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In this paper, we study the dynamics of scalar hair around a Schwarzchild black hole. The scalar hair is
sourced by the Gauss-Bonnet invariant with a linear coupling. We work perturbatively in the coupling
constant and ignore the backreaction of the scalar hair and the Gauss-Bonnet invariant. We evolve the scalar
field in the background of a Schwarzchild black hole and study the dynamical formation of scalar hair with
different self-interactions. We integrate the energy and compute the energy flux of the scalar hair in terms of
the canonical energy-momentum tensor and give the corresponding dependence on the self-interactions.
Our results allow us to estimate the radiation and the condensation of scalar field with different self-
interactions; these would improve our understanding for the dynamical scalarization of black holes and the
possible configuration of the scalar hair in scalar Gauss-Bonnet gravity.
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I. INTRODUCTION

The recent observations of gravitational waves (GWs)
[1] and black hole shadow [2] opened the era to study the
properties of strong gravity systems, which further support
the black hole hypothesis and promise to reveal new
insights into the structure of black holes. In general
relativity (GR), the structure of a black hole can be
determined by the mass M, charge Q, and spin angular
momentum J [3–6]. In principle, one can obtain the serious
constraint on the parameters of a black hole in terms of the
observations of GWs or the shadow information if these
data are accurate enough. However, besides GR, other
alternative theories of gravity have also been focused, and
the corresponding history is almost as old as that of GR
[7,8], and various black holes are proposed that deviate
from the ones in GR.
As a fundamental matter field, the scalar field provides

rich of models for understanding some unknown phenom-
ena in our Universe, such as the dark matter [9] and the
inflation of cosmology [10–15]. The scalar field is also very
useful to understand the formation of a black hole, like the
critical behavior in the gravitational collapse [16–19].
At the same time, the scalar field can also be considered

as a bridge between GR and modified gravity theories.
For example, the scalar field can be regarded as the
effective degree of freedom of scalar-tensor and fðRÞ
theories [20–22], for which the classical scalar field plays
the role of the modification of GR. The observations of
GWs from the black hole mergers make sure that black
holes can be considered as the perfect probes for testing
various alternative theories of gravity, and one can also
study the structures of black holes by observing the imprint
of the scalar field.
Note that, the no-hair theorems [6,23] proved that

minimally coupled, potentially self-interacting scalar fields
all have the trivial configurations around the stationary and
asymptotically flat black holes. However, when the non-
minimally coupling mechanism between the scalar field
and Gauss-Bonnet (GB) term is considered [24–26], the no-
hair theorems are violated, and the nontrivial scalar
configurations can form around black holes. The existence
of the nontrivial scalar configurations around a black hole
uncovers the deviation from the predictions of GR and
provides the experimental insight into various alternative
theories of gravity. Since the scalar GB gravity theory
[24–26] was proposed, this theory has attracted a lot of
attention, and the spontaneous scalarization of a black hole
has been extensively studied in recent years [27–38].
Besides the scalarization induced by the GB term, other
scalarization mechanisms of black holes were also exten-
sively studied [39–45].
In the appropriate limit, several static scalar hairy black

hole solutions have been proposed [28–38]. However, the
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dynamical formation of scalar hair has not been disclosed.
To study the dynamical formation of scalar hair, one
should evolve the spacetime and scalar field in the scalar
GB gravity [46–49]. Note that it is difficult to realize the
nonlinear evolution of a hairy black hole in the scalar GB
gravity due to the complexity of the field equations.
For simplicity, one can also figure out the part of the
dynamics of the scalar hair under the linear approxima-
tion. Reference [50] first investigated the dynamical
formation of the scalar hair around a Schwarzchild black
hole under a linear perturbation with the coupling con-
stant but ignoring the backreaction of the scalar hair and
the GB invariant. The results showed that the evolution
eventually settles to the known static hairy solutions in
the appropriate limit; see the details in Ref. [51]. The
dynamics of scalar hair in the rotating black hole and
binary mergers are also studied in Ref. [52], and the scalar
radiation and multipole waveforms of scalar field in the
backgrounds of binary mergers are obtained. In addition,
the dynamics of scalar hairs around a Schwarzchild black
hole both in GB gravity and Chern-Simmons gravity were
considered [53–55].
It has been shown that the scalar configurations will

be different when the self-interactions are considered
[39,56–58]. For example, the number of the horizons of
a black hole in massive dilaton gravity depends on the
product of the dilaton mass and the black hole charge [39].
Similarly, the corresponding dynamics of the massive
scalar hair will also change. In previous Refs. [50,51],
the dynamical formation of the massless scalar hair
around a Schwarzchild black hole has been investigated.
Compared with the massless scalar field, we consider a
massive scalar field with the quartic self-interaction λϕ4,
where λ is the coupling parameter. For the massive scalar
field, its Compton wavelength λϕ ∼ ℏc=mϕ is related to the
mass parameter mϕ [59], and the corresponding dynamics
will be different. For example, when the Compton wave-
length of the massive boson field is comparable to or larger
than the black hole horizon radius, there will exist one or
more bound states around the black hole. If the black hole is
spinning, a bound state can grow from a seed perturbation
through the superradiance mechanism [59–61], where the
growth rate and the maximal extracted energy also depends
on the mass parameter [59–61]. For the quartic interaction
λϕ4, it will have a nontrivial repulsive effect when the
parameter satisfies λ > 0. Such a repulsive effect is also
related to the stability of the scalar hair. Reference [57] has
shown that for a fixed mass parameter mϕ, there is a
threshold λcrit, and when λ < λcrit, the scalarized solutions
are unstable.
Therefore, it is natural to expect that the growth rate, the

maximal energy of the canonical part, and the dynamics of
the scalar hair will be changed when the mass term and
quartic self-interaction are considered. In this paper, we
focus on the dynamics of a massive scalar field with the

quartic self-interaction λϕ4 around a Schwarzchild black
hole in the scalar GB gravity. We will study the dynamical
formation of the scalar hair and show how the growth rate,
the energy flux, and the maximal energy of the canonical
part of the scalar hair are affected by the mass term and the
quartic self-interaction. We work perturbatively in the
coupling constant and ignore the backreaction of the scalar
hair and the GB invariant. We adopt the same way in
Ref. [50] to study the evolution of the scalar field.
Our paper is organized as follows. In Sec. II, we briefly

review the knowledge of the scalar GB gravity and give the
corresponding equations of motion for the gravitational
fields and scalar field. In Sec. III, we give the numerical
results and the corresponding analysis. Finally, a brief
conclusion and outlook are given in Sec. IV.

II. SETUP

A. Action and field equations

In this paper, we study the dynamical formation of scalar
hair around a Schwarzchild black hole in the scalar GB
gravity. The action of the system is [50,51]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ μ

�
−
1

2
∇μϕ∇μϕ

− VðϕÞ þ ηfðϕÞG
��

; ð1Þ

where the GB invariant G is defined as

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð2Þ

The scalar field is coupled with the GB invariant with
ηfðϕÞG, and η is the coupling constant. VðϕÞ is the scalar
potential that describes the self-interactions of the scalar
field. The Newton gravitational constant G, the speed
of light c, and the Planck constant ℏ are set to be unity
(G ¼ c ¼ ℏ ¼ 1). The potential VðϕÞ is taken as the
simplest form

VðϕÞ ¼ 1

2
m2

ϕϕ
2 þ 1

2
λϕ4; ð3Þ

where mϕ is the mass parameter of the scalar field and the
dimensionless parameter λ is the coupling parameter of
the self-interaction ϕ4. We define a dimensionless mass
parameter m̄ϕ ¼ mϕ=M with M a new mass scale. In this
paper, we consider the following linear coupling:

fðϕÞ ¼ ϕ: ð4Þ

Varying the action (1) with respect to the metric gμν and
the scalar field ϕ, we get the following field equations:

Gμν þ 16πμηGGB
μν ¼ 8πμTðϕÞ

μν ; ð5Þ
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□ϕ −
∂VðϕÞ
∂ϕ

¼ ηG: ð6Þ

The energy-momentum tensor of the canonical scalar
field is

TðϕÞ
μν ¼ ∇μϕ∇νϕ −

1

2
gμν½∇μϕ∇μϕþ VðϕÞ�: ð7Þ

The energy-momentum tensor contributed from the Gauss-
Bonnet term is

GGB
μν ¼ −2R∇ðμ∇νÞϕ − 4Rμν□ϕþ 4Rμανβ∇α∇βϕ

þ 8Rαðμ∇α∇νÞϕþ 2gμνðR□ϕ − 2Rαβ∇α∇βϕÞ
¼ gαðμgνÞβϵαγδξϵφβχθRδξχθ∇γ∇φϕ: ð8Þ

We would like to study the evolution of the scalar field
and its imprint on the spacetime of Schwarzchild black
hole. However, Eq. (5) is hard to evolve, and we will
consider the evolution of the scalar field and hair formation
in the given spacetime background of a Schwarzchild black
hole. In the decoupling limit μ → 0, the backreaction of the
scalar field on the metric can be ignored. Under this limit,
the field equation (5) reduces to the Einstein equation in
vacuum, and the equation of motion for the scalar field
remains unaffected. Then, we have

Gμν ¼ 0: ð9Þ

B. Spacetime split and evolution of scalar field

We will numerically evolve the system of Eqs. (6)
and (9). The 3þ 1 decomposition

ds2 ¼ −α2dt2 þ γijðβidtþ dxiÞðβjdtþ dxjÞ ð10Þ

is used to decompose the four-dimensional spacetime into
a family of a three-dimensional spacelike hypersurface
(
P

t, γij). Here, αðt; xiÞ is the lapse function, βi is the shift
vector, and γij is the spatial metric. The relation between
the spacial metric γij, and the spacetime metric gμν reads

γμν ¼ gμν þ nμnν; ð11Þ

where nμ is the timelike normal vector and defined as

nμ ¼ ðα−1;−α−1βiÞ: ð12Þ

The Schwarzchild black hole solution can be obtained by
using the Arnowitt-Deser-Misner (ADM)-York decompo-
sition in numerical relativity [62], and the corresponding
line element in isotropic coordinates is given by

ds2 ¼ −
�
1 − M

2r

1þ M
2r

�
dt2 þ

�
1þM

2r

�
4

ηijdxidxj

¼ −α2dt2 þ ψ4ηijdxidxj; ð13Þ

where M is the bare mass of the black hole and r is the
isotropic, radial coordinate. We set M ¼ 1 in the following
parts of this paper. One can take a transformation ϕ → ηϕ
to drop out η from Eq. (6) [50,51], and we will just set
the dimensionless coupling constant η̄ ¼ ηM ¼ 1 in the
following parts.
The stable evolution of spacetime is realized by the

Baumgarte and Shapiro [63] and Shibata and Nakamura
[64] Baumgarte-Shapiro-Shibata-Nakamura (BSSN) forms.
Using the (3þ 1) metric (10) and the conjugate momentum

Π ¼ −
1

α
ð∂tϕ − βi∂iϕÞ ð14Þ

of the scalar field, the equation of motion for the scalar
field (6) becomes

∂tϕ ¼ βi∂iϕ − αΠ; ð15Þ

∂tΠ ¼ βk∂kΠ − αDiDiϕ − γijDiαDjϕþ αKΠ

þ α
∂VðϕÞ
∂ϕ

þ αηG: ð16Þ

Here, we are working on the decoupling limit, and the GB
term is only dependent on the background geometry.
Reference [51] has shown that the different initial configu-
rations of the scalar field do not affect the corresponding
final state, and the evolution will eventually settle to the
known static hairy solutions in the appropriate limit.
Therefore, we set the initial data with a trivial scalar field
configuration

ϕ0 ¼ Π0 ¼ 0: ð17Þ

Our simulations are based on the Maya numerical
relativity code [65–73]. The evolution of the spacetime
for the Maya code is based on the BSSN formulation of the
Einstein equations [63,64], and the moving puncture gauge
condition [74,75] is adopted. Maya is compatible with the
Einstein Toolkit [76]. The Sommerfeld boundary condi-
tions are adopted for our system to avoid the unphysical
reflections. The BSSN formulation [63,64] and the moving
puncture gauge condition [74,75] ensure that the GB
invariant G is regular everywhere.

III. NUMERICAL RESULTS

In this paper, we focus on the dynamics of scalar hair
with the self-interaction (3). Due to the Compton wave-
length, λϕ ∼ ℏc=mϕ of the scalar field is determined by the
mass parameter mϕ [59], and we choose four values of the
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mass parameter mϕ and let the corresponding Compton
wavelength λϕ be larger than, comparable to, or smaller
than the horizon radius of the central black hole. We still set
the different values for the parameters λ and evolve 16 cases
in total; see the details in Table I. We set the resolution of
the innermost region to be h ¼ M=32 and let the radius
of the finest level of our grid be 1.25M, which ensures that
the finest level can cover the central black hole. The setup
for the refinement boxes is

TABLE I. Values of the parameters (m̄ϕ, λ) considered in our
model and the corresponding aliases.

λ

m̄ϕ 0.0 10 100 1000

0.0 sf_1_1 sf_1_2 sf_1_3 sf_1_4
0.5 sf_2_1 sf_2_2 sf_2_3 sf_2_4
1.0 sf_3_1 sf_3_2 sf_3_3 sf_3_4
1.5 sf_4_1 sf_4_2 sf_4_3 sf_4_4

FIG. 1. Radial profiles of the scalar field for the cases described in Table I. The subfigures (a1), (b1), (c1), and (d1) describe the radial
profiles of the scalar field at different instances of time for the cases of (sf_1_1, sf_2_1, sf_3_1, sf_4_1). The subfigures (a2), (b2), (c2),
and (d2) describe radial profiles of scalar fields at late time t1 ¼ 400M.
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fð160; 80; 40; 20; 10; 5; 2.5; 1.25ÞMg:

We give the radial profiles of the scalar field at different
instances during the evolution with the initial data (17).
Figure 1 shows the radial profile of the scalar field for each
case. It is found that the massless scalar field quickly
relaxes to the static, hairy configurations at late time for the
cases of (sf_1_1, sf_1_2, sf_1_3, sf_1_4). We observe that
there are no oscillate behaviors and they are positive
everywhere for the massless scalar field at late time.
Comparing the corresponding static configurations at late
time, we observe the values of the scalar field at late time
decrease with the coupling parameter λ.
For themassive scalar field,we find that theywill oscillate

and then gradually decay to static, hairy scalar configura-
tions. Comparing with the results in subfigures (b2), (c2),
and (d2) in Fig. 1, we find that the value of the scalar field
decreases with the mass of the scalar field. We project the
scalar field by using the following spherical harmonics

ϕlmðt; rÞ ¼
Z

dΩϕðt; r; θ;φÞY�
lmðθ;φÞ; ð18Þ

and measure the values of ϕlmðt; rÞ at a fixed radius. The
projection of the scalar field with spherical harmonics is
realized with the help of the thorn Multipole. Note that only
the 00 mode of the scalar field exists because the scalar field
is sourced by the spherical GB term in the background of the
Schwarzchild black hole.
We measure the values of ϕ00ðt; rÞ for all the cases listed

in Table I at a fixed radius r ¼ 30M and show them as a

function of time in Fig. 2. We observe that the values of the
massless scalar field quickly relax to constants. This
behavior is consistent with the results described by the
subfigure (a2) in Fig. 1. The oscillate behavior and decay
law of the massive scalar field can be extracted in terms
of the behavior of ϕ00ðt; rÞ in Fig. 2. Here, we do not
compute them.
The results in Figs. 1 and 2 have shown that the GB term

will lead to a nontrivial configuration for the scalar field;
the dynamical formation of these nontrivial configurations
will induce the energy flux of the scalar field. In order to
analyze the dynamics of scalar field, we compute the
energy flux of the scalar field based on the stress-energy
tensor (7) as follows:

dEsf

dt
¼ lim

r→rc
r2
I

TtrdΩ: ð19Þ

The spherical Schwarzchild background ensures that the
following flux of the linear momentum

dPsf
i

dt
¼ lim

r→rc
r2
I

TirdΩ ð20Þ

and flux of the angular momentum

dJsfz
dt

¼ lim
r→rc

r2
I

TϕrdΩ ð21Þ

are zero. Therefore, we only compute the energy flux (19)
of the scalar field. Here, we compute the above integrals by

FIG. 2. Values of the scalar mode ϕ00ðt; rÞmeasured at r ¼ 30M as the functions of time for each case listed in Table I. Here, the black
solid line, blue dotted line, green dashed line, and red dot-dashed line stand for the results with λ ¼ 0, λ ¼ 10, λ ¼ 100, and λ ¼ 1000,
respectively.
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setting rc ¼ 30M. One can derive the corresponding
radiated energy of the scalar field in terms of the energy
flux (19) as follows:

EradðtÞ ¼
Z

t

0

dEsf

dt0
dt0: ð22Þ

Figure 3 shows the results of the energy flux dEsf

dt and the
radiated energy Erad of the scalar field as functions of time.
We observe that the radiated energy for the massless scalar
field will reach their maxima quickly, while for the massive
cases, the rate for the radiated energy approaches the
maximum is less than the massless cases. For the massless

cases (sf_1_1, sf_1_2, sf_1_3, sf_1_4), we observe that the
radiated energies decrease with the coupling parameter λ,
while for the massive cases (sf_2_1, sf_2_2, sf_2_3,
sf_2_4), (sf_3_1, sf_3_2, sf_3_3, sf_3_4), and (sf_4_1,
sf_4_2, sf_4_3, sf_4_4), the corresponding radiated ener-
gies will increase or decrease with the coupling parameter
λ. With the increase of the mass parameter of the scalar
field, the dependence of the radiated energy on the coupling
parameter λ will be different.
Besides the energy fluxes of the scalar field, we still

compute the total energy of the scalar field by using the
canonical energy-momentum tensor as follows:

FIG. 3. Radiated energies and powers dEsf

dt of scalar fields as the functions of time for all cases listed in Table I. The black dot-dashed
line, green dotted line, blue dashed line, and red solid line stand for the results with λ ¼ 0, λ ¼ 10, λ ¼ 100, and λ ¼ 1000, respectively.
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Esf ¼
Z

α
ffiffiffi
γ

p
ρd3x: ð23Þ

Here, we define the corresponding energy density of
the scalar field in terms of the canonical energy-
momentum (7):

ρ ¼ TðϕÞ
μν nμnν: ð24Þ

We measure the total energy (23) of the scalar field for
the whole process of the evolution and obtain the total
energy of the scalar field as a function of time. Due to the
limit of the space for our simulation, we integrate the total
energy (23) from r ¼ 0M to r ¼ 120M. Note that the
profiles of the scalar field are nontrivial in the interior
region of the apparent horizon and these parts actually do
not contribute to the total energy of the scalar field.
Therefore, we compute the total energy of the scalar field
by excising the interior region of the apparent horizon. The
total energies of the scalar fields for all the cases listed in
Table I are given in Fig. 4. For all the cases, we observe that
the energies increase rapidly at the initial moment, then
decrease, and gradually tend to the constants. The oscillate
behaviors of the scalar field are also reflected in the total
energy of the scalar field, and we also observe the oscillate
behaviors for the total energies of the massive scalar fields.
So far, we have obtained all the results of the cases

listed in Table I. We find that the introduction of the mass
term and the quartic self-interaction (3) suppresses the
existence of the scalar field. For a fixed mass parameter,

we find that the total energy decreases with the coupling
parameter λ. For a fixed coupling parameter λ, the total
energy of the scalar field decreases with the mass
parameter mϕ. Such behaviors are consistent with the
results found in Refs. [56,57].
In Ref. [39], the authors studied the properties of a black

hole in massive dilaton gravity. They showed that the mass
term of the scalar field will suppress the scalar field at a
length larger than the Compton wavelength λϕ, while at a
length smaller than the Compton wavelength λϕ, the mass
term behaves like the massless case. Thus, we expect that
the scalar field with different mass parameters should have
the similar behavior described in Ref. [39]. Note that, we
focus on the dynamics and final configurations of the scalar
field around the Schwarzchild black hole in this paper. To
validate if the scalar field has the behaviors described in
Ref. [39], we should consider the configurations of the
scalar field at late time. Therefore, we compare them with a
fixed λ and varying mϕ in the near or far regions of the
black hole. We give the corresponding comparisons in
Fig. 5. We find that the profiles of the scalar field are almost
same in the near region of the black hole. In the far region
of the black hole, we find that the values of the scalar field
decrease with the mass parameter. We still observe that the
effects of the mass term on the scalar field also depend on
the quartic interaction λϕ4. However, for all the cases listed
in Table I, the suppression of the mass term on the
configurations of the scalar field in the near or far region
of the black hole are the almost the same although they are
sourced by the GB term. Finally, we should note that we

FIG. 4. Energies of scalar fields as the functions of time for the cases listed in Table I. The black dot-dashed line, blue dotted line,
green dashed line, and red solid line stand for the results with λ ¼ 0, λ ¼ 10, λ ¼ 100, and λ ¼ 1000, respectively.
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work perturbatively in the coupling constant and ignore the
backreaction of the scalar hair and the Gauss-Bonnet
invariant.

IV. CONCLUSIONS

In this paper, we investigated the dynamical formation of
scalar hair with the self-interaction (3) in the scalar GB
gravity. By considering a linear coupling between the scalar
field and GB term and ignoring the backreaction of them,
we evolved the scalar field sourced by a GB term in the
background of Schwarzchild black hole described by GR.
We evolved 16 cases (see details in Table I) in total with
different parameters for the self-interaction (3) and inves-
tigated how the dynamics of the scalar field depend on the
self-interaction.
We obtained the configurations of the scalar field at

different instances and found that all the scalar fields will
relax to static configurations at late time. By projecting the
scalar field with spherical harmonics, we found that the
massless scalar field quickly relaxes to a static configura-
tion and there is no oscillate behavior at late time. However,
the massive scalar field has the oscillate behavior. We also
computed the energy flux of the scalar field and derived
the corresponding radiated energy. For the massless scalar
field, we found that the radiated energy decreases with the
coupling parameter λ. For the massive cases, the radiated
energies will increase or decrease with the coupling
parameter λ, and it depends on the mass parameter mϕ.
Finally, we computed the total energy of scalar field in a
spherical space with a radius r ¼ 120M in terms of the
canonical energy-momentum tensor (7). We found that the

introduction of the self-interaction (3) reduces the total
energy of the scalar hairs at late time, and the corresponding
total energy decreases with the mass parameter m and the
coupling parameter λ.
The numerical results in Figs. 1–5 show that how the

dynamics of the scalar field depends on the self-interaction
(3) in the scalar GB gravitywithin a perturbative approach in
the coupling constant. Thiswill be helpful for understanding
the dynamical scalarization of a black hole in the scalar GB
gravity and the possible configuration of the scalar hair.
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APPENDIX: CONVERGENCE TEST

In this Appendix, we will briefly discuss the numerical
accuracy of our simulations. To do this, we evolve two
cases (sf_1_1, sf_1_1) to test the convergence of our
simulation with three resolutions hlw¼M=32, him¼M=36,
hhi ¼ M=40 and compare the corresponding total energy

FIG. 5. Comparisons of the radial profiles of the scalar field for the case with the fixed parameter λ and varying mass parameters at late
time t ¼ 400M. Here, the black solid line, blue dotted line, green dashed line, and red dot-dashed line stand for the profiles of scalar
fields with m̄ϕ ¼ 0, m̄ϕ ¼ 0.5, m̄ϕ ¼ 1.0, and m̄ϕ ¼ 1.5, respectively.

ZHANG, WANG, WEI, and LIU PHYS. REV. D 106, 024027 (2022)

024027-8



and radiated energy. The total energy is computed within
the inner of a spherical surface with radius r ¼ 120M, and
the radiated energy of the scalar field is extracted at the
spherical surface with radius r ¼ 30M.
In general, the numerical solutions of a system converge

according following rule,

ϕh − ϕ ∝ hn; ðA1Þ

where h is the corresponding resolution and n is the
convergence order. Therefore, one can obtain the relation
as follows:

ϕhlw − ϕhim

ϕhim − ϕhhi

¼ hnlw − hnim
hnim − hnhi

¼ Q: ðA2Þ

We give the corresponding convergence plots in Figs. 6
and 7 based on the total and radiated energies of the

FIG. 6. Comparison of the radiated energy and total energy for the cases (sf_1_1, sf_2_1)with three different resolutions. Here, the black
solid line, the blue thick dashed line, and the red dashed line stand for the results with low, immediate, and high resolutions, respectively.

FIG. 7. Convergence plots for the cases sf_1_1 and sf_2_1 with three different resolutions. Here, we present the differences in the
coarse-medium resolution and medium-high resolution.
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scalar field. We find second-order convergence as indicated
by the factor Q ≃ 1.40. Here, the convergence factor Q is

Q ¼ ð1=32Þn − ð1=36Þn
ð1=36Þn − ð1=40Þn : ðA3Þ

Q ≃ 1.40 when n ¼ 2 means the convergence order is 2.
Note that, although we have used the fourth-order

derivative stencils in our code, the interpolation schemes
at the refinement boundaries also affect the convergences,
which induces that the convergence order of our code is
about 2. For the two cases sf_1_1 and sf_2_1, we observe
that the radiated energy (22) and the total energy (23) with
different resolutions exhibit a maximal numerical error
about 2% at late time; such an error means our resolution
is enough.
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