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We investigate two Type-IIa minimally modified gravity theories, namely V ðφÞ Cold Dark Matter
(VCDM) and Cuscuton theories. We confirm that all acceptable Cuscuton solutions are always solutions
for VCDM theory. However, the inverse does not hold. We find that VCDM allows for the existence of
exact general relativity (GR) solutions with or without the presence of matter fields and a cosmological
constant. We determine the conditions of existence for such GR-VCDM solutions in terms of the trace
of the extrinsic curvature and on the fields which define the VCDM theory. On the other hand, for the
Cuscuton theory, we find that the same set of exact GR solutions (such as Schwarzschild and Kerr
spacetimes) is not compatible with timelike configurations of the Cuscuton field and therefore cannot be
considered as acceptable solutions. Nonetheless, in Cuscuton theory, there could exist solutions which
are not the same but close enough to GR solutions. We also show the conditions to determine intrinsic-
VCDM solutions, i.e., solutions which differ from GR and do not belong to the Cuscuton model. We
finally show that in cosmology a mapping between VCDM and the Cuscuton is possible, for a generic
form of the VCDM potential. In particular, we find that for a quadratic potential in VCDM theory, this
mapping is well defined giving an effective redefinition of the Planck mass for the cosmological
background solutions of both theories.
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I. INTRODUCTION

Even though general relativity (GR) is a successful theory
of gravity, it still needs to explain the dark sector of our
universe at large scales in a way the theory and experiments
and observations can agreewith each other. Hence, exploring
modified gravity theories at the cosmological scales has been
showing a constantly growing interest [1,2]. In most cases,
modified gravity theories introduce some additional degrees
of freedom, which are not present in GR. For example, in the
scalar-tensor theories of gravity, in addition to the two
polarizations of the gravitational waves, we typically have
an additional propagating scalar mode [3]. Whereas in
vector-tensor theories of gravity, one expects to find five
propagating degrees of freedom, in general [4–6] (in addition
to the standard model fields). Since all the modifications are
amending the Einstein-Hilbert action, it is natural to study
the existence and validity of solutions of these modified
gravity models also beyond cosmology, describing, e.g.,

other gravitational systems like black holes, stars, etc.
To pass the astrophysical constraints for these new theories,
one typically needs some kind of screening mechanisms at
least at solar system scales to hide the otherwise additional
propagating modes [7–9].
On the other hand, there has been a recent development

in a class of modified gravity theories, generally called
minimally modified gravity (MMG) [10–14]. These theo-
ries do not contain any additional local degrees of freedom
other than those that are present in GR. This minimalist’s
approach is aimed at avoiding the constraints connected
to the existence of extra degrees of freedom. The MMG
theories are classified into Type-I and Type-II, where
Type-I theories are endowed with an Einstein frame and
Type-II not [15]. If an MMG has the same propagation
speed for both electromagnetic and gravitational waves,
then this model is classified as Type-Ia or Type-IIa. On the
other hand, if the propagation speed is different between
electromagnetic waves and gravitational waves, it is clas-
sified as Type-Ib or Type-IIb [16]. Several investigations
have been performed for these theories both in the context
of astrophysics and cosmology [17–24].
One example of such MMG theory was introduced very

recently [13]. It is a Type-IIa theory [16] and it is dubbed
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V ðφÞ Cold Dark Matter (VCDM) theory.1 The construction
of the VCDM theory is the following: (1) perform a
canonical transformation of GR Hamiltonian; (2) add a
cosmological constant in the new canonical frame; (3) add
a gauge fixing term which works as a constraint as to have
only two degrees of freedom in the gravity sector; (4) perform
an inverse canonical transformation as to have a resulting
Hamiltonian which differs from GR; (5) make a Legendre
transformation in order to obtain the VCDM Lagrangian;
(6) add standard matter fields.
Some exact solutions of VCDM theory have been found

and studied. In particular, black-holes/vacuum solutions
have been explored, see, e.g., [27]. Although the theory, by
construction, does not possess any extra degrees of free-
dom, still it breaks the Birkhoff theorem, and one needs to
find the most general solutions compatible with some
symmetry and set the free parameters of the solutions
either by imposing appropriate boundary conditions, or by
matching with observations. This is due to the presence of a
shadowy mode, which leads to the presence of additional
free parameters other than mass and the cosmological
constant. The spherically symmetric static star solutions
were also studied in the context of the VCDM theory.2

It was shown that once we fix the physical boundary for
the Misner-Sharp mass of the system the solution exactly
matches those of GR [29]. The cosmology of the VCDM
theory was also explored and it was shown that the H0

tension can be reduced and addressed within this theory
[30], since the theory allows for general dynamics for HðzÞ
(with HðzÞ > 0) without introducing unstable or ghost
degrees of freedom.
Another Type-IIa theory that is discussed in the literature

is the Cuscuton theory [31]. If one starts from a scalar
tensor theory which, to the standard Einstein Hilbert term,
adds a term in the form PðX;φÞ ¼ μ2

ffiffiffiffiffiffiffi
−X

p
−UðφÞ, where

X ¼ ð∂φÞ2, provided that the scalar field φ is timelike (and
this proves to be a crucial assumption), then in the unitary
gauge (φ ¼ t), it is straightforward to show that the theory
has only two degrees of freedom coming from the gravity
sector. This theory, for a timelike field φ, defines the
Cuscuton theory, which can be regarded, a posteriori, as
being a Type-IIa MMG theory [16]. Many aspects of the
Cuscuton theory have already been explored, see, e.g., the
following references [32–41].
In both these theories, VCDM and Cuscuton, there exists

a scalar field which is not propagating, leaving only two
gravitational degrees of freedom in the gravity sector. This
scalar field is associated to the existence of a shadowy
mode, which, by definition, obeys an elliptic equation of

motion instead of a hyperbolic one. As mentioned above,
at least for known solutions within the VCDM theory, the
influence of the shadowy mode on background solutions
can be removed if an appropriate physical boundary
condition is imposed. In other words, the behavior of
the shadowy mode is controlled by the physical boundary
conditions provided by the environment.
Since both these theories are Type-IIa MMG theories, it

is interesting to explore the differences between these two
theories. To address this question, it is a good idea to study
the known nonperturbative solutions allowed for these
theories. On top of that, it is natural to ask if the allowed
solutions for both these theories can coincide with solutions
of GR or not, and if not, explore their difference. In this
work, we address all these issues. We find that under certain
conditions there exists a set of solutions in the VCDM
which can be exactly matched with those of GR. On the
other hand, not all solutions of VCDM are also GR solutions
or Cuscuton solutions. Instead, the solutions in the Cuscuton
theory cannot exactly coincide with the ones of GR other-
wise the Cuscuton field would stop being timelike. This last
property of the Cuscuton field does not necessarily exclude
the phenomenology of this theory, since, after all, the
solutions do not need to be exactly equal to the ones of
GR but only close enough to them, compatibly with known
experimental and observational constraints.
Figure 1 summarizes the results of this paper. There exists

a set of vacuum solutions of VCDM (with generic potential
V, i.e., satisfying V;ϕϕ ≠ 0) which are also solutions of GR
(i.e., GR solutions in the presence of minimally coupled
matter fields and a cosmological constant) once we impose

FIG. 1. Summary of the results. We classify solutions (with or
without matter) for VCDM and the Cuscuton model. The dashed
line corresponds to the solutions in Cuscuton theory that are close
enough to (but not exactly equal to) the GR solutions. In the
present paper we mainly focus on the cases with V;ϕϕ ≠ 0 since
the VCDM cosmology with a linear potential is indistinguishable
from the standard ΛCDM both at the background and at the linear
perturbation level and thus is less motivated.

1This theory should not be confused with other “VCDM”
theories, such as those introduced in [25,26].

2The same spherically symmetric static star solution valid in
VCDM is also valid for another Type-II MMG theory named
VCCDM [28].
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that both the extrinsic curvature K and the field ϕ to be
constants (in space and time). The left semicircle in the
figure 1 represents GR solutions in VCDM theory.
In the unitary gauge,3 solutions of the Cuscuton

Lagrangian are also solutions of the VCDM theory when
we impose ∇2λ2 ¼ 0 (λ2 can be interpreted as being
the shadowy mode in the VCDM theory), provided that
V;ϕϕ ≠ 0 and φ remains timelike, as first shown in [16]. As
we will see later on, GR solutions cannot be exact solutions
of the Cuscuton theory (being φ forced to remain timelike),
however there are cases (at least known examples in
cosmology exist) for which Cuscuton solutions may be
close to GR, provided a well-behaved limit ð∂φÞ2 → 0
exists. The dashed line in Figure 1 shows the Cuscuton
solutions that are close enough to (but not exactly equal to)
GR. Finally, solutions for which ∇2λ2 ≠ 0, and at the same
time K is not a constant (in space or time) are VCDM-
intrinsic solutions, i.e., solutions which differ from GR and
which do not belong to the Cuscuton theory.
The rest of this paper is organized as follows. In Sec. II

we investigate the condition under which the VCDM
admits solutions of ΛGR, i.e., solutions of GR in the
presence of a cosmological constant. We find these con-
ditions by comparing the VCDM Hamilton equations
of motion for a general background to those of ΛGR.
We show in particular in this section that, e.g., the
Schwarzschild-de Sitter and the Kerr-de Sitter are valid
vacuum solutions in VCDM theory. Then in Sec. III we
investigate VCDM solutions with matter. In particular we
study the weak field limit of this theory and confirm that it
reduces to that of GR, compatibly with previous studies
[27]. We also show that VCDM admits solutions of GR in
the presence of minimally coupled matter fields. For this
purpose we introduce a four dimensional covariant action
which reduces to the one of VCDM after choosing the
unitary gauge for one of the fields. Furthermore, we discuss
the cosmological not-necessarily-flat background and
show the reconstruction of a given HðzÞ for VCDM.
Subsequently, in Sec. IV we briefly discuss Cuscuton
theory and discuss various backgrounds (including
Schwarzschild and Kerr ones) which are perfectly valid
in VCDM, but which are, on the other hand, not acceptable
in the Cuscuton theory. We also investigate an exact
mapping on a cosmological background between VCDM
and the Cuscuton theory. Finally we give our concluding
remarks in Sec. V.
Notation: the Latin letters are used for the three dimen-

sional spatial indices for example a; b; c;… ¼ 1, 2, 3,
while the Greek letter are used to indicate four dimensional
spacetime indices α; β; γ;… ¼ 0, 1, 2, 3. We work in the
units for which c ¼ 1. Also we have the space time metric

signature convention ð−;þ;þ;þÞ. Finally, by VðϕÞ we
will denote the potential term of VCDM theory and ϕ
denotes the scalar field of VCDM theory. Instead UðφÞ
denotes the potential in the Cuscuton theory and φ denotes
the Cuscuton scalar field.

II. VACUUM GR SOLUTIONS IN VCDM

From the previous investigations of different spherically
symmetric solutions of VCDM theory (see, e.g., [27,29]), we
know that there exist solutions inside VCDM which are the
same as those of GR, provided that we set appropriate
physical boundary conditions for the shadowy mode, e.g.,
the finiteness of the (generalized) Misner-Sharp mass for
a spherically symmetric isolated compact gravitational body/
system. Nevertheless, even though these GR/VCDM sol-
utions do exist, VCDM theory, by construction, is different
from GR. In particular, the presence of the shadowy mode,
by construction, implies the existence of a mode whose
spatial dependence is determined by an elliptic equation of
motion, which requires a preferred slicing where to set
boundary conditions. Therefore, by construction, the theory,
since it requires fixing boundary conditions on this field, is
bound to pick up a natural slicing for the theory which on the
other hand breaks the general 4-D diffeomorphism invari-
ance. At the same time, the constraints which define the
theory are such that VCDM has the same number of
gravitational propagating modes of GR, namely the two
standard tensor polarization of GR. In summary VCDM
differs from GR although it shares the same physical degrees
of freedom. Hence, it is natural to ask whether there exist (or
not) VCDM background solutions which exactly match GR
solutions, and if so, to determine the conditions of existence
of such solutions. In this section, we study these conditions
of equality of the solutions in VCDM theory compared to
GR solutions in the presence, at most, of a cosmological
constant. We will extend this discussion in the presence of
matter fields in Sec. III B.

A. Vacuum VCDM equations of motion

In the following we will work in the VCDM-natural
slicing, the one which sets the shadowy mode to fulfill a
Laplacian equation of motion. After having chosen this
slicing, we will make use of the standard ADM splitting for
the metric. Since we are looking for solutions which are
required, by assumption, to reduce to the same solutions of
GR for a generic background/slicing, then we have that the
VCDM three dimensional metric γab, lapse N, and shift Na
fields are the same as those of GR.
As a consequence, after finding the equations of motion

for VCDM in the unitary gauge for a generic background,
we will consider the variables γab, N, and Na as satisfying
also the equations of motion of GR. This, in turn, will lead
to imposing some nontrivial conditions in the VCDM
theory, that we want to determine.

3Since the Cuscuton field is bound to be timelike, it is always
possible for acceptable solutions in Cuscuton theory to pick up
the φ-unitary gauge.
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On using the 1þ 3 ADM splitting for a generic back-
ground, we find it convenient to determine the equations of
motion by using the Hamiltonian approach. Hence, first of
all, we write down the Hamiltonian for VCDM in vacuum
as follows

H ¼
Z

dtd3x
ffiffiffi
γ

p �
λCðM2

Pϕ − γabπ̃
abÞ − 2NaDbπ̃a

b

− N

�
1

2
M2

PR −
2

M2
P

�
π̃abπ̃ab −

1

2
π̃aaπ̃

b
b

�
−M2

PVðϕÞ
�

þM2
Pλ

a
gfDaϕþ λϕπ̃ϕ

�
; ð1Þ

whereas the presence of other matter fields will be discussed
in Sec. III B. In the expression of Eq. (1) we have that λC, λϕ,
λagf , N

a, N are to be considered as Lagrange multipliers
which set all the constraints of the theory. Also, we have
defined π̃ab ≡ πab=

ffiffiffi
γ

p
and π̃ϕ ≡ πϕ=

ffiffiffi
γ

p
, where πab and πϕ

are the momenta conjugate to the metric variables γab and
the VCDM field ϕ respectively. Here and in the following R
represents the 3-D Ricci scalar.
From the above VCDM Hamiltonian (1), for a generic

background, we have to fulfill all the following cons-
traints, which are set by the above mentioned Lagrangian
multipliers:

0 ≈ C1 ≡ ffiffiffi
γ

p �
2

M2
P

�
π̃abπ̃ab −

1

2
π̃aaπ̃

b
b

�

−
1

2
M2

PRþM2
PVðϕÞ

�
; ð2Þ

0 ≈ C2 ≡ ffiffiffi
γ

p
π̃ϕ; ð3Þ

0 ≈ C3 ≡ ffiffiffi
γ

p ðM2
Pϕ − γabπ̃

abÞ; ð4Þ

0 ≈ C4a ≡ −2
ffiffiffi
γ

p
Dbπ̃a

b þ ffiffiffi
γ

p
π̃ϕDaϕ; ð5Þ

0 ≈ C5a ≡ ffiffiffi
γ

p
M2

PDaϕ: ð6Þ

As a consequence of the constraints C3 and C5a, we find that
Daπ̃

b
b ≈ 0 on the surface constraint. Now, setting the time

evolution of these constraints to vanish generically leads to
equations which set the value for the Lagrange multipliers
on the solutions. However, for C4a, this does not happen
because they represent first class constraints for the system4

and they show that the three dimensional diffeomorphism
invariance holds for this theory. In particular we find
that

fC2; Hg ≈ 0 → Daλ
a
gf ¼ λC þ NV;ϕ; ð7Þ

where ff; gg denotes the Poisson bracket of f and g.5 Also
we have

fC3;Hg≈ 0→

DaDaNþN

�
Vþ 1

M4
P
ðπ̃aaπ̃bb−4π̃abπ̃abÞ

�
þλϕ¼0; ð8Þ

which can be used to fix the lapse N. Then

fC5a; Hg ≈ 0∶ Daλϕ ¼ 0; ð9Þ

which sets the field λϕ. The equation of motion which
instead fixes λC is found as follows

fC1; Hg ≈ 0∶

DaDaλC þ λC

�
V þ 1

M4
P
ðπ̃aaπ̃bb − 4π̃abπ̃abÞ

�
− λϕV;ϕ ≈ 0:

ð10Þ

So far, the treatment was fully general. We can now proceed
to find the general dynamical equations of motion for
VCDM. Let us start by writing the following ones

_γab¼fγab;Hg

¼ 2N
M2

P
ð2π̃ab−γabπ̃

c
cÞþDaNbþDbNa−λCγab; ð11Þ

_ϕ ¼fϕ; Hg ¼ λϕ; ð12Þ

_πϕ ¼fπϕ; Hg ¼ 0: ð13Þ

From the Eq. (11) we can find

π̃ab ¼ M2
P

2
ðKab − KγabÞ −M2

P

2

λC
N

γab; ð14Þ

where we have used the definition of the extrinsic curvature

Kab ≡ 1

2N
ð _γab −DaNb −DbNbÞ; ð15Þ

4The term C4a is the redefinition of the momentum constraint
C̃4a ≡ −2 ffiffiffi

γ
p

Dbπ̃a
b ≈ 0, which is given as C4a ≡ C̃4a þffiffiffi

γ
p

π̃ϕDaϕ ≈ 0, and which is just a linear combination of
constraints. However, with this redefinition the momentum
constraint is now a first class constraint. In other words the
Poisson bracket of C4a with any other constraint vanishes. That is,
there is a internal gauge freedom in the 3-D space, which ensures
3-D diffeomorphism invariance.

5More in detail ff; gg ¼ P
i

R
d3zð δfδqi

δg
δπi

− δf
δπi

δg
δqi
Þ, and the sum

is over all the dynamical fields, γab and ϕ in this section.
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which can be used anywhere in the equations of motion as
to write them for the variable Kab. Now we want to write
the following dynamical equations

_̃π ¼ fπ̃aa; Hg

≈ −M2
PN

�
V þ 1

M4
P
ðπ̃aaπ̃bb − 4π̃abπ̃abÞ

�
−M2

PDaDaN

¼ M2
Pλϕ ¼ M2

P
_ϕ; ð16Þ

where π̃ ≡ π̃aa and we have used the constraint for N
Eq. (8) as well as DaC3 ¼ 0 from Eq. (4), (6), and (13).
Also we find, by taking the trace of Eq. (14), that

π̃ ¼ −M2
PK −

3

2
M2

P
λC
N

; ð17Þ

which, on using also Eq. (4), reduces to

λC
N

¼ −
2

3
ðK þ ϕÞ: ð18Þ

On replacing the above equation back into Eq. (14), we get

π̃ab ¼ M2
P

2
ðKab − KγabÞ þ 1

3
M2

PðK þ ϕÞγab: ð19Þ

Then we write the full Hamilton equations for
_̃πab ¼ fπ̃ab;Hg, as

_̃πab ¼ −
1

2
M2

PNRab þ 1

4
M2

Pγ
abNR −

1

2
M2

Pγ
abNV þ 5

2
λCπ̃

ab −
4Nπ̃acπ̃bc

M2
P

þ 3Nπ̃abπ̃cc
M2

P
þ γabNπ̃cdπ̃

cd

M2
P

−
γabNπ̃ccπ̃

d
d

2M2
P

−
1

2
M2

Pγ
abλCϕþ 1

2
M2

PD
bDaN þ NcDcπ̃

ab −
1

2
M2

Pγ
abDcDcN − π̃bcDcNa − π̃acDcNb; ð20Þ

where the left-hand side can be replaced with the time
derivative of Eq. (19). So far, we have considered the
Hamilton equations of motion for a general background in
VCDM. We can now proceed to find the conditions for
them to be satisfied also by ΛGR solutions.

B. Solutions in VCDM which reduce to ΛGR solutions

Let us now consider ΛGR solutions. This means we
consider the same solution for the lapseN, the shift Na, and
the spatial 3-D metric γab which exist for GR on a given
slicing. This also implies that the expressions of Kab in
VCDM and ΛGR will coincide on this slicing. It should be
noticed that, in the case of ΛGR, we have only first class
constraints, so that all the Lagrange multipliers N and Na

cannot be determined by the Hamiltonian procedure. By
calling the GR-momentum conjugate to γab as Πab, then in
ΛGR, we find that the equations of motion _γab ¼ fγab; Hg
lead to

Π̃ab ¼ M2
P

2
ðKab − KγabÞ; ð21Þ

where we have Π̃ab ≡ Πab=
ffiffiffi
γ

p
. Taking the trace of the

above relation we also get

Π̃≡ Π̃a
a ¼ −M2

PK: ð22Þ

The ΛGR constraints can be written as

CGR1 ffiffiffi
γ

p ¼ M2
PΛ −

1

2
M2

PRþ 2ðΠ̃abΠ̃ab − 1
2
Π̃a

aΠ̃b
bÞ

M2
P

≈ 0; ð23Þ

CGR4affiffiffi
γ

p ¼ −2DbΠ̃a
b ≈ 0: ð24Þ

On using the Hamilton equations of motion, we can also
find the time evolution of conjugate momenta. For instance,
we have

_̃Π ¼ −
3

2
M2

PΛN þ 1

4
M2

PNRþ 3NΠ̃abΠ̃ab

M2
P

−
NΠ̃a

aΠ̃b
b

2M2
P

þ NaDaΠ̃b
b −M2

PDaDaN

≈ −M2
PΛN þ 4NΠ̃abΠ̃ab

M2
P

−
NΠ̃a

aΠ̃b
b

M2
P

þ NaDaΠ̃b
b −M2

PDaDaN; ð25Þ

where we have used the Hamiltonian constraint, Eq. (23). Furthermore we have that
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_̃Πab ¼ −
1

2
M2

PΛγabN −
1

2
M2

PNRab þ 1

4
M2

Pγ
abNR −

4NΠ̃acΠ̃b
c

M2
P

þ 3NΠ̃abΠ̃c
c

M2
P

þ γabNΠ̃cdΠ̃cd

M2
P

−
γabNΠ̃c

cΠ̃d
d

2M2
P

þ 1

2
M2

PD
bDaN þ NcDcΠ̃ab −

1

2
M2

Pγ
abDcDcN − Π̃b

cDcNa − Π̃a
cDcNb: ð26Þ

We are now ready to study the conditions under which the
solutions of VCDM and GR coincide with each other,
at least locally. Here the logic is to apply the above
GR-solutions as to constrain the VCDM Hamiltonian
constraints/equations of motion.
The first thing we notice by comparing Eq. (14) with

Eq. (21) is that

π̃ab ¼ Π̃ab −
M2

P

2

λC
N

γab: ð27Þ

On applying the operator Db on both sides of this equation
and on using the momentum constraint in VCDM Eq. (5)
together with the gauge fixing constraint Eq. (6) and
Eq. (24), we find

DaðλC=NÞ ¼ 0: ð28Þ

On using Eq. (27) the Hamiltonian constraint in VCDM
written in terms of Π̃ab is

C1ffiffiffi
γ

p ¼ M2
P

�
−
3λ2C
4N2

−
1

2
Rþ V

�
þ λCΠ̃a

a

N

þ 2Π̃abΠ̃ab − Π̃a
aΠ̃b

b

M2
P

¼ 0: ð29Þ

On comparing the above expression with the Hamiltonian
constraint Eq. (23) of ΛGR, and using Eq. (22), we require
a second condition to hold, namely

Λ ¼ VðϕÞ − 3

4

λ2C
N2

−
λC
N

K: ð30Þ

By taking a spatial covariant derivative of the above
expression, we reach another condition, namely

DaK ¼ 0; or DaΠ̃b
b ¼ 0; ð31Þ

where we have used the gauge constraint Eq. (6) and
Eq. (28). For the special case λC ¼ 0, from Eq. (18) we
know that K ¼ −ϕ, which, after taking a covariant deriva-
tive and using Eq. (6), again leads to the condition Eq. (31).
In VCDM the time derivative of π̃, using also Eq. (17),

leads to

_̃π ¼ _̃Π −
3

2
M2

P
d
dt

�
λC
N

�

¼ 3M2
PλC

2

4N
−M2

PNVðϕÞ − λCΠ̃a
a þ

4NΠ̃abΠ̃ab

M2
P

−
NΠ̃a

aΠ̃b
b

M2
P

−
3M2

PN
aDaλC

2N
þ 3M2

PλCN
aDaN

2N2

þ NaDaΠ̃b
b −M2

PDaDaN

¼ 3M2
PλC

2

4N
−M2

PNVðϕÞ − λCΠ̃a
a þ _̃ΠþM2

PΛN; ð32Þ

where we have used Eqs. (27), (25) and (31). Then this
result together with Eq. (22) lead to

−Λ −
3

2

1

N
d
dt

�
λC
N

�
¼ λC

N
K þ 3λ2C

4N2
− VðϕÞ: ð33Þ

Comparing the condition Eq. (30) with the above, for
consistency we reach the condition

d
dt

�
λC
N

�
¼ 0; or λC ¼ λ0N; λ0 ¼ constant: ð34Þ

The above relation, used in Eq. (18), leads to

K ¼ −ϕ −
3

2
λ0; ð35Þ

which also gives _K ¼ − _ϕ.
Substituting this last relation forK together with Eq. (34)

into Eq. (33) and taking a time derivative we obtain

_ϕðλ0 þ V;ϕÞ ¼ 0; ð36Þ

which is solved in general only for a constant ϕ, and we
will not consider the case of a special linear form for the
potential in detail, as giving trivial results in cosmology.6

Therefore for a general VCDM potential, we have

6In fact, for the case of a linear potential V ¼ β0 þ β1ϕ, we
would have, as a possible solution of (36), that λ0 ¼ −β1. This
would not set ϕ to be necessarily constant, leaving ϕ ¼ ϕðtÞ, as
well as K ¼ KðtÞ. This is what actually happens in cosmology, as
a linear potential makes VCDM solutions exactly reduce to
ΛCDM, see, e.g., [13]. However, even for a linear potential V,
there could be nontrivial, non-GR, VCDM-solutions when K
becomes space-and-time dependent.
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ϕ¼ϕ0; K¼K0¼−ϕ0−
3

2
λ0; Λ¼ λ0ϕ0þ

3

4
λ20þVðϕ0Þ;

ð37Þ

or in other words when both ϕ and K are constants VCDM
is equivalent to ΛGR with an effective cosmological
constant Λ given by the expression in Eq. (37). On
considering the other equation of motion for _̃πab, we find

1

2
M2

PΛγabN −
3

8
M2

Pλ0
2γabN −M2

Pλ0γ
abNK

−
1

2
M2

Pγ
abNVðϕÞ − λ0γ

abNΠ̃c
c −

1

2
M2

Pλ0γ
abNϕ ¼ 0;

ð38Þ

which can be shown to lead to

1

2
M2

Pγ
abN½Λ − Vðϕ0Þ −

1

4
λ0ð3λ0 þ 4ϕ0Þ� ¼ 0; ð39Þ

which is automatically satisfied.
As for the other Lagrange multipliers of VCDM, we

find that

λϕ ¼ _ϕ ¼ 0; ð40Þ

whereas the equation of motion defining N is automatically
satisfied as well as the one defining λC ¼ λ0N. The only
leftover nontrivial equation of motion is then

Daλ
a
gf ¼ N½V;ϕ0

−
2

3
ðK0 þ ϕ0Þ�; ð41Þ

which can be used in order to solve for λagf. It should be
noticed that VCDM-ΛGR solutions do not necessarily
have a vanishing Daλ

a
gf . These VCDM solutions were

first found, for the particular case of a static, spherically
symmetric background, in [27], which were shown to
correspond to the Schwarzschild-de Sitter solutions of
GR in the constant-K slicing.
In summary, any ΛGR solution in a constant-K slicing

can be embedded in the VCDM theory as a solution. We
have all relevant equations that determine the VCDM fields
once a ΛGR solution and a constant-K slicing are specified.

C. Example: Kerr-de Sitter solutions

As a lemma based on the previous discussion, for the
special case of K0 ¼ 0, i.e., in the maximal slicing, we
have an effective cosmological constant given by
Λ ¼ Vðϕ0Þ − 1

3
ϕ2
0. Here we are assuming that any non-

trivial cosmological time dependence for ϕ can be set to be
negligible at astrophysical scales. Beside the aforemen-
tioned case of the Schwarzschild-de Sitter solutions of
ΛGR first found in [27], we want to add here as a nontrivial

case, the Kerr-de Sitter solutions in Boyer–Lindquist
coordinates, which describe the empty spacetime around
an axisymmetric distribution of matter. We are now going
to show that they are solutions not only for ΛGR, but also
for the VCDM theory. In fact, one has that the three
dimensional line element for this background in this slicing
can be written as

ds2ð3Þ ¼
a2z2 þ r2

Δ
dr2 þ a2z2 þ r2

ð1þ Λa2z2
3

Þð1 − z2Þ dz
2

þ
�
ða2 þ r2Þ2

�
1þ Λa2z2

3

�
− Δa2ð1 − z2Þ

�

×
ð1 − z2Þdθ22

ða2z2 þ r2Þð1þ Λa2
3
Þ2 ; ð42Þ

where Δ ¼ ða2 þ r2Þð1 − Λr2
3
Þ − 2mr, z ¼ cos θ1, and θ2 is

the angle which defines the axis of symmetry. Here a is
standard Kerr spin parameter and m is the mass parameter.
Then for the same background solution, the lapse and shift
vector can be written as

1

N2
¼ ½3ðz2 − 1Þa2Δþ ða2 þ r2Þ2ðΛa2z2 þ 3Þ�ðΛa2 þ 3Þ2

9Δða2z2 þ r2ÞðΛa2z2 þ 3Þ ;

ð43Þ

Na dxa ¼
�
Δ −

�
1þ Λa2z2

3

�
ða2 þ r2Þ

�

×
að1 − z2Þ

ða2z2 þ r2Þð1þ Λa2
3
Þ2 dθ2; ð44Þ

which lead to

K ¼ γabKab ¼
γab

2N
ð _γab −DaNb −DbNaÞ

¼ −
1

N
γabDðaNbÞ ¼ 0; ð45Þ

and confirms that this GR-solution is also a solution for
VCDM. We also discuss the existence of the McVittie
solution in VCDM theory later on.

III. VCDM SOLUTIONS WITH MATTER

A. Weak field solutions

Let us consider the weak field limit, namely a situation
in which the matter fields are supposed to source small
perturbations around the Minkowski background. The 3D
metric, the lapse and the shift can be written as

ds23 ¼ ð1þ 2ζÞδijdxidxj: ð46Þ
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N ¼ 1þ α; ð47Þ

Ni ¼ ∂iχ; ð48Þ

whereas the VCDM fields are instead given by

ϕ ¼ ϕðtÞ þ δϕ; ð49Þ

λigf ¼ δij∂jδλ2; ð50Þ

λ ¼ λðtÞ þ δλ: ð51Þ

Here λ is a Lagrangian multiplier related to the field λC
introduced in the VCDM Hamiltonian (1) by λ ¼ λC=N,
and δλ2 corresponds to the perturbation of the shadowy
mode present in the VCDM theory as will be explained in
the discussion after Eq. (69).
For the Minkowski background, the VCDM equations of

motion lead to

ϕðtÞ ¼ ϕ0; ð52Þ

V ¼ 1

3
ϕ3
0; ð53Þ

V;ϕ ¼ 2

3
ϕ0; ð54Þ

λðtÞ ¼ −
2

3
ϕ0: ð55Þ

These are compatible with our previous finding connecting
GR solutions to VCDM solutions. Looking for the first
nontrivial corrections, we find the effective Einstein tensor
elements and set them equal to the stress-energy tensor
elements of a fluid, whereas the equations of motion in
VCDM which are not sourced by the matter fields are then
solved by themselves. For example we have

∇2δϕ ¼ 0; ð56Þ

where ∇2 ¼ δij∂i∂j on this background. Along the same
lines at leading order (assuming no shear and the fluid
velocity to be nonzero, but of subleading order):

∇2χ ¼ δϕ; ð57Þ

δλ ¼ −2 _ζ; ð58Þ

∇2ζ ¼ −∇2α −∇2 _χ; ð59Þ

2M2
P∇2ζ ¼ −ρ; ð60Þ

with ρ satisfying the standard continuity equation as
expected. We find that ∇4ζ ¼ −∇4α, which on imposing

appropriate boundary conditions at infinity, leads to the
same results of GR, namely ζ ¼ −α, and the standard
Poisson equation for the Newtonian potential.
For the tensor mode, this theory does not modify the

dispersion relation from that of GR. Hence this theory is
called as Type-IIa MMG theory [16].

B. Covariant action and GR solutions with matter fields

In this subsection we show that under a certain con-
dition, a solution of GR in the presence of a cosmological
constant and minimally coupled matter fields can be
embedded in VCDM as a consistent solution. For this
purpose it is convenient to use a covariant theory which
reduces to VCDM in the unitary gauge for the time
coordinate. In the following ϕ, α, T, are 4D scalar fields,
and their connection with other geometrical objects is
determined by the Lagrange multipliers λ, λ2 and λT . Let
us start by writing the following gravitational action

Sg¼M2
P

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
Rð4Þ−VðϕÞ−3

4
λ2−λð∇σnσþϕÞ

þλ2
α
½γτρ∇τ∇ρϕþnρð∇ρϕÞ∇σnσ�þλTð1þgμνnμnνÞ

�
;

ð61Þ

nμ ≡ −α∇μT; ð62Þ

γμν ¼ gμν þ nμnν: ð63Þ

After integrating out the field α by using the equation of
motion for λT, we find

Sg ¼M2
P

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
Rð4Þ −VðϕÞ− 3

4
λ2 − λð∇σnσ þϕÞ

þ ð−gμν∇μT∇νTÞ1=2λ2½γτρ∇τ∇ρϕþ nρð∇ρϕÞ∇σnσ�
�
;

ð64Þ

nμ ¼ −ð−gμν∇μT∇νTÞ−1=2∇μT; ð65Þ

γμν ¼ gμν þ nμnν; ð66Þ

so that∇μT is, by construction, timelike. Then on choosing
T ¼ t, not as the solution of some equations of motion, but
rather as a free choice of the time coordinate, we find the
following action

Sg ¼
Z

d4xN
ffiffiffi
γ

p �
M2

P

2
½Rþ KijKij − K2 − 2VðϕÞ�

þ 1

N
λ2M2

Pγ
ijDiDjϕ −

3M2
Pλ

2

4
−M2

PλðK þ ϕÞ
�
: ð67Þ

DE FELICE, MAEDA, MUKOHYAMA, and POOKKILLATH PHYS. REV. D 106, 024028 (2022)

024028-8



This agrees with the action of VCDM. Notice that λ2
imposes an elliptic equation on ϕ, and vice versa ϕ imposes
a Laplacian operator on λ2. Therefore the original VCDM
action can be thought of being the action of Eq. (64) written
in T-unitary-gauge.
It should be noted that we can integrate out the field λ by

using its own equation of motion7

λ ¼ −
2

3
ðK þ ϕÞ: ð68Þ

Furthermore, for a generic potential V, we can also
integrate out the field ϕ by using its own algebraic equation
of motion8

ϕ ¼ F

�
ðγijDiDjλ2Þ=N þ 2

3
K

�
: ð69Þ

Finally the VCDM Lagrangian can be written only in terms
of the metric variables and γijDiDjλ2, the shadowy mode,
whose equation of motion is clearly elliptical. This latter
field cannot be further integrated out, unless we introduce
nonlocal terms into the action, avoiding in this way the
Lovelock theorem. Although we have found a covariant
theory which reduces to VCDM, the choice of the slicing
T ¼ t is precisely chosen because of the presence of the
shadowy mode. In fact, the shadowy mode, by its own
equation of motion, sets a preferred frame on which its
elliptic differential operator is defined. Then the T-unitary
gauge is the natural choice for the time coordinate for the
above VCDM-covariant Lagrangian. Although this covar-
iant action may seem a redundant knowledge, nonetheless,
in same cases, one can use it in a proficient way, for
example when the T-equation of motion is needed (which is
written in Eq. (A8) of Appendix A, and which, in unitary
gauge, can be found only after an appropriate manipulation
the other equations of motion) or when it is helpful to have

an explicit expression for Tμν (even when it is evaluated,
after finding it, in unitary gauge).
Let us now use the covariant action of VCDM, intro-

duced in Eq. (61), in order to show that VCDM indeed
admits GR solutions with minimally coupled matter. The
modified Einstein equations in covariant VCDM can be
written as

M2
PG

μ
ν ¼ Tμ

ν þ T v
μ
ν; ð70Þ

where Tμ
ν stands for the total matter field stress energy

tensor (i.e., excluding the VCDM contribution). Let us try to
find the condition under which we can embed GR solutions
in VCDM. In this case we require that T v

μ
ν should give a

cosmological constant contribution. Therefore, as we have
also seen in the vacuum case, let us consider the case of
ϕ ¼ ϕ0 ¼ constant. Furthermore, let us assume that the
solution admitsK ¼ K0 ¼ constant, whereK ¼ ∇σnσ is the
trace of the extrinsic curvature induced by the T-coordinate
choice.9 In this case, the equation of motion for λ sets also λ
itself to be a constant, i.e., λ ¼ λ0, on this background,
independently of the presence of matter fields since

λ ¼ −
2

3
ð∇σnσ þ ϕÞ ¼ −

2

3
ðK0 þ ϕ0Þ ¼ λ0: ð71Þ

Now, the equation of motion for α, corresponding to
Eq. (A6) of Appendix A, evaluated for a constant λ and
ϕ, sets the following constraint on the solution

2M2
PλT
α

¼ 0; ð72Þ

which makes λT vanish. Then in this case, we find that the
stress energy tensor of VCDM, given in Eq. (A12) of
Appendix A, can be rewritten as

T v
μ
ν ¼ −

1

4
M2

P½4Vðϕ0Þ þ λ0ð3λ0 þ 4ϕ0Þ�δμν ¼ −M2
PΛδμν;

ð73Þ

where the effective cosmological constant on this back-
ground is given by

Λ ¼ 3

4
λ20 þ λ0ϕ0 þ Vðϕ0Þ; ð74Þ

which agrees with Eq. (37).
In summary this shows that all GR solutions, written in

the constant-K slicing (whenever this choice of slicing is
allowed), are also solutions of VCDM. An example of this
case is given in [29], where the extrinsic curvature of the
solutions is vanishing, finding indeed that the static profile

7Here we can integrate out the Lagrange multiplier λ because
its equation of motion is purely algebraic, getting a Lagrangian
equivalent to the VCDM Lagrangian.

8We should avoid the temptation of integrating out ϕ, by
solving the differential equation D2ϕ ¼ 0 imposed by the field λ2
at the level of the Lagrangian, not being an algebraic equation. In
fact, this in general leads to a different theory. For instance, on
considering an analogue case, i.e., having a similar structure,
in classical mechanics, take the following simple model
L ¼ λ2 _q −m2q2. On integrating out q by solving the differential
equation imposed by λ2 as q ¼ q0 would lead to a nonequivalent
Lagrangian L ¼ −m2q20, which gives no more dynamics for any
variable. Instead, one should first integrate by parts _q giving
L ¼ −q _λ2 −m2q2, and then integrating out q, which has become
now a Lagrange multiplier, by using its own algebraic equation
of motion, q ¼ − _λ2=ð2m2Þ, leads to a reduced Lagrangian
L ¼ _λ22=ð4m2Þ, out of which one finds equivalent equations of
motion. 9This corresponds to a constant-K slicing.
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of spherically symmetric stars solutions are also solutions
of VCDM.
Motivated from Sec. III A, a more general PPN treat-

ment, which holds at higher order in the post Newtonian
expansion, can be performed by looking at the effective
T v

μ
ν of VCDM found by using the covariant Lagrangian of

the previous section, and which is written in Eq. (A12) of
Appendix A.

C. Cosmological solutions

Here we look at the dynamics of the cosmological back-
ground endowed with Friedmann-Lemaître-Robertson-
Walker (FLRW) metric and nonzero spatial curvature. The
three dimensional spatial metric is given as

ds23 ¼
�
a2

dr2

1 − κr2
þΦ

�
dr2

þ a2r2ð1þ ζÞ
�

dz2

ð1 − z2Þ þ ð1 − z2Þdθ22
�
; ð75Þ

where κ is the curvature constant and the terms in the curly
bracket define the two dimensional line element of a unit-
radius sphere, being z ¼ cos θ1, namely

dΩ2≡dθ12þsin2θ1dθ22¼
dz2

ð1−z2Þþð1−z2Þdθ22; ð76Þ

and the lapse is instead defined as

N ¼ ½−ð4Þg00�−1=2 ¼ N̄ðtÞð1þ αÞ; ð77Þ

whereas the shift contributes, onahomogeneousand isotropic
background, only perturbatively as follows

Ni
∂i ¼ Nr

∂r ≡ χ∂r: ð78Þ

The field variablesα, χ,Φ, ζ, are linear perturbations andhave
been introduced in order to derive the background equations
of motion.
We also define the scalar and vector fields in the VCDM

Lagrangian as in

ϕ¼ ϕ̄ðtÞþδϕ; λ¼ λ̄ðtÞþδλ; λigf∂i¼½λ̄2ðt;rÞþδλ2�∂r;
ð79Þ

where a bar stands for background quantities.
Now we include the matter fields using a Schutz-Sorkin

Lagrangian [42,43] for each matter component, namely

SI ¼ −
Z

d4xN
ffiffiffi
γ

p ½ρIðnIÞ þ JI∂tlI þ JiI∂ilI�; ð80Þ

where we have named, for each matter component labeled
by I, the 0th component of the vector field JμI as J0I ¼ JI .

In the above Lagrangian, ρI is energy density of each matter
component, JμI is conserved number current density of the
matter, i.e., JμI ¼ nIu

μ
I and∇μJ

μ
I ¼ 0, whereas lI is the field

variable related to the scalar part of the velocity of the
matter component. We have also defined the number
density of the fluid as

nI ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνJ

μ
I J

ν
I

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−½ðNiNi − N2ÞJ2I þ 2NiJiIJI þ γijJiIJ

j
I�

q
: ð81Þ

We find it useful to introduce on the FLRW background a
decomposition for the matter fields given as follows

JI ¼ J̄IðtÞ=N̄ðtÞþ δJI; lI ≡ l̄IðtÞþ δlI; JiI∂i ¼ δJrI∂r:

ð82Þ

Here we have imposed homogeneity and isotropy in order
to set the three dimensional fluid velocity to vanish, i.e.,
ūi ¼ 0, or J̄i ¼ ūi=n̄ ¼ 0, where n the fluid number density
on the background is only a function of time, i.e., n ¼ n̄ðtÞ
on the background. This leads to also ρI ¼ ρIðnIÞ and PI ¼
PI½ρIðnIÞ� to be only functions of time on the background,
where PI is pressure of the matter component.
For the matter sector we have the following background

equations of motion

n̄I ¼ J̄I ¼
NI;tot

a3
;

_ρI
N̄

þ 3HðρI þ PIÞ ¼ 0;

l̄I ¼ −
Z

t

0

N̄ðt0ÞρI;nI ½n̄ðt0Þ�dt0; ð83Þ

where NI:tot is a constant, corresponding to the con-
stant number of I-fluid particles for each matter com-
ponent, whereas PI ¼ nIρI;nI − ρI is the pressure of the
I-fluid component, and, finally, H ¼ _a=ðaNÞ is the Hubble
parameter. For the gravity sector we have instead the
following equations of motion

E1 ≡ −ϕ2 þ 3VðϕÞ þ 3ρ

M2
P
¼ 0; ð84Þ

E2 ≡ −
_ϕ

N̄
þ 3

2M2
P
ðρþ PÞ ¼ 0; ð85Þ

and the total conservation equation

E3 ≡ _ρ

N̄
þ 3Hðρþ PÞ ¼ 0; ð86Þ

where we have defined ρ as the total effective energy
density, namely
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ρ≡X
I

ρI þ ρκ; ð87Þ

ρκ ≡ −
3M2

Pκ

a2
; ð88Þ

P≡X
I

PI þ Pκ; ð89Þ

Pκ ≡M2
Pκ

a2
; ð90Þ

which also implies that _ρκ=N̄ þ 3Hðρκ þ PκÞ ¼ 0. Note
that for these background equations, the role of the
curvature amounts to giving an extra effective component
for the term ρþ P. This implies that, even in the absence of
standard matter fields components, we still have a non-
trivial dynamics for ϕðtÞ in nonflat FLRW solutions.
Now we also have for the background that

Kij ¼ Hγij; and K ¼ 3H; ð91Þ

which, together with the equation of motion for λ gives

2

3
ϕþ 2H þ λ ¼ 0: ð92Þ

By considering a combination of E1, E2, and E3 we obtain
the following equation,

�
3H −

3

2
V;ϕ þ ϕ

�
ðρþ PÞ ¼ 0: ð93Þ

Since in general ρþ P ≠ 0, this leads to

3H þ ϕ ¼ 3

2
V;ϕ: ð94Þ

The last equation of motion, the one for δϕ, is

Diλ
i
gf ¼ 0; ð95Þ

which implies that λigf vanishes, otherwise λ̄2 would be

singular at r ¼ 0. The fact that in general both _ϕ and K
do not vanish leads to the consequence that on the
cosmological background VCDM solutions are different
from ΛCDM, except for the special case of a linear
potential10 VðϕÞ ¼ β0 þ β1ϕ.
We now prove that for any given or desired dynamics

HðzÞ, with H > 0, the VCDM potential is in general

always re-constructable, even in the presence of a nonzero
spatial curvature in the 3-D metric, generalizing the result
previously found in [13]. Let us rewrite then the second
Friedmann equation and the matter equation of motion with
the e-fold number N ≡ lnða=a0Þ, by assuming a known
matter sector and on imposing a given dynamics for the
Hubble factor, i.e., H ¼ HðN Þ.

dϕ
dN

¼ 3

2

ρþ P
HM2

P
; ð96Þ

Integrating Eq. (96) with respect to N we get

ϕðN Þ ¼ ϕ0 þ
3

2

1

M2
P

Z
N

0

ρðN 0Þ þ PðN 0Þ
HðN 0Þ dN 0: ð97Þ

Now, on assuming that

ρþ P > 0; H > 0; ð98Þ

i.e., H is positive definite as well as the total matter-
curvature contribution for ρþ P, the found function ϕðN Þ
is an increasing function ofN . Hence, there exists a unique
inverse function

N ¼ N ðϕÞ: ð99Þ

Then, on using the first Friedmann equation Eq. (84), we
can finally write

V ¼ ϕ2

2
þ ρðN ðϕÞÞ

M2
P

: ð100Þ

Notice that the potential is not uniquely defined, since
there is a free choice for the constant ϕ0. In the spatially
flat case we have to impose the null energy condition as
already mentioned in [13]. On the other hand, in the
spatially curved case ρ and P include contributions from
the curvature term [see (87)–(90)] and thus (98) is either
stronger or weaker than the null energy condition, depend-
ing on the sign of the spatial curvature.
We also discuss the existence of the McVittie solution in

VCDM theory in the Appendix B.

IV. COMPARISON BETWEEN VCDM
AND CUSCUTON

VCDM theory and Cuscuton theory are sharing similar
properties: in both theories there are no additional degrees
of freedom other than that of GR, so that it is natural to ask
if the solution of theses theories share the same solutions
or not. In a more mathematical language, we ask if there
exist a well-defined mapping from solutions of VCDM to
Cuscuton theory and vice versa.
At first we discuss the Cuscuton theory itself. The

covariant action for the Cuscuton theory is given by

10Instead a quadratic potential, namely VðϕÞ ¼ β0 þ β1ϕþ
1
2
β2ϕ

2 would instead lead, for β2 < 2=3, to a ΛCDM background
with an effective redefined cosmological-background-Planck
mass M2

v ¼ 2M2
P=ð2 − 3β2Þ, but still with Geff ¼ GN for dust

perturbations.
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S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
ð4ÞRþμ2

ffiffiffiffiffiffiffi
−X

p
−UðφÞ

�
þSm; ð101Þ

where Sm represents the contribution from standard matter
fields, and we consider only the case of a timelike field φ,
so that X < 0,11 where

X ≡ gμν∂μφ∂νφ: ð102Þ

Now, from the above Cuscuton action, we have the
covariant equations of motion

M2
PGμν ¼ Tμν − gμνU þ μ2ffiffiffiffiffiffiffi

−X
p ½∂μφ∂νφ − gμνX�; ð103Þ

U;φ ¼ μ2ffiffiffiffiffiffiffi
−X

p
�
gμν∇μ∇νφ −

1

2X
∇μX∇μφ

�
; ð104Þ

where Tμν represents the total stress energy tensor for the
matter fields, which satisfies the usual conservation equa-
tions ∇μTμ

ν ¼ 0.

A. Cuscuton cosmology with quadratic potential

Considering an homogeneous and isotropic FLRW
metric with nonzero spatial curvature we have the follow-
ing equations of motion

U;φ ¼ −3μ2Hsignð _φÞ; ð105Þ

H2 ¼ ρm þ U
3M2

P
−

κ

a2
; ð106Þ

_H ¼ −
ρm þ Pm

2M2
P

−
μ2j _φj
2M2

P
þ κ

a2
: ð107Þ

Here we will assume that _φ ≠ 0, so that _φ does not change
its sign during the evolution of the universe. However, we
will also discuss the limiting case, namely _φ → 0, and
determine the conditions for which this limit can be taken
while the theory remains a valid effective field theory.
Using Eqs. (105) and (106), we obtain Eq. (107), after

assuming the standard energy conservation in the matter
sector, namely _ρm þ 3Hðρm þ PmÞ ¼ 0. We then have to
solve only two independent equations, for instance
Eqs. (105) and (106). Indeed, from Eqs. (105) and (106),
we find that the following equation always holds

U −
M2

PU
2
;φ

3μ4
¼ 3M2

Pκ

a2
− ρm: ð108Þ

On assuming the following form for the potential

U ¼ U0 þ
1

2
m2φ2; ð109Þ

we find that Eq. (108) leads to

1

2

�
1 −

2M2
Pm

2

3μ4

�
m2φ2 ¼ 3M2

Pκ

a2
− ρm −U0: ð110Þ

(We shall study cosmology with a general potential in
Sec. IV C.) Using this equation for φ, we rewrite the
Friedmann equation (106) as

3M2
cH2 ¼ ρm þ U0 −

3M2
Pκ

a2
; ð111Þ

where

M2
c ≡M2

P −
3μ4

2m2
;

provided that

m2 < 0; or m2 >
3

2

μ4

M2
P
: ð112Þ

Notice that we have found an equation of motion,
Eq. (111), which on the background, up to a redefinition
of the background effective gravitational constant, is
identical to the Friedmann equation in ΛCDM. However,
it can be shown that the growth of structure for this theory
will still feel the standard Newtonian gravitational constant,
GN . Hence, both the background and the perturbations
overall differ from ΛCDM. We can further perform a time
redefinition as t ¼ ðMc=MPÞt̃, as to make the Friedmann
equation take the same form as in GR, namely

3M2
P

�
1

a
da
dt̃

�
2

¼ ρm þ U0 −
3M2

Pκ

a2
; ð113Þ

out of which one can deduce the known GR solutions in
terms of aðt̃Þ. For instance, in vacuum, on calling
U0 ≡ 3M2

PH̃
2
0, we find

aðt̃Þ ∝

8>><
>>:

cosh½H̃0 t̃� for κ ¼ 1;

exp½H̃0t̃� for κ ¼ 0;

sinh½H̃0 t̃� for κ ¼ −1;

ð114Þ11In fact, we can consider an opposite sign convention, but here
we follow the ð−;þ;þ;þÞ convention for the metric and demand
the Cuscuton field φ to be timelike.
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as expected.12 Here the κ ¼ 0 solution should be discarded,
as leading to a constant φ. However, if κ ¼ �1, then H
becomes time dependent, as well as φ, and these solutions
can be accepted for the Cuscuton theory.
Let us recast the effective Friedmann equation,

Eq. (111), in another way which is more suitable for
phenomenology. Indeed let us write

3M2
PH

2 ¼ ρm þ ρΛ −
3M2

Pκ

a2
þ ρcusc; ð115Þ

where

ρcusc ≡ 3ðM2
P −M2

cÞH2; ð116Þ

ρΛ ≡U0: ð117Þ

Then we have that

1 ¼ Ωm þ ΩΛ þ Ωκ þΩcusc; ð118Þ

where Ωm ¼ ρm=ð3M2
PH

2Þ, ΩΛ ¼ ρΛ=ð3M2
PH

2Þ, Ωκ ¼
−κ=ða2H2Þ, and Ωcusc ¼ 1 −M2

c=M2
P. This shows that

Ωcusc ¼ constant, which will prevent in general the other
components’ Ω to become unity when they dominate
the dynamics. The parameter Ωcusc corresponds to an
additional free parameter of the Cuscuton theory (with a
quadratic potential), on which one can set in general
constraints.

B. Unacceptable solutions of Cuscuton theory

In this section we discuss the ΛGR solutions which
are not acceptable solutions of Cuscuton theory, but, as
previously shown, acceptable in the VCDM theory.

1. Static spherically symmetric solutions of VCDM

Here we consider, for simplicity, spherically symmetric
static solutions of VCDM found in [27]. The Cuscuton
theory does not allow for such a solutions, even outside the
unitary gauge choice, as φmust be timelike and the presence
of the potential does not allow staticity for the spherically
symmetric solutions of the theory. In particular for such
existing VCDM solutions we have ϕ ¼ constant, and

Diλ
i
gf ¼

3V;ϕ þ 6b0 − 2ϕ

FðrÞ ≠ 0; ð119Þ

where b0 ¼ −K=3, K being the extrinsic curvature and,
FðrÞ is the rr component of the spherically symmetric static
metric. The expression (119) does not vanish in general.
Therefore these solutions have constant K and ϕ but in

general Diλ
i
gf ≠ 0. As shown in [16], all Cuscuton solutions

are also solutions of VCDM provided that Diλ
i
gf ¼ 0 (as

well as imposing that Vϕϕ ≠ 0 while φ remains timelike).
Here, in addition to the fact that ϕ is constant, these solutions
have in general a nonvanishing Diλ

i
gf, which makes them

outside the reach of Cuscuton theory. Nonetheless, these
solutions still belong to the class where VCDM admits ΛGR
solutions (because both ϕ and K are constant in time and
space). Indeed, the static solutions found in [27] are nothing
but the Schwarzschild-de Sitter solutions only written in a
K-constant slicing coordinate system. The time-dependent
spherically symmetric solutions found in [27] have both
_K ≠ 0 andDiλ

i
gf ≠ 0, so that they represent intrinsic-VCDM

solutions, i.e., solutions which are outside both GR and the
Cuscuton theory.

2. GR vacuum solutions

Let us consider now ΛGR vacuum solutions, that is four
dimensional solutions for the metric gμν which satisfy the
following tensorial equations of motion

Gμν ¼ −Λgμν; ð120Þ

and we seek the condition for these solutions to hold also
in the Cuscuton theory. Before we look into the answer of
this problem, let us rewrite the Cuscuton action as proposed
in [44], namely

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
ð4ÞRþ μ2uμ∇μφ − UðφÞ

þM2
P

2
σðgμνuμuν þ 1Þ

�
; ð121Þ

out of which we can find covariant equations of motion for
the metric as

Gμ
ν ¼

1

M2
P
T c

μ
ν; ð122Þ

where

T c
μ
ν ¼ ½μ2uα∇αφ − UðφÞ�δμν þM2

Pσu
μuν; ð123Þ

μ2∇μφþM2
Pσuμ ¼ 0; ð124Þ

gμνuμuν ¼ −1: ð125Þ

On using uμ ¼ −μ2=ðM2
PσÞ∇μφ, and multiplying Eq. (124)

by uμ we find

−gμν∇μφ∇νφ ¼ M4
P

μ4
σ2; ð126Þ

12In the case of U0 ¼ 0 and ρm ¼ 0 we the find for κ ¼ −1 a
Milne-like universe (a ¼ t̃), which differs from the GR’s one
(a ¼ t) because of the different time rescaling.
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or

σ ¼ μ2

M2
P

ffiffiffiffiffiffiffi
−X

p
; ð127Þ

where we have chosen the positive square root for σ. Then

in this case uμ ¼ − ∇μφffiffiffiffiffi
−X

p , as expected. In this case, for ΛGR
vacuum solutions which are also solution for the Cuscuton
theory, we need to set

T c
μ
ν ¼ −M2

PΛδμν; ð128Þ

which leads to imposing

Zμν ≡ ½μ2uα∇αφþM2
PΛ −UðφÞ�gμν þM2

Pσuμuν ¼ 0:

ð129Þ

Then gμνZμν ¼ 0 and Zμνuμuν ¼ 0, upon using (125),
imply that

4½μ2uα∇αφþM2
PΛ −UðφÞ� −M2

Pσ ¼ 0; ð130Þ

−½μ2uα∇αφþM2
PΛ −UðφÞ� þM2

Pσ ¼ 0; ð131Þ

which lead in particular to

3M2
Pσ ¼ 0; X ¼ 0: ð132Þ

This clearly contradicts the basic requirement of time-
like ∂μφ, and thus cannot be accepted in the Cuscuton
theory. So these ΛGR solutions do not exist in Cuscuton. In
particular, this result excludes exact Minkowski, de Sitter
or Schwarzschild-de Sitter solutions, as the solution X ¼ 0
cannot be accepted. The same solution would be instead
accepted for quintessence models for which the configu-
ration X ¼ 0 is allowed.

3. GR solutions in the presence of matter fields

Let us consider also exact GR, in the presence of matter
fields, that is solutions of the following Einstein equations

Gμ
ν ¼ −Λδμν þ

1

M2
P
Tμ

ν; ð133Þ

where Tμν represent the total stress-energy tensor for
matter fields (which, by construction, we suppose to be
minimally coupled with gravity). On the other hand, a
similar environment, in the Cuscuton theory, would lead to
the following equations of motion

Gμ
ν ¼

1

M2
P
T c

μ
ν þ

1

M2
P
Tμ

ν ð134Þ

and once again we end up with the following necessary
condition for the ΛGR solutions to be solutions of the
Cuscuton theory.

T c
μ
ν ¼ −M2

PΛδμν: ð135Þ

Again this condition implies X ¼ 0, which is not accept-
able for the Cuscuton model. This results still holds even if
in the Cuscuton theory there is an explicit cosmological
constant contribution Λc, as this merely leads to a shift in
the effective cosmological constant, as in Λ → Λ − Λc.

4. Possible acceptable solutions close to GR solutions

The Cuscuton field, by definition, is required to have
timelike derivative. This prevents the Cuscuton from
admitting exact GR solutions. However, it is possible in
some situations that the field may be timelike but may also
be reaching an attractor for which _φ → 0. Then we have a
Cuscuton solution which is not exactly GR but very close
to it. In this case, it is necessary to understand whether or
not the Cuscuton theory still stands as a good effective low
energy theory. As to understand this point better we study
the quantity δX=X in linear perturbation theory in cosmol-
ogy, adopting the ansatz (75)–(78), and then determine
which dynamics can give an acceptable behavior for the
perturbations fields. We achieve this goal by undoing
the unitary gauge, and using, instead the ζ ¼ 0 gauge,
which is always well defined, as long as H ≠ 0. We also
introduce a perfect fluid as a matter field. Then we find,
that on defining k̃ ¼ k=ðaHÞ, w ¼ P=ρ, Ω ¼ ρ=ð3M2

PH
2Þ,

c2s ¼ _P= _ρ, we have after removing all the auxiliary fields
that

δX
X

¼
�

2k̃2ð1þ 3c2sÞ
2k̃2 þ 9ð1þ wÞΩ −

φ̈

H _φ

�
6Ω

2k̃2 þ 9ð1þ wÞΩ δFG;

ð136Þ

where for simplicity we have fixed the background lapse
function to unity (N̄ ¼ 1), and have also assumed _φ > 0.
Here we have also introduced the gauge invariant variable
δFG ¼ δρ=ρ − ½ _ρ=ðHρÞ�ζ. So in the limit X → 0, whether or
not δX=X blows up, hence going out of the EFT validity,
depends on the ratio φ̈

H _φ. So even approaching X ¼ 0 does
not necessarily mean that the theory loses predictability.
Indeed, we can choose dynamics, i.e., suitable Cuscuton
potentials, for which this ratio is always of order one,
leading to a consistent evolution of both the background
and perturbations [40]. Otherwise, the EFT breaks down as
the configuration approaches a GR solution with or without
matter fields.
It seems Cuscuton is doomed to be away from exact

ΛCDM solutions, but this does not necessarily mean
that the theory is ruled out, as we have already discussed
above. Solutions might not be the same as GR but close
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enough to them, in fact we could be even thinking of
cases for which, on the background, Tc

μν ∝ Gμν, giving a
non-ΛCDM solution, which on the other hand could be
different from it only up to a redefinition of the effective
Planck mass for that particular background. This was
indeed the case when UðφÞ ¼ U0 þ 1

2
m2φ2, as we have

seen in Sec. IVA. In this case though, we should be
seeing a difference between the cosmological effective
gravitational constant and the gravitational constant
which determines the evolution of dust perturbation,
which is still GN .

C. Cosmology: VCDM vs Cuscuton

As we have stated before, both VCDM and Cuscuton
theories are MMG Type-IIa theories, with only two
propagating degrees of freedom, but still both theories
are different from GR, in general. Hence, it is natural to
check if the cosmology of these theories are related with
each other. In fact, since Diλ

i
gf vanishes and in general

ϕ ¼ ϕðtÞ with _ϕ ∝ ρþ P ≠ 0 (excluding an exact de Sitter
case), one should expect to find a correspondence between
VCDM and the Cuscuton theory (see [16]). Let us stress
that this equivalence is accidental, and holds only in
particular cases, such as on a homogeneous and isotropic
background. As discussed so far, the two theories have
different solutions and as such the equivalence in general
breaks.
In the following we will always consider both the

conditions H ≠ 0 (standard cosmological background)
and _φ ≠ 0 (always holding at any finite time as to avoid
EFT-breaking). Giving a FLRW ansatz to the Cuscuton
action Eq. (101) we can obtain the Cuscuton Friedmann
equation

H2 ¼ 1

3M2
P
½UðφÞ þ ρ�; ð137Þ

on replacingH by means of Eq. (94), and ρ, the total matter
energy density, by means of the VCDM Friedmann
equation, namely Eq. (84), we find

�
1

2
V;ϕ −

1

3
ϕ

�
2

¼ 1

3M2
P

�
UðφÞ þM2

P

3
ðϕ2 − 3VÞ

�
: ð138Þ

Imposing that this equation must hold at all times, we
obtain

UðφÞ ¼ 3M2
P

�
1

2
V;ϕ −

1

3
ϕ

�
2

−
M2

P

3
ðϕ2 − 3VÞ

¼ 3M2
P

4
V2
;ϕ þM2

PðV − V;ϕϕÞ: ð139Þ

So that

U;φdφ ¼
�
3

2
V;ϕ − ϕ

�
M2

PV;ϕϕdϕ

¼ 3HM2
PV;ϕϕdϕ: ð140Þ

On the other hand, the timelike Cuscuton satisfies also the
following condition

U;φ ¼ −3μ2Hsignð _φÞ: ð141Þ

Since now on we impose that during the known history
of the universe H ≠ 0, this implies that U;φ ≠ 0. Then
Eq. (140) becomes

signð _φÞdφ ¼ −
M2

P

μ2
V;ϕϕdϕ: ð142Þ

Therefore, we also require that V;ϕϕ ≠ 0, for the mapping to
exist. As expected, this condition makes VCDM dynamics
different from ΛCDM.
Let us give an example for a well defined behavior of

such a mapping. Let us consider the case of a quadratic
potential for the VCDM field, namely

V ¼ β0 þ β1ϕþ 1

2
β2ϕ

2: ð143Þ

Then Eq. (142) leads to

signð _φÞdφ ¼ −
β2M2

P

μ2
dϕ; ð144Þ

which can be integrated to give

signð _φÞφ ¼ −
β2M2

P

μ2
ϕþ β3; ð145Þ

and β3 is a free constant of integration. Then on using
Eq. (139), we find that on fixing the free parameter β3 as in

β3 ¼
M2

P

μ2
3β1β2
2 − 3β2

; ð146Þ

the potential for the Cuscuton field can be written as

UðφÞ ¼ U0 þ
1

2
m2φ2; ð147Þ

where

m2 ¼ −
μ4ð2 − 3β2Þ
2M2

Pβ2
; ð148Þ

U0

M2
P
¼ β0 þ

3β21
4 − 6β2

: ð149Þ
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This Cuscuton potential agrees with the one in (109) and
thus admits a ΛCDM background with an effective
cosmological gravitational constant M2

c which differs from
M2

P. Concretely, we have

M2
c ¼ M2

P −
3μ4

2m2
¼ M2

v; ð150Þ

where M2
v ¼ 2M2

P=ð2 − 3β2Þ. This is a working example
for which finding cosmological solutions in VCDM leads
to knowing mirror solutions in the Cuscuton theory and
vice versa.

V. SUMMARY AND DISCUSSIONS

In the present era, when some cosmological data seem to
be either inconsistent with each other or with general
relativity (GR), it is of special interest to investigate the
possibilities of modifying gravity in several possible ways.
In particular, since at solar system scales no evidence has
been found so far as to motivate the existence of any new
degree of freedom connected to the gravity sector, it makes
sense to look for those theories which do not add, by
construction, any new degree of freedom beside the two
polarizations of gravitational waves in the gravity sector.
This possibility is now known to exist in the framework
of the so called “minimally modified gravity” (MMG). In
particular, those theories which do not allow the existence
of an Einstein frame are called of Type II. Among these, we
name of Type-IIa those theories in which gravitational
waves propagate, on any background, at the speed of light.
Both VCDM and Cuscuton theories are Type-IIa MMG

theories and we have discussed here the relation between
these two theories. In fact, both theories on a cosmological
background lead to an effective time dependent extra
energy-density component, which, however, does not lead
to new propagating degrees of freedom. This feature make
them appealing as to provide possibilities at solving e.g.,
the so called H0-tension.
We have shown that the two theories in general are not

equivalent. We have in fact, explicitly shown this statement
by mainly comparing solutions which exist in VCDM
but not in Cuscuton, as demonstrated in Fig. 1. The
following two facts clearly show the nonequivalence of
the theories. First, the derivative of the Cuscuton scalar
needs to be always timelike on any background. As a
consequence, backgrounds which require the Cuscuton
field φ to be constant (in time and space) are not acceptable
solutions for this theory. This situation takes place when we
consider exact GR solutions (in the presence of minimally
coupled matter, including possibly a cosmological con-
stant). Although the Cuscuton field can lead to solutions
which are close to the GR counterparts, it does not allow for
exact GR solutions to be also solutions of the theory.
Second, on the other hand, we have shown that when a

GR-solution (with or without matter fields, in the presence

of a cosmological constant) allows for a foliation which is
endowed with a constant trace of the extrinsic curvature
(both in time and space) then these same solutions also are
solutions in the VCDM theory. For instance, this result
holds true in VCDM for both the static Schwarzschild-de
Sitter metric (for any slicing admitting K ¼ K0) and the
vacuum Kerr-de Sitter solutions (in Boyer–Lindquist coor-
dinates), since both solutions have a constant trace for the
extrinsic curvature K.
As a consequence, we also worked out various limits of

the VCDM theory, say weak field limit and the de Sitter
limit of the VCDM theory and show that all these limits
are well defined, e.g., no strong coupling is present, and
exactly match the GR solutions.
We also find that in the context of cosmology these two

theories are always related in general to each other, since
Diλ

i
gf ¼ ∇2λ2 ¼ 0. For a special form of potential, i.e., for

a quadratic potential for VCDM and Cuscuton, this
mapping is well defined. However, the effective Planck
mass for cosmological backgrounds is modified to be
M2

v ¼ 2M2
P=ð2 − 3β2Þ.

In summary, we have confirmed that all acceptable
Cuscuton solutions are also solutions of VCDM (see,
e.g., [16], and in particular, cosmological solutions belong
to this case). However, in addition to these solutions,
VCDM has other solutions which, as mentioned above,
are exact solutions of GR (with our without matter fields
and a cosmological constant) which are not, on the other
hand, acceptable solutions in Cuscuton. Finally, besides
these, VCDM has a third category of solutions, which
consists of solutions which are intrinsic only to VCDM,
which are neither GR (K is not a constant in time or space)
nor Cuscuton (no mapping in this case exists).
This study opens up several possible future directions.

One direction is to look for possible signatures coming
from the properties of gravitational waves propagating on
intrinsic-VCDM background solutions. Another direction
worth investigating is, whether the VCDM theory can be
recast as an IR limit of some Lorentz breaking UV theory. It
was shown in [45], that using braneworld model with
k-essence we can have a self-tuning of the cosmological
constant. Interestingly, the self-tuning mechanism con-
straints the Lagrangian to spacelike Cuscuton. Hence, it
is interesting to explore the braneworld scenario with
spacelike VCDM in five dimension to see if a self-tuning
mechanism is possible with VCDM theory.
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APPENDIX A: COVARIANT VCDM EQUATIONS
OF MOTION

In this appendix, we explicitly write down all the
equations of motion for the VCDM covariant action
introduced in Eq. (61), and evaluate them, as an example,
on a FLRW background. In the remaining part of this
section we find it convenient to perform the following field
redefinition

λT ≡ λN
α2

: ðA1Þ

The equation of motion for λT (or, equivalently, for λN)
leads to

EλT

M2
P
≡ 1þ α2∇αT∇αT ¼ 0; ðA2Þ

which, on a FLRW manifold on which T ¼ t, gives

αðtÞ ¼ NðtÞ; ðA3Þ

as expected (discarding the other solution α ¼ −N).
The equation of motion for λ instead gives, on a general
background,

Eλ

M2
P
¼ 3

2
λþ ϕ − α∇μ∇μT −∇μα∇μT ¼ 0; ðA4Þ

which evaluated on FLRW returns

λ ¼ −
2

3
ϕ − 2H; with H ≡ _a

Na
: ðA5Þ

Next, let us consider the equation of motion for α. It can be
written as

Eα

M2
P
¼ 2λN

α3
þ λ2
α2

∇μ∇μϕþ∇μλ∇μT

þ ð∇μλ2∇μTÞð∇νϕ∇νTÞ
þ λ2ð∇μTÞð∇νϕÞ∇μ∇νT ¼ 0; ðA6Þ

which can be used to fix λN in terms of the other fields. On
doing this on FLRW we do find

λNðtÞ ¼ −
1

2

_ϕ

N
_λ2 þ

3 _a _ϕþaϕ̈
2aN

λ2 þ
1

2
N _λ: ðA7Þ

On setting this constraint on λN , we have that the covariant
equation of motion for the T field,

ET

M2
P
¼ 2λN∇ν∇νT − α∇ν∇νλþ 2∇μλN∇μT −∇μλ∇μαþ λ2ð∇μϕ∇μαÞð∇ν∇νTÞ

þ αð∇μϕ∇μλ2Þð∇ν∇νTÞ − αð∇μϕ∇μTÞð∇ν∇νλ2Þ þ αλ2ð∇ν∇νTÞð∇μ∇μϕÞ
þ λ2ð∇μT∇μαÞð∇ν∇νϕÞ þ αλ2∇μTð∇ν∇ν∇μϕÞ − ð∇μλ2∇μαÞð∇νϕ∇νTÞ
þ λ2ð∇μTÞð∇ναÞ∇μ∇νϕþ ð∇μλ2∇μϕÞð∇να∇νTÞ − αλ2Rμνð∇μTÞð∇νϕÞ
− 2αð∇μλ2Þð∇νϕÞ∇μ∇νT þ λ2ð∇μTÞð∇νϕÞ∇μ∇να ¼ 0; ðA8Þ

is automatically satisfied on FLRW. Let us now consider the equation of motion for ϕ. This can be written as

Eλ2

M2
P
¼ −

1

α
∇μ∇μϕ − αð∇μϕ∇μTÞð∇ν∇νTÞ − ð∇μα∇μTÞð∇νϕ∇νTÞ − αð∇μTÞð∇νTÞð∇μ∇νϕÞ ¼ 0; ðA9Þ

which also identically vanishes on FLRW, as expected. We also need to evaluate the equation of motion for λ2, which reads

Eϕ

M2
P
¼ λþ V;ϕ þ

λ2
α2

ð∇ν∇ναÞ − 1

α
ð∇ν∇νλ2Þ −

2λ2
α3

ð∇μα∇μαÞ þ 2

α2
ð∇μλ2∇μαÞ

− αð∇μT∇μλ2Þð∇ν∇νTÞ − αλ2∇μTð∇ν∇ν∇μTÞ − ð∇μλ2∇μTÞð∇να∇νTÞ
− αð∇μTÞð∇νTÞ∇μ∇νλ2 − λ2ð∇μαÞð∇νTÞ∇μ∇νT − 2αð∇μλ2Þð∇νTÞ∇μ∇νT

− αλ2ð∇μ∇νTÞð∇μ∇νTÞ ¼ 0; ðA10Þ
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and gives on the homogeneous background

ϕ −
3

2
V;ϕ þ 3H ¼ 0; ðA11Þ

but on another generic background it would be used as to fix λ2. Finally, let us evaluate the stress-energy tensor as

T v
μ
ν

M2
P

¼ δμν

�
−V −

3

4
λ2 − λϕþ λ2α

−2ð∇βϕ∇βαÞ − α−1ð∇βϕ∇βλ2Þ − αð∇βλ∇βTÞ − αð∇γλ2∇γTÞð∇βϕ∇βTÞ

− αλ2∇βϕð∇β∇γTÞ∇γT

�
−∇μT∇νTf2λN þ αλ2ð∇β∇βϕÞ þ λ2ð∇βϕ∇βαÞ þ αð∇βϕ∇βλ2Þg

−
λ2
α2

ð∇μϕ∇ναþ∇μα∇νϕÞ þ
1

α
ð∇μϕ∇νλ2 þ∇μλ2∇νϕÞ þ αð∇μT∇νλþ∇μλ∇νTÞ

þ αð∇μT∇νϕþ∇μϕ∇νTÞð∇βλ2∇βTÞ þ αð∇μT∇νλ2 þ∇μλ2∇νTÞð∇βϕ∇βTÞ
þ αλ2∇βT½∇μϕð∇β∇νTÞ þ ð∇β∇μTÞ∇νϕ�: ðA12Þ

Then on constructing

M2
PG

μ
ν ¼ T v

μ
ν þ

X
I

Tμ
ðIÞ ν ; ðA13Þ

we find on a FLRW background

1

3
ϕ2 − V þ 3κ

a2
¼ 1

M2
P

X
I

ρI; ðA14Þ

_ϕ

N
−
1

2
ϕ2 þ 3

2
V −

3κ

2a2
¼ 3

2M2
P

X
I

PI; ðA15Þ

as expected.

APPENDIX B: MCVITTIE SOLUTION IN VCDM

In the following we consider the McVittie solution in
VCDM. Let us assume we have the following metric ansatz

ds2 ¼−NðtÞ2
�
2ar−m
2arþm

�
2

dt2

þa2
�
1þ m

2ar

�
4
�
dr2þ r2

�
dz2

1− z2
þð1− z2Þdθ22

��
;

ðB1Þ

with m being a constant. We will also consider the matter
content only consists of a bare cosmological constant. In
this case, by looking for example at RμναβRμναβ, we can see
the spacetime is not homogeneous. Therefore in this case,
besides the choice of coordinate

TðtÞ ¼ t; as a choice of coordinates; ðB2Þ

we suppose a spherically symmetric profile for all the fields
in the theory, namely

ϕ ¼ ϕðt; rÞ; α ¼ αðt; rÞ; λ ¼ λðt; rÞ;
λ2 ¼ λ2ðt; rÞ; λT ¼ λTðt; rÞ: ðB3Þ

The equation of motion for λT sets

αðt; rÞ ¼ 2ar −m
2arþm

NðtÞ; ðB4Þ

while, the equation of motion for λ gives

λðt; rÞ ¼ −
2

3
ϕðt; rÞ − 2H; ðB5Þ

where we have defined

H ≡ _a
Na

; ðB6Þ

out of which the trace of the extrinsic curvature is given
by K ¼ 3H. Notice that at this level, we cannot impose
homogeneity on ϕ or λ. Next solving the equation of
motion for α, we find λT as

λT ¼ λTð∂tλ2; λ2; ∂2rϕ; ∂tϕ; ∂rϕ; _H;H;N; a; rÞ: ðB7Þ
The equation of motion for λ2 sets the following constraint

ð2arþmÞ∂2rϕþ 4a∂rϕ ¼ 0; ðB8Þ
which can be solved for

ϕðt; rÞ ¼ ϕhðtÞ þ
ϕnðtÞ
rþ m

2a

; ðB9Þ

so ϕ in general might have an inhomogeneous contribution.
In principle, on matching the field ϕ with cosmological
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boundary conditions would set limr→∞ ϕðt; rÞ ¼ ϕhðtÞ
giving an homogeneous profile (so we cannot use the
boundary conditions to set ϕnðtÞ to vanish in this case).
Therefore, we will keep this solution as it is, and see
whether the equations of motion set the values of ϕh or ϕn.
In fact, since the Einstein equations are

M2
PG

μ
ν ¼ T v

μ
ν; ðB10Þ

we find that the (0,1) component of these equations lead to

8ϕna2

Nð3m2 − 12a2r2Þ ¼ 0; ðB11Þ

which requires

ϕnðtÞ ¼ 0; ðB12Þ

leading to

ϕðt; rÞ ¼ ϕhðtÞ ¼ ϕðtÞ; ðB13Þ

or the field is homogeneous. At this level, looking at the
(0,0) component of the Einstein equations we find

E1 ≡ 1

3
ϕðtÞ2 − VðϕðtÞÞ ¼ 0: ðB14Þ

Therefore, for a generic potential13 we have

ϕðtÞ ¼ ϕ0 ¼ constant: ðB15Þ

All the nondiagonal components of the Einstein equations
now vanish whereas the ði; iÞ components lead once again
to the condition E1 ¼ 0. Now all the Einstein equations are
satisfied. At this level also the equation of motion for T is
automatically satisfied. There is one last equation of motion
we need solve, the equation of motion for ϕ, which gives

∂
2
rλ2 þ

4a
2arþm

∂rλ2 ¼ −NðtÞ ð2ar −mÞð2arþmÞ3
48a2r4

½2ϕ0 − 3V;ϕðϕ0Þ þ 6HðtÞ�: ðB16Þ

The equation can be solved as

λ2 ¼ λ2;hðtÞ þ
λ2;nðtÞ

ð2arþmÞ þ
N½2

3
ϕ0 − 3V;ϕðϕ0Þ þ 2HðtÞ�
96a2r2ð2arþmÞ

�
−32a5r5 − 144ma4r4 − 96m2a3r3

�
ln rþ 2

3

�

− 48m3a2r2
�
ln rþ 8

3

�
þ 18m4raþm5

�
: ðB17Þ

Notice that λ2 grows as r → ∞, although the source and the
Riemann tensor tends to vanish for large r’s. On fixing
boundary conditions so that λ2 does not diverge at infinity
(as otherwise λ2 ∝ r2), we require

2

3
ϕ0 − 3V;ϕðϕ0Þ þ 2HðtÞ ¼ 0; ðB18Þ

which states that

H ¼ H0 ¼ constant: ðB19Þ

In this case the solution automatically reduces to the
MacVittie’s solution obtained in GR, since K becomes a
constant. With these boundary conditions, λ2 reduces to the
flat-de Sitter solution, λ2 ¼ λ2ðtÞ, in the limit m

ar ≪ 1.
Therefore the chosen boundary conditions for λ2 make
λ2 match an homogeneous profile at infinity.
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