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Recent gravitational wave observations show evidence for the presence of higher harmonics, thus
possibly indicating that these waves were generated in the inspiral of compact objects with asymmetric
mass ratios. Signals with higher harmonics contain a trove of information that can lead to a better
estimation of system parameters and possibly to more stringent tests of general relativity. Gravitational
wave models that include higher harmonics, however, have only been developed within general relativity,
while models to test theory-agnostic deviations from general relativity have been purely based on the
signal’s dominant mode. We here extend the parametrized post-Einsteinian framework to include the
l ¼ 2, 3, and 4 harmonics, thereby providing a ready-to-use Fourier-domain waveform model for tests of
general relativity with higher harmonics. We find that the deformations to the higher harmonics of the
Fourier phase can be easily mapped to the deformation of the dominant harmonic, while the deformations
to the higher harmonics of the Fourier amplitude in general cannot in a theory-agnostic way. Nonetheless,
we develop a simple ansatz for the deformations of the waveform amplitude (through a rescaling
deformation of the time-domain amplitude) that both minimizes the number of independent amplitude
deformations parameters and captures the predictions of all known modified theories to date.
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I. INTRODUCTION

The advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO) [1] and advanced Virgo [2] have
detected a plethora of events, some of which may have been
produced by compact binaries with asymmetric mass ratios.
For example, the most recent Gravitational-Wave Transient
Catalog, GWTC-3, produced by the LIGO Scientific
Collaboration (LSC) and the KAGRA Collaboration [3],
contains 90 compact binary events, with a greater than 50%
probability of being of astrophysical origin [4]. Of these,
15 sources have been estimated to have a (maximum-
likelihood) mass ratio less than 1=2.
The quasicircular inspiral of compact binaries with

asymmetric mass ratios are interesting because they pro-
duce gravitational waves (GWs) that have power in many
harmonics of the fundamental mode. From post-Newtonian
(PN) theory, the GWs emitted in the quasicircular inspirals
of nearly equal mass compact binaries is dominated by the
ðl; mÞ ¼ ð2;�2Þ harmonic [5]. Higher harmonics scale
with powers of the mass difference, and thus, are important
only for binaries with asymmetric mass ratios. The effect of
these higher harmonics is to change the signal from
effectively a sinusoid of monotonically increasing phase

and amplitude to a superposition of waves with varying
amplitudes and phases that lead to beats in the signal.
Precious information is contained in these higher modes,

and if one does not model them, one may (i) introduce bias
in the parameters extracted with a dominant-mode wave-
form model, and (ii) miss out on important physics that
could have been extracted. For example, parameter esti-
mation of GW170729 with a model that does not include
higher harmonics can lead to a (systematic) mismodeling
bias in the estimation of the individual masses of ∼Oð10%Þ
(see e.g., Table I in [6]). Moreover, the inclusion of higher
harmonics in the model can help constrain the mass ratio
better by decreasing the confidence region by ∼Oð15%Þ
[6]. Similar improvements were also found for the
asymmetric-mass events GW190814 [7] and GW190412
[8], but also for GW190521 [9,10] which exhibits a mass
ratio of 0.79þ0.19

−0.29 . Given this, one may also wonder whether
tests of general relativity (GR) would be strengthened if one
had a model to carry out such tests with higher harmonics.
The disadvantages coming from neglecting the higher-

harmonic content will only increase with the advent of
third-generation detectors [11], like the planned Einstein
Telescope [12,13] and Cosmic Explorer [14–16]. Upgraded
detectors will be able to capture events with greater signal-
to-noise ratio (SNR), which will make us more sensitive to
biases in parameter estimation if we use theoretically
incomplete models. Aside from improving the accuracy
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of parameter estimation, the introduction of higher har-
monics helps break degeneracies, e.g., between inclination
angle and luminosity distance [17], which is particularly
important in null tests of GR.
Many years of efforts have produced analytical and

numerical waveform models that describe higher modes in
GR. The most recent analytical models, PhenomPv3HM [18]
and SEOBNRv4HM [19] (extensions of PhenomPv3 [20]
and SEOBNRv4 respectively [21]), have been employed
by the LSC during the latest GW search [22]. Among
the phenomenological models, the recent accelerated
PhenomXPHM [23,24] outperforms PhenomPv3HM in computa-
tional speed. As for numerical models, the interpolation of
numerical relativity simulations for unequal-mass systems
has led to the current surrogate waveform NRSur7dq4 [25],
capable of generating ∼20 orbits before merger. These
models reproduce the signal from spin-precessing black
hole binaries and are key to correctly interpret events that
show clear higher-multipole emission, as in the case of
GW190412 [8,26,27]. Indeed, the analysis of this event
with these models broke the degeneracy between the
luminosity distance and the inclination angle, allowing
for a measurement of both (see e.g., Fig. 4 in [8]).
Despite the success of such refined models in GR, not

much effort has been put in developing a theory-agnostic
beyond-quadrupole model that can be used to perform
parametric tests of GR. As a result, the current Fourier-
domain parametrized waveform models use only the
dominant mode, or partially integrate higher harmonics
by allowing for phase corrections only [28,29]. A notable
example of a dominant-mode model is the parametrized
post-Einsteinian (ppE) model [30–38], which incorporates
generic beyond-GR deformations in both the amplitude and
the phase, and has been used to successfully constrain
modified theories of gravity since the early GW events
(see e.g., [39]) through the TIGER implementation of the
LSC [22,40–45].
In this paper we tackle the task of extending the original

ppE model to higher harmonics by proposing a ready-
to-use waveform template in the frequency domain for
nonspinning circular compact binaries that includes the
harmonics l ¼ 2, 3, and 4. Focusing on the inspiral, we
achieve this by introducing beyond-GR perturbative cor-
rections both in the time evolution of the orbital frequency
and in the time-domain amplitude of each GW mode.
Under the stationary phase approximation (SPA), each
Fourier-domain harmonic inherits a ppE-like deformation
that can be uniquely tied to the orbital dynamics and the
GW emission channels of the modified theory.
Our preliminary analysis shows that the ppE phase can

be easily extended to all harmonics and the higher-
harmonic contributions are simple rescalings of the dom-
inant-mode harmonic. The ppE amplitude corrections that
arise in higher harmonics, however, cannot be mapped only

to the dominant-mode amplitude in general. This is because
the ppE phase parameter of each harmonic is uniquely
determined by the time evolution of the orbital frequency,
accurate to leading-PN order in the non-GR deformation.
The ppE amplitude corrections, on the other hand, depend
in general on not just the orbital trajectories, but also on the
perturbed field equations for the GW metric perturbation.
Nonetheless, we show that a simple ansatz for the metric
perturbation minimizes the number of independent ppE
amplitude parameters while simultaneously capturing the
predictions of all modified theories of gravity at 1PN order
known to date.
It remains to be seen if this simple ppE extension is

sufficient to cover other modified theories, but in the
meantime, the basic tool developed here can still be used
to constrain theory-agnostic deviations from GR with GWs
that contain higher harmonics. In particular, our ppE
extension can be used to assess the gains in the strength
of GW tests of GR due to the inclusion of higher
harmonics. If this ppE extension significantly tightens
the current bounds on the coupling constants of modified
theories, then one could further refine the extension
by (i) including degeneracy-breaking physics (e.g., ellip-
tical orbits and spin precession) and (ii) putting forward a
more sophisticated ansatz that maps to a broader set of
theories (once the predictions of the latter have been
worked out).
The breakdown of the paper is as follows. In Sec. II, we

review the higher harmonic decomposition of GWs from
inspiraling nonspinning binaries within GR. Specifically,
we lay out the 1.5PN-order GR results that will serve as the
basis for the subsequent ppE construction. In Sec. III, we
rederive the original ppE waveform and we discuss how the
issue of computing the dominant-mode amplitude correc-
tion has been approached in previous work. Section IV
contains the new higher-harmonic ppE waveform model
and its minimal version, which is shown to properly
represent the predictions of two known theories. In
Sec. V, we summarize our findings and suggest future
avenues for future work. Lastly, Appendix A collects the
coefficients that define the 1.5PN-order GR waveform and
Appendix B summarizes the definition of spin-weighted
s ¼ 2 spherical harmonics. We adopt geometric units, thus
setting G ¼ 1 ¼ c throughout.

II. HIGHER HARMONICS IN GR

In this section, we outline the known harmonic content
of the GW waveform from an inspiraling, nonspinning
compact binary, up to 1.5PN order. The time domain
harmonics are then Fourier-transformed under the sta-
tionary-phase approximation and the leading-PN-order
result of each harmonic is presented. Readers already
familiar with the subject of higher harmonics in GR may
wish to skip directly to Sec. III.
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A. Full waveform in GR

Let us consider a GW produced in GR by an isolated
slow-moving inspiraling binary source. First, we define the
basis used to decompose the GW strain tensor hij and the
vectors that describe the dynamics of the binary system.
Following the conventions in [5], we construct the source
orthonormal basis fex; ey; ezg where ez is aligned with the
orbital angular momentum L of the binary. Since we restrict
our analysis to the quasicircular motion of nonspinning or
spin-aligned binaries, the vector L is assumed to be fixed
(see e.g., [46] for an analysis on the time evolution). The
individual positions r1 and r2 of the binary components
relative to the center of mass are mapped to the separation
vector r≡ r1 − r2 in the center-of-mass frame by requiring
that the source dipole moment, conserved under the
equations of motion, is zero [47]. Because the motion is
constrained to the orbital plane, we can equivalently
describe the system with the separation distance r≡ jrj
and the orbital phase ϕ. Then, the unit vector

n≡ r=r ¼ cosϕex þ sinϕey ð2:1Þ

is used to build the corotating frame fn; λ; ezg, with
λ≡ ez × n ¼ − sinϕex þ cosϕey.
The detector lies far from the source at a distance D in

the direction of the unit vector

N ≡ sin ι cosφ ex þ sin ι sin φ ey þ cos ι ez; ð2:2Þ

with inclination angle ι ∈ ½0; π� and azimuthal angle
φ∈½0;2πÞ. In a radiative coordinate system Xμ¼ðT;XiÞ,
with D ¼ ðXiXjδijÞ1=2, the metric at the detector location
takes the form

gμν ¼ ημν þ hμν þOðh2Þ; ð2:3Þ

where ημν ¼ diagð−;þ;þ;þÞ is the Minkowski metric. We
work in the transverse-traceless (TT) gauge, so the spatial
components of the gravitational potentials hTTμν , carrying the
GW from a PN source can be written as a radiative
multipolar series (e.g., Eq. (2.1) in [5]). The leading term
in 1=D of hTTij is then used to construct the plus and cross
waveform polarizations

hþ ≡ 1

2
ðPiPj −QiQjÞhTTij ; ð2:4Þ

h× ≡ 1

2
ðPiQj þQiPjÞhTTij : ð2:5Þ

Here the vectors P and Q are part of the polarization triad
fN;P;Qg, and are defined through

P≡ N × ez ¼ sin φ ex − cos φ ey; ð2:6Þ

Q≡ N × P ¼ cos ι cos φ ex þ cos ι sin φ ey − sin ι ez:

ð2:7Þ

For a binary system composed of compact objects of
masses m1 and m2 in a quasicircular orbit, Eqs. (2.4) and
(2.5) produce the PN series

hþ;× ¼ 2μ

D
x
X∞
j¼0

xj=2Hðj=2Þ
þ;× ; ð2:8Þ

where μ ¼ ðm1m2Þ=M is the reduced mass, M ¼ m1 þm2

is the total mass, and

xðtÞ≡ ðM _ϕðtÞÞ2=3 ð2:9Þ

is the PN expansion parameter. The coefficients Hðj=2Þ
þ;× are

functions of the orbital phase and the inclination angle,
which are presented up to 3PN order for example in
Sec. VIII of [5] after replacing

ψ → ψ − φþ π=2; ð2:10Þ

where

ψ ≡ ϕ − 3x3=2
�
1 −

ν

2
x

�
lnðx=x0Þ; ð2:11Þ

is the tail-distorted phase variable [48] and x0 is a gauge-
dependent arbitrary constant. This auxiliary phase variable
is introduced to conveniently recast logarithmic terms
present in the amplitude into a phase modulation, forcing
those terms to appear in the waveform only as 3PN (rather
than 1.5PN [49]) amplitude corrections.

B. Waveform harmonic decomposition

By inspecting the coefficients Hðj=2Þ
þ;× we see that, up to

1.5PN order included (j ≤ 3), the time-domain gravita-
tional waveform in Eq. (2.8) can be rearranged as a
superposition of modes in the form

hþ;× ¼
X5
n¼1

AðnÞ
þ;×ðxÞ cosΦðnÞ

þ;× þOðx3Þ; ð2:12Þ

where ΦðnÞ
þ ≡ nðψ − φþ π=2Þ, ΦðnÞ

× ≡ΦðnÞ
þ − π=2, and the

amplitudes

AðnÞ
þ;×ðxÞ ¼ −

2μ

D
x
X3
j¼0

aðn;jÞþ;× xj=2 ð2:13Þ

are given by a PN series whose coefficients are listed
in Appendix A. Note that we have dropped the nonlinear
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n ¼ 0 memory terms [50] in Eq. (2.12) as our target
detectors are limited by a positive cutoff frequency [51].
For data analysis applications, the analytic expression in

Eq. (2.12), only valid in the early inspiral stage, has to be
matched to numerical relativity simulations that cover the
merger-ringdown phase (see e.g., [52,53]). To make contact
with numerical results, it is routine to define the complex
combination

hðtÞ≡ hþ − ih×; ð2:14Þ

and extract the ðι;φÞ angular dependence by projecting
it on the basis of spin-weighted spherical harmonics
Ylm
−s ðι;φÞ (see Appendix B for definitions) with spin s ¼ 2

hðtÞ ¼
X∞
l¼2

Xl
m¼−l

hlmðtÞYlm
−2 ðι;φÞ: ð2:15Þ

The harmonic coefficients are obtained by integrating

hlmðtÞ ¼
Z

1

−1
d cos ι

Z
2π

0

dφ hðtÞðYlm
−2 ðι;φÞÞ�; ð2:16Þ

and, for nonprecessing binaries, they satisfy the equatorial
symmetry

hl;−mðtÞ ¼ ð−1Þlh�lmðtÞ; ð2:17Þ

which allows us to recover the components with m < 0
from those with m > 0. Henceforth, we will only focus on
the positive values of m. Performing the integration in
Eq. (2.16) shows that hlmðtÞ can be written as

hlmðtÞ ¼ AlmðxÞ e−imψ ; ð2:18Þ

where

AlmðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þπp

2
ð−iÞm

×
Z

1

−1
d cos ιðAðmÞ

þ þ AðmÞ
× Þdlm2 ðcos ιÞ; ð2:19Þ

and the functions dlm2 are defined in Eq. (B2).
With the harmonic content in Eq. (2.13), which includes

the l ¼ 2, 3, 4 modes, Eq. (2.19) takes the form

AlmðxÞ ¼
2μ

D

ffiffiffiffiffiffiffiffi
16π

5

r
xHlmðxÞ; ð2:20Þ

and the leading PN contribution (for the higher PN order
expressions, see [5]) of each frequency-dependent ampli-
tude Hlm is

H21 ¼
i
3
x1=2Δ; ð2:21aÞ

H22 ¼ 1; ð2:21bÞ

H31 ¼
i

12
ffiffiffiffiffi
14

p x1=2Δ; ð2:21cÞ

H32 ¼
1

3

ffiffiffi
5

7

r
ð1 − 3νÞx; ð2:21dÞ

H33 ¼ −
3

4
i

ffiffiffiffiffi
15

14

r
x1=2Δ; ð2:21eÞ

H41 ¼
i

84
ffiffiffiffiffi
10

p ð1 − 2νÞx3=2Δ; ð2:21fÞ

H42 ¼
ffiffiffi
5

p

63
ð1 − 3νÞx; ð2:21gÞ

H43 ¼ −
9i

4
ffiffiffiffiffi
70

p ð1 − 2νÞx3=2Δ; ð2:21hÞ

H44 ¼ −
8

9

ffiffiffi
5

7

r
ð1 − 3νÞx; ð2:21iÞ

where Δ≡ sgnðm1 −m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
, and ν ¼ μ=M is the

symmetric mass ratio.
We note that each mode in Eq. (2.18) involves a slow-

varying amplitude multiplied by an oscillating phase, i.e.,

���� ddt lnAlm

���� ≪ j _ψ j; ð2:22Þ

and assuming jψ̈ j ≪ _ψ2, we can obtain an analytic expres-
sion of its Fourier transform

h̃lmðfÞ≡
Z

∞

−∞
hlmðtÞe2πiftdt; ð2:23Þ

under the SPA [54–56] with

h̃lmðfÞ ¼
�

2π

mψ̈ðt̄mÞ
�

1=2
Almðx̄mÞe−iðmΨðx̄mÞþπ=4Þ: ð2:24Þ

In the last expression, valid for m > 0 and f > 0, the
stationary time t̄m is implicitly defined by

_ψðt̄mÞ ¼
2πf
m

; ð2:25Þ

or equivalently by

x̄m ≡ xðt̄mÞ ¼
�
2πMf
m

�
2=3

þO½ðMfÞ11=3�: ð2:26Þ
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The phase Ψðx̄mÞ appearing in Eq. (2.24) is defined as

Ψðx̄mÞ≡ ψðt̄mÞ −
2πf
m

t̄m − ψc þ
2πf
m

tc ð2:27Þ

¼ 1

M

�Z
x̄m x3=2

_x
dx − x̄3=2m

Z
x̄m dx

_x

�

− ψc þ
x̄3=2m

M
tc; ð2:28Þ

where ψc, tc are integration constants,

_x≡ dx
dt

¼ 64

5

ν2

μ
x5 þOðx6Þ; ð2:29Þ

and we have neglected subleading PN terms arising from
the mismatch between ψ and ϕ.
To leading-PN order in both amplitude and phase,

Eq. (2.24) for nonspinning binaries in a quasicircular orbit
reads [57]

h̃GRlmðfÞ≡ πM2

D

ffiffiffiffiffi
2ν

3

r
x̄−7=4m

�
2

m

�
1=2

Hlmðx̄mÞ

× exp

�
im

�
3

256ν
x̄−5=2m þ ψc

�
− iπ=4

�
; ð2:30Þ

with x̄m defined by Eq. (2.26) and the frequency-dependent
amplitudes HlmðxÞ given in Eqs. (2.21).

III. PPE IN A NUTSHELL

In this section, we review the building blocks of the
dominant-mode ppE waveform model. After defining the
small coupling limit, we illustrate how the ppE waveform
model can be obtained from a radial perturbation of the
two-body Lagrangian. We highlight the known mapping
between ppE parameters and beyond-GR deformations of
the orbital dynamics, emphasizing how the amplitude
correction requires the choice of an ansatz for the metric
perturbation.

A. The ABC of ppE

The ppE framework, first proposed in [30], describes
deviations beyond GR encoded in GWs from compact
binaries. The strategy behind the ppE formalism is to work
in the perturbative regime of a chosen metric theory of
gravity in order to have analytic control of the waveform
with just a few deformation parameters. The metric theory
must admit a well-defined and continuous limit to GR in the
weak-field and low-velocity regime, and it is required to
have an observable non-GR effect in the strong-field regime.
Considering only the GR polarization content, the

Fourier transform of the response function due to the
GW impinging on a two-arm 90°-interferometer is

h̃rðfÞ≡ Fþh̃þðfÞ þ F×h̃×ðfÞ; ð3:1Þ

where Fþ;× are the detector beam-pattern coefficients
[58,59] which depend on the source location on the sky
ðθS;ϕSÞ and the polarization angle ψS. These coefficients
describe the relative orientation of the source with respect
to the detector and we have assumed that the signal remains
in band for a short enough time to regard the angles
ðθS;ϕS;ψSÞ as constant. This justifies taking the Fourier
transform of the metric perturbation before combining it to
form the response function.
During the early inspiral phase of the binary, the simplest

ppE template of the sky-averaged Fourier domain response
function is

h̃rðfÞ ¼ h̃r;GRðfÞð1þ αuaÞeiβub ; ð3:2Þ

with u≡ ðπMfÞ1=3, and the leading-PN-order GR
response function (higher-order phase corrections can be
found e.g., in Eq. (3.18) of [60]) is

h̃r;GRðfÞ≡
ffiffiffiffiffi
π

30

r
M2

D
u−7=2 exp

�
i
3

128
u−5 þOðu−3Þ

�
;

ð3:3Þ

where M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass
(m1 and m2 denoting the component rest masses), D is the
distance from the source, and f is the measured GW
frequency. Each theory corresponds to a particular set of
ppE parameters fα; a; β; bg, of which α and β measure the
magnitude of the corrections and are functions of the
coupling constant of the theory as well as the intrinsic
masses and spins of the binary. The exponents a and b take
(positive or negative) integer values and control the PN
order at which these corrections enter the amplitude and the
phase, respectively. The gravitational waveform computed
from many alternative theories of gravity in the small
coupling limit has been shown to produce Eq. (3.2), to
leading-PN order [33,35,37].
Let us now define the small-coupling limit. When

expanding the amplitude or the phase of the Fourier-
domain response function h̃rðfÞ in terms of two indepen-
dent variables, such as the dimensionless coupling ζ of the
theory and the velocity of the system v ∝ u3, we need to
choose the order in which we perform the expansion as the
two operations may not commute. To illustrate this,
consider the simple function

dðζ; vÞ ¼ 1

ζ þ v
; ð3:4Þ

which is singular along the line ζ ¼ −v and in particular at
the origin. Expanding first in powers of ζ and then in v
generates
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dIðζ; vÞ ¼
X∞
n¼0

ð−1Þn
vnþ1

ζn; ð3:5Þ

which converges to dðζ; vÞ in the region jζj < jvj.
Alternatively, one could expand first in powers of v and
subsequently in ζ, obtaining

dIIðζ; vÞ ¼
X∞
n¼0

ð−1Þn
ζnþ1

vn; ð3:6Þ

which is valid in the complementary region jvj < jζj.
Clearly the two representations dI and dII are not equivalent
and picking one over the other corresponds to restricting
the parameter space that we wish to study.
In this paper, if h̃rðfÞ is singular around ðζ; vÞ ¼ ð0; 0Þ

and the standard Taylor series cannot be used to approxi-
mate the function in this region, we resort to a power series
representation by expanding first to leading order in the
coupling ζ and subsequently in the velocity v. This
corresponds to choosing dI in the above example and it
is often referred to as quadrupole-driven case as opposed to
dipole-driven case [61,62]. This ensures that if the GR limit
exists, taking ζ → 0 in the expression of h̃rðfÞ yields a GR
PN approximant, such as TaylorF2 [60], whose leading
contribution is in Eq. (3.3).

B. Waveform derivation

1. Time domain waveform model

Since the original ppE formulation was developed for
leading-order PN calculations, only modifications to the
dominant ðl; mÞ ¼ ð2;�2Þ mode could be probed. In this
paper, we will extend this formulation to 1PN order, so that
higher harmonics can also be probed. But before we do so,
let us review the procedure to obtain Eq. (3.2) for a
nonprecessing binary in quasicircular equatorial orbits.
We start with a two-body PN Lagrangian

L ¼ L0 þ ζL1; ð3:7Þ

in the center-of-mass spherical coordinates ðr;ϕÞ, where
rðtÞ is the relative separation and ϕðtÞ is the orbital phase of
the binary. The quantity L0 is a two-body Lagrangian
obtained from GR, for instance through the Fokker action
method [63,64]. For leading-PN-order calculations,
it is sufficient to keep L0 to Newtonian order, i.e.,
L0 ¼ μð_r2 þ r2 _ϕ2Þ=2þMμ=r, where we recall that
M ¼ m1 þm2 is the total mass and μ ¼ ðm1m2Þ=M is
the reduced mass. The quantity L1 encodes an effective,
non-GR Lagrangian modification multiplied by a dimen-
sionless parameter ζ, which is linked to the coupling
constant of the theory. We assume this parameter to be
small and use it as an expansion variable following the
prescription outlined in Sec. III A.

Like L0, L1 is generated as a PN series, for example,
using the Fokker formalism applied to modified theories of
gravity [62,65–67]. One could also follow theory-agnostic
methods, such as the modified Einstein-Infeld-Hoffmann
framework [68], to first parametrize the two-body
Lagrangian to a given PN order and then retain only the
leading terms that survive after the small coupling expan-
sion. However, we will not employ this kind of approach
here as it would lead to involved equations of motion, going
beyond the scope of this work.
To exemplify, we consider deformations of the form

L1 ¼ μ

�
M
r

�
w
; ð3:8Þ

although we stress that for a consistent analysis such
modifications should include a dependence on _ϕ and _r.
In fact, velocity-dependent corrections in L1 may arise
from genuine modifications of the kinetic term due to
beyond-GR effects [34], but also from our choice of center-
of-mass coordinates [47,69,70].
The exponent w in Eq. (3.8) determines the leading-PN-

order characteristic properties of the theory. In what follows
we consider w > 1 to exclude degeneracy with the
Newtonian potential; the case w ¼ 1 can be reabsorbed
into L0 after a redefinition of the total mass M or the
gravitational constant G. For simplicity, we allow w to take
only integer values to preserve the time-reversal symmetry
of the conservative sector.
We proceed by deriving the Euler-Lagrange equations

from Eq. (3.7) and imposing the condition of circular orbits

_r ¼ 0 ¼ ̈r: ð3:9Þ

This leads to a modified Kepler’s third law of the form

M
r
¼ xð1þ ζλxpÞ; ð3:10Þ

where λ≡ −w=3, p≡ w − 1, and the PN frequency
parameter is x ¼ ðM _ϕÞ2=3.
Notice that M here is the active gravitational mass and

we have set the gravitational constant G to unity. All of this
is allowed because the leading-order modification enters at
higher than Newtonian order; if this was not the case, then
the active mass or the gravitational constant would have to
be renormalized.
Legendre-transforming Eq. (3.7) leads to the Hamiltonian

of the system

H ¼ H0 þ ζH1; ð3:11Þ

with H0 ¼ μð_r2 þ r2 _ϕ2Þ=2 −Mμ=r and H1 ¼ −L1, where
one can think of the velocities as implicit functions of
the momenta pr ¼ ∂L=∂_r, pϕ ¼ ∂L=∂ _ϕ. We then use the
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equations of motion in Eqs. (3.9)–(3.10) inside the
Hamiltonian of Eq. (3.11) to obtain the binding energy as
a function of x, namely

EðxÞ ¼ −
μx
2
ð1þ ζAxpÞ; ð3:12Þ

with A≡ −2ð2w − 3Þ=3. In this expression we have
discarded Oðζ2Þ and Oðζxpþ2Þ terms for consistency,
but higher PN order terms can in principle be included
straightforwardly.
Independently from the conservative dynamics provided

by Eq. (3.7) we must now prescribe the energy flux F due
to all radiating fields present in the theory (other fluxes are
not relevant to quasicircular orbits at leading PN order). For
example, for scalar-tensor theories [71,72], the leading PN
flux F ¼ F T þ F S is comprised of a tensorial GW
contribution F T ¼ ð32πÞ−1 R ð _hijÞ2D2dΩ and a scalar con-

tribution F S ¼ ð4πÞ−1 R ð _ΨÞ2D2dΩ, where Ψ denotes the
scalar field and here the overdot is the derivative with
respect to retarded time tret ≡ t −D. In general, the fluxes
are constructed from derivatives of the fields, which can be
expanded in terms of radiative multipole moments in the
far-away radiation zone, and which are, in turn, given in
terms of the source multipole moments through asymptotic
matching. Evaluating the energy flux through the equations
of motion in Eqs. (3.9)–(3.10), trading any r and _ϕ
dependence for x, and linearizing in ζ and to leading-PN
order in x, one typically obtains a frequency-dependent
expression of the form

F ðxÞ ¼ 32

5
ν2x5ð1þ ζBxqÞ; ð3:13Þ

for some dimensionless coefficient B ∈ R that will depend
on the intrinsic parameters of the binary. Ignoring the
presence of non-GR hereditary tails, which in GR enter at
1.5PN order [51], we take the exponent q to be a nonzero
(possibly negative) integer.
With the conservative and the dissipative sectors para-

metrized in terms of GR deformations, we can now obtain
the time evolution of the frequency through the balance
equation

_x−1ðxÞ≡ dt
dx

¼ −E0ðxÞ=F ðxÞ: ð3:14Þ

Expanding this equation in both ζ and x, we obtain

_x−1ðxÞ ¼ 5

64

μ

ν2
x−5ð1þ ζCxkÞ; ð3:15Þ

where

k≡minðp; qÞ; C≡ Aðpþ 1Þδk;p − Bδk;q; ð3:16Þ

and δp;q is the Kronecker symbol. In Eq. (3.15) we have
consistently discarded Oðζ2Þ and Oðζxk−4Þ terms.
In order to proceed, we must now select a parametriza-

tion for the deformations of the metric perturbation hTTij in
the TT gauge, requiring it to be compatible with the
multipole expansion used to produce the energy flux in
Eq. (3.13). An exact description of the GW waveform
can only be achieved after selecting a particular theory and
solving for its polarization content [33], as done e.g., by
integrating directly the field equations [73,74]. Without
specifying the theory one can only propose an ansatz for
the plus and cross waveform polarizations. Commonly
employed for leading-PN-order estimations [35,75] is the
quadrupole formula (see e.g., Sec. 1.2 in [51] for the formal
definition), which in the time domain and for a quasicir-
cular binary implies

hþ;×ðxÞ ¼ Aþ;×ðxÞ cosΦþ;×; ð3:17Þ

with Φþ ≡ 2ϕ, Φ× ≡Φþ − π=2. The amplitudes are taken
to be [35]

Aþ;× ≡ 2μ

D
Qþ;×r2 _ϕ

2; ð3:18Þ

and are reduced to functions of x by means of Eq. (3.10)

Aþ;×ðxÞ ¼
2μ

D
Qþ;×xð1þ 2ζλxpÞ: ð3:19Þ

Here Qþ ≡ −ð1þ cos2 ιÞ and Q× ≡ −2 cos ι are functions
of the inclination angle ι.
We see that the modified Lagrangian in Eq. (3.8)

stretches the amplitude by a frequency-dependent term
which is of the same PN order as the correction affecting
the binding energy in Eq. (3.12). Note, however, that
Eq. (3.18) is constructed following the quadrupole formula
of GR, and it relies on the Newtonian equations of motion
to eliminate the accelerations that arise from the second
time derivative of the quadrupole moment. Thus, depend-
ing on our starting point in the parametrization of hþ;×,
some effects of order Oðζxpþ1Þ in the amplitude may be
lost at this stage. To overcome this problem, we may
generalize the amplitude deformation to

Aþ;×ðxÞ → AGRþ;×ðxÞð1þ ζΓþ;×xγþ;×Þ; ð3:20Þ

with AGRþ;×ðxÞ ¼ 2μQþ;×x=D and where the coefficients and
exponents fΓþ;×; γþ;×g parametrize the type of GR defor-
mation. Given a particular theory, these new ppE co-
efficients can be read from the waveform, as was done
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e.g., in [33], after integrating the field equations consis-
tently in the small coupling approximation. One point to
note is that, at the level of Eq. (3.20), we can increase the

PN accuracy of AGRþ;×ðxÞ by replacing it with Að2Þ
þ;×ðxÞ in

Eq. (2.13) at the cost of introducing mismodeled terms of
orderOðζxγþ;×þ3=2Þ. Because ζ is parameterically small and
the analysis is restricted to quadrupolar radiation, we expect
these terms to have little impact on parameter estimation,
while the presence of higher-PN GR terms helps to cover a
longer segment of the inspiral.

2. Frequency domain waveform model

The Fourier-transform of each waveform polarization in
Eq. (3.17) is readily computed under the SPA. Denoting
xf ≡ x̄2 ¼ ðπMfÞ2=3, we have

h̃þ;×ðfÞ≡
Z

∞

−∞
hþ;×ðxÞe2πiftdt ð3:21Þ

¼ Ãþ;×ðxfÞ exp ½−ið2Ψþ;×ðxfÞ þ π=4Þ�; ð3:22Þ

where

Ãþ;×ðxfÞ≡
ffiffiffiffiffiffiffi
πM
6

r
x−1=4f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x−1ðxfÞ

q
Aþ;×ðxfÞ; ð3:23Þ

and

ΨþðxfÞ≡ΨðxfÞ; ð3:24Þ

Ψ×ðxfÞ≡ΨþðxfÞ − π=4; ð3:25Þ

with ΨðxfÞ given by Eq. (2.27), which now contains the
modified _x−1 in Eq. (3.15).
Now taking the small coupling limit of Eqs. (3.23)–

(3.24) leads to

Ãþ;×ðxfÞ ¼
M2

4D

ffiffiffiffiffiffiffiffi
5πν

6

r
Qþ;×x

−7=4
f ð1þ ζHxkfÞ; ð3:26Þ

with

H ≡ C
2
ðδk;p þ δk;q − δp;qÞ þ 2λδk;p; ð3:27Þ

and

ΨþðxfÞ ¼ −
3

256ν
x−5=2f ð1þ ζWxkfÞ; ð3:28Þ

with

W ≡ 20

ðk − 4Þð2k − 5ÞC: ð3:29Þ

In Eq. (3.29) we excluded the case k ¼ 5=2 as it would only
occur when non-GR tail-like terms are included in the flux.
We further assumed k ≠ 4 for simplicity, as among the
theories that have been studied (e.g., see Table III of [39])
this case only appears in a specific gravitational standard
model extension [76].
Inserting Eqs. (3.26)–(3.28) into (3.1) we obtain

h̃rðfÞ ¼ Q
M2

4D

ffiffiffiffiffiffiffiffi
5πν

6

r
x−7=4f ð1þ ζHxkfÞ expð−i2ΨþðxfÞÞ;

ð3:30Þ

up to an overall constant phase eiΦ with

Φ≡ arctan 2ðF×Q×; FþQþÞ − π=4; ð3:31Þ

and where

Q≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFþQþÞ2 þ ðF×Q×Þ2

q
: ð3:32Þ

If we replace Q with its root mean square (see e.g.,
Sec. 7.7.2 in [77])

Q →
ffiffiffiffiffiffiffiffiffiffi
hQ2i

q
¼ 4=5; ð3:33Þ

where the averaging symbol stands for

h·i ¼
Z

1

−1

d cos ι
2

Z
1

−1

d cos θS
2

Z
2π

0

dϕS

2π

Z
2π

0

dψS

2π
; ð3:34Þ

and rewrite the frequency dependence through u¼ν1=5x1=2f ,
the result is the ppE waveform stated in Eqs. (3.2)–(3.3)
with

α ¼ ζν−2k=5H ð3:35Þ

¼ ζν−2k=5
�
C
2
ðδk;p þ δk;q − δp;qÞ þ 2λδk;p

�
; ð3:36Þ

a ¼ 2k; ð3:37Þ

β ¼ ζ
3

128
ν−2k=5W ð3:38Þ

¼ ζν−2k=5
15

32

C
ðk − 4Þð2k − 5Þ ; ð3:39Þ

b ¼ 2k − 5: ð3:40Þ
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IV. A NEW HIGHER-HARMONICS PPE
WAVEFORM MODEL

In this section, we extend the ppE waveform template in
Eq. (3.2) to incorporate harmonics beyond the dominant
quadrupolar mode. We then propose a minimal model that
can be used to asses how much the presence of new of
amplitude corrections can impact parameters estimation.
As we aim to demonstrate the feasibility of a mapping
between these corrections and beyond-GR effects, we
consider nonspinning binaries only, whose leading-PN-
order harmonics in GR are listed in Sec. II B. However, the
template can be extended to nonprecessing spinning
systems by employing GR harmonics that take spin effects
into account (e.g., those in Sec. III of Ref. [57]). Despite its
simplicity, the minimal Fourier-space waveform model is
able to capture the class of modified theories that exhibit
dipolar emission. Two examples, for which GW results
to 1PN order have been computed, are shown: shift-
symmetric-Gauss-Bonnet gravity and massless scalar-
tensor theories.

A. A higher-mode ppE model

Our goal is to parametrize a Fourier-domain template
that covers all the nine positive-frequency independent
l ¼ 2, 3, 4 harmonics generated by an inspiraling non-
spinning binary in quasicircular orbit, for which the
equatorial symmetry in Eq. (2.17) holds. We limit our
discussion to l ≤ 4 since this is the harmonic content of
IMRPhenomHM [78], one of the suitable GR waveform
models that can be modified to implement higher-harmonic
ppE corrections. The main difficulty consists in narrowing
down the number of ppE parameters that enables a mapping
to different modified theories and that, at the same time,
avoids overfitting the data.
First, consider the trivial generalization of Eq. (2.30)

h̃lmðfÞ ¼ h̃GRlmðfÞð1þ αlmualmÞ exp½iβlmublm �; ð4:1Þ

with u ¼ ðπMfÞ1=3 and a maximal number of 36 constant
parameters fαlm; alm; βlm; blmg. Because the phase in the
Fourier-domain is completely determined by inserting its
time evolution _x−1ðxÞ of Eq. (3.15) within Eq. (2.27), we
see that the ðl; mÞ dependence of the 18 parameters
fβlm; blmg simplifies to

βlm ¼ βm; blm ¼ b; ð4:2Þ

where b is the same as in Eq. (3.40) and

βm ¼
�
2

m

�
2ðk−4Þ=3

β; ð4:3Þ

with β given in Eq. (3.38).

Is it sufficient to consider purely real amplitude correc-
tions αlm? Reference [79] shows that the inclusion of a
phase Θlm ≡ arctan 2ðImαlm;ReαlmÞ is essentially unin-
formative when trying to place bounds on amplitude
deviations. Therefore we restrict our analysis to the case
αlm ∈ R. This choice implies that the ppE phase of
Eq. (4.1) is entirely controlled by βm in Eq. (4.2) for all
harmonics, or equivalently, by the knowledge of _x−1ðxÞ to
leading-PN order in the non-GR deformation.
As for the amplitude, we first identify the quadrupolar

corrections fα22; a22g as the standard ppE amplitude
parameters

α22 ¼ α; a22 ¼ a; ð4:4Þ

with α and a given by Eqs. (3.36) and (3.37) respectively.
This can be seen by computing the Fourier-domain polar-
izations

h̃þðfÞ ¼
1

2
½h̃ðfÞ þ ðh̃ð−fÞÞ��; ð4:5Þ

h̃×ðfÞ ¼
i
2
½h̃ðfÞ − ðh̃ð−fÞÞ��; ð4:6Þ

at the detector’s azimuthal position φ ¼ π=2, where h̃ðfÞ is
the Fourier transform of hðtÞ. By keeping the leading-PN
harmonics ðl ¼ 2; m ¼ �2Þ, the only terms that survive
the SPA are

h̃ðfÞ ¼ h̃22ðfÞY22
−2ðι;φÞ; ð4:7Þ

h̃ð−fÞ ¼ ðh̃22ðfÞÞ�Y2;−2
−2 ðι;φÞ; ð4:8Þ

where in the last equation we used the equatorial symmetry
in Fourier space

h̃l;−mð−fÞ ¼ ð−1Þlðh̃lmðfÞÞ�; ð4:9Þ

which follows from Eq. (2.17). The resulting response
function, after discarding an immaterial overall phase and
averaging over all angles, takes the standard ppE form in
Eq. (3.2) from which Eq. (4.4) follows.
The crucial difference between the original ppE model in

Eq. (3.2) and the harmonic-enhanced version in Eq. (4.1)
stems from the remaining amplitude corrections. As it is
clear from the GR spherical-harmonic modes hlmðtÞ in
Eq. (2.18), when l > 2 the leading PN term in each
harmonic is of order 0.5PN or higher, relative to the
leading h22ðtÞ. This means that, unless the modified theory
excites these harmonics through 0PN corrections—as it
occurs when a scalar field sources the breathing mode—
obtaining fαlm; almgl>2 requires the computation of
non-GR OðζÞ effects at next-to-leading PN accuracy. A
consequence of this is that the analysis we used to handle
the binary dynamics in Sec. III may not be sufficient to
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model such effects because there we discarded amplitude
terms that directly contribute to higher harmonics.
Some exceptions to this argument, however, do exist.

Reference [61] recently calculated the waveform polar-
izations for quasicircular binaries in scalar Gauss-Bonnet
theory to 1PN order. In this theory, dipole radiation is
excited in black hole binaries because individual black
holes carry a monopolar scalar charge sourced by the
Kretschmann scalar. Reference [61] found that beyond
leading-PN-order terms can still be covered by the standard
ppE formulation because one can model the 1PN terms as
quadrupolar deformations, at the cost of introducing mis-
modeled terms that do not enter the relevant harmonics, as
we will show in Sec. IV C.

B. A minimal model

In the absence of a straightforward link between the
binary dynamics in modified theories and the ppE ampli-
tude parameters fαlm; almgl>2, we can explore what
happens in a model that mimics the amplitude choice we
made at the end of Sec. III B 1. In this model, beyond-GR
deformations couple to each mode through the amplitude
and are insensitive to both polarization and PN order. That
is, the nonzero coefficients that define each amplitude in
Eq. (2.13) get stretched by the same frequency-dependent
power

aðn;jÞþ;× → aðn;jÞþ;× ð1þ ζΓðnÞxγðnÞ Þ; ð4:10Þ

resulting in

AðnÞ
þ;×ðxÞ → AðnÞ

þ;×ðxÞð1þ ζΓðnÞxγðnÞ Þ: ð4:11Þ

This necessitates eight parameters fΓðnÞ; γðnÞg4n¼1, on top of
fC; kg, to describe all the l ¼ 2, 3, 4 harmonics, although
it can be generalized to l > 4 by considering PN terms
beyond n > 4 (which would require additional ppE param-
eters). The corresponding amplitude deformations in
Eq. (4.1) do not depend on l and read

αm ¼ ζ

�
2

m

�2
3
σðmÞ

ν−
2
5
σðmÞ

�
C
2
ðδσðmÞ;γðmÞ ð4:12Þ

þδσðmÞ;k − δγðmÞ;kÞ þ ΓðmÞδσðmÞ;γðmÞ

�
; ð4:13Þ

am ¼ 2σðmÞ; ð4:14Þ

where we have defined

σðmÞ ≡minðk; γðmÞÞ: ð4:15Þ

This model is analogous to the one explored in Sec. IV of
[33] where each mode that is proportional to cos nϕðtÞ

receives an n-dependent modification. In that work, the
ansatz in Eq. (3.18) is promoted to higher modes by

conjecturing AðnÞ
þ;× ∝ ðr _ϕÞn and subsequently a modified

Kepler’s law like Eq. (3.10) is used.
Though the choice in Eq. (4.11) may not cover all

theories of gravity exactly, it remains a reasonable bench-
mark to test whether these amplitude corrections actually
impact parameter estimation. Moreover, this minimal
model is sufficient to cover all known 1PN waveform
models in the modified gravity theories that have been
worked out to date, as we show in the next subsection.

C. Mapping to known modified theories

We first consider shift-symmetric-Gauss-Bonnet (ssGB)
gravity (see e.g., [80]), though the mapping to the ppE
framework can be extended to the more general Einstein-
scalar-Gauss-Bonnet (EsGB) theory [61,67]. For ssGB
gravity the dimensionless coupling is chosen to be

ζssGB ¼ α2ssGB
M4

ð4:16Þ

where αssGB is the fundamental coupling constant that
enters in the action and M is the total mass of the binary
system (normalized by 16π, as in Eq. (II.4) of [67] or
Eq. (3) of [81]).
In ssGB theory, for two spinless compact objects

in a circular orbit, the binding energy to leading-PN
order, under the small coupling approximation, reads
[61,67,82–84]

E ¼ −
μ

2
x̂

�
1þ 4

3

ζssGB
ν2

x̂

�
; ð4:17Þ

where

x̂≡ ðᾱssGBMωÞ2=3 ð4:18Þ

is the rescaled PN frequency parameter, in which the
coupling-dependent constant

ᾱssGB ≡ 1þ ζssGB
ν2

ð4:19Þ

enters as a renormalization of the bare constant G (set to 1
here). Comparing Eq. (4.17) to Eq. (3.12) we establish that

A ¼ 4

3ν2
; ð4:20Þ

p ¼ 1: ð4:21Þ

In ssGB theory, the leading-PN-order flux in the small
coupling limit is
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F ¼ 32

5
ν2x̂5

�
1þ ζssGB

5

96

Δ2

ν4
x̂−1

�
; ð4:22Þ

with Δ ¼ sgnðm1 −m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
and (m1; m2) the individ-

ual masses of the binary. Comparing (4.22) to Eq. (3.13)
allows the identification

B ¼ 5

96

Δ2

ν4
; ð4:23Þ

q ¼ −1: ð4:24Þ

Then, using Eq. (3.16), we see that the parameters
governing _x−1 in Eq. (3.15) are

C ¼ −
5

96

Δ2

ν4
; ð4:25Þ

k ¼ −1: ð4:26Þ

By taking the small coupling limit of the time-domain
1PN-order polarization waveforms in ssGB (see

Appendix E of [61]) we find the amplitudes AðnÞ;ssGB
þ;× of

the theory to be

AðnÞ;ssGB
þ;× ðx̂Þ ¼

�AðnÞ
þ;×ðx̂Þ if n ¼ 1; 3; 4

Að2Þ
þ;×ðx̂Þð1þ ζssGB

4
3ν2

x̂Þ if n ¼ 2:

ð4:27Þ

where AðnÞ
þ;×ðx̂Þ is the GR amplitude in Eq. (2.13), truncated

to 1PN order and evaluated at x ¼ x̂.1 The truncation of the
modification to the amplitude at 1 PN order will probably
not affect the constraints one can place on the GR
deformations, as found in the analogous phase study of
[85]; a verification of this confirmation is outside the scope
of this paper. Note that, regardless of whether the wave-
forms used to extract Eq. (4.27) are computed in the
Einstein or the Jordan frame, they coincide in the weak-
field limit [61], which we assumed here.
The amplitudes in Eq. (4.27) are covered by the minimal

model of Sec. IV B where Γð1Þ ¼ Γð3Þ ¼ Γð4Þ ¼ 0,

Γð2Þ ¼ 4

3

1

ν2
; γð2Þ ¼ 1; ð4:29Þ

and fγðmÞgm¼1;3;4 can take any value. As this case exem-
plifies, whenever k < 0 and the non-GR amplitude correc-
tions in the time domain are of positive PN order, γðmÞ > 0,
the values of the coefficients fΓðnÞg4n¼1 do not enter αm
because the corrections to _x−1 are dominant. The argument
can be applied to theories whose time-domain amplitudes
carry only positive PN-order correction, even if these are
not described by Eq. (4.11).
In massless scalar-tensor (ST) theories (see e.g., [84,86])

the Fourier-domain GWmodes h̃lm can still be parametrized
by the minimal model fαm; amg of Eq. (4.12) despite the
time-domain amplitude corrections being l dependent. For
ST theories, the dimensionless coupling is taken to be

ζST ¼ 1

4þ 2ω0

; ð4:30Þ

where ω0 is the function coupling of the theory evaluated at
the asymptotic value of the scalar field. The PN expansion
parameter is

x̃ ¼ ðᾱSTMωÞ2=3 ð4:31Þ

and the coupling-dependent rescaling ᾱST of thegravitational
constant is

ᾱST ¼ 1 − ζST þ ζSTð1 − 2s1Þð1 − 2s2Þ ð4:32Þ

with s1 and s2 the sensitivities of the compact objects.
In massless ST theories, and under the small coupling

approximation, the structure of the binding energy
(Eq. (5.5) of [84]) and the flux (Eq. (5.3) of [84]) for
circular orbits is the same as in Eqs. (3.12) and (3.13),
respectively. The coefficients are

A ¼ 16ð1 − 2s1Þð1 − 2s2Þ; ð4:33Þ

p ¼ 1; ð4:34Þ

B ¼ 5

24
ðs1 − s2Þ2; ð4:35Þ

q ¼ −1; ð4:36Þ

which lead to C ¼ −5ðs1 − s2Þ2=24 and k ¼ −1 for the
evolution of x̃.
The time-domain waveform modes hlmðtÞ computed in

the Jordan frame (see Sec. VI of [86]) exhibit only positive
PN-order corrections, which are subdominant to the −1PN-
order term in the flux. Thus, massless ST theories are still
controlled by the minimal model of Sec. IV B in the small
coupling regime, which is expected due to the known
mapping to ssGB [67,83].

1In order to write Að2Þ;ssGB
þ;× ðx̂Þ as in Eq. (4.27), we have

approximated

að2;0Þþ;× ð1þ ζΓð2Þx̂Þ þ að2;2Þþ;× x̂;≈ðað2;0Þþ;× þ að2;2Þþ;× x̂Þð1þ ζΓð2Þx̂Þ
ð4:28Þ

at the cost of introducing an uncontrolled remainder at Oðx̂2Þ,
where aðn;jÞþ;× are the coefficients in Appendix A that define the GR

amplitudes AðnÞ
þ;× of Eq. (2.13).
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The waveform in [86] shows also an overall 0PN-order
factor ð1 − ζSTÞ, but this can be reabsorbed into a redefinition
of the luminosity distanceD, similarly to a redshift effect. If
the binary system contains only one BH (s2 ≠ s1 ¼ 1=2)
then ᾱST ¼ 1 − ζST and the binding energy receives a leading
2PN-order non-GR correction (p ¼ 2), which does not alter
the values of fC; kg above. For such systems, the overall
0PN-order factor coincides with ᾱST and so it can be exactly
reabsorbed into the rescaling of the bare constant G (or
equivalently the total mass M).

V. CONCLUSIONS

We have here summarized the features of a particular
dominant-mode parametrized model in the frequency
domain, namely the ppEwaveformmodel, and then proposed
a simple extension of it that covers subdominant modes. The
latter can be particularly important for certain binary con-
figurations [11], and thus, the higher-harmonic extension of
the ppE model may lead to more stringent constraints in the
future. The main difference between the new model and the
basic ppEmodel is thepresence of newamplitude corrections,
which can be mapped to specific gravity theories as shown in
the case of ssGB and ST theories.
The higher-harmonic ppE model, once implemented in a

full waveform generator, could be used to run a Bayesian
analysis on known gravitational wave events from the
LIGO and Virgo gravitational wave catalogs. The output
would determine the impact of the newly introduced
amplitude corrections on constraints over theory-specific
couplings, and their dependence on binary properties (both
intrinsic, like masses and spins, and extrinsic, like distance
and orientation). But how would one go about implement-
ing this extended ppE model in a full waveform generator?
An implementation is possible with phenomenological,

or phenom, models: analytical GW templates built to
accurately describe the inspiral, merger, and ringdown of
BH binaries in the frequency domain [87–91]. In the
phenom construction, a waveform ansatz, containing a
set of free phenomenological coefficients, is chosen for the
inspiral-merger and ringdown phases. The structure of the
frequency dependence is well motivated by PN theory and
quasinormal mode (QNM) theory. Then, the free coeffi-
cients are fixed so that the waveform ansatz is both smooth
at the inspiral-merger interface and it fits a chosen catalog
of target waveforms, which cover the parameter space.
Many versions of the phenom models exist. For non-

precessing sources, the dominant multipole model
IMRPhenomD [92,93] performs well as an inexpensive tool
to generate accurate waveforms that can be employed in
GW searches. Its extension, IMRPhenomHM [78], incorpo-
rates beyond-quadrupole radiative moments to mitigate the
bias on the properties of edge-on and asymmetric binaries
inferred through parameter estimation.2

An implementation of our extended ppE model
on IMRPhenomHM is straightforward because of the latter’s
modularity. That is, the GR inspiral portion of IMRPhenomHM

could be straightforwardly replaced with the ppE counter-
part in Sec. IV B. This would require adding ppE para-
meters to the parameter space, and then, given a specific
theory and its mapping to the ppE parameters, recalibrating
the phenomenological coefficients against hybrid target
waveforms that are produced by that modified theory.
However, numerical waverform catalogs in modified grav-
ity are currently scarce at best, so in practice the tuning of
the phenomenological coefficient has to be done using the
GR catalogs. Because our extended ppE model is theory
agnostic, the latter choice is expected to at most produce
conservative bounds on known modified theories.
Finally, we note that by requiring that the amplitude and

phase match smoothly at the inspiral-merger frequency,
the merger segment of the model will inherit ppE
corrections accumulated during the many cycles of the
inspiral portion (for the dominant-mode model analysis
see e.g., Ref. [95]). Thus, the merger is deformed even
without including a complete QNM analysis of each
theory, which would shift the QNM frequencies (see
e.g., [96]). Adding the latter is expected to strengthen
constraints on modified gravity, and it could be pursued as
a follow up analysis to this paper.
The preliminary model in Sec. IV B can be improved in

different aspects, suggesting future projects that might be
worth exploring. First, one could include higher-PN order
non-GR corrections in each h̃lmðfÞ and estimate how
these affect the marginalized posteriors in parameter
estimation. If not available in the literature, these cor-
rections can still be inserted artificially by proposing a
dependence on the masses (e.g., casting them as a
quadratic polynomial in the mass ratio) and adding more
phenomenological coefficients to control their magni-
tude. Second, one could employ genuine QNM results for
each theory to refine the ringdown regime ansatz. This
would offset the damping frequencies and the values of
the frequencies where the smooth matching is done.
Lastly, if the initial analysis with the higher-harmonic
model proves promising, one could invest in generating
hybrid waveform catalogs for modified gravity theories
whose PN form is known. Using these more appropriate
catalogs to fix the phenomenological coefficients would
minimize the unfaithfulness and possibly yield stronger
reliable bounds on the coupling constant of the theories
we test.
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APPENDIX A: GR WAVEFORM AMPLITUDES

Here we list the coefficients defining the GR amplitudes

fAðnÞ
þ;×ðxÞg5n¼1 to 1.5PN (j ≤ 3), used in Sec. II B.
Denoting cι ≡ cos ι, for the plus polarization we have

að1;1Þþ ¼ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
ðc2ι þ 5ÞΔ; ðA1aÞ

að1;3Þþ ¼ 1

192

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
½ð1 − 2νÞc4ιþ

− ð24νþ 60Þc2ι þ 98ν − 57�Δ; ðA1bÞ

að2;0Þþ ¼ c2ι þ 1; ðA1cÞ

að2;2Þþ ¼1

6
½2ð1−3νÞc4ι −ð11νþ9Þc2ι þ19ðν−1Þ�; ðA1dÞ

að2;3Þþ ¼ 2πðc2ι þ 1Þ; ðA1eÞ

að3;1Þþ ¼ −
9

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
ðc2ι þ 1ÞΔ; ðA1fÞ

að3;3Þþ ¼ 9

128

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
½ð18ν − 9Þc4ι

þ ð16νþ 40Þc2ι − 50νþ 73�Δ; ðA1gÞ

að4;2Þþ ¼ 4

3
ð3ν − 1Þðc4ι − 1Þ; ðA1hÞ

að5;3Þþ ¼ 625

384
ð1 − 2νÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
ðc4ι − 1ÞΔ; ðA1iÞ

whereas for the cross polarization

að1;1Þ× ¼ 3

4
cι

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
Δ; ðA2aÞ

að1;3Þ× ¼ 1

96
cι

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
½5ð1 − 2νÞc2ι þ 46ν − 63�Δ; ðA2bÞ

að2;0Þ× ¼ 2cι; ðA2cÞ

að2;2Þ× ¼ 1

3
cι½4ð1 − 3νÞc2ι þ 13ν − 17�; ðA2dÞ

að2;3Þ× ¼ 4πcι; ðA2eÞ

að3;1Þ× ¼ −
9

4
cι

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ι

q
Δ; ðA2fÞ

að3;3Þ× ¼ 9

64
cι

ffiffiffiffiffiffiffiffiffiffiffi
1−c2ι

q
½15ð2ν−1Þc2ι −38νþ67�Δ; ðA2gÞ

að4;2Þ× ¼ 8

3
ð3ν − 1Þcιðc2ι − 1Þ; ðA2hÞ

að5;3Þ× ¼ 625

192
ð2ν − 1Þcιð1 − c2ι Þ3=2Δ; ðA2iÞ

and all the other coefficients are zero.

APPENDIX B: SPIN-WEIGHTED s = 2
SPHERICAL HARMONICS

Here we summarize the definition and the properties of
the spin-2 spherical harmonics, used in the harmonic
decomposition. Following the conventions in [46], we have

Ylm
−2 ðι;φÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm2 ðcos ιÞeimφ; ðB1Þ

where

dlm2 ðcos ιÞ ¼
X
k∈Ilm

ck;lmð1þ cos ιÞlþm=2−k−1

× ð1 − cos ιÞ−m=2þkþ1; ðB2Þ

and the indices ðl; mÞ take integer values l ≥ 2, jmj ≤ l.
The coefficients ck;lm are defined as

ck;lm ¼ ð−1Þk
k!

2−l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþmÞ!ðl −mÞ!ðlþ 2Þ!ðl − 2Þ!p

ðk −mþ 2Þ!ðlþm − kÞ!ðl − k − 2Þ! ;

ðB3Þ

and the k sum is over the subset of integers specified by

Ilm ¼ fk ∈ Zjmaxð0; m − 2Þ ≤ k ≤ minðlþm;l − 2Þg:
ðB4Þ

From these definitions follows the orthonormality relation

Z
1

−1
d cos ι

Z
2π

0

dφYlm
−2 ðι;φÞðYl0m0

−2 ðι;φÞÞ� ¼ δll0δmm0 ;

ðB5Þ

the completeness relation

X∞
l¼2

Xl
m¼−l

Ylm
−2 ðι;φÞðYlm

−2 ðι0;φ0ÞÞ� ¼δðcos ι−cos ι0Þδðφ−φ0Þ;

ðB6Þ

and the symmetry

dl;−m2 ðcos ιÞ ¼ ð−1Þldlm2 ð− cos ιÞ: ðB7Þ

The latter enables the equatorial symmetry in Eq. (2.17)

when the GW amplitudes AðnÞ
þ and AðnÞ

× are respectively
even and odd in cos ι.
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Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113,
151101 (2014).

[92] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X.
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