiffi
2

p
q sin θðδθαδφβ − δφαδθβÞ; F ¼ q2

r4
: ð24Þ

Finally, the energy-momentum tensor components for
NLED, assuming the SSS spacetime with metric (20), the
purely magnetic field (24), and a generic Lagrangian
density LðF Þ, are given by

8πðEt
tÞNLED ¼ 8πðEr

rÞNLED ¼ −2L;

8πðEθ
θÞNLED ¼ 8πðEφ

φÞNLED ¼ 2ð2FLF − LÞ: ð25Þ

Inserting the above given components in the field equations
written as Cα

β ¼ Gα
β − 8π½ðEα

βÞSF þ ðEα
βÞNLED� ¼ 0, we

obtain that the GR-NLED-SF field equations for the metric
ansatz (20) and the magnetic field (24) take the form:
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Ct
t¼ 0

⇒
e−B

r2
ð−rB0−eBþ1Þþ1

4
e−Bϕ02þUþ2L¼ 0; ð26Þ

Cr
r¼0⇒

e−B

r2
ðrA0−eBþ1Þ−1

4
e−Bϕ02þUþ2L¼0; ð27Þ

Cθ
θ ¼ Cφ

φ ¼ 0

⇒
e−B

4r
ðrA02 − rA0B0 þ 2rA00 þ 2A0 − 2B0Þ

þ 1

4
e−Bϕ02 þ U − 2ð2FLF − LÞ ¼ 0; ð28Þ

whereas the scalar field should satisfy

2rϕ00 þ ð4þ rA0 − rB0Þϕ0 − 4reB _U ¼ 0: ð29Þ

A. Solution for nontrivial scalar field, vanishing scalar
potential, and vanishing electromagnetic field:

Ellis wormhole metric

For the case a ≠ 0, U ¼ Fαβ ¼ LðF Þ ¼ 0, the field
equations (26)–(29) are solved by the following static
and spherically symmetric line element:

ds2WH ¼ −dt2 þ dr2

1 − a2

r2
þ r2ðdθ2 þ sin2θdφ2Þ; ð30Þ

with a imaginary scalar field, given by

ϕðrÞ ¼ 2itan−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − a2

a2

s !
: ð31Þ

The metric (30), originally introduced in [42], admits a
T-WH interpretation since satisfies the properties (4)–(6),
and is known as the Ellis wormhole metric.
Indeed, defining a new scalar field by ψ ¼ iϕ (phantom

field), and using U ¼ LðF Þ ¼ 0, the action (16) takes the
form

S½gab;ψ � ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π

�
Rþ 1

2
∂μψ∂

μψ

��
: ð32Þ

This gravitational action defines a theory that admits the
Ellis WH metric as an exact solution and with ψ given by

ψ ¼ 2 tan−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − a2

a2

s !
∈ R: ð33Þ

This is the action that was used by Ellis in Ref. [42] to get
the wormhole solution (30).

B. Simpson-Visser black bounce as a pure magnetic
exact solution of the GR-NLED-SF field equations

The following NLED-SF theory defined by a scalar
potential and a power-law Maxwell NLED model, given
respectively by

UðϕÞ ¼ U0cosh5
�
ϕ

2

�
; LðF Þ ¼ s0jF j54; ð34Þ

where U0 and s0 are real parameters of the theory, such that
for the case U0 ¼ 4m=ð5jqj3Þ and s0 ¼ 3m=ð5 ffiffiffiffiffiffijqjp Þ being
that q andm are real parameters, defines a NLED-SF model
for the which the metric

ds2BB¼−
�
1−

2m
r

�
dt2þ dr2

ð1− q2

r2Þð1− 2m
r Þ

þ r2dΩ2 ð35Þ

together with the scalar field

ϕðrÞ ¼ 2i tan−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − q2

q2

s !
; ð36Þ

is a pure magnetic exact solution of the GR-NLED-SF field
equations (26)–(29), being that q is the magnetic charge.
The metric (35) describes a black bounce model of

the type (13), which according with our method to
produce black-bounce models, come from considering
the Schwarzschild metric

ds2BH ¼−
�
1−

2m
r

�
dt2þ

�
1−

2m
r

�
−1
dr2þ r2dΩ2; ð37Þ

as the SSS-AF-BH metric (7), and the Ellis solution (30)
with a2 ¼ q2 as the T-WH metric (3).
Finally, if we change the radial coordinate to ρ2¼r2−q2,

which implies dρ ¼ �ðr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − q2

p
Þdr, the line element

(35) takes the form

ds2BB ¼ −
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ q2

p �
dt2 þ

�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ q2

p �
−1
dρ2

þ ðρ2 þ q2ÞdΩ2; ð38Þ

which corresponds to the original Simpson-Visser black-
bounce model (2) with a2 ¼ q2.
Avoiding the Penrose singularity theorem: Using (36),

(C6), and (C12) for the Simpson-Visser black-bounce
spacetime, one obtains
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8πðρtÞSF þ 8πðPrÞSF ¼ 8πðρtÞeff þ 8πðPrÞeff
¼ −

2q2

r4

�
1 −

2M
r

�
< 0

∀ r ∈ ð2M;∞Þ; ð39Þ

which indicates that the local energy density of the scalar
field ρSF ¼ ðEμνÞSFkμkν, and the local energy density of the
total energy/mater source (self-interacting scalar field plus
the nonlinear electromagnetic field) ρeff ¼ ðEμνÞeffkμkν, for
every timelike vector field k ¼ kμ∂μ, are not positive
definite in the whole spacetime, whereas the power-law
Maxwell NLED (34) for the purely magnetic field (24)
holds

F ¼q2

r4
>0; L¼ s0F

5
4>0; LF ¼5s0

4
F

1
4>0 ∀r ð40Þ

according to (C8); this implies that the local energy
density of the nonlinear electrodynamic field ρNLED ¼
ðEμνÞNLEDkμkν is positive defined everywhere. Thus, the
Simpson-Visser black bounce as a pure magnetic exact
solution of GR-NLED-SF does not satisfy the WEC, being
that the self-interacting scalar field is only responsible for
the violation of WEC, and therefore the gravitational
collapse, from which the Simpson-Visser black bounce
is produced, avoiding the singularity theorem of Penrose
[18]. See Appendix C for details.

C. Canonical acoustic black bounce as a pure magnetic
exact solution of the GR-NLED-SF field equations

The following NLED-SF theory defined by a scalar
potential and a NLED model, given respectively by

UðϕÞ ¼ U1cosh8
�
ϕ

2

�
;

LðF Þ ¼ s1F 2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s1jF j3
2a2

s
; ð41Þ

where a, U1, and s1 are real parameters of the theory, such
that for the case U1 ¼ q2=a6 and s1 ¼ 3a2=ð2q2Þ, defines a
NLED-SF model for the which the metric,

ds2BB ¼ −
�
1 −

q2

r4

�
dt2 þ dr2

ð1 − a2

r2Þð1 − q2

r4Þ
þ r2dΩ2 ð42Þ

together with the scalar field,

ϕðrÞ ¼ 2i tan−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − a2

a2

s !
; ð43Þ

is a pure magnetic exact solution of the GR-NLED-SF field
equations (26)–(29), being that the parameter q is the
magnetic charge.
The metric (42) defines a black-bounce model of the

Simpson-Visser type (13), which smoothly interpolates
between the Ellis wormhole metric (if q¼0≠a) and
the canonical acoustic black hole (CABH) metric (if
q ≠ 0 ¼ a) given by

ds2BH ¼ −
�
1 −

q2

r4

�
dt2 þ

�
1 −

q2

r4

�−1
dr2 þ r2dΩ2; ð44Þ

which was originally derived in [43]. The acoustic black
holes (or sonic black holes) are acoustic analogues of the
gravitational black holes. Specifically, an acoustic black hole
forms when the velocity of the fluid exceeds the velocity of
sound on some closed surface. That surface forms a sonic
horizon, an exact sonic analog of a black hole horizon where
the sound modes, or phonons (rather than light waves),
cannot escape the event horizon (see Ref. [44] for details). In
the gravitational context, recently in [45], the line element
(44) was reinterpreted as an exact gravitational black hole
solution of theEinstein-scalar-Gauss-Bonnet field equations.
To put in context, as an application of the black-bounce

models generator method, the black-bounce metric (42) is
generated using the Ellis wormhole as the T-WHmetric (3),
and the CABH as the BH metric (7).
On the other hand, using the radial coordinate ρ, defined

by ρ2 ¼ r2 − a2, the metric (42) takes the form

ds2BB ¼ −
�
1 −

q2

ðρ2 þ a2Þ2
�
dt2 þ

�
1 −

q2

ðρ2 þ a2Þ2
�−1

dρ2

þ ðρ2 þ a2ÞdΩ2; ð45Þ

being that the canonical acoustic black-bounce metric
written in the bounce coordinates ðxαÞ ¼ ðt; ρ; θ;ϕÞ are
defined as t ∈ ð−∞;∞Þ, ρ ∈ ð−∞;∞Þ, θ ∈ ½0; π�, and
ϕ ∈ ½0; 2πÞ.
Hence, adjusting the parameters q and a, the spacetime

metric (45) ≡ (42) admits the following interpretations:
(i) The ordinary traversable Ellis wormhole spacetime

if (q ¼ 0 ≠ a).
(ii) A new traversable Morris-Thorne wormhole (which

generalizes to the Ellis solution WH) if (q ≠ 0 ≠ a
such that jqj < a2) with WH throat at ρ0 ¼ 0 of
radius r0 ¼ jaj.

(iii) An one-way wormhole with a null throat if
(jqj ¼ a2 ≠ 0).

(iv) The ordinary canonical acoustic black hole spacetime
if (q ≠ 0 ¼ a).

(v) A black bounce if (q ≠ 0 ≠ a such that jqj > a2),
with a one-way spacelike throat at ρ0 ¼ 0 (of
radius r0 ¼ jaj), and with event horizons at ρh ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj − a2

p
≠ 0 (of radius rh ¼

ffiffiffiffiffiffijqjp
> jaj).
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On the other hand, using (43), (C6), and (C12), for the
canonical acoustic black-bounce solution, yields

8πðρtÞSF þ 8πðPrÞSF ¼ 8πðρtÞeff þ 8πðPrÞeff
¼ −

2a2

r4

�
1 −

q2

r4

�
< 0

∀ r ∈ ð
ffiffiffiffiffiffi
jqj

p
;∞Þ; ð46Þ

whereas the NLEDmodel (41) for the purely magnetic field
(24), F ¼ q2

r4 > 0, holds

L ¼ s1F 2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3s1F 3

2a2

s
¼ −

3q2

2r6

�
1 −

a2

r2

�
< 0;

LF ¼ 2s1F −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
27s1F
8a2

r
¼ −

3

r2

�
3

4
−
a2

r2

�
< 0

∀ r ∈ ðjaj;∞Þ: ð47Þ

Then, according to (C6), (C8), and (C12), the inequalities
(46) and (47) imply the local energy densities ρSF¼
ðEμνÞSFkμkν, ρNLED ¼ ðEμνÞNLEDkμkν, and ρeff ¼
ðEμνÞeffkμkν, associated respectively to scalar field, non-
linear electromagnetic field, and the total energy/matter
source, are not positive defined in the whole canonical
acoustic black-bounce spacetime. Hence, the canonical
acoustic black bounce as a pure magnetic exact solution
ofGR-NLED-SFdoes not satisfy theWEC, and therefore the
gravitational collapse that resulted in the canonical acoustic
black bounce avoid the Penrose singularity theorem [18].

D. Black-bounce-4D-Einstein-Gauss-Bonnet as
an exact solution of the ES-NLED field equations

The following NLED-SF theory defined by a scalar
potential and a NLED model, given respectively by

UðϕðrÞÞ¼
Z

r

jaj

2a2ðr3þ2αq2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3þ8αq2Þr3

p
Þ

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3þ8αq2Þr9

p dr; ð48Þ

LðF ðrÞÞ¼−
3

4α
þ a2

2αr2
þ3r5−2a2r3þ12αq2r2−4a2αq2

4α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3þ8αq2Þr7

p
−
Z

r

jaj

a2ðr3þ2αq2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3þ8αq2Þr3

p
Þ

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3þ8αq2Þr9

p dr; ð49Þ

where α, a, and q are real parameters (with α ≠ 0), defining
a NLED-SF model for the which the metric

ds2BB¼−
	
1þ r2

2α

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8αq2

r3

r �

dt2

þ dr2

ð1− a2

r2Þ
h
1þ r2

2α

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αq2

r3

q �iþ r2dΩ2; ð50Þ

together with the scalar field

ϕðrÞ ¼ 2i tan−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − a2

a2

s !
ð51Þ

is a pure magnetic exact solution of the GR-NLED-SF field
equations (26)–(29), being that the parameter q is the
magnetic charge.
The metric (52) defines a black-bounce model of the

Simpson-Visser type (13), which smoothly interpolates
between the Ellis wormhole metric (if q ¼ 0 ≠ a) and a
BH metric given by

ds2BH ¼ −
	
1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αq2

r3

r �

dt2

þ
	
1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αq2

r3

r �
−1
dr2 þ r2dΩ2;

ð52Þ

which was presented in [46] as a SSS asymptotically
Schwarzschild black hole solution of the 4D-Einstein-
Gauss-Bonnet (4D-EGB) field equations and therefore it
is known as 4D-EGB black hole.
It is worth mentioning that the black-bounce model (50)

is defined using the Ellis wormhole as the T-WHmetric (3),
and the 4D-EGB black hole as the BH metric (7).
On the other hand, by the mapping ρ2 ¼ r2 − a2, the line

element (50) takes the form

ds2BB ¼ −
	
1þ ρ2 þ a2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αq2

ðρ2 þ a2Þ32

s �

dt2

þ
	
1þ ρ2 þ a2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αq2

ðρ2 þ a2Þ32

s �
−1
dρ2

þ ðρ2 þ a2ÞdΩ2: ð53Þ

This spacetime configuration smoothly interpolates
between a black hole geometry [if a ¼ 0 ≠ q2 the metric
(53) reduces to the 4D-EGB black hole] and a traversable
wormhole of the Morris-Thorne type [if q2 ¼ 0 ≠ a the
metric (53) reduces to the Ellis T-WH].
Hence, adjusting the parameters q and a, the spacetime

geometry (53) ≡ (50) admits the following interpretations:
(i) The ordinary traversable Ellis wormhole spacetime

if (q ¼ 0 ≠ a).
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(ii) A T-WH generalization of Ellis wormhole if
(q ≠ 0 ≠ a such that q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 − α

p
< jaj, which

implies absence of horizons) and with WH throat
located at ρ0 ¼ 0 (of radius r0 ¼ jaj).

(iii) An one-way wormhole if (q2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 − α

p
¼ jaj ≠ 0)

with a null throat at ρ0 ¼ 0 (of radius r0 ¼
q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 − α

p
¼ jaj).

(iv) The ordinary 4D-EGB black hole spacetime
if (q ≠ 0 ¼ a).

(v) A black bounce with a one-way spacelike throat if
(q ≠ 0 ≠ a such that q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 − α

p
> jaj). The

one-way spacelike throat is localized at ρ0 ¼ 0 (of
radius r0 ¼ jaj), whereas the event horizons are

located at ρh ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 − α

p
Þ2 − a2

q
≠ 0 (of

radius rh ¼ q2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 − α

p
> jaj).

This black-bounce spacetime avoids the Penrose singular-
ity theorem since the scalar field (51) is imaginary.

IV. NOVEL TYPE OF BLACK-BOUNCE
GEOMETRY: BLACK BOUNCE WITHOUT

ELLIS WORMHOLE AS A PARTICULAR CASE

To date, all the known SSS-AF black bounces
[30,32,33,47,48] are of the form (13) ≡ (14), and hence
all they have the Ellis wormhole as a particular case, i.e.,
they are of the Simpson-Visser type, and have the form

ds2¼−nðρÞdt2þ dr2

mðρÞþðρ2þa2ÞdΩ2 with nðρÞ¼mðρÞ:

ð54Þ

In virtue of black-bounce method (Sec. II), in the following
we will show for the first time a novel type of black bounce
metric that cannot be reduced to the Ellis wormhole
solution, i.e., we will obtain a black-bounce solution of
the form (54) with nðρÞ ≠ mðρÞ.
Novel type of black-bounce solution: The following

NLED-SF theory defined by a scalar potential and a
NLED model, given respectively by

UðϕÞ ¼ −
1

48

�
1þ ϕ2

4

�
3
	
8β0
3

�
ϕ2 −

44

7

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ 4

q

− β̃0ð3ϕ2 − 4Þ


; ð55Þ

LðF Þ ¼ −
1

2
F þ 2jqj

3
jF j32 − q2

8
F 2

þ σ0

�
jF j54 − 11jqj

14
jF j74 þ q2

9
jF j94

�
; ð56Þ

where β̃0, β0, and σ0 are real parameters, admits the
following metric:

ds2WH ¼ −e−
q2

r2dt2 þ dr2

1 − q2

r2

þ r2dΩ2 ð57Þ

for the value of the parameters β̃0 ¼ 1=q2, β0 ¼ 0 ¼ σ0,
together with the scalar field

ϕðrÞ ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

q2

r2

r
ð58Þ

as a pure magnetic exact solution of the GR-NLED-SF field
equations (26)–(29). The metric (57) is a nontrivial redshift
function modification of the T-WH metric (30) and was
recently derived in [49], whereas, for the cases β̃0 ¼ 1=q2,
β0 ¼ m=jqj3, and σ0 ¼ 2m=

ffiffiffiffiffiffijqjp
, it defines a NLED-SF

model for the which the metric

ds2BB¼−
�
1−

2m
r

�
e−

q2

r2dt2þ dr2

ð1−q2

r2Þð1− 2m
r Þ

þr2dΩ2 ð59Þ

together with the scalar field (58), is a pure magnetic exact
solution of the GR-NLED-SF field equations (26)–(29).
The metric (59) has a black-bounce structure of the
type (10) with nontrivial ΨðrÞ function, and smoothly
interpolates between the Schwarzschild black hole (if
q ¼ 0 ≠ m) and a traversable wormhole (if q ≠ 0 ¼ m)
with metric (57). In terms of the radial ρ-coordinate,
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ q2

p
≥ jqj, the metric (59) takes the form

ds2BB ¼ −
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ q2

p �
e
− q2

ρ2þq2dt2 þ dρ2�
1 − 2mffiffiffiffiffiffiffiffiffi

ρ2þq2
p

�
þ ðρ2 þ q2ÞdΩ2; ð60Þ

since this metric yields jgttgρρj ¼ e
− q2

ρ2þq2 , it is not of
Simpson-Visser black bounce (2) type because we must
have jgttgρρj ¼ 1 for all the SSS black bounces of the
Simpson-Visser type. Hence, the metric (59)≡ (60) defines
a new type of black bounce. Adjusting the parametersm and
q, the spacetime configuration (60)≡ (59) represents either:

(i) The traversable wormhole metric (57) if (q≠0¼m).
(ii) A T-WH generalization of (57) if (q ≠ 0 ≠ m such

that jqj > 2m) with T-WH throat at ρ0 ¼ 0 (of
radius r0 ¼ jqj).

(iii) An one-way wormhole if (jqj ¼ 2m ≠ 0) with a null
throat at ρ0 ¼ 0 (of radius r0 ¼ jqj).

(iv) The ordinary Schwarzschild black hole spacetime
if (q ¼ 0 ≠ m).

(v) A black bounce if (q ≠ 0 ≠ m such that jqj < 2m),
with an one-way spacelike throat at ρ0 ¼ 0 (of
radius r0 ¼ jqj), and with event horizons at ρh ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − q2

p
≠ 0 (of radius rh ¼ 2m > jqj).

Finally, it is important to emphasize that the NLED
Lagrangian density (56) needed to generate the new black
bounce solution (59)≡ (60) reduces toMaxwell theory in the
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limit ofweak field. I.e.,L → κF andLF → κ (being that κ is
a constant) whenF → 0, in contrast toLðF Þ functions (34),
(41), and (49) which do not satisfy this important physical
NLED condition. However, because the spacetime metric
(59) requires the phantom scalar fields (58) in order to
support its T-WH structures, yield that these spacetimes
violate the WEC.

V. CONCLUSION

In this work the construction of several black-bounce
geometries as exact solutions of the Einstein-nonlinear
electrodynamics gravity coupled to a phantom scalar field
have been presented. Specifically, we show three black
bounces of the Simpson-Visser type: the Simpson-Visser,
the canonical acoustic, and the 4D-EGB, all of them as
purely magnetic, exact solutions of GR-NLED-SF.
Moreover, we obtained a novel black-bounce solution
which, in contrast of the Simpson-Visser type, does not
have the Ellis wormhole solution as a particular case.
Therefore, a new type of black bounce of the form

ds2 ¼ −nðρÞdt2 þ dr2

mðρÞ þ ðρ2 þ a2ÞdΩ2; ð61Þ

with nðρÞ ≠ mðρÞ is established. Particularly, the nonlinear
electrodynamics model needed to generate this novel

solution, which, in the limit of weak field, becomes the
Maxwell field. In contrast with the Simpson-Visser black-
bounce type, i.e., nðρÞ ¼ mðρÞ in all cases, and for which
the Maxwell limit is not achieved in the cases we analyzed
(34), (41), and (49). However, all the presented solutions
(38), (45), (53), and (60), Simpson-Visser type or not,
require a phantom scalar field as a source in order to
support the traversable wormhole structure. The existence
of this phantom scalar field implies that the black-bounce
spacetime violates the weak energy condition, and therefore
the Penrose singularity theorem is avoided.
While this paper was being written, we learned of the

results from a similar work [50]. There the field sources for
Simpson-Visser spacetimes are presented; however, in their
approach only black bounce of the Simpson-Visser type,
i.e., of the form (61) with nðρÞ ¼ mðρÞ is studied (See
Eq. (1) of the Ref. [50]). Hence, black bounces without
Ellis wormhole as a particular case, e.g., our solution (60),
cannot be derived by the approach established in [50].
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APPENDIX A: CURVATURE INVARIANTS R, RαβRαβ AND RαβμνRαβμν IN TERMS OF THE
SCHWARZSCHILD COORDINATES

For the metric (10) the curvature invariants R, RαβRαβ, and RαβμνRαβμν are given by

R ¼ 1

2r2

�
ðr − bÞ½4M00 − ðr − 2MÞð2Ψ00 þ Ψ02Þ� þ ½6ðr − bÞM0 þ ðr − 2MÞb0 − 4rþ 2Mþ 3b�Ψ0

þ
�
8 −

6b
r
− 2b0

�
M0 þ

�
4 −

6M
r

�
b0 þ 6Mb

r2

�
; ðA1Þ

RαβRαβ ¼ 1

4r4

�
ðr − bÞðr − 2MÞ

�
Ψ00 þ Ψ02

2

�
− 2ðr − bÞM00 −

	
3ðr − bÞM0 þ 1

2
ðr − 2MÞb0 − 2rþMþ 3

2
b



Ψ0

þ
�
b
r
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M
r

−M0
��
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4r4
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�
Ψ00 þ Ψ02

2

�
−
1

2

	
ðr − 2MÞb0

þ 6ðr − bÞM0 −
�
1 −

8M
r

�
b − 6M



Ψ0 þ

�
b0 −

b
r

��
M0 þ 3M

r
− 2

��
2

þ 1

2r4

��
1 −

b
r

�
½4M0

− ðr − 2MÞΨ0� þ
�
1 −

2M
r

�
b0 þ

�
1þ 2M

r

�
b
r

�
2

; ðA2Þ

RαβμνRαβμν ¼ 1

r8

�
r2ðr − bÞðr − 2MÞ

�
Ψ00 þ Ψ02

2

�
− 2r2ðr − bÞM00 − 3r

	
rðr − bÞM0 þ rðr − 2MÞb0

6

−
�
r −

4b
3

�
M −

rb
6



Ψ0 þ ð4r − 5bþ rb0ÞðrM0 −MÞ

�
2

þ 2ðb − rÞ2½rð2M − rÞΨ0 þ 2rM − 2M�2
r8

þ 2

r8
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: ðA3Þ
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APPENDIX B: FIELD EQUATIONS

In this appendix we include the explicit form of the field
equations that are satisfied by the metric ansatz (13).

Gt
t ¼ a2

r4

�
1 −

4M
r

þ 2M0
�
−
2M0

r2
;

Gr
r ¼ a2

r4
ð2M0 − 1Þ − 2M0

r2
; ðB1Þ

Gθ
θ ¼ Gϕ

ϕ ¼ a2

r3

�
M00 −

M0

r
−
M
r2

þ 1

r

�
−
M00

r
: ðB2Þ

The nontrivial components of the energy-momentum tensor
of self-interacting scalar field are

8πðEt
tÞSF ¼ 8πðEθ

θÞSF ¼ 8πðEφ
φÞSF

¼ −
1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 − U; ðB3Þ

8πðEr
rÞSF ¼

1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 − U: ðB4Þ

The energy-momentum tensor components for NLED,
assuming the SSS spacetime with metric (13), the purely
magnetic field (24), and a generic Lagrangian density LðFÞ
are given by

8πðEt
tÞNLED ¼ 8πðEr

rÞNLED ¼ −2L;

8πðEθ
θÞNLED ¼ 8πðEφ

φÞNLED ¼ 2ð2FLF − LÞ: ðB5Þ

Inserting the above given components in the field equa-
tions written as Cα

β¼Gα
β−8π½ðEα

βÞSFþðEα
βÞNLED�¼0,

we obtain that the GR-NLED-SF field equations for the
metric ansatz (13) and the magnetic field (24) take the form:

Ct
t ¼ 0 ⇒

a2

r4

�
1 −

4M
r

þ 2M0
�
−
2M0

r2

þ 1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 þ U þ 2L ¼ 0; ðB6Þ

Cr
r ¼ 0 ⇒

a2
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ð2M0 − 1Þ − 2M0
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−
1

4

�
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a2

r2

��
1 −

2M
r

�
ϕ02 þ U þ 2L ¼ 0; ðB7Þ

Cθ
θ ¼ 0⇒

a2

r3

�
M00 −

M0

r
−
M
r2

þ 1

r

�
−
M00

r

þ 1

4

�
1−

a2

r2

��
1−

2M
r

�
ϕ02þU − 2ð2FLF −LÞ ¼ 0;

ðB8Þ

whereas the scalar field should satisfy

2rϕ00 þ
�
4þ 4M − 4rM0

r − 2M
þ 2a2

r2 − a2

�
ϕ0

−
4r4

ðr2 − a2Þðr − 2MÞ
_U ¼ 0: ðB9Þ

APPENDIX C: AVOIDING THE BLACK HOLE
SINGULARITY PROBLEM

Avoiding the black hole singularity problem in general
relativity: The Penrose singularity theorem [18], and its
modern variants and extensions (see for instance [21]),
demonstrates that in a gravitational collapse with the
assumption that the Einstein field equations hold, once a
closed trapped surface S is formed, which describes the
inner region of an black hole event horizon, then in some
region of spacetime contained in the causal future J þðSÞ
of S, at least one of the following must hold in order to
avoid a spacetime singularity:

(i) The weak energy condition (WEC) is violated.
(ii) Global hyperbolicity breaks down.
Null and weak energy conditions in GR: For a energy-

momentum tensor Tμν, the null energy condition (NEC)
stipulates that for every null vector, nα yields Tμνnμnν ≥ 0.
Following [40], for a diagonal energy-momentum tensor
ðTαβÞ¼diagðTtt;Trr;Tθθ;TφφÞ, which can be conveniently
written as

Tα
β¼−ρtδαtδtβþPrδα

rδr
βþPθδα

θδθ
βþPφδα

φδφ
β; ðC1Þ

where ρt may be interpreted as the rest energy density of
the matter, whereas Pr, Pθ, and Pφ are respectively the
pressures along the r, θ, and φ directions. In terms of (C1)
the NEC implies

ρt þ Pa ≥ 0 with a ¼ fr; θ;φg: ðC2Þ

The weak energy condition (WEC) states that for any
timelike vector k ¼ kμ∂μ (i.e., kμkμ < 0), the energy-
momentum tensor obeys the inequality Tμνkμkν ≥ 0, which
means that the local energy density ρloc ¼ Tμνkμkν as
measured by any observer with timelike vector k is a
non-negative quantity. For an energy-momentum tensor of
the form (C1), the WEC will be satisfied if and only if

ρt¼−Tt
t ≥ 0; ρtþPa ≥ 0 with a¼fr;θ;φg: ðC3Þ

(i) WEC for a self-interacting scalar field ðEα
βÞSF

Now, by using (18), (B3), and (B4) yield
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8πðρtÞSF ¼ −8πðPθÞSF ¼ −8πðPφÞSF
¼ 1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 þ U; ðC4Þ

8πðPrÞSF ¼
1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 − U; ðC5Þ

since ðρtÞSF þ ðPaÞSF ¼ 0 for all a ¼ θ, φ, the
tensor ðEα

βÞSF satisfies the WEC if

8πðρtÞSF ¼ 1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 þ U ≥ 0;

8πðρtÞSF þ 8πðPrÞSF
¼ 1

2

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 ≥ 0: ðC6Þ

(ii) WEC for the nonlinear electromagnetic field
ðEα

βÞNLED
By using (19) and (25),

8πðρtÞNLED¼−8πðPrÞNLED¼ 2L;

8πðPθÞNLED¼ 8πðPφÞNLED¼ 2ð2FLF −LÞ; ðC7Þ

since ρt þ Pr ¼ 0, the tensor ðEα
βÞNLED satisfies the

WEC if

8πðρtÞNLED ¼ 2L ≥ 0;

8πðρtÞNLED þ 8πðρθÞNLED ¼ 8πðρtÞNLED
þ 8πðρφÞNLED

¼ 4FLF ≥ 0: ðC8Þ

(iii) WEC for the effective energy-momentum tensor
ðEα

βÞeff ¼ ðEα
βÞSF þ ðEα

βÞNLED

8πðρtÞeff ¼
1
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�
ϕ02 þ U þ 2L

ðC9Þ

8πðPrÞeff ¼
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ðC10Þ

8πðPθÞeff ¼ 8πðPφÞeff
¼ −

1
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�
1 −
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��
1 −
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�
ϕ02 − U

þ 2ð2FLF − LÞ: ðC11Þ

So, the tensor ðEα
βÞeff satisfies the WEC if

8πðρtÞeff ¼
1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02 þ U þ 2L

≥ 0; ðC12Þ

8πðρtÞeff þ 8πðPrÞeff ¼
1

4

�
1 −

a2

r2

��
1 −

2M
r

�
ϕ02

≥ 0; ðC13Þ

8πðρtÞeff þ 8πðPθÞeff ¼ 8πðρtÞeff þ 8πðPφÞeff
¼ 4FLF ≥ 0: ðC14Þ
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