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As previously proposed in Simpson and Visser [J. Cosmol. Astropart. Phys. 02 (2019) 042], Mazza et al.
[J. Cosmol. Astropart. Phys. 04 (2021) 082], Franzin et al. [J. Cosmol. Astropart. Phys. 07 (2021) 036], and
Lobo et al. [Phys. Rev. D 103, 084052 (2021), the “black bounce” spacetimes are an interesting type of
globally regular modifications of the ordinary black holes (such as the Kerr-Newman geometry and its
particular cases) which generically contain a spacetime singularity (usually of the curvature type) at their
center. To transforms a static, spherically symmetric and asymptotically flat black hole (SSS-AF-BH)
geometry regular everywhere except its center of symmetry » = O (where r stands for the “areal radius” of
the two-dimensional spheres of symmetry) and with (outer) event horizon at r = r;, > 0, into a black
bounce spacetime, is to simply replace r with \/p* + a* and dr with dp, being p a new radial coordinate,
and a is some real constant nonzero. As long as r, = \/p; + a* > |a|, the result is a globally regular (or
singularity-free) black hole spacetime (called black bounce) where the singularity that occurs in the
ordinary SSS-AF-BH geometry at » = 0 now in the transformed geometry turns into a regular spacetime
region determined by the two-dimensional spheres of symmetry of radius |a|, while the areal radius

\/p? + a* always remains positive for all p € (—co, c0) and has a minimum at p = 0 given by |a|. Hence,
in the transformed spacetime, the areal radius has a minimum, decreasing before and increasing after this
minimum (defining two SSS-AF regions that bounce). In this work we will present several black-bounces
exact solutions of General Relativity. Among them is a novel type of black-bounce solution, which in
contrast to the Simpson-Visser type {[Simpson and Visser, J. Cosmol. Astropart. Phys. 02 (2019) 042],
[Mazza et al., J. Cosmol. Astropart. Phys. 04 (2021) 082], [Franzin et al., J. Cosmol. Astropart. Phys. 07
(2021) 036], [Lobo et al., Phys. Rev. D 103, 084052 (2021)]}, does not have the Ellis wormhole metric as a
particular case. The source of these solutions is linear superposition of phantom scalar fields and nonlinear

electromagnetic fields.

DOI: 10.1103/PhysRevD.106.024031

I. INTRODUCTION

Einstein’s theory of General Relativity (GR) is a metric
theory of gravity, designed to describe spacetime, which
has become the most accepted definition of classical
gravity in modern physics.1 However, many important
physical solutions of the GR field equations [among them
we can mention the Kerr-Newman black hole metric and its
particular cases, and the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric or Standard Cosmological Model]

*pcannate @gmail.com

'Since the foundation of GR theory in 1915, it has been
subjected to innumerable tests (some of which have been passed
very successfully), for instance in the solar system or binary
pulsars (see Refs. [1-5] and references therein).
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contain a gravitational singularity2 where some relevant
curvature invariants (either constructed from the Riemann
tensor, such as R = R%,, R,sR, R4, R***, or formed by
polynomial expressions in covariant derivatives of the
Riemann tensor) diverge. Concerning the physical meaning
of these types of spacetimes, since the singularities occur-
ring in the spacetime denote a grave issue’ for GR as
their presence signals a regime where predictability breaks
down and the theory does not hold (see Refs. [6-8] for a
review), a number of proposals in classical and quantum
contexts have been suggested to get rid of the singularity
(see Refs. [9-13] and the references therein).

*Also referred to as physical singularity.
3Also known as the singularity problem in gravitation theory.

© 2022 American Physical Society
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The construction of regular black holes has been studied
using nonlinear electrodynamics (NLED) as source.
Specifically, motivated by the Bardeen model [14] several
regular black holes,” in the sense that none of them have
curvature singularities.,5 have been constructed in the
framework of Einstein’s theory of general relativity coupled
to nonlinear electrodynamics (GR-NLED) [16,17].
Although these solutions obey the weak energy condition
(WEC), they can avoid the singularity theorems [18-21]
because they are not globally hyperbolic. Let us remark that
since the regular black hole metrics described in [16] are
constructed with pure electric charges, this requires differ-
ent NLED Lagrangians in different parts of spacetime; see
Refs. [22,23] for details.

On the other hand, recently, the NLED has been gaining
attention to generate primordial magnetic fields in the early
Universe,” as a source of gravity that can drive the Universe
into a state of accelerated expansion, and also to resolve
cosmological singularity problem; see Refs. [26-29] for
review.

As mentioned at the beginning of the paper, the black
bounce spacetimes [30—33] represent a new alternative to
the black hole singularity problem. To date, all the known
static, spherically symmetric, and asymptotically flat black-
bounce (SSS-AF-BB) metrics belong to the Simpson-
Visser type, and have the form

ds* = —n(r)df* + n~'(r)dp* + r*(d6* + sin’0de?), (1)

with areal radius function r = r(p) given by r = \/p? + a?
being a = constant € R. Therefore, the areal radius func-
tion has a global minimum value at p =0 given by
Fmin = 7(0) = |a|, whereas n(r) is a smooth function on
p € (=00, ), such that n(r) — 1 as p — +oo [this implies
the existence of two asymptotically flat regions connected
at p = 0, that is, one for each side of the bounce; (—) for the
side p < 0; and (+) for the side p > 0], and where the event
horizons at p = £p; [two horizons of identical area radii
14, one on each side of the bounce, fulfilling n(r,) = 0 and
such that for all » > r, the n(r) function must be finite

nonzero and positive definite] exist whenever p, =

\/r; — a? is finite nonzero. Thus, starting from the region
p > 0, since the spacetime is regular at p = 0, this can be
extended to p < 0. Le., p = 0 corresponds to a one-way

“The regular black holes are an interesting type of singularity-
free spacetimes, which play an important role in order to study the
quantum corrected black holes (see Ref. [15] for details).

3Le., all invariants constructed from the Riemann curvature
tensor ’R:Raﬂﬂ,,dx”®dxﬂ ®Rdx* ®dx”, e.g., R =R%,, R(,/;R"ﬂ,
RaﬂMDR”ﬂ*‘”, and similar scalars formed by polynomial expres-
sions in covariant derivatives of the curvature tensor are well
defined everywhere.

Cosmological magnetic fields have become more important
since the wealth of observations of magnetic fields in the
Universe [24,25].

spacelike throat (of finite nonzero areal radius |a|) that
connects two SSS-AF-BH regions: the region p € (-0, 0)
with p € (0,00) and hence avoiding the region
\/p* + a> = 0 where the curvature singularity is formed.
The above describes a novel type of regular black hole
known as a black bounce.

The first black bounce model was proposed by Simpson
and Visser in their paper [30]. This model smoothly
interpolates between the Schwarzschild black hole and
the traversable Ellis Wormhole and is described by the
static, spherically symmetric and asymptotically flat (SSS-
AF) metric given by

2m 2m -1
ds? = —<1 ——)dt2 + (1 —7> dp?
/pz N /7 + &2

+ (p* + a?)dQ2, (2)

being that m and a are real parameters; ¢ and p are the
temporal and radial” coordinates, respectively; while
(p? + a®)dQ?, being dQ? = dO? + sin® Odgp?, is the line
element of a two-dimensional sphere of radius \/m.
The ranges of the coordinates are ¢t € (—o0, ), 6 € [0, ],
and ¢ € [0, 27), whereas the p-coordinate as long as a # 0
has range p € (—o0, ). Furthermore, in [30], the space-
time metric (2) was introduced as a minimalist modification
of the ordinary Schwarzschild spacetime, such that when
adjusting the parameters a and m, this metric represents
either: the ordinary Schwarzschild spacetime if a = 0 # m;
whereas if a # 0, depending on the relation between m and
a, it is either a traversable wormhole in the Morris-Thorne
sense (if 2m < |a|, which implies the absence of event
horizons); or becomes a one-way wormhole geometry with
an extremal null throat (if 2m = |a|, which implies the
absence of traversable wormhole throat); whereas it
becomes a regular black hole of the black bounce type
(if 2m > |al|, which implies the existence of event horizons
at p = +=V4m? — a* one on each side p > 0, or p < 0, of
the bounce). Specifically, in this case, since for the region
p € (=Vam? — a®, V4m? — a?) the n(p)-function is neg-
ative-definite, it follows that there the metric (2) describes a
Kantowski-Sachs type cosmology, with p a temporal
coordinate and ¢ a radial coordinate, being that p =0 is
a spacelike hypersurface that corresponds to a bounce in the
time-dependent quantity r(p) = \/p? + a?, which is in fact
one of the scale factors of a Kantowski-Sachs cosmological
model inside a black hole. Here, it is important to
emphasize that a black bounce is also a necessary feature
of all black-universe models [34-37], that is, nonsingular
black holes that contain an expanding asymptotically
isotropic cosmology beyond the horizon.

"In the reference [30] the p coordinate was called r.
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Nowadays, a growing interest in generalizing the Simpson-
Visser black-bounce model has arisen: black-bounce Kerr
model [31]; black-bounce Reissner-Nordstrom model [32];
black-bounce Kerr-Newman model [32]; new black-bounce
spacetime model [33].

In this work, several black-bounce solutions in the
context of Einstein-nonlinear electrodynamics gravity
coupled to a self-interacting scalar field (GR-NLED-SF)
are discussed. Furthermore, we obtain a novel black-
bounce solution that does not belong to the Simpson-
Visser type.

This paper is structured as follows. In the next section the
canonical metric of a static spherically symmetric asymp-
totically flat black bounce is discussed. In Sec. III the field
equations for the GR-NLED-SF are derived; we show that
the line element for the Simpson-Visser black bounce is a
pure magnetic exact solution of a GR-NLED-SF model;
also, two novel black-bounce metrics of the Simpson-
Visser type are presented as pure magnetic exact solutions
of GR-NLED-SF; and some features of the solutions in the
GR-NLED-SF frame are discussed. In Sec. IV we obtain a
novel black-bounce solution, which is not of the Simpson-
Visser type, since does not admit the Ellis wormhole
solution as a particular case. Final conclusions are given
in the last Section. In this paper we use units where
G=kg=c=nh=1, and the metric signature (—+-++)
is used throughout.

II. THE CANONICAL METRIC OF
A STATIC SPHERICALLY SYMMETRIC
ASYMPTOTICALLY FLAT BLACK-BOUNCE
SPACETIME: BEYOND THE
SIMPSON-VISSER MODELS

In what follows, we will describe a simple way to
combine two SSS-AF spacetime geometries, one of the
traversable wormhole (T-WH) type with one of the BH
type, in order that a novel spacetime geometry of the
SSS-AF black-bounce type be generated.

Method to generate black-bounce models: Given a
generic SSS-AF T-WH metric,

dr?
2 20(r) ge2
dsjyy = —**Vde* + 1 _ o0

r

+ r2dQ?, (3)

where ®(r) and b(r) are smooth functions® on r > 0,
respectively known as redshift and shape functions, with
wormbhole throat radius, ry = |a| € R — {0}, defined by
b(ry) = rg, and for the which the T-WH properties

b
Wormhole domain: 1 _bln) >0 Vr>la (4)
r

¥Le., ®(r) and b(r) are functions of class C* for r > 0.

Absence of horizons: ¢**) € R — {0} Vr>|q]
and ®(r - 00) =0 (5)

Flaring out condition: b'(r)|,_, <1, (6)

with / denoting derivative with respect to r, are satisfied
(see Refs. [38—40] for details) and given a generic SSS-AF-
BH metric,

-1
ds}y, = _(1 _ M) B g + (1 3 2/\/l(r)) dr

r r

+ r2dQ?, (7)

with 8(r) and M (r) smooth function’ on r > 0, with event
horizon radius, r = r;, # 0, such that

T
2 9
M(r - o) =constant >0 and 6(r - o0) =0. (8)

M(ry) = M(r) <§ Yr>r,,

In addition, as long as

1—&;)<0 Vrelo,|al), 9)

a SSS-AF black-bounce model can be established by

2/\/l(r)> dr?
ds2. = — <1 - e +
» r (1 =21 =25
+ r2dQ?,  with W(r) =25(r) +2®(r), (10)

which by construction admits Lorentz signature only at
r > b(ry), i.e., for r > |a|, whereas at r < b(ry), i.e., for
r < |a|, the metric becomes a non-Lorentzian metric,
implying that the region 0 < r < |a| is not part of space-
time. In other words, this metric only admits physical
interpretation in the region r € [|a|, o), while in the region
r € (0,]a|) the metric suffers an unacceptable signature
change, i.e., in the region r € (0, |a|) the metric signature
could be either (++++) or (——++), depending of the
behavior of M(r). In the metric theories of gravity [as GR,
f(R) gravity, scalar-tensor theories, conformal gravity, for
instance] the spacetime is modeled by a manifold with a
metric of Lorentz signature at any point of the spacetime
manifold. Thus, a region with a signature different from
Lorentz signature would have no physical interpretation.
Usually, the subset on which the signature changes to an
unphysical one is, in one sense or another, an “edge” of the
manifold or of the allowed coordinate patch [41]. Therefore
for the line element (10) the curvature singularity at » = 0 is

°Le., 8(r) and M(r) are functions of class C* for r > 0.
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nonpathological since the region r € (0,|a|) lacks of
physical interpretation.

In consequence, the radial coordinate r has a range that
increases from a minimum value at r = |a| to r — oo.
Thus, in the spacetime geometry (10), the r-coordinate has
a special geometric significance, where 4777 is the area of a
sphere of radius r centered at the origin, being that the
origin of symmetries (staticity and spherical) is the two-
dimensional spheres of radius r = |a|. On the other hand,
for the metric (10) the curvature invariants R, RaﬁRaﬂ , and
RaﬁWR“/’”” are given by (A1)—(A3), indicating that all of
them are regular everywhere except at » = 0, and the reason
is because b = b(r), ¥ = ¥(r), M = M(r) are functions
of class C® for all r > 0. However, since the region
0 < r < |a| is not part of spacetime yields that the curvature
invariants (A1l)-(A3) are well defined in the whole
Lorentzian range'® r > |a|. Therefore, we conclude that
the geometry (10), with b(r), M(r), and ¥(r) nontrivial
functions that satisfy (4)-(6), (8), and (9), describes a
spacetime with curvature regular everywhere. Finally, the
metric (10) written in terms of the radial bounce coordinate

p, defined as r = \/p? + a® > |al, takes the form:

dstp = — <1 _ M) )e"J(’)dt2
/pz + a2
N prdp?
2 2 _ _ bl _ 2M(r)
(P ta >(1 \/p2+a2) (1 \/p2+a2)
+ (p? + a*)dQ>. (11)

The determinant of this metric is given by

pz (pz + aZ)%e'Y(r)

g = det(gep) = — VP +a —b(r)]

Since (4) and the requirement that ¥ is a function of class
C* for all r > |a|, or what is the same, ¥ € C* for all real
values of p defined by r = \/p? + a* > |a| yields that the
determinant (12) is finite nonzero and negative definite for
all p € (o0, o). In particular for p = 0 this determinant'’

(12)

reduces to lim,,_,, det(g,4) = — %‘fhe,?‘(:“; € R — {0} aslong
as (6). Hence, the metric (11), for the case with a # 0, is
well defined for all p € (—o0, ).

Therefore, the spacetime described by metric (11) = (10)
has been carefully designed to be a minimalist modification

"Le., the curvature of spacetime is regular in all spacetime

geometry. I
11 v 24/ p*+a* . .
Note that £ = T implyin
‘;71,'[\/p2+a2—b<r>] 1=¢tr) P
. s _ 2a
hmp_,() \/p2+a2—b(r) - l—b/(la‘)'

of the ordinary black hole spacetime (7); when adjusting a,

rp, M = M(r) and b = b(r), this metric represents either:

(i) If (M =0 # b) becomes a traversable wormhole

of the Morris-Thorne type, with throat of radius

ro = |a| located at py =0 (in the radial bounce
coordinate p).

(ii) If (M # 0 # b), such that b(ry) > 2M(r,) (which
implies absence of horizon), becomes a traversable
wormhole of the Morris-Thorne type, with throat of
radius ry = |a| located at py = 0.

(iii) If (M #0# D), such that b(ry) =2M(r,) ie.,
ro = r, (which implies absence of a T-WH throat)
becomes a one-way wormhole with a null throat of
radius ry = |a| located at py, = 0.

@iv) If (M # 0 = b) becomes an ordinary black hole
spacetime with event horizon radius given by
ry = 2M(7" h)'

(v) If(M # 0 # b),suchthatb(ry) < 2M(r;), becomes
a regular black hole (black bounce) with a one-way
spacelike throat at py = 0 (of radius ry = |al), and
with two (outer) event horizons of radio r, =
2M(ry) > |al, located at p, = ++/r7 — a* # 0.

Particular case: black bounces of the Simpson-Visser

type. For the case b(r)=a’/r with ¥(r) =25(r) +
2®(r) = 0 the line element (10) takes the form:

dsky, = —<1 —72M(r>>dt2 +— dr’
(1-%)

2M(r)
AN
+ r’dQ?, (13)
whereas in terms of the radial p-coordinate
(p = £Vr? — a?), it becomes
2 dp?
dsiy = —(1- M0 Ngo
/0? + (1 _ 2M(n) )
VP +a?
+ (p? + a?)dQ>. (14)

For this case the determinant (12) becomes

g = det(g,p) = —(p* + a*)*, (15)

which is finite nonzero and negative definite for all p real.
The spacetime metric (14) = (13) describes a generic
black-bounce geometry of the Simpson-Visser type. In
particularly, this type of black-bounce spacetimes are such
that for a # 0 = M(r) becomes the traversable Ellis WH
metric presented originally in [42]. Adjusting a, r;, and
M = M(r), this metric represents either:
(1) The ordinary traversable Ellis wormhole spacetime
it (M =0 #a).
(i) A traversable wormhole in the Morris-Thorne sense
if (M # 0 # a with |a| > rp).

024031-4
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(iii) An one-way wormhole with a null throat if
(M # 0 # a with |a| = ry).

(iv) An ordinary black hole spacetime if (M # 0 = a).

(v) A black bounce with a one-way spacelike throat if

(M # 0 # a with r;, > |al).

II1. FIELD EQUATIONS FOR A GENERIC STATIC
SPHERICALLY SYMMETRIC, PURELY
MAGNETIC SPACETIME CONFIGURATION

The GR-NLED-SF theory is defined by the following
action:

Sloan ) = [ il i (R=30.000 - (0)
+$L’(]—')}, (16)

where R is the scalar curvature, ¢ is a scalar field which is
minimally coupled to gravity, U = U(¢) is the scalar
potential, whereas £ = L(F) is a function of the electro-
magnetic invariant F = } F,,F*, being F,;, = 20,A, the
components of the electromagnetic field tensor F =
%F apdxX® N dx? and A, are the components of the electro-
magnetic potential.

The GR-NLED-SF field equations arising from action
(16) are

Gaﬂ = 8”(E(l/})SF + Sﬂ(Erlﬂ)NLED’
Vi (LpFW) =0=dF, V=2  (17)

- ) R
where L7 =9% and U = %, wl.leregs G/ =R}/ -85/
denotes the components of the Einstein tensor, (E,?)gy are
the components of the energy-momentum tensor of self-

interacting scalar field,
5 1 1
8”(Ea/ )SF = - Z (aﬂqﬁauqﬁ)éaﬂ + 5 aagbaﬂd) - udlﬁ’ (18)

whereas, (E,”)xipp are the components of the NLED
energy-momentum tensor,

Sﬂ(Ea/})NLED = 2£.FF(1;4

FPr—2L68,7. (19)
Our aim is to find a solution of the set of Egs. (17), that
describes a SSS-AF charged black-bounce solution with a
nontrivial scalar field. Therefore, we will assume that the
scalar field is static and spherically symmetric, ¢ = ¢(r),
and also that the metric takes the static and spherically
symmetric form

ds® = —e2di? + B0 dr? + r*(d6? 4 sin® 0dg?),  (20)

with A = A(r) and B = B(r) being unknown functions
depending only on r.

Below, we include the explicit form of the field equations
assuming both the SSS for the metric (20), SSS scalar field
¢(r), and an arbitrary NLED £(F) model. For a generic
SSS spacetime metric ansatz (20) the non-null components
of the Einstein tensor are given by

e B B e B B
Gtt:7(—l"Bl—€ +1), Grr:7(}’A/—e +1),
-B
Go’ =G, :Z—(rA’z —rA'B +2rA" 424 =2B'). (21)
r

The nontrivial components of the energy-momentum tensor
of self-interacting scalar field are

1
87E,' = 8nE,’ = 87E,? = —Ze-ngQ -U,

1
87E," =7 e B —U. (22)

Regarding the electromagnetic field tensor, since the
spacetime is SSS, we can restrict ourselves to purely
magnetic field; i.e., £ = 0 and B # 0, thus the electromag-
netic field tensor has the form F,; = B(836) — 645)).
In this way, for a SSS spacetime with line element (20),
the general solution of the equations V,(LzF*") =0 is
given by

Fy, = r*Q(r)sin. (23)

v
Then, F = r*Q(r)sinfdd A dep, therefore dF =0 =
(r*Q(r)) sin@dr A dO A de, yields Q(r) =2q/r,
where \/2¢ is an integration constant, in which it plays
the role of the magnetic charge. Hence, the components of
the electromagnetic field tensor, and the invariant F are
respectively given by

Fop = V2qsin0(895% — 8489),  F=2. (24)

Finally, the energy-momentum tensor components for
NLED, assuming the SSS spacetime with metric (20), the
purely magnetic field (24), and a generic Lagrangian
density L(F), are given by

87(E,")nLep = 87(E," )niep = —2£,

87(Eo”)xLep = 87(E,")niep = 2QF Ly = L).  (25)
Inserting the above given components in the field equations
written as C,/ = G,/ — 8z[(E,”)sg + (E”)nirp] = 0, we

obtain that the GR-NLED-SF field equations for the metric
ansatz (20) and the magnetic field (24) take the form:

024031-5
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C'=0
-B

1
=S (~rB —ef 4 1) +2e PP+ UF2L =0, (26)
,

-B

|
C/:o:e—2(rA'—eB+1)—Ze—3¢'2+u+2£:0, (27)
r

Co? =C,7 =0
B
= ym (rA”? —rA'B' + 2rA” +2A" — 2B')
,

1
+7 e BY? +U-2QFLr - L) =0, (28)

whereas the scalar field should satisfy

2rf + (4 + 1A = rB)) —4re"U = 0. (29)

A. Solution for nontrivial scalar field, vanishing scalar
potential, and vanishing electromagnetic field:
Ellis wormhole metric

For the case a #0, U = F,3 = L(F) =0, the field
equations (26)—(29) are solved by the following static
and spherically symmetric line element:

dr?
ds}y = —d* +

=+ r7(d6? +sin*0dg?),  (30)

with a imaginary scalar field, given by

2 _ g2
> ) (31)

The metric (30), originally introduced in [42], admits a
T-WH interpretation since satisfies the properties (4)—(6),
and is known as the Ellis wormhole metric.

Indeed, defining a new scalar field by y = i¢p (phantom
field), and using U = L(F) = 0, the action (16) takes the
form

¢(r) = 2itan™! (

Sgup, ] = / d%ﬁ{é (R + %aﬂwaﬂy/> } (32)

This gravitational action defines a theory that admits the
Ellis WH metric as an exact solution and with y given by

)
1//:2tan_l< r 2a>eR. (33)
a

This is the action that was used by Ellis in Ref. [42] to get
the wormhole solution (30).

B. Simpson-Visser black bounce as a pure magnetic
exact solution of the GR-NLED-SF field equations

The following NLED-SF theory defined by a scalar
potential and a power-law Maxwell NLED model, given
respectively by

U(p) = Uycosh’ @) L(F) = so|FF, (34)

where U, and s are real parameters of the theory, such that

for the case U, = 4m/(5|q|*) and s, = 3m/(5+/|q|) being
that ¢ and m are real parameters, defines a NLED-SF model
for the which the metric

2 dr?
dsi, :-(1 ——m>dt2+—2 d
(1-%)

g L) (1-2m)

12492 (35)

together with the scalar field

2 _ 2
o(r) = 2itan—1< q2q ) (36)

is a pure magnetic exact solution of the GR-NLED-SF field
equations (26)—(29), being that ¢ is the magnetic charge.

The metric (35) describes a black bounce model of
the type (13), which according with our method to
produce black-bounce models, come from considering
the Schwarzschild metric

2 2m\ !
ds§H=—<1—m)dt2+<1—’"> dr? +2dQ?,  (37)
r r

as the SSS-AF-BH metric (7), and the Ellis solution (30)
with a> = ¢ as the T-WH metric (3).

Finally, if we change the radial coordinate to p*> = — g2,
which implies dp = +(r/\/r* — ¢*)dr, the line element
(35) takes the form

2

2m 2m -1
ds3, — -(1 —7>dt2+ (1 -—) dp?
/2 + & /7 + P
+ (p* + ¢*)dQ?, (38)

which corresponds to the original Simpson-Visser black-
bounce model (2) with a*> = ¢°.

Avoiding the Penrose singularity theorem: Using (36),
(C6), and (C12) for the Simpson-Visser black-bounce
spacetime, one obtains
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87(pi)sk + 87(P,)sk = 87(p;)etr + 87(P,) et

Vre(2M,x), (39)

which indicates that the local energy density of the scalar
field psp = (E,,)spk*k”, and the local energy density of the
total energy/mater source (self-interacting scalar field plus
the nonlinear electromagnetic field) pegr = (E,, ) osek* k", for
every timelike vector field k = k*d,, are not positive
definite in the whole spacetime, whereas the power-law
Maxwell NLED (34) for the purely magnetic field (24)
holds

2

5
]::q—4>0, L=s50Fi>0, ﬁf:%ﬁ>0 Vo (40)
r

according to (C8); this implies that the local energy
density of the nonlinear electrodynamic field pnigp =
(E,,)xLEpA#K* is positive defined everywhere. Thus, the
Simpson-Visser black bounce as a pure magnetic exact
solution of GR-NLED-SF does not satisfy the WEC, being
that the self-interacting scalar field is only responsible for
the violation of WEC, and therefore the gravitational
collapse, from which the Simpson-Visser black bounce

is produced, avoiding the singularity theorem of Penrose
[18]. See Appendix C for details.

C. Canonical acoustic black bounce as a pure magnetic
exact solution of the GR-NLED-SF field equations

The following NLED-SF theory defined by a scalar
potential and a NLED model, given respectively by

U(¢) = U,cosh? <%),

[3s1|F]?
Sl}-z— R (41)

where a, U, and s, are real parameters of the theory, such
that for the case U, = ¢*/a® and s, = 3a*/(24?), defines a
NLED-SF model for the which the metric,

L(F) =

2 ar
dSZBB = - <1 - q—4>dt2 + ﬁ + r2dQ? (42)

r 3 Y
r r

together with the scalar field,

$(r) = Zitan‘1< - ;2a2>’ (43)

is a pure magnetic exact solution of the GR-NLED-SF field
equations (26)—(29), being that the parameter g is the
magnetic charge.

The metric (42) defines a black-bounce model of the
Simpson-Visser type (13), which smoothly interpolates
between the Ellis wormhole metric (if ¢=0%#a) and
the canonical acoustic black hole (CABH) metric (if
q # 0 = a) given by

q2 qz -1
d%H:_(l_F>m2+<l_F> dr® + r’dQ?,  (44)

which was originally derived in [43]. The acoustic black
holes (or sonic black holes) are acoustic analogues of the
gravitational black holes. Specifically, an acoustic black hole
forms when the velocity of the fluid exceeds the velocity of
sound on some closed surface. That surface forms a sonic
horizon, an exact sonic analog of a black hole horizon where
the sound modes, or phonons (rather than light waves),
cannot escape the event horizon (see Ref. [44] for details). In
the gravitational context, recently in [45], the line element
(44) was reinterpreted as an exact gravitational black hole
solution of the Einstein-scalar-Gauss-Bonnet field equations.

To put in context, as an application of the black-bounce
models generator method, the black-bounce metric (42) is
generated using the Ellis wormhole as the T-WH metric (3),
and the CABH as the BH metric (7).

On the other hand, using the radial coordinate p, defined
by p* = r* — a?, the metric (42) takes the form

N—n-h—li—mu PP G e
B = (7 +a*) PF+ap) P

+(p* + a®)aQ?, (45)

being that the canonical acoustic black-bounce metric
written in the bounce coordinates (x%) = (z,p, 0, ¢) are
defined as t € (—o0, ), p € (—00,00), 0 € [0, 7], and
¢ €10,2n).

Hence, adjusting the parameters ¢ and a, the spacetime

metric (45) = (42) admits the following interpretations:

(1) The ordinary traversable Ellis wormhole spacetime
if (g =0 # a).

(ii)) A new traversable Morris-Thorne wormhole (which
generalizes to the Ellis solution WH) if (¢ # 0 # a
such that |g| < a®) with WH throat at p, = 0 of
radius ry = |a|.

(ili) An one-way wormhole with a null throat if
(lg| = a® #0).

(iv) The ordinary canonical acoustic black hole spacetime
if (g #0=a).

(v) A black bounce if (¢ # 0 # a such that |g| > a?),
with a one-way spacelike throat at py, =0 (of

radius ry = |a|), and with event horizons at p;, =

+1/]g| — a2 # 0 (of radius r, = \/|g| > |a)).
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On the other hand, using (43), (C6), and (C12), for the
canonical acoustic black-bounce solution, yields

8”(P1)SF + 8”(Pr)51: = Sﬂ(ﬂr)eff + 8”(Pr)eff

24> q2
=——(1-=] <0
M ( M

vre (gl o). (46)

whereas the NLED model (41) for the purely magnetic field
24), F = ’1 > 0, holds

/3s a
ﬁ:Slfz— il b :—i< —2>

6
Lr=25F - 2731?: %G ><0
). (47)

[\

\N| Q

8a?
Yre(al,

Then, according to (C6), (C8), and (C12), the inequalities
(46) and (47) imply the local energy densities pgp=
(Ew)sek"k, pxiep = (E)niepk?k”,  and  pey =
(E, )ciek* k¥, associated respectively to scalar field, non-
linear electromagnetic field, and the total energy/matter
source, are not positive defined in the whole canonical
acoustic black-bounce spacetime. Hence, the canonical
acoustic black bounce as a pure magnetic exact solution
of GR-NLED-SF does not satisfy the WEC, and therefore the
gravitational collapse that resulted in the canonical acoustic
black bounce avoid the Penrose singularity theorem [18].

D. Black-bounce-4D-Einstein-Gauss-Bonnet as
an exact solution of the ES-NLED field equations

The following NLED-SF theory defined by a scalar
potential and a NLED model, given respectively by

u(¢(r)):/ar2a2(r3+2aq2— (r3+8aq2)r3)dr’ (48)

(r* +8ag®)r’

3 a’> 3P =2a*r + 12a¢*r* —4d*aq?

+
“Ia " 2ar dar/(r* +8aq?)r’
/raZ(r3 +2aq® =/ (r* +8aq®)r?)
lal ar/(r* +8aq?)r’

where a, a, and ¢q are real parameters (with a # 0), defining
a NLED-SF model for the which the metric

L(F(r))=

dr, (49)

2 8
dszBB_—|:1+;—a<1—\/1+ﬂ):|dt2

2
+ ar +r2dQ?,  (50)

a? 72 8aqg?
(1—?)[1+Z(1—\/1+r—§1)]

together with the scalar field

2_ 2
b(r) = 2itan—1< i aza ) (51)
is a pure magnetic exact solution of the GR-NLED-SF field
equations (26)—(29), being that the parameter ¢ is the
magnetic charge.

The metric (52) defines a black-bounce model of the
Simpson-Visser type (13), which smoothly interpolates
between the Ellis wormhole metric (if ¢ =0 # a) and a
BH metric given by

2 San
dsi, = —|1+-—(1-4/1 dr
[ (-5

r? 8aq® - 5 12
+ [ 1+—=(1-4/1+— dr? + r2dQ2,

200 r

(52)

which was presented in [46] as a SSS asymptotically
Schwarzschild black hole solution of the 4D-Einstein-
Gauss-Bonnet (4D-EGB) field equations and therefore it
is known as 4D-EGB black hole.

It is worth mentioning that the black-bounce model (50)
is defined using the Ellis wormhole as the T-WH metric (3),
and the 4D-EGB black hole as the BH metric (7).

On the other hand, by the mapping p?> = r> — a?, the line
element (50) takes the form

2 2 2
dsZBB_—[H” ra (1— 1+&L3>}dt2
2a (p* +a?):
-1

2 2 2
+{1+p ra <1— 1+&Lg>} dp?
2a 7+ )

+ (p* + a)dQ>. (53)

This spacetime configuration smoothly interpolates
between a black hole geometry [if @ = 0 # ¢* the metric
(53) reduces to the 4D-EGB black hole] and a traversable
wormhole of the Morris-Thorne type [if g> = 0 # a the
metric (53) reduces to the Ellis T-WH].

Hence, adjusting the parameters ¢ and a, the spacetime
geometry (53) = (50) admits the following interpretations:

(1) The ordinary traversable Ellis wormhole spacetime

if (g =0#a).
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(ii)) A T-WH generalization of Ellis wormhole if
(g #0 # a such that ¢*> + /¢* —a < |a|, which
implies absence of horizons) and with WH throat
located at pg = 0 (of radius ry = |al).

(iii) An one-way wormhole if (¢> + \/q* — a = |a| # 0)
with a null throat at py =0 (of radius ry=
¢+ 7 —a = [a).

(iv) The ordinary 4D-EGB black hole
if (g #0 = a).

(v) A black bounce with a one-way spacelike throat if
(g#0#a such that ¢*> ++/q* —a > |a|). The
one-way spacelike throat is localized at py = 0 (of
radius rq = |a|), whereas the event horizons are

located at p;, = j:\/(q2 +Vq*—a)? —a*> #0 (of
radius rj, = ¢*> +\/q¢* —a > |a|).

This black-bounce spacetime avoids the Penrose singular-
ity theorem since the scalar field (51) is imaginary.

spacetime

IV. NOVEL TYPE OF BLACK-BOUNCE
GEOMETRY: BLACK BOUNCE WITHOUT
ELLIS WORMHOLE AS A PARTICULAR CASE

To date, all the known SSS-AF black bounces
[30,32,33,47,48] are of the form (13) = (14), and hence
all they have the Ellis wormhole as a particular case, i.e.,
they are of the Simpson-Visser type, and have the form

dr?
ds2:_n(p)dt2+L+(p2+a2)dQZ with n(p) =m(p).

m(p)
(54)

In virtue of black-bounce method (Sec. II), in the following
we will show for the first time a novel type of black bounce
metric that cannot be reduced to the Ellis wormhole
solution, i.e., we will obtain a black-bounce solution of
the form (54) with n(p) # m(p).

Novel type of black-bounce solution: The following
NLED-SF theory defined by a scalar potential and a
NLED model, given respectively by

2\ 3
- (4[5 -5

- -4 (53)
_ 1 2|Q| 3 C]2 2
s Mgl o @ e
voo(17 - S+ 1) (59

where fy, fo, and o, are real parameters, admits the
following metric:

2 r
dsd, = —e "dft + d—qz + rrdQ? (57)

2

for the value of the parameters S, = 1/42, fy = 0 = o,
together with the scalar field

-4 (58)

as a pure magnetic exact solution of the GR-NLED-SF field
equations (26)—(29). The metric (57) is a nontrivial redshift
function modification of the T-WH metric (30) and was
recently derived in [49], whereas, for the cases fy = 1/42,

Bo =m/|q|?, and 6y = 2m/\/|q|, it defines a NLED-SF
model for the which the metric

2m\ _& 2
dsgp =~ (1 ——m> e Pdl +

(1-%)(1-22)

together with the scalar field (58), is a pure magnetic exact
solution of the GR-NLED-SF field equations (26)—(29).
The metric (59) has a black-bounce structure of the
type (10) with nontrivial W(r) function, and smoothly
interpolates between the Schwarzschild black hole (if
q =0# m) and a traversable wormhole (if g # 0 = m)
with metric (57). In terms of the radial p-coordinate,

r=/p*+ q* > |q|, the metric (59) takes the form

+r2dQ* (59)
.

2 __d 2
dSZBB =—|1-= 7’” e ﬂ2+qzdt2 —+ —dp
N (=)
rP+q
+ (p* + ¢*)dQ%; (60)

qZ
since this metric yields |g,g,,| = e 7+, it is not of
Simpson-Visser black bounce (2) type because we must
have |g,g,,| =1 for all the SSS black bounces of the
Simpson-Visser type. Hence, the metric (59) = (60) defines
anew type of black bounce. Adjusting the parameters m and
g, the spacetime configuration (60) = (59) represents either:

(1) The traversable wormhole metric (57) if (g #0=m).

(i) A T-WH generalization of (57) if (¢ # 0 # m such
that |g| > 2m) with T-WH throat at p, =0 (of
radius ry = |qg|).

(iii) An one-way wormhole if (|g| = 2m # 0) with a null
throat at py = 0 (of radius ry = |g|).

(iv) The ordinary Schwarzschild black hole spacetime
if (g =0 # m).

(V) A black bounce if (¢ # 0 # m such that |g| < 2m),
with an one-way spacelike throat at py =0 (of
radius rq = |q|), and with event horizons at p, =
++/4m? — ¢> # 0 (of radius r;, = 2m > |q|).

Finally, it is important to emphasize that the NLED
Lagrangian density (56) needed to generate the new black
bounce solution (59) = (60) reduces to Maxwell theory in the
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limit of weak field. Le., £ — xF and L — « (being thatk is
a constant) when F — 0, in contrast to £(F) functions (34),
(41), and (49) which do not satisfy this important physical
NLED condition. However, because the spacetime metric
(59) requires the phantom scalar fields (58) in order to
support its T-WH structures, yield that these spacetimes
violate the WEC.

V. CONCLUSION

In this work the construction of several black-bounce
geometries as exact solutions of the FEinstein-nonlinear
electrodynamics gravity coupled to a phantom scalar field
have been presented. Specifically, we show three black
bounces of the Simpson-Visser type: the Simpson-Visser,
the canonical acoustic, and the 4D-EGB, all of them as
purely magnetic, exact solutions of GR-NLED-SF.
Moreover, we obtained a novel black-bounce solution
which, in contrast of the Simpson-Visser type, does not
have the Ellis wormhole solution as a particular case.
Therefore, a new type of black bounce of the form

2

m(p)

with n(p) # m(p) is established. Particularly, the nonlinear
electrodynamics model needed to generate this novel

ds* = —n(p)df* +

+ (p? +a*)dQ?,  (61)

solution, which, in the limit of weak field, becomes the
Maxwell field. In contrast with the Simpson-Visser black-
bounce type, i.e., n(p) = m(p) in all cases, and for which
the Maxwell limit is not achieved in the cases we analyzed
(34), (41), and (49). However, all the presented solutions
(38), (45), (53), and (60), Simpson-Visser type or not,
require a phantom scalar field as a source in order to
support the traversable wormhole structure. The existence
of this phantom scalar field implies that the black-bounce
spacetime violates the weak energy condition, and therefore
the Penrose singularity theorem is avoided.

While this paper was being written, we learned of the
results from a similar work [50]. There the field sources for
Simpson-Visser spacetimes are presented; however, in their
approach only black bounce of the Simpson-Visser type,
i.e., of the form (61) with n(p) = m(p) is studied (See
Eq. (1) of the Ref. [50]). Hence, black bounces without
Ellis wormhole as a particular case, e.g., our solution (60),
cannot be derived by the approach established in [50].
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APPENDIX A: CURVATURE INVARIANTS R, RaﬂR"ﬂ AND R,,ﬂﬂ,,R"ﬂ/‘” IN TERMS OF THE
SCHWARZSCHILD COORDINATES

For the metric (10) the curvature invariants R, R,sR*, and R, R** are given by

R= 2712 {(r — B)AM" = (r = 2M)(2¥" +¥2)] + [6(r — )M’ + (r — 2M)b' — 47 + 2M + 3b]W

r

+<s-@_zb/>/w+<
r

4o
¢

+6(r = )M — <
(= 2M)W] + (1 —¥>b/+ <1

_@>b/+

RyRY =

6 Mb
2

b

\PIZ
r—zM)<lP”+7>—2(r—b)M”—[( bYM’ + 2(r—zM) 2r+/\/l+%b}‘l”

) (— - M’) }2 to {2(b — M+ (r = 2M)(r = b) <lp ’

—%)b 6./\/1}‘1” (b’—é

2/\/l> }
+— - 9
r)r

12
R g R = ig {rz(r —b)(r-=2M) <‘I‘” + TT) —2r*(r=b)M" = 3r [r(r -b)M + (

(A1)

w) —% {(r —2M)b

o2 -2

(A2)

r(r=2M)b'

6

2(b —r)* [r@M —r)¥' +2rM = 2MJ?
8
r

2
( > —%]lp’+(4r—5b+rb’)(r/\4’ M)} +
_ _ 2
% (HQM = B+ 2r(b — DM+ 2(r —20)M + rbt 4 2EMP fer by (A3)
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APPENDIX B: FIELD EQUATIONS

In this appendix we include the explicit form of the field
equations that are satisfied by the metric ansatz (13).

2 /
G'=% (1 M 2M’> S
r r T
a? 2M’
G =@M =1)==F, (B1)
2 ! "
0o_go_ S MM 1y M
Gy’ =Gyt =3 <M i . (B2)

The nontrivial components of the energy-momentum tensor
of self-interacting scalar field are

87(E,")sp = 87T<E6’0)SF = 877(E ?)sk

S

2 2
87(E,")sk :% <1 - %) < M) P -

The energy-momentum tensor components for NLED,
assuming the SSS spacetime with metric (13), the purely
magnetic field (24), and a generic Lagrangian density L(F)
are given by

(B4)

87(E," )niep = 87(E," )niep = —2L,

87(E¢”)niep = 87(E,? )niep = 2QF Ly — L).  (B5)

Inserting the above given components in the field equa-
tions written as C, =G,* —8x[(E.?)sz + (E.” )nien] =0,
we obtain that the GR-NLED-SF field equations for the
metric ansatz (13) and the magnetic field (24) take the form:

2 4 2 l
C/=0="2 <1—M+2M’> M
r

;
2
+1<1—“—2><1—%>¢’2+u+2£ 0. (B6)
4 r
C/=0= "—4(2M'—1)—2M
2
—%(1—%)(1—%>¢/2+u+25 0. (B7)
2 !/ "
e =0= L (-2 M 1)—M
r r r r

r
2
+i<1—jz> (1 2M>¢’2+u 2QFLy—L)=

(B8)

whereas the scalar field should satisfy

_ / 2
S <4 +4/\/l 4rM 2a 2) &y

r—2M +r2—a
44

B (r* = a®)(r - 2/\/l)u =0

APPENDIX C: AVOIDING THE BLACK HOLE
SINGULARITY PROBLEM

Avoiding the black hole singularity problem in general
relativity: The Penrose singularity theorem [18], and its
modern variants and extensions (see for instance [21]),
demonstrates that in a gravitational collapse with the
assumption that the Einstein field equations hold, once a
closed trapped surface S is formed, which describes the
inner region of an black hole event horizon, then in some
region of spacetime contained in the causal future J(S)
of S, at least one of the following must hold in order to
avoid a spacetime singularity:

(i) The weak energy condition (WEC) is violated.

(i) Global hyperbolicity breaks down.

Null and weak energy conditions in GR: For a energy-
momentum tensor 7, the null energy condition (NEC)
stipulates that for every null vector, n® yields T, ,n*n” > 0.
Following [40], for a diagonal energy-momentum tensor
(Top)=diag(T,;,T,,.Tyg,T,,), which can be conveniently
written as

T, =—p5,'8F +P.5,75,F + Pys,05, +Pq,5a"’54/” , (C1)
where p, may be interpreted as the rest energy density of
the matter, whereas P,, Py, and P, are respectively the

pressures along the r, 6, and ¢ directions. In terms of (C1)
the NEC implies

pi+P, >0 with a={r6,¢}. (C2)
The weak energy condition (WEC) states that for any
timelike vector k = k*9, (i.e., k,k* <0), the energy-
momentum tensor obeys the inequality 7, k*k* > 0, which
means that the local energy density py,. = T, k"k" as
measured by any observer with timelike vector k is a

non-negative quantity. For an energy-momentum tensor of
the form (C1), the WEC will be satisfied if and only if

pi=-T/'>0, p,+P,>0 with a={r,0,¢}. (C3)

(i) WEC for a self-interacting scalar field (E,’)gx
Now, by using (18), (B3), and (B4) yield
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(C4)

(C5)

since (p;)sg + (Pa)sg =0 for all a =80, ¢, the
tensor (E,/)qp satisfies the WEC if

1 2 2
87(pi)sk = 1 <1 _i_z> (1 _ﬂ>¢/2 +U =0,

r

87(p;)sk + 87(P,)sk

1 a? 2MN L,
) (1)

(il) WEC for the nonlinear electromagnetic field

(Co)

(Eaﬂ INLED
By using (19) and (25),
87(p¢)nLED = —87(P,)NLED = 2L,

87(Pg)NLED = 8”(P¢)NLED =2QFLr-L), (C7)

since p, + P, = 0, the tensor (E,” )y gp satisfies the
WEC if
87(pi)nLED = 2L 2 0,
87(p,)nLep + 87(Po)nLED = 87(P/)NLED
+87(py)NLED

—4F Ly > 0. (C8)

(iii) WEC for the effective energy-momentum tensor
(E)err = (E)sp + (Eo )nrep

1 a? 2M
87 (P1)esr = 2 <1 _F> <1 ——>¢’2 +U+2L

.
(C9)

2P, ) = 5 (1 -f-j) (1 —¥)¢/2 —U-20
(C10)

87(Py)etr = 87(Py) st
1 a’ 2M)
(1) (15w

4 202F Ly — L), (1)

So, the tensor (E,’). satisfies the WEC if

1 a® 2M
Sﬂ(pt)eff = Z <1 —;) (1 —T>¢/2 +u + 2£

>0, (C12)

1 2 2M
87(p1)er + 87(P))egr = 4 (1 - %) (1 - T) ¢?
>0, (C13)

87(p1)etr + 87(Po)etr = 87(py)etr + 87(Pyy) ey

—4F Ly >0. (C14)
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