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We investigate how the resolution of the singularity problem for the Schwarzschild black hole could be
related to the presence of quantum gravity effects at horizon scales. Motivated by the analogy with the
cosmological Schwarzschild-de Sitter solution, we construct a broad class of nonsingular, static,
asymptotically flat black-hole solutions with a de Sitter (dS) core, sourced by an anisotropic fluid, which
effectively encodes the quantum corrections. The latter are parametrized by a single length-scale l, which
has a dual interpretation as an effective “quantum hair” and as the length-scale resolving the classical
singularity. Depending on the value of l, these solutions can have two horizons, be extremal (when the two
horizons merge) or be horizonless exotic stars. We also investigate the thermodynamic behavior of our
black-hole solutions and propose a generalization of the area law in order to account for their entropy. We
find a second-order phase transition near extremality, when l is of order of the classical Schwarzschild
radius RS. Black holes with l ∼ RS are thermodynamically preferred with respect to those with l ≪ RS,
supporting the relevance of quantum corrections at horizon scales. We also find that the extremal
configuration is a zero-temperature, zero-entropy state with its near-horizon geometry factorizing as
AdS2 × S2, signalizing the possible relevance of these models for the information paradox. Finally, we
show that the presence of quantum corrections with l ∼ RS have observable phenomenological signatures
in the photon orbits and in the quasinormal modes (QNMs) spectrum. In particular, in the near-extremal
regime, the imaginary part of the QNMs spectrum scales with the temperature as c1=lþ c2lT2

H, while it
goes to zero linearly in the near-horizon limit. Our general findings are confirmed by revisiting two already
known models, which are particular cases of our general class of models, namely the Hayward and
Gaussian-core black holes.
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I. INTRODUCTION

Since the discovery of the Schwarzschild solution, the
presence of a singularity inside black holes, together with
the initial cosmological one, has represented a serious
challenge to our current understanding of the fundamental
laws of physics. This problem became even more serious
after the groundbreaking Penrose and Hawking singu-
larity theorems [1,2]. They proved incontrovertibly that,
under a set of a few, very general and physically motivated
assumptions (the validity of the weak energy condition and
either global hyperbolicity or the validity of the strong
energy condition), these space-time singularities are
unavoidable, at least in the classical general relativity
(GR) framework. Despite this, it is conjectured that these
singularities are always hidden behind a causal barrier, the
event horizon, which prevents outside observers from
seeing them and the theory from completely loosing its

predictive power [3]. Semiclassical effects, like black hole
evaporation [4], seem however to bring the singularity
problem back on the table, as the final steps of the
evaporation process, where the singularity role should be
most prominent, are still poorly understood.
Although it is in principle solvable already in the

classical GR framework by relaxing some assump-
tions of Penrose’s theorem and constructing nonsingular
effective models (see, e.g., Refs. [5–11]; for models with
nonlinearly coupled electromagnetic fields, see [12–17])
the singularity problem calls for the need of a quantum
description of gravitational interactions. The most widely
adopted approach in the past has been to assume that
these quantum corrections should only be relevant at
Planck scale, lP ¼

ffiffiffiffi
G

p
∼ 10−35 m1 [18–32]. Quantum

gravity effects should become important only when the
Compton length of a pointlike mass M becomes compa-
rable with its Schwarzschild radius, RS ¼ 2GM. Thus, they
should be irrelevant as long as gravitational interactions at
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1We adopt natural units, c ¼ ℏ ¼ 1. We will use G or l2
P

interchangeably.
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Planck-scale distances are not considered, like the final
stages of the evaporation of black holes, the behavior of
space-time near their central singularity or the initial phases
of the evolution of the universe.
In recent times, however, there have been many indi-

cations supporting the possibility of having relevant
quantum gravity effects even at scales much larger than
lP, i.e., at horizon or cosmological scales. At the black-
hole level, this new perspective gains motivation from
different approaches: the firewall paradox [33], which
triggered several recent advances in tackling the black-
hole information puzzle (islands and replica wormholes
[34–37], nonlocal modifications of effective field theory
[38–40], fuzzball proposal [41–43]); the emergent gravity
and corpuscular gravity scenarios [44–50], in which a
black hole is considered as a coherent state of a large
number of gravitons of typical wavelength ∼RS [51–53];
finally, the quasinormal modes (QNMs) spectrum of the
Schwarzschild black hole, whose description is consistent
with that of an ensemble of oscillators with typical
frequency ω ∼ 1=RS [54,55]. Further evidence came from
the galactic and cosmological framework, where deviations
from Newtonian dynamics and the evolution of dark energy
can be interpreted in terms of long-range quantum gravity
effects, described by an exotic source of Einstein’s equation
in the form of an anisotropic fluid [44,56–61].
The possibility of having quantum-gravity effects oper-

ating at black-hole horizon scales is also extremely inter-
esting from a phenomenological point of view. These
effects are expected to be encoded in the QNMs spectrum
and to be detected by the next generation of gravitational
wave (GW) detectors, like the Einstein Telescope (ET), in
the ringdown phase of two compact objects merging to
form a single black hole. In some particular cases, a
manifest signature could be the presence of echoes in
the GW signal [62–64].
The starting idea of this paper is that the resolution of the

singularity problem could be related to the presence of
quantum gravity effects at horizon scales. This is somehow
natural because we expect quantum effects to be at work
both in the smearing of the classical black-hole singularity
and in generating an effective quantum hair at horizon
scales. We parametrize the smearing of the classical
singularity with a length-scale L̂, whereas the quantum
hair is represented by an extra length-scale l. We assume
that this smearing is sourced by an exotic form of matter
having the form of an anisotropic fluid, which should give
an effective description of quantum gravity effects. The
analogy with galactic dynamics, where an infrared (IR)
scale R0 ¼

ffiffiffiffiffiffiffiffiffi
RSL

p
is generated out of RS and the size of the

cosmological horizon L [44], now suggests that, similarly,
l can be interpreted as an IR scale generated from RS and
L̂, for instance by the simple relation

l ¼ Ra
SL̂

b ð1Þ

with aþ b ¼ 1. Thus, the origin of the quantum hair l
should find explanation in the multiscale behavior of
gravitational interactions.
Following the cosmological analogy, we can think of a

nonsingular black hole as a “reversed” Schwarzschild-de
Sitter (SdS) space-time, in which the external cosmological
horizon and the inner Schwarzschild one are interchanged,
and for which the length-scale L̂ becomes the de Sitter (dS)
length. In this way, we are motivated to construct a general
class of nonsingular, static, asymptotically-flat black-hole
solutions with a dS core, sourced by an anisotropic fluid,
which endows the classical Schwarzschild solution with a
quantum hair l. Extending this similarity with the SdS case
and with the dynamically generated scale R0, we will
explicitly prove that l is dynamically generated by RS and
L̂ by l ∼ R1=3

S L̂2=3, a relation which should hold in general
for regular models with dS cores.
We find that imposing a regular dS core (a) always

violates the strong energy condition in the interior of these
objects, and therefore allows us to circumvent the singu-
larity theorem, and (b) depending on the value of the
parameter l, our nonsingular models can have two, one
(extremal configuration) or no horizons. We then proceed
by investigating the implications of the presence an extra
parameter l, assumed to be of the same order of magnitude
as RS, on the thermodynamic properties of the black hole
and on the phenomenology of the models, i.e., on photon
orbits and on the QNMs spectrum.
By using the first law of thermodynamics, we show

that the presence of l causes deviations from the standard
area law. We propose therefore an entropy formula to
generalize the latter. Using this general entropy formula,
we also find that the extremal configuration is a zero-
temperature, zero-entropy state, a behavior drastically differ-
ent from extremal Reissner-Nordström (RN) and Kerr black
holes. This, together with the fact that the extremal, near-
horizon, geometry factorizes as the tensor product of two-
dimensional Anti de Sitter (AdS2) with a two-sphere, i.e.,
AdS2 × S2, indicates that these regularmodels could actually
be relevant for tackling the information paradox [35,65–69].
By investigating the behavior of the specific heat and the free
energy of the hole, we find a second-order phase transition
near extremality, i.e., for l ∼ RS. In particular, black holes
with l ∼ RS are energetically preferred with respect to those
with RS ≫ l, lending further support to the possible rel-
evance of quantum corrections at horizon scale.
On the phenomenological side, we find that, for black

holes with l ≪ RS, deviations from standard results con-
cerning photon orbits and the QNMs spectrum are negli-
gibly small and not detectable, at least in the near future.
Conversely, black holes with l ∼ RS are characterized
by macroscopic deviations from the Schwarzschild behav-
ior, whose signatures are potentially detectable by the
next generation of GW detectors. In particular, by analyti-
cally computing the QNMs spectrum in the eikonal
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approximation, we find that, in the near-extremal limit, the
imaginary part of the quasinormal frequencies scale with
the black-hole temperature as c1=lþ c2lT2

H (with c1;2
constants), while in the near-extremal and near-horizon
regimes, it goes to zero, in agreement with several results in
the literature [70–81]. This appears to be a general feature
of nonsingular black holes, common also to charged and/or
rotating extension of regular models [82–84].
In the final part of the paper, we check our results by

revisiting two already-known models, namely the Hayward
and Gaussian-core black-hole metrics, which represent
particular cases of our general class of regular black holes.
The outline of the paper is the following. In Sec. II we

build up the grounds for our multiscale description of
gravity by drawing an analogy between the SdS solution
and galactic dynamics from one side, and regular black-
hole models for the other side.
In Sec. III, we find the exact, most-general, spherically-

symmetric static solution of Einstein’s field equations,
sourced by an anisotropic fluid, and we outline the basic
requirements needed to avoid the central singularity. We
then focus on a subclass of such models by choosing a
particular equation of state and analyze the null and strong
energy conditions.
In Sec. IV, we select the general class of regular black-

hole solutions by imposing a set of minimal constraints,
namely dS behavior in the interior, asymptotically flatness
at infinity and the presence of horizons. We also study the
general thermodynamic behavior of these models, discus-
sing the first law of thermodynamics and the appearance of
the second-order phase transition. Finally, we investigate
photon orbits and the QNMs spectrum in the eikonal
approximation.
In Sec. V and Sec. VI the general discussion is applied

and the results are confirmed by revisiting two previously-
proposed regular black-hole models, the Hayward and the
Gaussian-core ones, which appear as particular cases of our
general class of models. We finally state our conclusions
in Sec. VII.

II. UNIFIED DESCRIPTION OF SPACE-TIME
AND MATTER INSIDE A BLACK HOLE

As anticipated in the Introduction, in the present paper
we adopt a description of gravitational interactions in terms
of an effective multiscale field theory, characterized by the
generations of hierarchically different length-scales.
This description is natural in the cosmological and

galactic context, as gravity and baryonic matter are char-
acterized by: (1) the Planck length lP, (2) the size of the
cosmological horizon L, related to the cosmological con-
stant by L ¼ Λ−1=2, and (3) the gravitational radius of a
clump of baryonic matter with mass M, RS ∼ l2

PM. As
already mentioned, an intermediate (mesoscopic) IR length
scale in the galactic regime

R0 ¼
ffiffiffiffiffiffiffiffiffi
RSL

p
ð2Þ

is dynamically generated from RS and L. At this scale,
gravity deviates from its Newtonian behavior as it is evident
from rotational curves of galaxies. Moreover,R0 can be
seen as a scale at which long-range quantum gravity effects
become relevant [44,56–58]. This scenario allows for an
effective description in the GR framework in terms of an
anisotropic fluid, which can be seen as a two-fluid model of
dark energy and matter [56–61]. The resulting space-time is
the SdS solution, in which dark energy dominates at very
large scale. In this regime, we have a description in terms of
the pure dS space-time and a related scale isometry [85].
When instead clustered matter M is present and becomes
non-negligible, the scale invariance of the dS-background
is broken, the quantum scale R0 is generated and we have
an effective description in terms of the SdS space-time. The
latter is characterized by an internal Schwarzschild-like
horizon, determined by the baryonic mass M, and by an
external dS horizon, which, for small M, is located at
r ¼ L. The short-scale regime, instead, is described by the
Schwarzschild solution with a related scale RS, at which
the matter contribution dominates over dark energy. The
geometry is asymptotically dS.2

In the emergent gravity scenario of Ref. [44], these two
regimes are assumed to be endowed with a microscopic
description in terms of quantum gravity degrees of freedom
(DOFs) entangled on short-scales (at r ∼ RS) and on
cosmological scales (r ∼ L). Following Refs. [44,56], the
short-range entanglement is responsible for the holographic
horizon-area scaling of the entropy. The long-range regime
is, instead, characterized by the slow thermalization of
IR, long-range interacting, quantum-gravity DOFs. This IR
dynamics is responsible for an extensive, i.e., volume-
dependent, contribution to the entropy. As argued in
Ref. [44], the competition between the area- and vol-
ume-laws in the entropy generates a mesoscopic scale R0

and an additional gravitational dark force explaining the
deviations from the Newtonian dynamics at galactic scales.
This multiscale description of gravity, with a “fast scale,”
RS and a “slow scale” L, is reminiscent of thermodynamic
systems characterized by a glass transition [44].3

Following this line of reasoning, one is led by analogy to
use a similar multiscale description of matter and gravity
for the black-hole interior, in particular to solve the
singularity problem. We will consider only macroscopic
black holes, i.e., black holes whose horizon radius is
hierarchically larger than lP. The short-distance behavior

2Notice that, in order to make contact with a black hole space-
time, we have to use a static parametrization of the dS geometry.

3At short time scales, glassy systems have properties which
cannot be distinguished from those of crystals: their effective
descriptions are identical. However, the former are characterized
by a long timescale behavior, which makes them completely
different from crystals.
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in the black-hole interior (near the singularity) is now
dominated by the short-scale dynamics of the emergent
space-time DOFs. It is natural to assume that, similarly to
the cosmological case at large scales, here the contribution
of matter is negligible at short scales, where we have an
effective GR description in terms of a pure dS space-time.
This regime is therefore characterized by an ultraviolet
(UV) dS length L̂, a related cosmological constant Λ̂ ¼ L̂−2

and scale invariance. This description is fully consistent
with the existence of an UV fixed point, predicted by the
quantum-gravity asymptotic safety scenario (see, e.g.,
Refs. [86–88]; for a resolution of the classical singularity
in the asymptotic safety scenario, see Ref. [89]; for recent
results on scale invariance in the core of black holes, see
Ref. [90]). Moreover, the dS behavior of the space-time at
short scales is consistent with volume-law contribution to
the entropy.
Introducing baryonic matter M breaks the scale and

conformal invariance of the dS space-time in the black-hole
interior. Similarly to the galactic and cosmological regimes
[58], in this case a new quantum scale l is generated in
terms of L̂ and RS. Using an argument similar to that of
Ref. [44], the generation of l can be also explained in terms
of the competition between the short-range, volume con-
tribution and the area-law-Bekenstein-Hawking contribu-
tion to the entropy we have at large distances from the
center, at the Schwarzschild radius RS.
We see therefore that a multiscale description of

gravitational interactions can be adopted both to des-
cribe black-holes in a cosmological background and the
interior of asymptotically flat black holes. In the two
cases, however, the horizon positions are reversed. In the
latter case, the dS horizon is the internal one, whereas
the matter-determined horizon is the external one. For this
reason, even if we expect l ¼ fðL̂; RSÞ, this relation needs
not to be the same as that relating R0, L, and RS in Eq. (2).
Another difference from the cosmological SdS case,
is that here we have the possibility of an external
description, i.e., a description of an asymptotic observer
at r → ∞. The latter sees “quantum” deviations from
the Schwarzschild geometry, parametrized by l. In this
respect, it should be emphasized once again that the
relation between the cosmological case, described by
Eq. (2), and the black-hole case, described instead by
Eq. (1), is that of an analogy. In particular, this prevents
one from finding any relation between the cosmological
scales ðL;R0Þ and our scales ðL̂;lÞ.
From this perspective, we have a new phase in the black-

hole interior, in which the emergent gravity DOFs and
matter should allow for an effective two-fluids description,
i.e., an effective description in terms of an anisotropic fluid
[91]. In the next sections, we will construct a general class
of GR models describing gravity sourced by an anisotropic
fluid, which allows for nonsingular black-hole solutions
with two event horizons and an internal dS core.

III. SPHERICALLY SYMMETRIC SOLUTIONS
SOURCED BY ANISOTROPIC FLUIDS

Our starting point is GR sourced by an anisotropic
fluid. The stress-energy tensor Tμν appearing in Einstein’s
equations Gμν ¼ 8πGTμν will be that pertaining to an
anisotropic fluid. Anisotropic fluids have a long history
and have been fruitfully used in several different contexts in
gravitational studies, including compact objects, singular
and nonsingular black hole models, cosmology (for an
incomplete list, see, e.g., Refs. [8,11,22,57,59–61,91–104]).
We consider static, spherically-symmetric solutions of

the theory, whose metric part can be written in the form

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2;

dΩ2 ¼ dθ2 þ sin2θdϕ2: ð3Þ

where νðrÞ and λðrÞ are metric functions, depending on the
radial coordinate r only.
The stress-energy tensor describing the anisotropic fluid

can be written as [92]

Tμν ¼ ðϵþ p⊥Þuμuν þ p⊥gμν − ðp⊥ − pkÞwμwν; ð4Þ

where ϵðrÞ, pkðrÞ, and p⊥ðrÞ are the energy density and
the radial and tangential pressure components, respec-
tively, while uμ and wμ are 4-vectors satisfying the
normalization conditions gμνuμuν ¼ −1, gμνwμwν ¼ 1,
and uμwμ ¼ 0.
The independent Einstein’s field and stress-energy tensor

conservation equations read (the prime denotes derivation
with respect to r)

1 − e−λ þ re−λλ0

r2
¼ 8πGϵ; ð5aÞ

e−λ − 1þ re−λν0

r2
¼ 8πGpk; ð5bÞ

p0
k þ

ν0

2
ðϵþ pkÞ þ

2

r
ðpk − p⊥Þ ¼ 0: ð5cÞ

Integration of the first equation yields

e−λðrÞ ¼ 1 −
8πG
r

Z
ϵr2dr≡ 1 −

2GmðrÞ
r

ð6Þ

where mðrÞ is the Misner-Sharp (MS) mass

mðrÞ≡ 4π

Z
r

0

dr̃r̃2ϵðr̃Þ: ð7Þ

Using Eq. (7), Eq. (5b) can be recast in the more useful
form
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ν0

2
¼ 4πGpkr3 þ Gm

rðr − 2GmÞ : ð8Þ

The system (5a)–(5c) is not closed. In order to
determine the solution unambiguously, we must support
Eqs. (5a) and (5c) with two further equations. The
simplest and physically natural way to close the dynami-
cal system is to provide: (1) a barotropic equation of state
(EoS) for the radial pressure pk ¼ pkðϵÞ and (2) the
matter density profile ϵðrÞ. In the following, we will fix
the equation of state and the matter density profile by
imposing absence of singularities, Schwarzschild behav-
ior at r → ∞ and using the analogy with cosmology
discussed in Sec. II.

A. Equation of state and energy conditions

The simplest and most natural EoS we can choose is

pk ¼ −ϵ: ð9Þ

This choice is physically well motivated by the analogy
with the cosmological and galactic regime, since it allows
both for a dS and SdS (cosmological) phases. It allows for a
pure dS behavior near r ¼ 0, which implies the absence
of a singularity in the black-hole interior. Moreover, the
EoS also allows for asymptotically-flat solutions at r → ∞,
when both pk → 0 and ϵ → 0. One can now easily check
that, using Eq. (5a) and Eq. (5b), the EoS (9) implies
λðrÞ ¼ −νðrÞ. In the remainder of the paper, we will
adopt the following parametrization of the metric functions
eν ¼ e−λ ¼ AðrÞ.
Equation (8) can be readily integrated, using Eqs. (7) and

(9), and yields

AðrÞ ¼ 1 −
2GmðrÞ

r
: ð10Þ

Finally, using Eqs. (5c), (7) and (9), we can express the
fluid anisotropy p⊥ − pk as a function of the MS mass as
follows

p⊥ − pk
r

¼ 1

4πr3

�
m0 −

rm00

2

�
: ð11Þ

It is useful to write down explicitly the energy conditions
for the specific case in which the EoS (9) holds.

1. Null energy condition (NEC)

In order this condition to be satisfied, we have to require
that both ϵþ pk ≥ 0, ϵþ p⊥ ≥ 0 hold globally [105]. The
first is trivially satisfied due to Eq. (9), while the second one
reduces to

ϵ0ðrÞ ≤ 0; ð12Þ

upon using Eqs. (7) and (11).

2. Strong energy condition (SEC)

In this case, we have to require ϵþ pk þ 2p⊥ ≥ 0 to
hold globally [105]. Together with Eqs. (7) and (11), this
requirement reduces to

2rϵðrÞ þ r2ϵ0ðrÞ ≤ 0: ð13Þ

B. Absence of singularity and behavior near r= 0

In order to avoid the presence of a central singularity at
r ¼ 0 we first impose a set of minimal, very general
requirements on the form of the metric functions and on
the density and pressure profiles:

(i) Regularity of e−λ in r ¼ 0 together with Eqs. (6) and
(10) require mðrÞ → 0 sufficiently fast for r → 0;

(ii) Regularity of pk in r ¼ 0 together with Eq. (8)
require rν0 → 0 sufficiently fast for r → 0;

(iii) We also require both pk and p0
k to be smooth in

r ¼ 0. From Eq. (5c), this implies the regularity
condition for the tangential pressure component

lim
r→0

p⊥ − pk
r

¼ 0: ð14Þ

Equation (14), together with Eq. (11), implies the
following behavior near r ¼ 0 for the mass function mðrÞ

mðrÞ ∼m1 þ
r3

2l2
PL̂

2
þOðr4Þ for r → 0 ð15Þ

with m1 and L̂ some integration constants. Absence of
curvature singularity for the metric in r ¼ 0 requires
m1 ¼ 0. The other term, proportional to r3, instead, gives
a local dS solution with a dS length L̂

AðrÞ ∼ 1 −
r2

L̂2
þOðr3Þ for r → 0: ð16Þ

This dS description of the solution core is fully consistent
with both the EoS (9) and the analogy with the SdS solution
in cosmology (see, e.g., Ref. [8] for a regular model with a
Minkowski core).

C. Asymptotic flatness and behavior at r → ∞
In the asymptotic (r → ∞) region, our solution must be

indistinguishable from the Schwarzschild solution. This
implies the space-time to be asymptotically flat, with a
subleading Schwarzschild term in the metric function AðrÞ.
Moreover, the two pressure components pk and p⊥ have to
vanish in the limit r → ∞. Equation (11) implies that the
minimal condition to have p⊥ → 0 is
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m ¼ C0r2 þ C2rþM þO
�
1

r

�
; ð17Þ

with C0, C2 and M integration constants. Asymptotic flat-
ness and absence of conical defects require C0 ¼ C2 ¼ 0,
whereas M becomes the Arnowitt-Deser-Misner (ADM)
mass of the solution measured by the asymptotic observer,

m ¼ M þO
�
1

r

�
for r → ∞: ð18Þ

We will also assume that the function mðrÞ interpolates
smoothly between the near r ¼ 0 dS behavior and flat
space-time at r → ∞.

IV. A GENERAL CLASS OF NONSINGULAR
QUANTUM BLACK-HOLE MODELS

Absence of a central singularity and the requirement of a
Schwarzschild asymptotic behavior strongly constrain,
through Eqs. (16) and (18), the local form of the mass
functionmðrÞ [or, equivalently, of the metric function AðrÞ]
near r ¼ 0 and r → ∞. However, the global behavior of
mðrÞ, which interpolates between r ¼ 0 and r → ∞,
remains extremely weakly constrained. In this section,
we will use the analogy with the cosmological, SdS case
to further constrain its global form. We will get, as output, a
general class of models, which can be used to give an
effective description of quantum black holes.
Using the analogy with the cosmological case, we

assume that mðrÞ depends only on the two parameters
L̂ and RS, which characterize its local behavior near
r ¼ 0 and near r → ∞. This implies that the quantum
IR scale l can be written as a function of L̂ and RS only,
l ¼ lðL̂; RSÞ. The explicit relation between these three
scales can be found using a simple argument. As our
models interpolate between the scale-invariant dS behavior
in the core and that of clustered matter, which gives the
Schwarzschild solution at large radii, there will be a scale l
at which these two effects balance out. By exploiting
the same arguments used in Ref. [58], we expect this scale
to correspond to the one at which the Compton length
associated to a test particle, with massm, in the dS potential
VdS ¼ r2=L̂2, is of the same order of the Compton length of
the same test particle in the Schwarzschild potential
generated by the surrounding mass, i.e., VSch ¼ RS=r.
The former, curing the singularity at the center, reads
λc;dS ∼ ℏ=ðjVdSjmÞ ¼ ℏL̂2=r2m, while the latter, instead,
responsible for quantum correction at the horizon scale, is
λc;Sch ¼ ℏr=RSm. We thus have

λc;dS
λc;Sch

∼Oð1Þ ⇒ r ∼ l ∼ R1=3
S L̂2=3; ð19Þ

which is a scaling relation of the form given in Eq. (1), with
a ¼ 1=3, b ¼ 2=3. We will check this general results in two
specific models in Sec. V and Sec. VI.

The presence of a new IR quantum scale implies that we
have two complementary descriptions of the quantum black
hole. A black-hole-interior description, based on the
parameters L̂ and M, and a black-hole-exterior one, based
instead on l and M. The second case corresponds to the
classical description characterized by the classical hair M
and by a quantum deformation parameter, i.e., the quantum
hair l.
A second requirement on the form of the function mðrÞ

comes from the analogy with the cosmological SdS space-
time case. The space-time must allow for two horizons, an
internal one at r ¼ r−—a dS-like horizon—and an external
one at r ¼ rþ—a Schwarzschild-like horizon. Depending
on the value of the parameter l (or, equivalently, of the
parameter L̂), we will have three cases: (1) a black hole with
two horizons, (2) the two horizons merge and the black hole
becomes extremal, and (3) a horizonless compact object.
We can easily estimate the relation between the param-

eters in the extremal case (2) using a very simple argument.
For the internal observer, which describes its space-time as
dS, the energy density is constant and given by ϵ ∼ 1

L̂2l2P
.

The total energy inside a sphere of radius r is EðrÞ ∼ r3

L̂2l2P
.

For the extremal black hole, we must have r ∼ L̂ and the
total energy inside the sphere must match the black-hole
mass M seen by the outside observer: EðLÞ ∼ L̂3

L̂2l2P
¼ M.

This equation, together with Eq. (19), implies that the
extremal black hole must be characterized by

l ∼ RS ∼ L̂: ð20Þ

We find therefore that l has both a quantum origin and
should be of the same order of magnitude the
Schwarzschild scale RS.
For l≲ RS, the presence of the dS core and asymptotic

flatness force the metric to have an even number of
horizons. In the following, we will limit ourselves to the
case of only two horizons (see below). In the limit l → 0,
corresponding to L̂ → 0, the inner dS horizon is pushed
toward r ¼ 0 and disappears: a singularity is generated
in the center. The outer horizon, on the other hand, becomes
the classical Schwarzschild one. This case corresponds
to the classical limit of our model, in which the usual
asymptotically flat Schwarzschild solution is recovered. In
this regime, quantum effects can be neglected. In view of
Eq. (18), the simplest way to recover the Schwarzschild
solution in the l → 0 limit is to assume that

mðrÞ ¼ m

�
r
l
;M

�
: ð21Þ

Conversely, in the l → ∞ limit, corresponding also
to L̂ → ∞, the outer horizon disappears and the space-
time becomes dS. Notice that also M → ∞ in this case,
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consistently with the fact that we have a constant
energy density. This is the cosmological regime of
emergent gravity, in which dark energy in the form of
the cosmological constant L−2 fully dominates [44]. Our
description in terms of a quantum black hole with a dS
interior sourced by an anisotropic fluid breaks down in
this limit. An effective description of gravitational inter-
actions in terms of GR sourced by an anisotropic fluid is
still valid. It can be used to describe galactic dynamics
and the generation of the IR length of galactic size (2),
giving rise to interesting effects, like the emergence of a
dark force at galactic level [56–58]. Finally, for l≳ RS,
we have a solution with no horizons, which can be
thought of as an horizonless star.
Let us now write down the most general form of the

metric function satisfying the conditions discussed above
and in Secs. III B and III C. We can parametrize the metric
function AðrÞ in terms of a smooth function F as follows:

AðrÞ ¼ 1 −
RS

l
F

�
r
l

�
≡ 1 − αFðyÞ ð22Þ

where we have defined the dimensionless coupling α≡
RS=l and radial coordinate y≡ r=l. Furthermore, the
function F must satisfy the following conditions:

(1) FðyÞ ∼ 1

y
for y → ∞; ð23Þ

(2) FðyÞ ∼ y2 for y → 0; ð24Þ

(3) The equation 1 − αFðyÞ ¼ 0 admits at most two real
positive roots yþ, y−. Moreover, parameter regions
discriminated by α are present in which the equation
allows for two distinct, a single one or no real
positive roots.

When we have two roots yþ corresponds to an event
horizon while the inner horizon, given by y−, is generally a
Cauchy horizon. The presence of Cauchy horizons raised
several concerns in the literature regarding the stability and
the viability of such regular black-hole solutions with two
horizons. Indeed, according to Poisson, Israel and Ori
[106,107], the Cauchy horizon is typically exponentially
unstable under perturbations, an effect known as “mass
inflation.” In standard regular-black-holes approaches with
l ∼ lP, this instability develops in a time of order of the
Planck time, which is a much shorter timescale than the
evaporation time, challenging therefore the ability of these
models to give a complete description of the whole
evaporation process [108–110]. However, it has been
shown recently [111] that a detailed analysis is needed
in the nonsingular black-hole case and that the mass
instability does not occur in some specific regular models,

like those of Refs. [86,94]4 (but see also Ref. [115] for very
recent results).

Apart from the three conditions above on the form of the
function FðyÞ, we also introduce a constraint on the form of
its derivative
(4) In the region y ≥ yþ, F0ðyÞ=F has only one local

extrema (a maximum).
The latter represents a statement on the behavior of the
black hole temperature and is needed to have the simplest
thermodynamic phase portrait (see Sec. IV C).
Finally, requiring the regular quantum-corrected metric

to be an exact solution of some effective field equa-
tions derived from an action principle could place further
constraints on the function F. These constraints are
analyzed in Ref. [116]. The analysis is mainly concerned
with possible quantum corrections to the Schwarzschild
metric, assumed to be polynomial in 1=r at asymptotic
infinity (even if the main results of the paper seem to
hold even if the latter assumption is relaxed). These
corrections are derived as asymptotic solutions of effec-
tive field equations derived from an Einstein-Hilbert
action corrected by additional higher-order terms in the
curvature. What is found is that, unless either fine-tuning
is assumed or strong infrared nonlocalities in the gravi-
tational action are taken into account, algebraic forms of
F, like those of Refs. [8,94], for instance, are incom-
patible with a principle of least action. Therefore, their
feasibility as “quantum-deformed” black holes may be
questionable, at least if one requires these solutions to be
derived from an Einstein-Hilbert action with higher-order
terms in the curvature.
Condition 3 implies the existence of critical values αc

and yc for α and y respectively, labeling the extremal case,
when the two black-hole horizons merge. These critical
values are determined by requiring the metric function to
have a double-degenerate zero, i.e., by the system of
equations,

1 − αFðyÞ ¼ 0; F0ðyÞ ¼ 0: ð25Þ

Notice that a simple principle of naturalness implies αc
and yc being of order 1, so that the critical values for l and r
are of order RS. Therefore, αc allows us to distinguish three
regimes for our model:
(a) α ≫ αc, corresponding to l ≪ RS (i.e., l ∼ lP),

which describes the Schwarzschild black hole with
small quantum corrections [21–32];

(b) α ∼ αc, corresponding to l ∼ RS. In this case, l
parametrizes quantum gravity effects at horizon scales
[41–50,54,55,74];

4We point the reader to Refs. [112–114] for an alternative
regular model without the presence of an inner Cauchy horizons
in the corpuscular gravity framework.
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(c) α < αc, corresponding to l > RS, which describes
horizonless stars. We will not consider this case in the
following.

A qualitative behavior of the metric function AðrÞ in the
three cases is plotted in Fig. 1.

A. Energy conditions

Given the form (22) for the general metric function and
taking into account (23) and (24), we can rewrite the two
energy conditions (12) and (13) in terms of the function F
and discuss their behavior near r ∼ 0 and for r → ∞. Using
Eqs. (6) and (22) in (12) and (13), we get

ϵ0 ¼ −
αF

4πGl3y3
þ αF00

8πGl3y
≤ 0; ð26aÞ

2rϵþ r2ϵ0 ¼ αð2F0 þ yF00Þ
8πGl

≤ 0: ð26bÞ

Near y ∼ 0, ϵ0 ¼ 0 follows, so that the NEC is satisfied,
while 2rϵþ r2ϵ0 ∼ 0þ for y → 0: the SEC is violated
somewhere deep in the core of the astrophysical object.
This is expected, since this violation is a characteristic of
the dS spacetime.
On the other hand, for y → ∞, using Eq. (23) we get

ϵ0 ∼ 0 and 2rϵþ r2ϵ0 ∼ 0. Thus, the NEC and the SEC are
satisfied in the asymptotic region, as expected in view of the
Schwarzschild asymptotics of the solutions.
Violation of the SEC in the inner core explains how in

our models the usual singularity theorems can be circum-
vented. Even if the dS behavior near r ¼ 0 assures the
absence of a curvature singularity at r ¼ 0, in principle it is
not sufficient to guarantee the geodesic completeness of the
space-time described by the metric function (22). In the

Appendix, we explicitly show that in our models, caustics
of timelike geodesics cannot form, proving therefore the
geodesic completeness of space-times described by Eq. (22).

B. Extremal limit

As it is usually the case for standard charged and/or
rotating black holes [117–120], in the extremal limit and in
the near-horizon approximation, the local geometry of our
space-time behaves as AdS2 × S2, i.e., as the tensor product
of a two-dimensional (2D) AdS space-time and a two-
sphere, with both the AdS2 length L2 and the radius of S2 of
order RS. In fact, in the extremal limit rþ ¼ r− ¼ rc, the
metric function AðrÞ must have a double zero at r ¼ rc,
determined by the solution of Eq. (25). Expanding it near
the horizon, i.e., in power series of r − rc, we get at leading
order

ds2¼−L−2
2 ðr− rcÞ2dt2þL2

2ðr− rcÞ−2dr2þ r2cdΩ2; ð27Þ

where we have defined L−2
2 ¼ − 1

2
A00ðrcÞ and rc ∼ RS

owing to Eq. (20). Moreover, for purely dimensional
reasons, the same equation implies AðrcÞ00 ∼ R−2

S , from
which L2 ∼ RS follows. A translation of the radial coor-
dinate r → rþ rc brings the metric into the form

ds2 ¼ −
r2

L2
2

dt2 þ L2
2

r2
dr2 þ r2cdΩ2; ð28Þ

which describes an AdS2 × S2 space-time, with the AdS2
metric written in Poincaré coordinates.
As we will see later in this paper, the extremal solution is

a zero-temperature, zero-entropy solution. The extremal
configuration will be then thermodynamically preferred.
Even if a solution with two horizons could result from
astrophysical collapse of a compact object, it will decay in a
time much shorter than the Hawking evaporation time into
the extremal configuration.
Let us conclude this subsection by noting that the

extremal solution is stabilized by a particular profile for
the energy density ϵ and for the pressures pk and p⊥. In the
near-horizon approximation, when the metric takes the
simple AdS2 × S2 form, we expect them to be constant and
to satisfy a simple EoS. In fact, combining Eqs. (5c), (6)
and (22), the extremality conditions (25) and the EoS (9),
we find that the leading terms for the near-horizon energy
density and pressures are

ϵðnhÞ ¼ 1

8πGr2c
; pðnhÞ

k ¼ −ϵðnhÞ; ð29aÞ

ϵðnhÞðAdSÞ ¼ −
1

8πGL2
2

; pðnhÞ
⊥ ¼ −ϵðnhÞðAdSÞ; ð29bÞ

where ϵðnhÞðAdSÞ is the (negative) constant energy density

sourcing AdS2. It is quite interesting to note that both

No horizons

One horizon

Two horizons

r

A(r)

FIG. 1. Qualitative behavior of the metric function AðrÞ as a
function of the radial coordinate and for different values of the
parameter α. We can either have solutions with no horizons for
α < αc (blue solid curve), extremal solutions with a single
horizon for α ¼ αc (orange dotted curve) or solutions with
two horizons for α > αc (green dashed curve).
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the radial and perpendicular components of the pressure
satisfy the simple equation of state p ¼ −ϵ. The (positive)
energy density associated to the two-sphere acts as a source
for the (negative) radial pressure, whereas the (negative)
energy density associated to AdS2 acts as source for the
(positive) perpendicular pressure. Thus, the stabilization of
the AdS2 × S2 near-horizon, extremal solution is achieved
in a rather nontrivial way.

C. Black hole thermodynamics

From the metric function (22), using standard formulas,
we can compute both the Hawking temperature TH and the
black-hole mass for the quantum corrected black hole, as
functions of the outer horizon radius rþ ≡ rH and of
quantum deformation parameter l:

THðrH;lÞ ¼
1

4π

dAðrÞ
dr

����
r¼rH

¼ −
α

4πl
F0
����
y¼yH

;

MðrH;lÞ ¼
l
2G

F−1ðyHÞ: ð30Þ

An important point is that l has to be considered as a
quantum-deformation parameter which, contrary to M, is
not associated with conserved charges. This makes our
quantum black-hole solution drastically different from
other two-parameter classes of solutions, like, e.g., the
charged RN solution, for which both parameters are
associated with thermodynamic potentials.
Owing to this feature, we look for a first law of

thermodynamics of the form dM ¼ THdS, where S is
the black hole entropy. One can easily check that the
area law, i.e., an entropy equal to a quarter of the area
of the outer event horizon (in Planck units), cannot be
valid for our class of black-hole models. In fact,
using SA ¼ AH=4G ¼ πr2H=G, we get dM − THdSA ¼
−ð1=2GÞðdF=dyHÞF−1ðF−1 − rH=lÞdrH. This tells us
that, once the area law is assumed, the first principle
is satisfied only for FðyÞ ¼ l=rH, i.e., only for the
Schwarzschild black hole.
Let us now look for a new definition of the black hole

entropy S, generalizing the area law, such that the first
principle is satisfied. This generalized entropy can be found
by noticing that Eq. (30) implies the validity of the
following relation

dM ¼ 4πMTHdrH: ð31Þ

By defining the black hole entropy as

S ¼ 4π

Z
MdrH; ð32Þ

we see that the first principle dM ¼ TdS is satisfied.
Moreover, the entropy (32) correctly reproduces the area
law in the Schwarzschild case, M ¼ rH=2G. Equation (32)
defines the entropy of the hole up to an integration constant,

which can be fixed by requiring the entropy area law to be
recovered in the limit l ≪ RS, i.e., in the classical limit of
our quantum model. This leads to

SðrHÞ ¼ 4π

Z
rH

rm

Mðr0HÞdr0H; ð33Þ

where rm is the minimum value of the horizon radius. In the
limit l ≪ RS, we have MðrHÞ ¼ rH=2G and rm ¼ 0, so
that Eq. (33) gives the area law S ¼ πr2H=G.
For a generic quantum deformed black hole, rm is given

by the radius rc of the extremal black hole. This implies in
particular that the extremal black hole has zero entropy, i.e.,
SðrcÞ ¼ 0. The extremal limit for our quantum deformed
black hole is therefore a state of nonvanishing mass, but
with zero temperature and entropy. Again, this behavior is
drastically different from that of usual extremal black holes,
for which the extremal configuration is a state with T ¼ 0,
but with S ≠ 0.
Both for large black-hole radii rH → ∞ and in the

extremal limit, the temperature goes to zero. This can be
easily checked using Eq. (30) together with Eq. (24) and
Eq. (25). Smoothness of the function FðyÞ then implies that
the function THðrHÞ has at least one local maximum in the
range ½rc;∞Þ. In order to avoid an oscillating behavior of
THðrHÞ, we have restricted ourselves to the simplest case by
imposing condition 4 on the form of the function F (see the
beginning of Sec. IV).
The temperature starts form zero in the extremal limit,

then it reaches a maximum TH;max for rH;max and then goes
down to zero again for large values of rH=l. This implies
that TH is always bounded, 0 ≤ TH ≤ TH;max. Only when
we take the limit l → 0 first, to recover the Schwarzschild
black hole, can the temperature become arbitrarily large
by taking small black holes, rH → 0. Notice that a non-
vanishing quantum deformation parameter, l ≠ 0 solves, as
expected, the singular thermodynamical behavior TH → ∞
of the Schwarzschild black hole for rH → 0. The typical
qualitative behavior of the temperature is shown in Fig. 2.
In order to study in detail the thermodynamic behavior

of the black hole near extremality, we expand TH and
M near rc. At leading order, we get TH ¼ γðrH − rcÞ,
whereas M ¼ Mc þ βðrH − rcÞ2, where γ ¼ dTH=drHjrc ,
β ¼ ð1=2Þd2M=dr2Hjrc and Mc ¼ MðrcÞ. Notice that
dM=drH is always positive and becomes zero at extremality,
dM=drHjrc ¼ 0. For this reason, the linear term in the
expansion of M is absent. The previous expression implies
a quadratic scaling with the temperature of the mass above
extremality

M −Mc ∼
l3

G
T2
H; ð34Þ

which is fully consistent with the AdS2 × S2 near-horizon
behavior of the extremal limit [121–123]. This means that, in
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the near-extremal limit, the black hole allows for an effec-
tive description in terms of a 2D dilaton gravity theory,
i.e., Jackiw-Teitelboim (JT) gravity, with the dilaton para-
metrizing the radius of the 2-sphere S2 [124–126]. This in
turn implies the possibility of using a dual 2D conformal
field theory to describe the near-horizon regime of the
near-extremal black hole. This fact may be relevant for
applications to the information puzzle in black-hole
physics [34,35,65–69].

D. Phase transition

The nonmonotonic behavior of TðrHÞ, which is common
to a wide class of charged and/or AdS black holes,
signalizes a nontrivial thermodynamic phase structure,
the presence of two thermodynamic branches and a phase
transition at the critical temperature TH;max (see, e.g.,
Refs. [127–136]). This simply follows from the fact that
we have two possible values of rH for a given value
of TH. This implies the presence of metastable states and
the existence of two branches, I and II. Branch I
corresponds to small, order 1 values of the dimensionless
black hole radius yH (the left-hand region of Fig. 2). In this
branch, rH varies between the extremal value rc and rH;max.
Correspondingly, the parameter l takes values between
lH;max and lc, both of order RS. Thus, branch I describes
quantum black holes whose quantum deformation param-
eter l is of the same order of magnitude of the classical
Schwarzschild radius RS. Conversely, branch II corre-
sponds to large values of yH (the right-hand region of
Fig. 2). Here, rH can take values much larger than rH;max.
This corresponds to small values of the parameter l. Thus,
the far right region of branch II describes classical black
holes, with quantum deformation parameter l ≪ RS.
The phase transition and the stability of the different

thermodynamic phases can be investigated by considering
the specific heat of the black hole:

C ¼ dM
dT

¼ dM
drH

�
dT
drH

�
−1
: ð35Þ

Being dM=drH always positive, the nonmonotonic behav-
ior of TH implies that

(i) For rc < rH < rH;max, dT=drH is positive and
thus C > 0;

(ii) For rH > rH;max, dT=drH is negative and thusC < 0;
(iii) For rH ¼ rH;max; dT=drH ¼ 0 and thus C → ∞.
In Fig. 3 we plot the qualitative behavior of the specific

heat C as a function of rH.
In branch I, i.e., for values of rH less than rH;max, the

specific heat is always positive and the black hole exists in
equilibrium with its radiation. On the other hand in branch
II, i.e., for values of rH larger than rH;max, the specific heat
is always negative and the black hole cannot be considered
at equilibrium with its radiation anymore. A second order
phase transition occurs at rH;max. This implies that quantum
black holes with small values of the quantum deformation
parameter are thermodynamically less favored with respect
to black holes with l ∼ RS. Moreover, the value of the
deformation parameter l at the maximum, lH;max, is very
close to the extremal value. This means that black holes
close to extremality are thermodynamically preferred,
which further confirms the choice l ∼GM. This also
shows that the outcome of the evaporation process will
be a cold remnant at zero temperature and zero entropy.
The latter, in particular, is again an intriguing property,
as it could allow to circumvent problems on the viability
of remnants as possible solutions on the information
paradox [137].
These thermodynamic aspects and the phase picture will

be confirmed later on this paper, when we will consider
particular cases of our general class of models and we will
study their free energy.

C

rH

FIG. 3. Typical qualitative behavior of the black hole specific
heat C as a function of rH. The rH-axis starts from the value at
which C is zero, i.e., at the extremal value of rH, given by the
solution of Eq. (25). The vertical dashed line, where C diverges,
corresponds to the zero of dT=drH, i.e., the maximum of the
temperature.

Branch I

Branch II

rH

TH

FIG. 2. Typical qualitative behavior of the black hole temper-
ature TH as a function of the black hole radius rH. We explicitly
show the presence of the two branches.
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The nontrivial phase space structure analyzed above is a
consequence of the multiscale description of our models,
discussed in Sec. II. In light of the similarity between this
description of gravitational interactions and glassy systems
[44], one could ask whether our phase transition could be
interpreted as a glass transition. Indeed, even the latter is
characterized by a divergence in the specific heat at the
transition point, but it is not generally classified as a second-
order phase transition. To answer this question, one would
need first to define some Ehrenfest equations, to describe
variations of the specific heat and the derivatives of the
volume between the two phases. For a second-order phase
transition, both these equations are satisfied, while either
both or one of them is violated in glassy systems. In theblack-
hole case, one can define Ehrenfest-like equations [138] by
replacing the volume with the electric charge and/or the
angular momentum (if the model is charged and/or rotating)
and analyze their variations between the two phases.
Here, we can only speculate that the phase transition of

our “quantum-corrected” black hole could be very similar
to a glass transition instead of a second-order one. In fact,
the absence of any thermodynamic potentials related to l or
other physical observables prevents us from properly
defining Ehrenfest-like equations, and therefore to perform
an analysis similar to the one in Ref. [138]. Consequently,
this does not allow us to assess quantitatively the nature of
the phase transition in our models.
Summarizing the results obtained so far, the stable

configuration of our quantum-black-hole model, realized
using an anisotropic fluid, will be represented by an
extremal (or near-extremal, if we consider small deviations
from extremality) black hole. The black-hole geometry
interpolates between a dS space-time in the black-hole
interior (near the singularity), an AdS2 × S2 geometry in
the near-horizon region, and flat space-time in the asymp-
totic, r → ∞, region. The dS behavior near r ¼ 0 solves the
singularity problem. At extremality, the two (dual) quantum
scales characterizing the quantum black hole (l, L̂) have
the same order of magnitude of the classical black-hole
radius RS.
The scale l characterizing quantum effects seen by an

external observer is naturally of the order of magnitude of
the classical Schwarzschild radius RS of the black hole.
This opens the possibility of having phenomenological
quantum signatures, potentially observable in the near
future, e.g.. through the QNMs spectrum and the geodesic
motion of particles near the horizon. Moreover, the near-
horizon AdS2 × S2 behavior is very promising for tackling
the black-hole information puzzle.

E. Null geodesics and photon orbits

To compute photon orbits in our class of models, we start
from the geodesic equation together with the null-geodesic
constraint (dot will refer to derivation with respect to the
affine parameter)

ẍμ þ Γμ
νλ _x

ν _xλ ¼ 0; gμν _xμ _xν ¼ 0: ð36Þ

The isometries of the metric (spherical symmetry and
invariance under time translations) imply two conservation
equations, which by considering geodesics on the plane
θ ¼ constant ¼ π=2, take the form

_ϕ ¼ J
r2
; _t ¼ C

jAðrÞj ð37Þ

where J and C are integration constants.
The geodesic equation for the coordinate r can be

integrated to give,

_r2 þ J2

r2
AðrÞ ¼ C2; ð38Þ

which can be rewritten as the energy conservation equation:

1

2
_r2 þ VðrÞ ¼ C2

2
≡ E; ð39Þ

with E a constant and VðrÞ the effective potential

VðrÞ≡ J2

2r2
AðrÞ: ð40Þ

Since the leading term of metric function for r → 0 is
AðrÞ ∼ 1, we have VðrÞ → ∞ in this limit. This behavior is
completely different from the Schwarzschild case (V → −∞
as r → 0) and is a consequence of the absence of a
singularity. Conversely, for r → ∞, AðrÞ is dominated by
the 1=r term and VðrÞ → 0, as in the Schwarzschild case.
The shape of the effective potential VðrÞ at intermediate
distances depends crucially on the values of the parameter α.
The local extrema of V are the solution of the equation

rA0ðrÞ − 2AðrÞ ¼ 2αF − 2 −
αr
l
F0 ¼ 0: ð41Þ

Being F and F0 both bounded, it will always exist a
minimum value αm < αc such that for α ≤ αm the equation
has no (real) zeroes and bounded photon orbits do not exist.
For α > αm, the equation allows instead for two (real)
zeroes, corresponding to a local minimum and a local
maximum for VðrÞ. On the other hand, for αm < α < αc,
we still have the stable and unstable photon orbits, but there
are no horizons, since the solution describes a star. For
α ¼ αc, i.e., in the extremal configuration, the minimum of
the potential coincides with the horizon position. In this
case, we will have both the outer unstable photon ring and a
stable one, which, however, coincides with the event
horizon of the extremal black hole. Finally, for α > αc,
the local minimum is inside the event horizon and we have
only a bounded unstable photon orbit, similarly to the
Schwarzschild case.
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The qualitative behavior of VðrÞ in the four cases is
shown in Fig. 4. From the plots we see that there are two
main differences with the Schwarzschild case. The first is
the possibility of having a complete absence of bounded
orbits, in the case of the horizonless solution. The second is
the presence of stable orbits for photons in addition to the
usual unstable ones. However, in the two-horizon case, the
stable orbits are beyond the black-hole horizon and do not
play any role, while in the extremal case they coincide with
the horizon. Deviations from extremality, however, push
this minimum inside the outer horizon and their effects are
irrelevant from the observational point of view.

F. Quasinormal modes spectrum
in the eikonal approximation

In this section we consider QNMs for scalar perturbations
in the fixed background given by our general black-hole
solution. We will then use the eikonal approximation to give
an analytical estimate of the quasinormal frequencies.
The evolution of scalar perturbations Ψ, in the fixed

gravitational background metric gðBÞμν described by the
metric function (22), is determined by the Klein-Gordon
equation

□Ψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
−gðBÞ

p ∂μ

� ffiffiffiffiffiffiffiffiffiffiffi
−gðBÞ

q
gμνðBÞ∂ν

�
Ψ ¼ 0: ð42Þ

By separating the time, angular and radial parts of Ψ,
one gets the radial Schrödinger-like equation for the
r-dependent part,

d2ψ
dr2�

þ ½ω2 − VKGðrÞ�ψ ¼ 0; ð43Þ

where the potential is

VKGðrÞ ¼ ð1 − αFÞ
�
lðlþ 1Þ

r2
− α

F0

lr

	
; ð44Þ

l is the orbital-angular-momentum number and r� is the
tortoise coordinate defined by

r� ¼
Z

dr
AðrÞ : ð45Þ

Analytical estimates of the quasinormal frequencies can
be obtained by using an intriguing relation between
quasinormal modes and the parameters characterizing
null geodesics in the eikonal limit l ≫ 1 first noted in
Ref. [139]. The vibration modes of the black holes, whose
energy is gradually being radiated away, are interpreted as
photons moving along an unstable null-geodesics and
slowly leaking out. This correspondence was more recently
analyzed in Refs. [140–142] and shown to agree with
WKB results [143,144]. Specifically, the angular velocity

r

V(r)

(a)

r

V(r)

(b)

r

V(r)

(c)

r

V(r)

(d)

FIG. 4. Typical qualitative behavior of the effective potential V for null geodesics as a function of r for α > αc, α ¼ αc, αm < α < αc
and α < αm.
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Ωm ¼ _φ=_tjr¼rm , computed at the maximum of the geo-
desic potential rm, determines the real part of the quasi-
normal spectrum. Further, the so-called Lyapunov exponent

λ ¼
ffiffiffiffiffiffiffiffi
V 00ðrÞ
2_t2

q
jr¼rm [VðrÞ is the effective potential for null

geodesics (40)], which characterizes the timescale of the
null-orbit instability, describes the damping of the black
hole oscillations and therefore determines the imaginary
part of the spectrum. We have

ωQNM ¼ ωR þ iωI ¼ Ωml − i

�
nþ 1

2

�
jλj; ð46Þ

where

Ωm ¼
ffiffiffiffiffiffiffiffiffiffi
A0ðrÞ
2r

r ����
r¼rm

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AðrmÞ

p
rm

; ð47aÞ

λ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r2m
AðrmÞ

�
d2

dr2�

AðrÞ
r2

�
r¼rm

s
: ð47bÞ

Being rm the position of the peak of the geodesic potential,
it is given by the solution of the Eq. (41). Although we have
seen that, for extremal black holes, the potential V has an
additional minimum exactly at the horizon, we will not
consider this contribution, as small perturbations from
extremality have the effect of moving this minimum toward
the black hole interior. The QNMs spectrum will be
therefore entirely determined by the contribution at the
maximum of V.
The general expressions (47a) and (47b) are valid for all

spherically-symmetric, static and asymptotically-flat sol-
utions, in the eikonal limit. For our general class of models,
using Eqs. (22), (45), (47a) and (47b) we get

ωR ¼ l
rm

ffiffiffiffiffiffiffiffiffiffiffiffi
AðrmÞ

p
¼ l

lym

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αFm

p
; ð48aÞ

ωI ¼ −
�
nþ 1

2

�
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrmÞrm

����
�
A0ðrÞ
r

�0

m

����
s

¼ −
�
nþ 1

2

�
1ffiffiffi
2

p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1 − αFmÞym

����
�
F0

y

�0

m

����
s

: ð48bÞ

It is important to stress that the QNMs frequencies
depend both from the classical hair M and from the
quantum hair l. This dependence from two parameters
of the QNMs spectrumwill have a well-defined signature in
the ringdown part of the gravitational wave generated in the
merging of two compact objects to form a single black hole.
Next-generation gravitational-wave detectors are expected
to be sensitive enough to detect such effect.
In the generic case, ωR and ωI will be complicated

functions of α. Simpler expressions can be obtained for

near-extremal black holes, by expanding in powers of
ðα − αcÞ. Taking into account that jAjm ≠ 0 (see the remark
above), if we just consider the near-extremal expansion
but not the near-horizon expansion, we will also have

ðAðrÞ0r Þ0m ≠ 0. At first order in ðα − αcÞ we get ωI ¼
constant=lþ constantðG=l2ÞðM −McÞ and similarly for
ωR. Using Eq. (34), we can express the quasinormal
frequencies in terms of the black hole temperature

ωR ¼ a
l
þ blT2

H; ð49aÞ

ωI ¼
c
l
þ dlT2

H; ð49bÞ

where a, b, c, d are dimensionless constants.
On the other hand, if we take the near-horizon limit

together with the near-extremal limit, the metric satisfies

ðAðrÞ0r Þ0 ¼ 0, identically, since the geometry becomes that of
AdS2 × S2. While the behavior of ωR remains that of
Eq. (49), we get a linear scaling of ωI with the temperature,
owing to the absence of the constant term inside the
square root:

ωI ∝ TH: ð50Þ

These results confirm only partially Hod’s conjecture,
which asserts the complete absence of the imaginary
damped part in the spectrum in the near-extremal case,
both for RN and Kerr black holes [75–79]. In the case under
consideration, Hod’s conjecture seems to hold true only in
the near-extremal, near-horizon case. This seems to be a
feature of also general charged and rotating regular black-
hole models [82–84].
On the other hand, our results seem to confirm a general

behavior found in Ref. [145] for the near-extremal Kerr
space-time, which is characterized by a branching in the
quasinormal spectrum. One family, corresponding to the
simple near-extremal limit, has indeed a nonvanishing
imaginary part in the extremal limit, while the other branch
shows that the damped part of the spectrum goes to zero in
the near-extremal, near-horizon limit.
Finally, the temperature scaling (50) fully confirms

previous derivation of the quasinormal spectrum for two
dimensional AdS2 black holes [70–74]. In fact, the latter
allows for an explicit analytical treatment through
different methods, which all point toward the same
result: a linear scaling of the imaginary part ωI with
the temperature of the hole. A quite interesting conse-
quence of this scaling is the complete absence of the
imaginary damped part in the spectrum in the extremal
case, as the temperature becomes zero. These zero-
damped (or nearly zero-damped) modes [75–81] would
therefore represent a clear phenomenological signature
of extremal black holes.
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V. A MINIMAL MODEL: THE HAYWARD
BLACK HOLE

The simplest example of our general class of models is
given by the Hayward black-hole metric [94,146], for
which the metric function F in Eq. (22) reads

FðyÞ ¼ y2

y3 þ 1
; ð51Þ

with y ≥ 0. As already mentioned in Sec. IV, the analysis of
Ref. [116] shows that an algebraic form of F could be
inconsistent with semiclassical field equations derived from
an action principle, at least if one requires the solutions to
be derived from an Einstein-Hilbert action with higher-
order terms in the curvature.
The horizon location and the extremality condition (25)

are now

y3 − αy2 þ 1 ¼ 0; −2αyþ 3y2 ¼ 0: ð52Þ

Solving these equations yields the critical values of the
parameter α and the critical radius rc

αc ¼
3ffiffiffi
43

p ; rc ¼
2

3
RS ¼

ffiffiffi
2

3
p

l: ð53Þ

The black hole has two horizons for RS > 3l=
ffiffiffi
43

p
, is

extremal for RS ¼ 3l=
ffiffiffi
43

p
, whereas it becomes a horizon-

less star for RS < 3l=
ffiffiffi
43

p
. The energy density ϵ and the

mass function m sourcing the black hole are given by

ϵðrÞ ¼ 3

4π

Ml3

ðr3 þ l3Þ2 ; mðrÞ ¼ Mr3

r3 þ l3
: ð54Þ

The NEC (12) is always satisfied, while the SEC (13) is
violated deep inside the core of the object, for r ≤ l=

ffiffiffi
23

p
.

On the other hand, for l → 0, or for r → ∞, ϵðrÞ has a very
small, Dirac’s delta-like support only in the region near
r ¼ 0, and therefore mðrÞ ¼ M: the Schwarzschild black
hole is recovered. The deviation from the Schwarzschild
case can be characterized by defining a mass deviation
ΔmðrÞ as the difference between the mass at infinityM and
mðrÞ, which in the present case reads

Δm≡M −mðrÞ ¼ Ml3

r3 þ l3
: ð55Þ

For r → ∞, it behaves as

Δm ∼
Ml3

r3
þO

�
1

r4

�
: ð56Þ

The solution is asymptotically flat and satisfies the
boundary conditions ϵ, pk, p⊥ → 0 for r → ∞, while it

has a dS behavior near r ¼ 0 with the dS length L̂ (15)
given by

L̂ ¼ l3=2R−1=2
S ; ð57Þ

which relates l with the Schwarzschild radius and the dS
length characterizing the small r behavior. Equation (57)
fully confirms the validity of our general scaling given
by Eq. (19).
We note that the same result in Eq. (57) can be obtained

in the limit of very large l. In this case, however, we have
an exact solution of Einstein’s equations, sourced by a
constant-density, isotropic and homogeneous fluid, with
equation of state

pk ¼ p⊥ ¼ −ϵ ¼ −
3

8πGL̂2
: ð58Þ

Indeed, looking at the density profile (51), the dS universe
can be recovered in the limit l → ∞ only if M → ∞, so
that the energy density of the source (51) becomes constant.
For α > αc, the cubic equation in (53) has three real

roots, out of which two are positive, rþ and r−, denoting the
outer and inner horizons respectively, whereas the third, r3,
is negative. The metric function A factorizes as

AðrÞ ¼ ðr − rþÞðr − r−Þðr − r3Þ
r3 þ l3

: ð59Þ

In the extremal limit rþ ¼ r− ≡ rc ¼ ð2=3ÞRS, after a
translation of the radial coordinate r → rþ rc, the
space-time metric becomes

ds2 ¼ −ÃðrÞdt2 þ Ã−1ðrÞdr2 þ ðrþ rcÞ2dΩ2;

ÃðrÞ≡ r2ðrþ rc − r3Þ
ðrþ rcÞ3 þ l3

; ð60Þ

describing an asymptotically flat region connected with an
infinitely long throat of radius rc. The near horizon (around
r ¼ 0) expansion of the metric (60) gives the AdS2 × S2

space-time (27), with an AdS2 length L2 ¼ ð2=3ÞRS. The
fluid stabilizing the extremal solution is characterized by
the equations of state (29), where now the AdS2 length L2

and the radius rc of the two-sphere have the same
value, L2 ¼ rc ¼ ð2=3ÞRS.

A. Thermodynamics and phase transition

Inserting F given by Eq. (51) into Eq. (30), we get the
mass and temperature of the black hole

TH ¼ 1

4πrH

r3H − 2l3

r3H þ l3
; M ¼ 1

2G

�
rH þ l3

r2H

�
: ð61Þ

The temperature behavior agrees with the expected quali-
tative one shown in Fig. 2. The maximum of TH is
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obtained by solving the equation y6 − 10y3 − 2 ¼ 0, giving

rH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ 3

ffiffiffi
3

p Þ3

q
l.

Expanding Eq. (61) near extremality, one easily finds the
quadratic scaling (34) of the mass with the temperature

M −Mc ¼ 12π2
l3

G
T2
H: ð62Þ

The black-hole entropy satisfying the first principle of
thermodynamics is easily obtained from Eq. (32)

S ¼ πr2H
G

−
2πl3

GrH
ð63Þ

The first term is the standard area law, while the second
term describes l-dependent deviations.
The specific heatC can easily be calculated using Eq. (61)

and agrees with the qualitative behavior shown in Fig. 3. It

diverges for rH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ 3

ffiffiffi
3

p Þ3

q
l, indicating the onset of the

secondorder phase transition,with the stable thermodynamic

branch I occurring for rH <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ 3

ffiffiffi
3

p Þ3

q
l.5

The existence of this phase transition and related
thermodynamical phase portrait can be checked by com-
puting the free energy F ¼ M − THS as a function of the
temperature. The free energy for the two branches I and II
has to be calculated numerically by inverting the equation
TH ¼ THðrHÞ. We plot F ðTHÞ in Fig. 5. Branch I corre-
sponds to rH varying between the extremal value rc and
rH;max, and thus it describes quantum black holes for which

the quantum deformation parameter l is of the same order
of magnitude of the classical Schwarzschild radius RS.
Conversely, branch II corresponds to rH taking values
much larger than rH;max, where l ≪ RS, corresponding to
the classical black-hole branch.
We note that the branch I is always energetically

preferred with respect to branch II, which further supports
our choice l ∼ RS.

B. Null geodesics and quasinormal modes
in the eikonal limit

Let us now consider geodesic motion and QNMs for the
Hayward black hole. The effective potential (40), which
determines photon orbits in the black-hole background, in
the present case reads

VðrÞ ¼ J2

2r2

�
1 −

RSr2

r3 þ l3

�
: ð64Þ

The extrema of VðrÞ are determined by Eq. (41) with A
given by Eq. (59), i.e., by the roots of the equation
2y6 − 3αy5 þ 4y3 þ 2 ¼ 0. By solving this equation
numerically, one can show that no real roots exist for
α < αm ≈ 1.64. The position of the maximum of the
potential will depend on the value of the parameter α
with respect to αm and αc ¼ 3=

ffiffiffi
43

p
. Also here, we can

distinguish between the four cases shown in Fig. 4. The
quasinormal frequencies in the eikonal approximation for
the Hayward black-hole can be easily calculated plugging
Eq. (51) into Eqs. (48a) and (48b). One has

ωR ¼ l
lym

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− α

y2m
y3m þ 1

s
;

ωI ¼ −
�
nþ 1

2

� ffiffiffiffiffiffi
3α

p
y3=2mffiffiffi

2
p

lð1þ ymÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy3m − 5jð1þ y3m − αy2mÞ

q
:

ð65Þ

By expanding around α ¼ αc ¼ 3=
ffiffiffi
43

p
, we get

ωR ≃
0.21l
l

−
0.11l
l

ðα − αcÞ ≃
0.21l
l

− 26.13llT2
H; ð66aÞ

ωI ≃ −
�
nþ 1

2

�
5.70
l

þ
�
nþ 1

2

�
1.44
l

ðα − αcÞ

≃ −
�
nþ 1

2

�
5.71
l

þ
�
nþ 1

2

�
340.07lT2

H; ð66bÞ

where in the last equalities we used the definition of α
and Eq. (62).

Branch 1

Branch 2

0.000 0.005 0.010 0.015 0.020 0.025
TH
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2.5

F

FIG. 5. Free energy F, in units of l−1, as a function of the
temperature, in units of l−1, for the two branches of the Hayward
black hole. We plot F for branch I, l ∼ RS (solid blue curve), and
for branch II (solid orange curve) corresponding to l ≪ RS. We
see that “quantum deformed” black holes with l ∼ RS are always
energetically preferred with respect to those with l ≪ RS.

5The possibility of having a phase transition in the Hayward
model has been previously recognized in Ref. [147].
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VI. QUANTUM BLACK HOLES
WITH GAUSSIAN CORES

Another explicit and simple realization of a regular
quantum black hole, sourced by an anisotropic fluid with
EoS given by Eq. (9) and satisfying the conditions outlined
in Sec. IV, can be obtained by taking a Gaussian density
distribution in the interior of the astrophysical object,
peaked at r ¼ 0

ϵðrÞ ¼ M

π3=2l3
e−r

2=l2 ; ð67Þ

where M is the MS mass as seen from infinity, namely

M ¼ 4π

Z
∞

0

drr2ϵðrÞ: ð68Þ

The parameter l represents here a smearing of the classical
Schwarzschild-Dirac delta-density profile (the latter is
recovered in the limit l → 0). Such a density profile is
motivated by several microscopic descriptions of black
holes: noncommutative geometry [22,148], loop quantum
gravity (LQG) [26], corpuscular picture [149]. The NEC
condition (12) is always satisfied, while the SEC (13) is
again violated in the deep core of the body, i.e., for r < l.
Near r ¼ 0, the space-time behaves as dS, with a dS

length L̂ given by

L̂ ¼
ffiffiffi
3

4

r
π1=4l3=2R−1=2

S ; ð69Þ

confirming again our general result given by Eq. (19).
As we also saw in Sec. V, the same result can be obtained

as an exact solution of Einstein’s field equations, sourced
by the fluid with EoS (58), in the limit l → ∞. Indeed,
looking at the density profile (67), the dS universe can be
recovered in the limit l → ∞ only if M → ∞, and the
energy density (67) behaves as a constant.
Let us turn our attention to the metric structure, by

computing the MS mass at a generic r

mðrÞ ¼ 4π

Z
r

0

dr̃ r̃2ϵðr̃Þ ¼ 2Mffiffiffi
π

p γ

�
3

2
;
r2

l2

�

¼ M

�
1 −

2ffiffiffi
π

p Γ
�
3

2
;
r2

l2

�	
ð70Þ

where γða; zÞ ¼ R
z
0 dte

−tta−1 and Γða; zÞ ¼ R
∞
z dte−tta−1

are the incomplete gamma functions. The first term in
Eq. (70) is the mass measured at infinity (the Schwarzschild
ADM mass), while the second term, parametrized by l,
encodes the quantum corrections, the effects of the smearing
of the singularity. The deviation from the Schwarzschild
solution, described by the mass deviation ΔmðrÞ≡
M −mðrÞ, is strongly suppressed outside the core of the
compact object, as for r → ∞ it behaves as

Δm ∼
Mffiffiffi
π

p e−
r2

l2

�
l
r
þ 2r

l

�
ð71Þ

which represents a stronger suppression with respect to that
of the Hayward model [see Eq. (56)].
The metric components can be written in the form of

Eq. (22) with the metric function FðyÞ given by

FðyÞ ¼ 1

y

�
1 −

2ffiffiffi
π

p Γ
�
3

2
; y2

�	
: ð72Þ

Contrary to the Hayward model, in the present case, the
nonalgebraic form of F allows to circumvent the viability
constraints of Ref. [116].
Given the form of the metric functions, the position of

the horizon(s) and the parameters range discriminating
between the two-, one- or no horizons cases have to be
computed numerically. The two horizons merge and we
have the extremal case when both equations in (25) are
satisfied. This translates into the conditions:

1 −
2GM
yl

þ 4GM
l

ffiffiffi
π

p
y
Γ
�
3

2
; y2

�
¼ 0; ð73aÞ

1 −
2ffiffiffi
π

p Γ
�
3

2
; y2

�
−
4y3ffiffiffi
π

p e−y
2 ¼ 0: ð73bÞ

These equations need to be solved numerically.6 The
numerical solution of Eq. (73b) is ymin ≃ 1.51, which
means rmin ≃ 1.5l. The range of parameter α ¼ RSl−1

discriminating between the aforementioned three cases
therefore is

(i) No horizons: Aðy ¼ yminÞ > 0

α <
3

2 − 4ffiffi
π

p Γð3
2
; 9
4
Þ : ð74Þ

(ii) One horizon: Aðy ¼ yminÞ ¼ 0

α ¼ 3

2 − 4ffiffi
π

p Γð3
2
; 9
4
Þ ≃ 1.90: ð75Þ

(iii) Two horizons: Aðy ¼ yminÞ > 0

α >
3

2 − 4ffiffi
π

p Γð3
2
; 9
4
Þ : ð76Þ

In this latter case, the outer horizon is an event
horizon, while the inner one is a Cauchy hori-
zon [148].

6We discard the simplest analytical solution, i.e., r ¼ 0, since it
is not a minimum.
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We have therefore a critical value lc for the quantum
parameter l for which the two horizons merge and the
quantum black hole becomes extremal

lc ≃ 0.53RS; ð77Þ

which is close to the classical gravitational radius of
the compact object. This critical value discriminates
between the three classes of solutions. When l is above,
equal or below lc we have a solution with two, one or
none horizons, correspondingly. lc, in turns, determines
a critical value L̂c for dS length through Eq. (69), which
also turns out to be close to the classical Schwarzschild
radius7:

L̂c ≃ 0.31RS: ð78Þ

The most interesting case is the extremal black hole,
obtained for l ¼ lc (L̂ ¼ L̂c). As discussed in Sec. IV,
in the extremal case the near-horizon geometry factorizes
as AdS2 × S2, with the AdS2 length given by L−1

2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2
AðrcÞ00

q
. L2 can be calculated first using Eqs. (73a)

and (73b) to get

e−y
2ðrcÞ ¼

ffiffiffi
π

p
l

4RSy2ðrcÞ
: ð79Þ

Using this equation together with Eqs. (70), (72), (73a) and
(73b) enables us to find

−
1

2
AðrcÞ00 ≡ 1

L2
2

¼ 1

l2
−

1

r2c
: ð80Þ

Using Eq. (77) and taking into account that rmin ≃ 1.5l ≃
0.78RS we get

L2 ≃ 0.70RS; ð81Þ

confirming the general result of Sec. IV, according to which
both the radius of the two-sphere and the AdS2 length are of
order RS.
As shown at the end of Sec. IV B, the extremal solution

is stabilized by a particular profile for the energy density ϵ
and for the pressures pk and p⊥, given by the expres-
sions (29). In the present case, the negative energy density

sourcing the AdS2 space-time reads ϵðnhÞðAdSÞ≡−1=ð8πGL2
2Þ¼

−ð1=8πGÞð1=l2−1=r2cÞ.

A. Quantum black hole regimes

The parameter l (or equivalently L̂) controls the scale
of quantum effects in our quantum black-hole model. In the
usual, most conservative approach, which assumes quantum
gravity effects to be relevant only at the Planck scale lP, l
is assumed to be of the same order of magnitude of lP.
This assumption is surely justified when l has an explicit
origin in the microscopic description of gravity at the Planck
scale. It is for instance the case of Refs. [22,26,148,149],
where the Gaussian model, and the parameter l in particular,
parametrizes UV noncommutative [22] or LQG [26] effects.
However, this is not the case in those approaches, like

the one followed in this paper, in which an IR quantum
scale, hierarchically smaller than lP, is generated. Given
the attention the model with l ∼ lP received in the past
[21–29,31], it is worthwhile to quantitatively compare
the two different regimes (1) l ∼ lP and (2) l ∼ RS for
the black-hole model with a Gaussian core, and analyze the
possible impact on observable phenomenology in the two
cases. Again, we remind that we are considering macro-
scopic black holes, i.e., RS ≫ lP.

1. l ∼ lP

In this case, Eq. (76) tells us that we always have two
horizons, the black hole is far from extremality and the
inner horizon is very close to r ¼ 0. It is quite easy to
understand that these quantum effects are completely
irrelevant for macroscopic black holes, at least for what
concerns the phenomenology accessible to external observ-
ers. In fact, the matter density is sensibly different from
zero only at distances of order lP from the classical
singularity at r ¼ 0. Therefore, for the external observer,
the deviations from the Schwarzschild solution are
expected to be incredibly small. We have sensible devia-
tions from rH ∼ RS only for black holes with masses of
order the Planck mass mP ¼ 1=

ffiffiffiffi
G

p
, where the event

horizon is slightly less than RS (the radius of the outer
horizon is rH ≃ 1.8

ffiffiffiffi
G

p ¼ 0.9RS). However, as the mass
increases, the outer horizon becomes rapidly indistinguish-
able from RS. For example, for a solar mass black hole,
M ¼ 1 M⊙, the outer horizon of the metric (72) is at RS and
the corrections are exponentially suppressed by a factor

Γð3
2
; r

2
H
l2P
Þ ∼ e−r

2
H=l

2
P ¼ e−R

2
S=l

2
P ¼ e−

4GM2
⊙

cℏ ∼ e−10
76

(note that,

in the last expression, we have reinstated the speed of
light c and the Planck constant ℏ). The mass deviation at
the horizon ΔmðrHÞ is of the same order of magnitude,
which is effectively zero from the point of view of the
external observer.

2. l ∼ RS

As explained in the introduction, there are several
indications pointing at the relevance of quantum effects
at horizon scales. However, presently we do not have a

7The fact that L̂c < lc is expected: the SEC is violated in the
deep core of the object, namely for r < l. This is perfectly
consistent with the fact that this energy condition is violated in a
dS space-time.
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precise microscopic description of these quantum effects,
but only some quite interesting proposals, like, e.g., fuzz-
balls, firewalls, nonlocal effects and corpuscular models.
An interesting explicit corpuscular black-hole model with a
Gaussian core is the one given in Ref. [149], whose density
profile is

ϵcorpuscular ¼
72mPffiffiffi
π

p
N
e
−7
2
r2

Nl2
P

l3
P

ð82Þ

where N is the number of gravitons building up the black
hole. Comparing this profile with our model (67), we can
read the values of our parameters l, M in terms of N

l ¼ lP

ffiffiffiffiffiffiffi
2N
7

r
; M ¼ 49π

l3

Nl4
P
: ð83Þ

From these equations, one easily gets the expected holo-
graphic scaling of N, N ∝ l2

PM
2 and a value of l which

is l ¼ RS=28π ≃ 0.01RS < lc. The black hole has two
horizons and is far from extremality. The outer horizon is
quite close to the classical Schwarzschild one, we have
rH ≃ 0.96RS. Therefore, the mass deviation is again quite
small:

Δm
M

����
H
¼ 2ffiffiffi

π
p Γ

�
3

2
; y2H

�
∼ e−7733: ð84Þ

We see that, for a value of l which is about 1=100 of the
critical value lc, deviations from the classical behavior are
still quite small.
As a last example we consider a value l < lc, but quite

close to the critical value, l ¼ lc=2. The space-time has
two horizons and the outer one is at

rH ≃ 0.92RS; ð85Þ

which is a small, but still important, difference with respect
to the classical radius RS. The mass deviation is

Δm
M

����
H
¼ 2ffiffiffi

π
p Γ

�
3

2
;
c4r2H
G2M2

�
≃

2ffiffiffi
π

p Γ
�
3

2
; 1.842

�
≃ 0.07:

ð86Þ

These results further show that the most interesting regime
is that for which l ∼ RS from both a purely theoretical and
from a phenomenological points of view.

B. Thermodynamics and phase transition

Inserting the metric function (72) into Eq. (30), we
get the temperature and the ADM mass of the Gaussian
black holes

TH ¼ 1

4πrH

�
1 −

8GMðrHÞr2H
l3

e−r
2
H=l

2

	
;

MðrHÞ ¼
rH

2G½1 − 2ffiffi
π

p Γð3
2
; r

2
H
l2Þ�

: ð87Þ

The temperature is given by the standard Hawking result
plus an l-dependent term, encoding quantum deviations
from standard black hole thermodynamics, which however
are exponentially suppressed. The behavior agrees with
the qualitative one depicted in Fig. 2. It starts from zero
in correspondence with the extremal case. Then, it rises
and reaches a maximum, whose position is given by
solving the equation dTH=drH ¼ 0, which in the present
case is at rH;max ≃ 2.38l. Finally, it decreases and reaches
zero as rH=l → ∞, in agreement with the fact that we have
to recover the standard Schwarzschild results TH ¼ 1

4πrH
;

M ¼ rH
2G in this limit. Also in this case, the quantum

deformation parameter l ≠ 0 solves the singular thermo-
dynamic behavior of the Schwarzschild temperature
TH → ∞ for rH → 0.
On the other hand, from Eq. (73a), we get the value of the

deformation parameter corresponding to rH;max

lH;max ¼
1 − 2ffiffi

π
p Γð3

2
; y2H;maxÞ

yH;max
RS ≃ 0.42RS: ð88Þ

The entropy of the black hole can be obtained by inte-
grating Eq. (33) numerically, using the fact that the zero-
entropy state is at the extremal radius rH;extremal=l ≃ 1.51.
The result of the integral is presented in Fig. 6 (dashed
orange line) and is compared to the standard result for the
Schwarzschild black hole.8 As it can be seen, the entropy
does not differ significantly from the standard area law,
as quantum deviations are expected to be exponentially
suppressed [150–152] [see also Eq. (71)].
Expanding Eq. (87) near extremality yields the quadratic

scaling (34) of the mass above extremality with the
temperature

M −Mc ≃ 15.55
l3

G
T2
H: ð89Þ

The specific heat can be computed using Eq. (35) and
follows the qualitative behavior of Fig. 3: it diverges at
rH;max ≃ 2.38l, indicating the onset of the second-order
phase transition. Indeed, by computing numerically the free
energy F ¼ M − THS and expressing it as a function of
TH, we get the phase diagram depicted in Fig. 7.
Again, we have two branches. Branch I corresponds to

rH taking values between the extremal value rc and rH;max

8In this case, the blue solid curve in Fig. 6 is obtained by
subtracting the Hawking entropy of the extremal configu-
ration Sextremal ¼ πr2H;extremal (with G ¼ 1) from the standard
Schwarzschild entropy πr2H.
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(correspondingly, the parameter l takes values between
lH;max ≃ 0.42RS and lc ≃ 0.53RS), and therefore describes
quantum black holes with l ∼ RS. Conversely, branch II
corresponds to rH much larger than rH;max, corresponding
to small (< 0.42RS) values for the parameter l. Thus, the
far right region of branch II describes again classical black
holes (l ≪ RS).
Figure 7 shows that the free energy of branch I is always

smaller than that of branch II. This means that black holes
in branch I, i.e., black holes with l ∼ RS, are always
energetically preferred.

C. Null geodesics and photon orbits

The effective potential (40) determining photon orbits in
the Gaussian quantum black hole reads

VðrÞ ¼ J2

2r2

�
1 −

2GM
r

þ 4GMffiffiffi
π

p
r
Γ
�
3

2
;
r2

l2

�	
; ð90Þ

and its behavior for different values of the parameter
α≡ RSl−1 agrees with the qualitative plots shown
in Fig. 4.
The extrema of the potential are given by the zeros of

dVðrÞ=dr [see Eq. (41)], i.e., by the solution of the
equation

−rþ 3GM −
4GMffiffiffi

π
p r3

l3
e−r

2=l2 −
6GMffiffiffi

π
p Γ

�
3

2
;
r2

l2

�
¼ 0: ð91Þ

We see that the presence of l shifts the position of the
photon sphere from the Schwarzschild case r ¼ 3GM.
By numerically solving the equation above, we distinguish
again between the three cases (2, 1, or no horizons)

(i) Two horizons (α > 3
2− 4ffiffi

π
p Γð3

2
;9
4
Þ): we have multiple

zeros, corresponding to one minimum in the
black-hole interior and one maximum in the exterior,
which corresponds to the position of the unstable
photon orbit. We are interested in the latter. For
instance, for α ¼ 2 (l ¼ GM therefore), we have
ym ≃ 2.99, which corresponds to a position of the
photon ring rm ≃ 2.99l ¼ 2.99GM, very close to
the Schwarzschild case 3GM.

(ii) One horizon (α ¼ 3
2− 4ffiffi

π
p Γð3

2
;9
4
Þ): this case is similar to

the previous one, we have a minimum (coinciding
with the event horizon), which represents a stable
photon orbit, and a maximum in the potential,
representing the unstable photon orbit. Focusing
again on the latter, we have ym ≃ 2.84, corres-
ponding to rm ≃ 2.98GM, again pretty close to
the Schwarzschild result.

(iii) No horizons (α < 3
2− 4ffiffi

π
p Γð3

2
;9
4
Þ): we have two possible

cases. If α is large enough (α ∼ ½1.6; 1.8�), we can
have a maximum corresponding to a photon ring.
For example, for α ¼ 1.6, we get ym ≃ 2.19, which
means rm ≃ 2.74GM, which is a significant depar-
ture from the standard result. However, if α falls
below the aforementioned interval, we do not have a
maximum anymore and the photon ring cannot be
present.

D. Quasinormal modes spectrum
in the eikonal limit

We can use the general arguments and results of Sec. IV F
to compute the expression of the quasinormal frequencies for
the quantum Gaussian black hole in the eikonal limit.
Applying the general formulas (48a), (48b) to the case of
Eq. (72), we get

Branch 1

Branch 2

0.005 0.010 0.015 0.020 0.025 0.030
TH

1

2

3

4

5
F

FIG. 7. Free energy F, in units of l−1, as a function of the
temperature in units of l−1, for the Gaussian model. We
distinguish between two branches: one corresponding to black
holes with l ∼ RS (solid blue curve), the other (orange curve)
corresponding to l ≪ RS.

Schwarzschild Extremal

Quantum Black Hole

0 2 4 6 8 10
rH

20

40

60

80

100
S

FIG. 6. Plot of the entropy of the quantum Gaussian black hole
(dashed orange line) vs standard Hawking entropy of the
Schwarzschild black hole (minus the corresponding Hawking
entropy of the extremal case). For simplicity, we set l ¼ 1
and G ¼ 1.
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ωR ¼ l
lym

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α

ym

�
1 −

2ffiffiffi
π

p Γ
�
3

2
; y2m

�	s
ð92aÞ

ωI ¼ −
�
nþ 1

2

�
1ffiffiffi
2

p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

�
ym − αþ 2ffiffiffi

π
p Γ

�
3

2
; y2m

�	���� 3

y4m
−

4ffiffiffi
π

p 1þ 2y2m
ym

e−y
2
m −

6ffiffiffi
π

p
y2m

Γ
�
3

2
; y2m

�����
s

ð92bÞ

By expanding around the critical value αc (75), we get

ωR ≃
l
l
½0.20 − 0.10ðα − αcÞ� ≃ 0.20

l
l
− 3.36llT2

H; ð93aÞ

ωI ≃
1

l

�
nþ 1

2

�
½−0.19þ 0.05ðα − αcÞ� ≃ −

0.19
l

�
nþ 1

2

�
þ 1.63

�
nþ 1

2

�
lT2

H: ð93bÞ

VII. CONCLUSIONS

In this paper, we explored the possibility of relating long-
range quantum gravity corrections at horizon scales with
the absence of the central singularity in the Schwarzschild
black hole. In order to achieve this, we explicitly con-
structed a general class of static, nonsingular, asymptoti-
cally flat black-hole models as exact solutions of Einstein’s
field equations sourced by an anisotropic fluid with EoS
pk ¼ −ε. A natural physical consequence of this choice is
the fact that these models possess a dS core. This causes a
violation of the strong energy condition near the black-hole
center, which therefore allows us to circumvent Penrose’s
singularity theorem.
Analogously to what has been done at galactic and

cosmological level [56–61], the anisotropic-fluid source is
used to give a multiscale description of the gravitational
system and an effective description of the quantum black
hole. In our models, quantum corrections are effectively
encoded in a single additional scale l, which appears as an
extra “quantum hair” for the black hole and is related to the
dS length L̂, smearing the would-be central singularity of
the Schwarzschild black hole.
Apart from solving the singularity problem and allowing

for quantum effects at horizon scales, our general black-
hole solutions have also other rather interesting geometric
and thermodynamic features. They allow for the presence
of two horizons, an outer event horizon and an inner
Cauchy one. When these two merge in a single horizon,
we have an extremal configuration, which is a zero-
temperature, zero-entropy state, whose near-horizon geom-
etry factors as AdS2 × S2. This fact could be very useful in
addressing the black-hole information puzzle.
The previous features determine a rather nontrivial

thermodynamic behavior. The presence of the quantum
hair l, not related to a thermodynamic potential, required a
generalization of the area law for the black-hole entropy.
We also found a metastable behavior and a phase transition,

in which black holes closer to extremality, i.e., with l ∼ RS,
are always thermodynamically preferred with respect to
those with l ≫ RS. This means that our “quantum black
holes” are thermodynamically preferred with respect to
those in which quantum corrections are irrelevant. This
provided further evidence for the relevance of quantum
effects at horizon scales.
For l≳ RS, instead, we found that our models represent

horizonless compact object, which however were not
investigated in depth in the present paper and will be
matter for further investigations.
Finally, we have also shown that, when l ≪ RS, the

phenomenology of our nonsingular black-hole solutions is
almost indistinguishable from the standard Schwarzschild-
solution one for an outside observer. On the other hand, for
l ∼ RS, there could be manifest signatures of deviations
from the standard behavior, both in the photon orbits and in
the QNMs spectrum.
For what concerns photon orbits, we have found stable

bounded orbits, which are, however, internal to (in the two-
horizon model) or coinciding with (in the extremal case) the
horizon. An interesting result is that for some horizonless
models, unstable photon orbits do not form.
On the QNMs side, we have investigated the spectrum of

quasinormal frequencies in the eikonal limit and in the
near-extremal limit. We found a scaling behavior with the
temperature and a dependence from the quantum hair l.
These features have a manifest experimental signature,
which could be experimentally accessible in the near future
by the next generation of GW detectors. Taking a near-
horizon limit together with a near-extremal one, instead, we
found an imaginary part which vanishes with the temper-
ature. Our findings only partially confirm Hod’s conjecture
on zero-damped QNMs for standard extremal black holes
[75–81]. On the other hand, this result is perfectly con-
sistent with the AdS2 × S2 behavior of the near-horizon,
near-extremal metric and with what is known about the
QNMs spectrum of 2D AdS gravity models [70–74].
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We have confirmed our general results by thoroughly
investigating two particular cases, which represent two
widely known nonsingular black-hole models, namely the
Hayward and the Gaussian-core metrics. We have revisited
these models considering the quantum deformation param-
eter of the same order of magnitude of the Schwarzschild
radius RS. This perspective is completely different from the
standard approach to these models, where quantum effects,
and hence l, are of the order of magnitude of Planck length,
implying extremely small and phenomenologically irrel-
evant deviations from standard behavior.
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APPENDIX: GEODESIC COMPLETENESS
OF THE SPACETIME

In this Appendix, we show that space-times described
by Eq. (22) are geodesically complete. We start from
Raychaudhuri’s equation, which describes the evolution
of a timelike geodesic congruence Θ

dΘ
dτ

¼ −
1

3
Θ2 − σμνσμν þ ωμνωμν − Rμνuμuν; ðA1Þ

where τ is the proper time, uμ ¼ dxμ=dτ the proper timelike
velocity, while σμν ¼ Θμν − 1

3
Θhμν is the shear tensor

(hμν ¼ gμν þ uμuν is the transverse metric) and ωμν ¼
hαμh

β
νu½α;β� is the vorticity tensor. If we consider geodesics

to be hypersurface orthogonal, then ωμν ¼ 0. Since both the
shear and the vorticity tensors are purely spatial, i.e.,
ωμνω

μν ≥ 0, σμνσ
μν ≥ 0, and if we assume the strong

energy condition to hold, i.e., Rμνuμuν ≥ 0, we expect in
all generality a focusing of the geodesic congruence, i.e.,
dΘ=dτ ≤ 0 and the formation of caustics, which represent
singularities of the congruence. This is the essence of the
original Penrose singularity theorem [1]. Let us now show
that caustics cannot form for the models described by
Eq. (22). We consider first a generic metric function A and
timelike geodesics

gμνuμuν ¼ −1; ðA2Þ

and focus on geodesics on the plane θ ¼ constant and
φ ¼ constant. We then have uθ ¼ uφ ¼ 0. We are left with

gμνuμuν ¼ −1 ⇒ −AðrÞðu0Þ2 þ ðurÞ2
AðrÞ ¼ −1: ðA3Þ

But u0 ¼ dt=dτ ¼ 1=AðrÞ (since the metric redshift factor
determines the relation between the coordinate and proper
time), and therefore

−
1

AðrÞ þ
ðurÞ2
AðrÞ ¼ −1 ⇒ ur ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞ

p
: ðA4Þ

This yields the congruence

Θ ¼ 1

r2
∂rðr2urÞ ¼

1

r2

�
2rur þ r2

dur

dr

	

¼ �
�
2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞ

p
−

A0ðrÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞp �

: ðA5Þ

The geodesic congruence evolution as a function of the
proper time can therefore be written as

dΘ
dτ

¼ dΘ
dr

dr
dτ

¼Θ0ur

¼−
2ð1−AðrÞÞ

r2
−
A0ðrÞ
r

−
A00ðrÞ
2

−
A0ðrÞ2

4ð1−AðrÞÞ ; ðA6Þ

where we used the fact that Θ is a function of r only.
Let us now specialize Eq. (A6) to the case given by

Eq. (22). We get

dΘ
dτ

¼ −
2αFðyÞ
y2l2

þ α

yl2
F0ðyÞ þ α

2l2
F00ðyÞ − α

4l2

F0ðyÞ2
FðyÞ

ðA7Þ
Since, for large y, our general model behaves essentially
as the Schwarzschild black hole, we focus on the behavior
of the geodesics bundle in the core of the object, i.e.,
for y → 0, where F ∼ y2 according to Eq. (24). Therefore,
F0 ∼ 2y and F00 ∼ 2, and thus

dΘ
dτ

∼ −
2α

l2
þ 2α

l2
þ α

l2
−

α

l2
∼ 0; ðA8Þ

so that we do not encounter a caustic in the center, the
bundle of geodesics is defocused and therefore they can
be extended beyond r ¼ 0. This is consistent with the
form of the Penrose diagram for such models (see e.g.,
Refs. [94,148]), which shows that, apart from the presence
of the central singularity, the maximal extension of these
space-times is similar to that of RN black holes.
These results can be further confirmed by computing

dΘ=dτ for the two specific models investigated in detail
in the paper, namely the Hayward and the Gaussian-core
black holes.
For the Hayward black hole, plugging the function F

(51) into Eq. (A7) yields

dΘ
dτ

¼ −
9αy3ðy3 þ 4Þ
4l2ð1þ y3Þ3 : ðA9Þ

Near y ∼ 0, we have dΘ
dτ ∼ − 9αy3

l2 þOðy4Þ, so no caustic is
present in the interior, at r ¼ 0.
In the Gaussian-core black-hole case, using the function

F (72) into Eq. (A7), we get
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dΘ
dτ

¼ −
αe−2y

2

4l2
ffiffiffi
π

p
y3

·
9πe2y

2 þ 16y6 þ 8
ffiffiffi
π

p
ey

2

y3ð2y2 − 3Þ− 4ey
2ð9 ffiffiffi

π
p

ey
2 − 12y3 þ 8y5ÞΓð3

2
; y2Þ þ 36e2y

2Γ2ð3
2
; y2Þffiffiffi

π
p

− 2Γð3
2
; y2Þ : ðA10Þ

Near y ∼ 0, we have dΘ
dτ ∼ − 4αy2ffiffi

π
p

l2 þOðy4Þ, so that again caustics do not form and the space-time is geodesically complete.
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