
Assessing the impact of non-Gaussian noise on convolutional neural
networks that search for continuous gravitational waves

Takahiro S. Yamamoto ,1,* Andrew L. Miller ,2,† Magdalena Sieniawska,2 and Takahiro Tanaka3,4
1Department of Physics, Nagoya University, Nagoya 464-8602, Japan

2Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium
3Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

4Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606-8502, Japan

(Received 3 June 2022; accepted 5 July 2022; published 18 July 2022)

We present a convolutional neural network that is capable of searching for continuous gravitational
waves, quasimonochromatic, persistent signals arising from asymmetrically rotating neutron stars, in
approximately one year of simulated data that is plagued by nonstationary, narrow-band disturbances, i.e.,
lines. Our network has learned to classify the input strain data into four categories: (1) only Gaussian noise,
(2) an astrophysical signal injected into Gaussian noise, (3) a line embedded in Gaussian noise, and (4) an
astrophysical signal contaminated by both Gaussian noise and line noise. In our algorithm, different
frequencies are treated independently; therefore, our network is robust against sets of evenly spaced lines,
i.e., combs, and we only need to consider a perfectly sinusoidal line in this work. We find that our neural
network can distinguish between astrophysical signals and lines with high accuracy. In a frequency band
without line noise, the sensitivity depth of our network is about D95% ≃ 43.9 with a false alarm probability
of ∼0.5%, while in the presence of line noise, we can maintain a false alarm probability of ∼10% and

achieve D95% ≃ 3.62 when the line noise amplitude is hline0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðfkÞ

p ¼ 1.0. The network is robust against

the time derivative of the frequency _f of a gravitational-wave signal, i.e., the spin-down, and can handle

j _fj ≲ 10−12 Hz=s, even though our training sets only include signals with _f ¼ 0. We evaluate the
computational cost of our method to be Oð1019Þ floating point operations, and compare it to those from
standard all-sky searches, putting aside differences between covered parameter spaces. Our results show
that our method is more efficient by 1 or 2 orders of magnitude than standard searches. Although our neural
network takes about Oð108Þ sec to employ using our current facilities [a single graphics processing unit
(GPU) of GTX1080Ti], we expect that it can be reduced to an acceptable level by utilizing a larger number
of improved GPUs.

DOI: 10.1103/PhysRevD.106.024025

I. INTRODUCTION

Gravitational waves that are characterized by quite long
durations, quasimonochromatic frequencies, and almost
constant amplitudes are called continuous gravitational
waves (CGWs) (see [1–5] for reviews). In the source
frame, the waveform model of a CGW is governed by a
small number of parameters: an amplitude, an initial
frequency, and a first (and higher) time derivative(s) of
the frequency evolution.
Several sources are expected to emit CGWs, the most

promising of which are distorted, rotating neutron stars.
In radio astronomy, rotating neutron stars are already
observed as pulsars [6], whose rotational frequencies and
sky locations are accurately estimated according to the

Australia Telescope National Facility Pulsar Database
[7,8]. Therefore, this information can be used to look for
CGWs emitted from these pulsars. This type of search is
classified as a targeted search, because the source rotational
frequency, its derivatives, and the sky position are known,
which allows us to perform a deep, fully coherent analysis
for CGWs. However, these searches are limited to Oð100Þ
known pulsars; thus, other types of analyses are needed for
objects about which we have less information.
Supernova remnants could also be interesting sources of

CGWs, since they could house a compact object, such as a
neutron star, at its center. Although the rotation frequency
of the central object is unknown, the source location can be
(roughly) identified. Therefore, we can use directed search
methods that do not assume a rotational frequency, which
unfortunately requires a higher computational cost than
that in targeted searches. Semicoherent methods had to be
designed to make a search for these objects tractable, which

*yamamoto.takahiro.u6@f.mail.nagoya-u.ac.jp
†andrew.miller@uclouvain.be

PHYSICAL REVIEW D 106, 024025 (2022)

2470-0010=2022=106(2)=024025(18) 024025-1 © 2022 American Physical Society

https://orcid.org/0000-0002-8181-924X
https://orcid.org/0000-0002-4890-7627
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.024025&domain=pdf&date_stamp=2022-07-18
https://doi.org/10.1103/PhysRevD.106.024025
https://doi.org/10.1103/PhysRevD.106.024025
https://doi.org/10.1103/PhysRevD.106.024025
https://doi.org/10.1103/PhysRevD.106.024025


reduces their sensitivity in comparison to that in targeted
searches; however, the exciting possibility of discovering
CGWs from something unknown motivates us to look at
such systems.
The most difficult, computationally heavy search is

called a blind search or all-sky search, in which we do
not have any information about potential CGW sources,
e.g., electromagnetically silent neutron stars, ultralight
boson clouds around rotating black holes [9–13], or
inspiraling binaries consisting of planetary-mass black
holes [14–16] or of an ordinary compact object and a
much lighter exotic one with an extreme mass ratio [17].
The computational difficulties in all-sky searches arise
because we would observe CGWs in a moving detector
frame. Thus, the observed phase of a CGW is modulated by
Doppler effects due to the relative motion between the
source and the detectors. And since we do not know where
in the sky CGWs could come from, we must search each
location individually, over all possible source parameters.
Despite the computational cost, many clever methods (e.g.,
time-domain F -statistic [18], frequency Hough [19], sky
Hough [20], and hidden Markov model [21]) have per-
formed all-sky searches resulting in competitive constraints
on the amplitude of CGWs over the whole sky [22–30].
Another difficulty in CGW searches comes from the

detector’s non-Gaussian artifacts, which is known as line
noise [31]. Line noise has an almost constant frequency and
a much larger amplitude than the Gaussian component of
the detector noise. Because of line noise, standard methods
for all-sky searches are required to veto frequency bands
where line noise is present. This makes the analysis blind
around those frequencies since these lines are often spread
into multiple frequency bins and have multiple harmonics.
It is therefore necessary to devise algorithms that are not
only computationally efficient but also robust against such
artificial disturbances.
In the last five years, the application of deep learning has

been widely discussed in gravitational-wave astronomy
(see [32] for review), and there are several proposals on the
application to the detection and parameter estimation of
various sources [33–50]. Deep learning algorithms could
provide a way of alleviating both high computational costs
and extreme sensitivity to noise lines in all-sky searches. As
we will show, neural networks could be trained on different
noise artifacts, allowing a systemic discrimination between
them and astrophysical signals. Furthermore, after training,
neural networks can generally classify new data in different
categories very quickly. Such methods could therefore be
used alongside existing ones, allowing the standard
searches to be performed with increased sensitivity.
In particular, for CGW searches, several groups have

proposed deep learning to analyze long stretches of strain
data with durations of Oð105–7Þ sec, all of which treat the
data differently before feeding them to the neural network.
For example, Dreissigacker et al. [51] use the Fourier

transformation to preprocess the data. They prepare several
neural networks trained with the dataset corresponding to
different frequency bands. Although the effects of non-
Gaussian noise were not considered, they showed that
their sensitivity is comparable to that of the semicoherent
matched filter.
Combining deep learning with an existing analysis

method is also a possible direction of research.
Morawski et al. [52] employed the time-domain F -statistic
for each grid point in the parameter space as inputs to their
neural network. Their network was constructed to classify
the strain data into three classes: only Gaussian noise,
CGW signal in Gaussian noise, and sinusoidal line with
Gaussian noise. For data with a duration of two days, their
method discriminated the aforementioned three cases with
high accuracy but did not handle the case in which line
noise and CGWs exist in the same data stream.
Beheshtipour and Papa [53] applied neural networks in

the follow-up stages of the Einstein@Home pipeline in order
to identify clusters of interesting candidates within the
parameter space. They reported a slightly improved sensi-
tivity compared to the results of an all-sky search in LIGO/
Virgo’s first observing run [23]; however, the computational
cost was not reduced because Einstein@Home already
requires a significant amount of computing power to perform
the deepest all-sky searches in the CGW community.
Bayley et al. [54] combined deep learning and the Viterbi

algorithm proposed in [21], and analyzed data with mock
signal injections from the sixth science run of the initial
LIGO/Virgo [55]. They found that their method achieves
comparable sensitivity to semicoherent searches at a much
lower computational cost. However, their neural networks
specialized in detection and did not predict the source
location.
Our previous work [56] demonstrates that a con-

volutional neural network can detect CGWs in a single
detector output that contains stationary Gaussian noise. We
proposed a new preprocessing method in which a double
Fourier transform is applied to strain data that are partially
demodulated by the time resampling. This preprocessing
step concentrates the power of CGW signals into a small
number of data points. The signal strength is therefore
enhanced so that the neural network can easily detect
CGWs. Our neural network independently treats the data of
different source locations and frequency bins. Therefore,
the computational cost of the follow-up can be reduced by
specifying the parameter region where the follow-up is
carried out. Although the sensitivity seems much better
than that of the existing coherent search, it is demon-
strated under the assumption that CGWs are circularly
polarized (i.e., cos ι ¼ 1 and ψ ¼ 0). We no longer use this
assumption in this work.
While there have been many efforts to use machine

learning to detect CGWs, none of them systemically
address the problem that non-Gaussian noise pollutes real

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-2



GW data containing astrophysical signals. Even those that
have been applied to real data do not provide a recipe to
handle non-Gaussian noise, nor do they indicate concretely
how different line noise strengths affect their sensitivity and
false alarm probability. The existing literature is therefore
not systematic enough to be easily applied to future
observing runs.
In this paper, we extend the work of [56] to the case in

which the strain data are contaminated by line noise. Our
current study demonstrates that our network can handle
more realistic GW data, and that the preprocessing step
enables the network to be robust against line noise.
Furthermore, our method in which different frequencies
are treated independently would be robust against
“combs,” that is, a bunch of evenly spaced lines. We also
show how the sensitivity degrades with increasing line
noise strength, in comparison to that obtained in Gaussian
noise, and how high spin-downs of a CGW could affect
the sensitivity of our network. This paper demonstrates
that neural networks must consider the impact of nonsta-
tionary noise in CGW searches, and provides a more
realistic comparison of the performance of neural net-
works to other all-sky methods.
We organize the rest of the paper as follows: In Sec. II,

we describe a waveform and line noise model, and how we
process the strain data before feeding them into a convolu-
tional neural network. In Sec. III, we explain our strategy to
search for CGWs using a convolutional neural network. We
show in Sec. IV sensitivity and false alarm probability
estimations in the presence of Gaussian noise and Gaussian
noise polluted by line noise, as well as robustness against
small signal frequency changes. Following that, we esti-
mate the computational cost of this method in Sec. V, and
we make some concluding remarks and discuss ideas for
future work in Sec. VI.

II. WAVEFORM MODELS AND PREPROCESSING

In this work, we assume that the spectral density of
Gaussian noise is stationary. The total duration and the
sampling frequency are denoted by Tdur and fs,

respectively. We fix them as Tdur ¼ 224 sec (∼192 days)
and fs ¼ 1024 Hz. See also Table I, which shows the
parameters of the strain data and the preprocessing step.

A. Astrophysical signal

The observed signal depends on the antenna pattern and
the phase evolution. The waveform that we observe can be
written as [57]

hobsðtÞ ≔ h0

�
FþðtÞ

1þ cos2ι
2

cosΦðtÞ

þ F×ðtÞ cos ι sinΦðtÞ
�
; ð2:1Þ

where h0 is the amplitude of the signal, ι is the inclination
angle, andFþðtÞ andF×ðtÞ are the antenna pattern functions
that depend on the source’s location on the sky, the geometric
configuration of the interferometer, and the location of the
detector on Earth. The definitions ofFþðtÞ andF×ðtÞ are the
same as those used in Jaranowski et al. [18], andwe assume a
LIGO-Hanford detector [58]. ΦðtÞ is the observed phase of
the gravitational waves, which we model to include the
Doppler effect, the frequency fgw, and the first time deriva-

tive of the frequency _f,

ΦðtÞ ¼ 2πfgw

�
tþ rðtÞ · n

c

�
þ π _f

�
tþ rðtÞ · n

c

�
2

þ ϕ0;

ð2:2Þ

whereϕ0 is the initial phase, and n is the unit vector pointing
to the source:

nðα; δÞ ¼

0
B@

1 0 0

0 cos ϵ sin ϵ

0 − sin ϵ cos ϵ

1
CA
0
B@

cos α cos δ

sinα cos δ

sin δ

1
CA: ð2:3Þ

Here, α is the right ascension, δ is the declination, and ϵ is the
tilt angle betweenEarth’s rotation axis and the orbital angular

TABLE I. List of parameters characterizing the strain data and the preprocessing.

Description Symbol Value

Sampling frequency of the strain data fs 1024 (Hz)
Total duration of the strain data Tdur 16777216 (sec)
Threshold of the phase modulation after the time resampling δΦ� 0.01
The number of grid points Ngrid 5609178
Duration of SFT segment Tseg 2048 (sec)
The number of data points within a SFT segment L 2097152
Steepness parameter of Tukey window ξ 0.125
The number of SFT segments Nsegð¼ Tdur=TsegÞ 8192
Upper limit of frequency which we analyze fup 100 (Hz)
The number of frequency bins Nbinð¼ TsegfupÞ 204800

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-3



momentum.Here, we set the x axis to point toward the vernal
equinox and the z axis to be along Earth’s orbital angular
momentum. We assume that the position vector of the
detector rðtÞ can be decomposed into Earth’s rotation,
r⊕ðtÞ, and Earth’s orbital motion r⊙ðtÞ, i.e.,

rðtÞ ¼ r⊙ðtÞ þ r⊕ðtÞ: ð2:4Þ

We neglect various effects, such as the orbital eccentricity
and the influence of the other planets and the Moon, and
assume that Earth follows a circular orbit on the xy plane.
These effectswould be taken into account properly byusing a
more sophisticated ephemeris in the preprocess stage. We
write the orbital motion of Earth as

r⊙ðtÞ ¼ RES

0
B@

cosðφ⊙ þ Ω⊙tÞ
sinðφ⊙ þ Ω⊙tÞ

0

1
CA; ð2:5Þ

where RES, Ω⊙, and φ⊙ are the distance between Earth and
the Sun, the angular velocity of the orbital motion, and the
initial phase, respectively. The detectormotion due to Earth’s
rotation is

r⊕ðtÞ ¼ RE

0
B@

1 0 0

0 cosϵ sinϵ

0 − sin ϵ cos ϵ

1
CA
0
B@

cosλ cosðφ⊕ þΩ⊕tÞ
cosλ sinðφ⊕ þΩ⊕tÞ

sin λ

1
CA;

ð2:6Þ

where RE, λ,Ω⊕, and φ⊕ are the radius of Earth, the latitude
of the detector, the angular velocity of Earth’s rotation, and
the initial phase, respectively. In this work, we fix φ⊙ ¼
φ⊕ ¼ 0 for simplicity.

B. Preprocessing

It is known that preprocessing the data plays a crucial
role in improving a neural network’s performance [59]. We
employ the method proposed in the previous work [56],
which we briefly review in this subsection.
Our method consists of three steps. In the first step, the

strain data are transformed by a time resampling procedure.
We prepare grid points on the sky, and define a new time
coordinate for each grid point as

τðt; αa; δaÞ ≔ tþ rðtÞ · na
c

: ð2:7Þ

Here, a is the index specifying the grid point and runs from
1 to Ngrid, the number of grid points on the sky. αa and δa
are the right ascension and the declination angle of the ath
grid point, respectively, and na ≔ nðαa; δaÞ is the unit
vector pointing to the ath grid point on the sky. Throughout

the paper, the new time coordinate in Eq. (2.7) is abbre-
viated as τa. The resampled strain data are denoted by

saðτÞ ≔ sðtaðτÞÞ; ð2:8Þ

where sðtÞ is the strain data and taðτÞ satisfies the relation

τ ¼ taðτÞ þ
rðtaðτÞÞ · na

c
: ð2:9Þ

The time grid is resampled such that in the new coordinate
τa, the grid is uniformly spaced. Then, the phase modu-
lation due to an astrophysical signal is removed, which
results in signal power accumulating in a small number of
frequency bins. Moreover, in the new time coordinate,
sinusoidal line noise (see Sec. II C) is no longer mono-
chromatic because it becomes Doppler modulated. That is
why we expect an astrophysical signal can be discriminated
from line noise.
The residual phase can be written as

δΦaðtÞ ¼ 2πfgw
rðtÞ · Δna

c
; ð2:10Þ

where

Δn ≔ n − na ð2:11Þ

is the deviation between the ath sky grid point and the
gravitational-wave source. We split the residual phase into
two parts: Earth’s rotation

δΦ⊕
a ðtÞ ≔ 2πfgw

r⊕ðtÞ · Δna
c

ð2:12Þ

and Earth’s orbital motion

δΦ⊙
a ðtÞ ≔ 2πfgw

r⊙ðtÞ · Δna
c

: ð2:13Þ

The grid points are placed on the sky such that the residual
phase δΦ⊕

a ðtÞ is suppressed below a threshold for any
location of the source. This condition can be written as

min
a

max
t
jδΦ⊕

a ðtÞj ≤ δΦ� for any source; ð2:14Þ

where δΦ� is a threshold. As in the previous work, we use
the template placement method proposed in Nakano et al.
[60] to efficiently place grid points in a two-dimensional
parameter space. First, we assume that the difference
between the source direction and the grid point is small,
and denote this difference by

Δδa ≔ δ − δa; Δαa ≔ α − αa: ð2:15Þ

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-4



We expand the residual phase δΦ⊕
a to the first order of Δα

and Δδ as

δΦ⊕
a ðtÞ ≃

2πfgw
c

RE cos λf−Δδa sin δa cosðαa − φ⊕ − Ω⊕tÞ
− Δαa cos δa sinðαa − φ⊕ − Ω⊕tÞg; ð2:16Þ

while neglecting the constant term. The maximum of
δΦ⊕

a ðtÞ is

max
t
jδΦ⊕

a ðtÞj ¼
2πfgw
c

RE cos λ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔδaÞ2 sin2 δa þ ðΔαaÞ2 cos2 δa

q
:

ð2:17Þ

Allowing cos λ to be 1 makes the estimation of
maxt jδΦ⊕

a ðtÞj conservative. Therefore, we use cos λ ¼ 1
in the following. We rewrite the condition (2.14) as

min
a
½Δσ2a� ≤ δΦ2�

�
c

2πfgwRE

�
2

for any source; ð2:18Þ

with

Δσ2 ≔ ðΔδaÞ2 sin2 δa þ ðΔαaÞ2 cos2 δa: ð2:19Þ

We define the metric on the two-dimensional parameter
space ðα; δÞ as

dσ2 ¼ e−2YðdX2 þ dY2Þ; ð2:20Þ

with X ≔ α and Y ¼ − log j cos δj. In this metric (2.20), the
contour of Δσ2 becomes a circle, which allows us to easily
place grid points. In this work, we set the threshold at

δΦ� ¼ 0.01: ð2:21Þ

The condition (2.18) depends on fgw. Here, we choose
fgw ¼ 100 Hz, which gives an upper bound of the fre-
quency band fup. When we analyze this frequency band
lower than fup, we do not need a new set of grid points
because the residual phase cannot be larger than the
threshold determined with fgw ¼ fup. With these choices,
we obtain

Ngrid ¼ 5609178 ð2:22Þ

grid points to cover the entire sky.
The value of δΦ� is arbitrarily chosen. If δΦ� increases,

the number of grid points is reduced, meaning that the
computational cost for the preprocessing would decrease.
But, signal power may be lost because a larger δΦ� allows a
larger residual phase. If δΦ� is set to a lower value,

the signal will be more visible, but the computational cost
of the preprocessing would increase. We will return to this
point in Sec. V.
In the second step, the short-time Fourier transfor-

mation (SFT) is applied to the resampled strains to make
spectrograms. Because a spectrogram is generated for
each grid point, the number of spectrograms is Ngrid. To
avoid aliasing, each SFT segment is windowed by a Tukey
window,

w½m� ¼

8>>>>><
>>>>>:

1
2

h
1− cos

�
2πm
ξL

�i
; 0≤m< ξL

2
;

1; ξL
2
≤m≤L− ξL

2
;

1
2

h
1− cos

�
2πðL−mÞ

ξL

�i
; L− ξL

2
<m≤L:

ð2:23Þ

Here, L is the window length and is given by

L ≔ Tsegfs; ð2:24Þ

with the segment duration Tseg. ξ is the parameter charac-
terizing the steepness of the window edge, which we set to
ξ ¼ 0.125. A pixel value of a spectrogram is written as

s̃ak½j� ¼
1

L

XL−1
m¼0

w½m�sa½jLþm�e−2πimk=L: ð2:25Þ

Here, sa½m� is the discrete strain data defined by

sa½m� ≔ saðmΔτÞ; ð2:26Þ

with the time resolution Δτ ¼ f−1s . We refer to the
frequency corresponding to the kth frequency bin as fk
given by

fk ¼ kΔf; ð2:27Þ

where

Δf ¼ 1

Tseg
ð2:28Þ

is the frequency resolution of SFT. The number of the
segment is denoted by Nseg and is given by

Nseg ¼
Tdur

Tseg
: ð2:29Þ

An index j specifies a SFT segment. For a given grid
point na, a spectrogram (2.25) can be regarded as a set

fs̃akjk ¼ 1; 2;…; Nbing ð2:30Þ

of time series vectors

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-5



s̃ak ≔ ðs̃ak½0�; s̃ak½1�;…; s̃ak½Nseg − 1�Þ: ð2:31Þ

Here, Nbin is the number of frequency bins we analyze and
is given by

Nbin ¼
fup
Δf

: ð2:32Þ

Each vector s̃ak has an index corresponding to a frequency
bin. If the time resampling procedure perfectly demodu-
lates the gravitational-wave signal, the signal power is
contained in one frequency bin that corresponds to the
source frequency. Hence, we analyze the data in each
frequency bin and each grid point na separately.
In the final step, another Fourier transform is applied to

each time series vector. It is denoted by

Sak½l� ≔
1

Nseg

XNseg−1

j¼0

s̃ak½j�e−2πijl=Nseg : ð2:33Þ

In this expression, Sak½l� for 0 ≤ l ≤ Nseg=2 − 1 expresses
the positive frequency components, while the components
of Nseg=2 ≤ l ≤ Nseg − 1 are filled by the negative fre-
quency part. To align the vector component in ascending
order of the frequency, we shift the components as

0
BBBBBBBBBBBBBBB@

Sak½0�
Sak½1�

..

.

Sak½Nseg=2 − 1�
Sak½Nseg=2�

..

.

Sak½Nseg − 1�

1
CCCCCCCCCCCCCCCA

→

0
BBBBBBBBBBBBBBB@

Sak½Nseg=2�
Sak½Nseg=2þ 1�

..

.

Sak½Nseg − 1�
Sak½0�

..

.

Sak½Nseg=2 − 1�

1
CCCCCCCCCCCCCCCA

: ð2:34Þ

For simplicity, we interpret the elements of a vector

Sak ≔ ðSak½0�;Sak½1�;…;Sak½Nseg − 1�Þ; ð2:35Þ

as already ordered by the transformation (2.34). Finally,
we get a set

fSakja ¼ 1; 2;…; Ngrid; k ¼ 1; 2;…; Nbing ð2:36Þ

from strain data. Figure 1 shows examples of preprocessed
waveforms. The waveforms of Gaussian noise, astrophysi-
cal signals, and line noise are significantly different due to
each waveform’s response to the time resampling pro-
cedure. This procedure accumulates signal power in a small
number of frequency bins; in contrast, it dilutes the power
due to line noise in a wider frequency band.

Now, we discuss the noise properties after the time
resampling. We assume that the detector noise is stationary
and Gaussian, and the time resampling does not change the
statistical properties of the detector noise. The noise power
spectrum SnðfÞ of the detector noise is defined by

hñðfÞñ�ðf0Þi ¼ 1

2
SnðfÞδðf − f0Þ; ð2:37Þ

and we have defined the Fourier transform as

ñðfÞ ¼
Z

∞

−∞
dfnðtÞe−2πift: ð2:38Þ

After whitening, the noises in different SFT segments are
independent. Therefore, the noise power spectrum density is

hñak½j�ñ�ak½j0�i ¼
1

2Tseg
δjj0 ð2:39Þ

for any grid point a. Here, we denote the detector’s Gaussian
noise after the time resampling by

FIG. 1. Examples of the real part of the doubly Fourier
transformed signals Sak. From top left in the clockwise direction:
only Gaussian noise, an astrophysical signal contaminated
by Gaussian noise, an astrophysical signal contaminated by
Gaussian noise and line noise, line noise and Gaussian noise.
The amplitude of the astrophysical signal is set to log10 ĥ0 ¼
−1.0 and the line noise is log10 ĥ

line
0 ¼ 0.0 [the amplitude

parameters ĥ0 and ĥline0 are defined in Eqs. (3.8) and (3.9),
respectively]. Note that these values are an optimistic case. After
the second Fourier transform, we shift l as shown in Eq. (2.34).
Therefore, if the GW frequency is close to the frequency of the
SFT bin, the GW signal forms an excess around the center.

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-6



naðτÞ ≔ nðtaðτÞÞ; ð2:40Þ

and its Fourier transform by

ñak½j� ¼
1

L

XL−1
m¼0

na½jLþ n�e−2πimk=L: ð2:41Þ

We neglect the effect of the Tukey window. The Fourier
transform in Eq. (2.41) differs from Eq. (2.38) by the
normalization factor of 1=L. Similar to Eq. (2.33), we define

Nak½l� ≔
1

Nseg

XNseg−1

j¼0

ñak½j�e−2πijl=Nseg : ð2:42Þ

The variance of Nak½l� can be obtained as

hNak½l�N�
ak½l0�i ¼ 1

N2
seg

X
j;j0

hñak½j�ñ�ak½j0�ie−2πiðjl−j
0l0Þ=Nseg

¼ 1

2NsegTseg
δll0 : ð2:43Þ

We generate simulated Gaussian noise in the transformed
strain data by using Eq. (2.43) [61].

C. Line noise

Line noises are usually classified into three types:
(1) perfectly sinusoidal line noise, (2) sinusoidal line noise
with finite coherence time, and (3) comb line noise.
Perfectly sinusoidal line noise is modeled by a sinusoidal
function with a constant frequency. This is the simplest
model of a line noise.
Perfectly sinusoidal line noise is modeled by

nsinlineðtÞ ¼ n0 cosð2πflinetþ ϕ0Þ; ð2:44Þ

where n0 is the line amplitude, fline is the line noise
frequency, and ϕ0 is the initial phase. The model (2.44)
does not have a frequency modulation or an amplitude
modulation. The spectral density has an infinitely narrow
peak at the frequency fline.
In practice, the frequency of line noise can change on a

certain timescale. If line noise has a finite coherence time,
the power of the line noise dissipates in a wide range of
frequency bins. It leads to the suppression of line noise
power contained in a preprocessed vector Sak. In this work
though, for simplicity, we do not account for line noise with
a finite coherence time.
Some instrumental disturbances could also cause multi-

ple line noises with different frequencies that are evenly
spaced, i.e., combs. However, for most combs observed in
the first and second observing runs of Advanced LIGO and
Advanced Virgo [31], the spacing in frequency is much
larger than the Doppler modulation. Therefore, each of the

comb’s teeth would be contained in a different frequency
bin and would safely be regarded as a single line, so we can
focus here on perfectly sinusoidal line noise.
Let us remark on the amplitude of the line noise we

consider in the presented work. As we stated above, lines
are assumed to be stable and monochromatic. They can be
removed by whitening if their amplitudes are much larger
than the Gaussian noise level. In reality though, more
sophisticated methods are required to remove lines because
they have finite coherent times. Even stable lines cannot be
completely removed if their amplitudes are comparable
to the Gaussian noise level. Therefore, in this work, we
assume the line noise amplitude to be in the range

1.0 ≤ n0

�
SnðfkÞ
1 Hz−1

�
−1=2

≤ 10.0: ð2:45Þ

III. METHOD

We use deep learning to discriminate the presence or
absence of a GW signal and/or a sinusoidal line in Gaussian
noise. The fundamentals of deep learning are summarized
in Appendix A. In deep learning, we can use a neural
network to extract data features and give a prediction for
newly obtained data. Here, we construct a convolutional
neural network (CNN) to classify the input vectors Sak
into four classes: (1) only Gaussian noise (Null),
(2) astrophysical signal injected into Gaussian noise
(Astrophysical), (3) sinusoidal line noise injected
into Gaussian noise (LineNoise), and (4) astrophysical
signal in the presence of both sinusoidal line noise and
Gaussian noise (MixAstroLine). Our CNN is trained to
predict the probabilities (A8) that certain strain data fall
into each class.
Using the probabilities that the CNN has predicted, we

then need to decide on a definition of “detection” of an
astrophysical signal. Here, we choose the standard criterion;
the data are classified into the class for which the CNN gives
the largest probability. We assume that a vector contains an
astrophysical signal if the CNN classifies the vector as
Astrophysical or MixAstroLine, while we try
another definition of detection later.
We use the term “candidates” to indicate a set of vectors

determined to have an astrophysical signal based on the
procedure described above. Each candidate is characterized
by a SFT frequency bin and a grid point, as well as the
vector Sak, whose indices describe the frequency bin k and
the grid point a.

A. CNN architecture

Table II shows the structure of the CNN we used.
It consists of six convolutional layers, three max-pooling
layers, and three fully connected layers. In the table, a
rectified linear unit (ReLU) transformation is counted as a

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-7



layer, and a linear transform in the fully connected layer is
separated from the activation.
The CNN takes the real part and the imaginary part of a

vector Sak as an input. Respecting Eq. (A5), we write the
input vector as

x1j ¼ Re½Sak½j��; x2j ¼ Im½Sak½j��: ð3:1Þ

It is known that normalizing input data accelerates and
stabilizes the training [59]. We normalize the input vector
so that it has a mean of 0 and a standard deviation of unity:

x̂aj ¼
xaj − μ

σ
; ð3:2Þ

where the mean is given by

μ ≔
1

2Nin

X
a¼1;2

XNin

j¼1

xaj; ð3:3Þ

and the standard deviation is

σ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nin

X
a¼1;2

XNin

j¼1

ðxaj − μÞ2
vuut : ð3:4Þ

We employ the cross-entropy loss function (A10), use
the Adam optimzer [62], and implement the CNNs within
the deep learning library PYTORCH [63]. The training and
evaluation are carried out with a single graphics processing
unit (GPU) GeForce GTX1080Ti. We trained the CNN for
300 epochs, and do not observe overfitting. Therefore, we
use the CNN state at the end of the training.

B. Data preparation

In our work, we generate datasets in a limited frequency
band, and the results (e.g., sensitivity, false alarm rate)
are extrapolated lower frequencies. We use the frequency
band of

fk −
1

2
Δfgw ≤ fgw ≤ fk þ

1

2
Δf ð3:5Þ

with

fk ¼ 100 Hz: ð3:6Þ

Equation (3.5) is the width of the kth frequency bin
corresponding to 100 Hz.
In this work, we focus only on the selected frequency

bin (i.e., fk ¼ 100 Hz) and train on simulated monochro-
matic signals,

_f ¼ 0: ð3:7Þ

The sensitivity of the method is quantified by determin-
ing the minimum amplitude that an injected signal could be
detected with a given detection probability and a specified
false alarm probability. If we simply use h0 as an indicator
of the method’s sensitivity, the sensitivity is affected by the
detector noise level. To avoid such an effect, we normalize
the amplitude as

ĥ0 ≔ h0

�
SnðfkÞ
1 Hz−1

�
−1=2

; ð3:8Þ

TABLE II. Structure of the CNN we used in this work. The first
column shows the types of layers. Here, we separately list the
activation functions. Roughly speaking, the CNN can be divided
into two blocks. The first block consists of convolutional layers,
pooling layers, and activation functions. The second block
comprises the fully connected layers, activation functions, and
a softmax layer. Before the first fully connected layers, the
transformation called flattening is applied. It transforms a two-
dimensional tensor into a one-dimensional vector. The second
column shows the output size of the layer. For the layers before
the flattening, the output is a two-dimensional tensor and its
shape is described by two numbers. The first number shows the
number of channels, while the second number is the length of
data. The third column gives the kernel sizes of the convolutional
layers and the pooling layers, while the last layer shows the
number of tunable parameters. The first row shows the input
vector that has the length of 8192 and two channels. The CNN
has six convolutional layers. The number of tunable parameters is
calculated by Eqs. (A3) and (A6). The total number of tunable
parameters is 4171170.

Layer Output size Kernel size
No. of

parameters

(Input) (2, 8192) – –
1D convolutional (16, 8177) 16 528
ReLU (16, 8177) –
1D convolutional (16, 8162) 16 4112
ReLU (16, 8162) – –
Max pooling (16, 2040) 4 –
1D convolutional (32, 2033) 16 4128
ReLU (32, 2033) – –
1D convolutional (32, 2026) 16 8224
ReLU (32, 2026) – –
Max pooling (32, 506) 4 –
1D convolutional (64, 503) 4 8256
ReLU (64, 503) – –
1D convolutional (64, 500) 4 16448
ReLU (64, 500) – –
Max pooling (64, 125) 4 –
Flattening (8000,) – –
Fully connected (512,) – 4096512
ReLU (512,) – –
Fully connected (64,) – 32832
ReLU (64,) – –
Fully connected (4,) – 260
Softmax (4,) – –

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-8



where SnðfkÞ is the power spectral density of the detector’s
Gaussian noise at the reference frequency fk. We use the
normalized amplitude (3.8) when we generate the dataset
and quantify our CNN’s sensitivity.
Under this assumption, the gravitational-wave signal can

be characterized by seven parameters, i.e., a normalized
amplitude ĥ0, a frequency fgw, an inclination angle ι, a right
ascension α, a declination angle δ, a polarization angle ψ ,
and an initial phase ϕ0. Table III shows the distributions of
source parameters that we sampled from to generate the
training and the validation datasets. For the normalized
amplitude, the upper limit of the range is set to be slightly
larger than what we expected in realistic situations. The
neural network can learn the features of an astrophysical
signal from data that contain signals with large amplitudes
and gradually become able to capture the signature of lower
amplitude signals. As for the source locations, we uni-
formly distribute the position on the sky. Here, we assume
that the GW signal is significantly suppressed if the
Doppler correction is not appropriate. Such a situation
occurs when our chosen grid points lie far away from the
source location. Therefore, when we generate the data of
the Astrophysical and MixAstroLine classes, we
pick the closest grid point to the source location.
We use Eq. (2.44) as the line noise model. It is

characterized by an amplitude n0, a frequency fline, and
an initial phase ϕ0. The frequency fline is also limited to the
range of Eq. (3.5). The normalized amplitude (3.8) is
employed instead of n0, i.e.,

ĥline0 ≔ n0

�
SnðfkÞ
1 Hz−1

�
−1=2

: ð3:9Þ

Table IV shows the parameters characterizing line noise
and how they are sampled. After generating sinusoidal line
noise, we transform it using the time resampling procedure
with the randomly chosen grid points.
We prepare 20000 GW signals, 20000 sinusoidal lines,

and 20000 pairs of GW signals and lines for training. They
correspond to the Astrophysical, LineNoise,
and MixAstroLine classes, respectively. In generating

GW signals, we use the fact that the extrinsic parameters
(amplitude, polarization angle, inclination angle, and initial
phase) can be factored out of the CGW waveform. We
therefore generate the waveform that depends only on fgw
and source position. For each iteration of training, we
sample extrinsic parameters and include the effects of
extrinsic parameters to determine the CGW waveform.
A similar factorization can be done for the line noise

waveform. We can factor out the amplitude and multiply
the waveform by a randomly selected one in each iteration.
This means that the line noise waveform depends only
on fline. Before feeding the waveforms into the CNN, we
inject them into Gaussian noise with the variance given
by Eq. (2.43).
For the Null class, we only give Gaussian noise to the

CNN. Thus, we do not need to generate any data for the
Null class in advance. The validation data are generated
by the same procedure, but the number of data is decreased
to 2000 for each class.

IV. RESULTS

Figure 2 shows the confusion matrix of the trained CNN.
We use 2000 test data for each class. The amplitude of
gravitational wave is uniformly sampled from log10 ĥ0 ∈
½−2.0;−1.0�, and that of line noise is sampled from
log10 ĥ

line
0 ∈ ½0.0; 1.0�. Here, we changed the range of the

signal amplitude from that employed in the training data
because we want to test our CNN for data with realistic

TABLE IV. Line noise parameters.

Description Distribution

Normalized amplitude ĥline0 Log uniform on [1, 10]
Frequency fline Uniform on ½fk − Δf

2
; fk þ Δf

2
�

Initial phase ϕ0 Uniform on ½0; 2π�

TABLE III. Source parameters. The range of normalized
amplitudes is chosen so that it covers (1) the minimum limit
of the detectable signal, and (2) sufficiently large signals so that
the CNN can learn the signals efficiently.

Description Distribution

Normalized amplitude ĥ0 Log uniform on ½10−2; 101�
Frequency fgw Uniform on ½fk − Δf

2
; fk þ Δf

2
�

Inclination angle ι Uniform on ½0; π�
Right ascension α Uniformly distributed on the sky
Declination angle δ Uniformly distributed on the sky
Polarization angle ψ Uniform on ½0; 2π�
Initial phase ϕ0 Uniform on ½0; 2π�

FIG. 2. Confusion matrix of the CNN. This matrix quantifies
the fraction of testing data that were classified correctly (diagonal
elements) and incorrectly (off-diagonal elements).

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-9



amplitudes. Most of the data in the Null class are correctly
classified as the Null class. The significant point of
Fig. 2 is that the CNN can discriminate between the
presence and the absence of line noises. The test events
of the Null class and the Astrophysical class
are not misclassified as the LineNoise class or the
MixAstroLine class. On the contrary, the test data
containing line noise are classified in the LineNoise
class or the MixAstroLine class, and there is some
confusion with the Null class. From these results, it can
be concluded that the CNN can tell apart a line from
its absence.
From the top row of Fig. 2, it is found that only 0.5% of

events that contain just Gaussian noise are classified as the
Astrophysical class. Furthermore, we use 20000
simulated Gaussian noise data to evaluate the false alarm
probability for the Gaussian noise, as shown in Table V.
Among 20000 test noise data, 132 events are classified as
the Astrophysical class. The estimated false alarm
probability to misclassify Gaussian noise as an astrophysi-
cal signal is 0.66%, which is comparable to that estimated
by 2000 test events. Even for 20000 events, we find no
confusion between the line noise class and the mixed class.
We study the detailed result for the Astrophysical

class. With varying the normalized amplitude log10 ĥ0 from
−2.0 to −1.0 with the step of 0.1, we prepare 11 datasets
corresponding to the respective values of the amplitude.
Each dataset consists of 2000 injections. We apply the
trained CNN to each dataset and count the number of
detected events for each predicted class. Figure 3 shows
the fraction of events as a function of the normalized
amplitude. The detection probability exceeds 95% for
log10 ĥ0 ≳ −1.64. We also quote our results in terms of
the so-called sensitivity depth, which is defined as

D ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðfkÞ=1 Hz−1

p
h0

¼ ðĥ0Þ−1: ð4:1Þ

In terms of the sensitivity depth, our CNN has a sensiti-
vity of

D95% ≃ 43.9: ð4:2Þ

The LIGO/Virgo Collaboration has carried out all-sky
searches for isolated neutron stars using data from
LIGO/Virgo’s third observation data [30], which results
in upper limits on the gravitational-wave strain amplitude.
We compare the sensitivity depths of the standard methods
and our method in Table VI. It shows that our neural
network can outperform the time-domain F -statistic and
the Viterbi algorithm assisted by deep learning (SOAP).
Furthermore, our method has comparable sensitivity to
the frequency Hough and the sky Hough. We emphasize,
however, that they search over different parameter
spaces: The standard method surveys a wide range of _f,
while our method focuses on quasimonochromatic waves.

TABLE V. Result for the case where only Gaussian noise exists.
We use 20000 test events that contain only simulated Gaussian
noise. Our CNN can classify the Gaussian noise data with
accuracy of 99.34%. The false alarm probability is 0.66%.

Predicted class No. of events Fraction (%)

Null 19868 99.34
Astrophysical 132 0.66
LineNoise 0 0.0
MixAstroLine 0 0.0

FIG. 3. Detection efficiency of the CNN for astrophysical
signals injected into Gaussian noise. The horizontal axis shows
the logarithm of the amplitude, and the vertical axis is the fraction
of events. Orange squares indicate the detection probability of
astrophysical signals. For log10 ĥ0 ≳ −1.64, the detection prob-
ability exceeds 95%. The detection probability decreases as the
amplitude decreases. The results of the LineNoise class (green
diamonds) and the MixAstroLine class (red triangles) are
overlapped.

TABLE VI. Comparison of the sensitivity depths of the
standard all-sky search methods and our method. For frequency
Hough and time-domain F -statistic, the upper limits on the
amplitude h95%0 are presented in [30]. We converted them into
D95% assuming

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p ¼ 5.2 × 10−24 ½Hz−1� that is shown in
Fig. 6 of [30]. For sky Hough and time-domain F -statistic, we
read the values, respectively, from Figs. 11 and 13 of [30] that
show their upper limit on the amplitude. We stress that the
parameter region and the strain duration are different depending
on the method.

Method Frequency band D95%

Frequency Hough At 100 Hz 42–43
Sky Hough At 116.5 Hz 47.2
Time-domain F -statistic At 100 Hz 26–52
SOAP On 40–500 Hz 9.9
Our method ≲100 Hz 43.9

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-10



The duration of the signal is also different; O3 data have the
duration of ∼11 months ∼2.9 × 107 sec, and our method
assumes that signals last for 224 ∼ 1.6 × 107 sec.
Whereas the Astrophysical class and the Null

class are classified correctly, the events contaminated by the
line noise are not. The false alarm probability that the line
noise data are classified in the MixAstroLine class is
estimated to be 39.2%. To test the CNN for line noise data,
we prepare 11 datasets corresponding to different ampli-
tudes of the line noise. Each dataset contains 2000 lines
injected into Gaussian noise. Figure 4 shows the classi-
fication result for the test data of the LineNoise class
as a function of the line noise amplitude log10 ĥ

line
0 . The

classification results are almost constant for any value of
log10 ĥ

line
0 . We can interpret this result as follows: We have

injected line noise events with amplitudes much larger
than the Gaussian noise. Therefore, the overall amplitude
of the line noise would disappear by normalization [see
Eq. (3.2)], with the result that the sensitivity of the CNN
does not depend on the line noise amplitude, as shown
in Fig. 4.
While the CNN can discriminate the presence and the

absence of a line, it cannot find the astrophysical signal
when line noise contaminates. As shown in Fig. 2, line
noise is misclassified as the MixAstroLine with the
false alarm probability of ∼40%. The false alarm proba-
bility could be suppressed by changing the detection
criterion. As stated in the Sec. III, we define a detection
as when the predicted probability of the MixAstroLine
(or Astrophysical) class dominates others. Here, we
introduce a new criterion given by

pth ≤ pMix; ð4:3Þ

where pMix is the CNN predicted probability of the
MixAstroLine class. Figure 5 shows the false alarm
probabilities with various values of pth. In order to achieve
a false alarm probability that is less than 10% for data
contaminated by line noise, we need to set pth ¼ 1–10−6.
This detection threshold is used in the rest of the paper.
Figure 6 shows the detection efficiency of the

MixAstroLine signals. Comparing to the case where
the line noise is absent, the efficiency is degraded because
of the line noise. We estimate the sensitivity depth

FIG. 4. Classification results for test data containing only line
noise with Gaussian noise. For any amplitude, the fraction of
correctly classified events is about 60% (green diamonds). The
misclassification as the MixAstroLine class (red triangles)
occurs for 40% of test data. The number of misclassifications as
the Null class (blue circles) and the Astrophysical class
(orange squares) is almost zero. Their markers are overlapped.

FIG. 5. False alarm probabilities as a function of the threshold
pth. The horizontal axis corresponds to pth. The vertical axis
shows the fraction of LineNoise events which are misclassi-
fied as MixAstroLine. The dashed lines and the solid lines,
respectively, present the cases of log10 ĥ

line
0 ¼ 0.0 and 1.0. Black

horizontal line corresponds to the misclassification probability of
10%. If we set pth ¼ 1–10−6, we can suppress the false alarm
probability less than 10%.

FIG. 6. Detection probabilities of an astrophysical signal coex-
isting with line noise. The horizontal and vertical axes show the
normalized amplitudes of astrophysical signals and line noise,
respectively. In this figure, we set the threshold pth ¼ 1–10−6. In
most regions, the detection probabilities are less than 50%. The
maximumdetection probability is 96.1% at ðlog10 ĥ0; log10 ĥline0 Þ ¼
ð−0.5; 0.0Þ.

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-11



D95% ≃ 3.62 for log10ĥ
line
0 ¼ 0.0; ð4:4Þ

which is only ∼8.2% of that in the absence of the line noise
[see Eq. (4.2)].
Realistic gravitational-wave sources naturally have

intrinsic frequency evolution as they are modeled in
Eq. (2.2). Therefore, we test the four-class CNN also for
signals with nonzero _f. Different datasets are generated,
each with the fixed _f: _f ¼ −10−13, −10−12, −10−11,
−10−10, and −10−9 Hz= sec. For each _f, we prepare
2000 test data and evaluate the detection probability, and
show the classification results in Fig. 7. For the data with
j _fj smaller than 10−12 Hz= sec, the CNN’s performance is
not much degraded. Especially for _f ¼ −10−13 Hz= sec,
the detection probability is comparable to that of the _f ¼ 0
case for all amplitudes. On the other hand, the performance
becomes worse as the frequency derivative exceeds
j _fj ¼ 10−11 Hz= sec. It can be understood as follows: As
explained in Sec. II, the input data should contain the signal
power with a SFT frequency bin. With nonzero _f, however,
the frequency track might cross a number of frequency
bins, spreading the signal power over multiple frequency
bins. We therefore expect that signals with higher _f cannot
be detected as efficiently by the CNN as those with lower _f.
Quantitatively, the frequency width of a bin is

Δf ¼ 1

Tseg
≃ 4.88 × 10−4 Hz: ð4:5Þ

The frequency change from the initial time across Tdur can
be estimated as

δf ∼ Tdur
_f ∼ 10−4 Hz

�
_f

10−11 Hz= sec

�
: ð4:6Þ

Roughly speaking, if δf ≲ Δf, the signal power is still
contained in one frequency bin. Thus, we expect that
the CNN is applicable with comparable accuracy to
that achieved in the _f ¼ 0 case. On the other hand, if
Δf ≲ δf, the signal power dissipates into several frequency
bins. Thus, the CNN’s performance degrades when
j _fj≳ 10−11 Hz= sec.

V. COMPUTATIONAL COST

In this section, we evaluate the computational cost of
each processing step. First, we estimate the computational
cost of the preprocess. The most expensive part of the
preprocess is the SFT for making the spectrogram and the
Fourier transform to obtain a set of vectors fSakg. We
assume that the cost of the time resampling is negligible
compared to the SFT and the Fourier transform. For each
grid point, we perform the SFT and the Fourier transform.
The computational cost of taking SFTs can be estimated by

N SFT ¼ Nseg · 5fsTseg log2½fsTseg�: ð5:1Þ

Here, we evaluate the number of data points contained in a
SFT segment as fsTseg. Using the values listed in Table I,
we estimate

N SFT ≃ 1.80 × 1012 ð5:2Þ

in the unit of the number of floating point operations.
Similarly, the computational cost of the Fourier transform
for achieving a set of vectors fSakg can be estimated as

N Fourier ¼ Nbinð5Nseg log2NsegÞ
≃ 1.09 × 1011: ð5:3Þ

Combining Eqs. (5.1) and (5.3), we obtain the computa-
tional cost of the preprocess,

N preprocess ¼ NgridðN SFT þN FourierÞ
≃ 1.07 × 1019: ð5:4Þ

We evaluate the computational time of the CNN by
extrapolating the measured value for a small subset con-
sisting of the test data. With a single GPU (GTX1080Ti),
we measure the computational time to process 105 data five
times. We obtained their averaged time of 8.8742 sec and
the standard deviation of 0.0237 sec. The total number
of the vectors fSakg to be processed is

Nvec ¼ Ngrid · Nbin ¼ 1.15 × 1012: ð5:5Þ

FIG. 7. Detection probability of the signals with nonzero
frequency derivatives. For _f ¼ −1.0 × 10−13 Hz= sec, which is
shown by orange squares, the sensitivity is not degraded
compared with the _f ¼ 0 case (blue circles). The detection
probability starts to diminish from _f ¼ −1.0 × 10−12 Hz= sec
(green up triangles). For j _fj ≲ 10−11 Hz= sec, the sensitivity is
significantly reduced.

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-12



Therefore, the estimated time to process all vectors is

TCNN ≃ 1.02 × 108 ½sec�: ð5:6Þ

Although this is longer than the total duration Tdur by an
order of magnitude, we expect this can be suppressed to a
negligible level by taking into account the development of
hardware and the use of multiple GPUs in parallel [64].
In Table VII, we compare the computational cost, in

units of core hours, of our method to that from the standard
all-sky search pipelines employed in LIGO/Virgo’s second
observing run [25]. As in [25], we assume the hardware
Intel E5-2670 that has a clock frequency of 2.6 GHz and
carries out eight floating-point operations per clock. The
computational speed is 20.8 GFlops per core. Using
Eq. (5.4), we estimate the computational time by

N preprocess

20.8 ½GFlops� ≃ 1.4 × 105 ½corehr�: ð5:7Þ

It shows that our method is computationally more efficient
by 1 or 2 orders of magnitude than the standard methods in
which deep learning is not employed. Again, we stress that
the parameter region and the duration of the strain data are
different depending on the method.
Before ending this section, we mention how the com-

putational cost of the preprocess depends on the various
parameters governing our method. We focus on three
parameters: the phase resolution δΦ�, the duration of the
SFT segment Tseg, and the upper bound of the frequency
band we explore, fup. Figure 8 shows the computational
cost of the preprocess with various values of δΦ�, Tseg, and
fup. To create this figure, we assume that the sampling
frequency is set to fs ¼ 10fup. From this figure, we need to
choose a low fup, a short Tseg, and a high δΦ� in order to
reduce the computational cost of the preprocess. In the
standard methods, fup is usually set to ∼103 Hz. We can
make our method applicable for such frequency bands by

choosing Tseg and δΦ� appropriately. If we want to
suppress the computational time to 107 core hour to
explore the frequency band up to 103 Hz, we should set
Tseg ≃ 100 sec or 400 sec for δΦ� ¼ 0.01 and 0.02,
respectively. Changing the parameters affects not only
the computational cost but also the performance of our
CNN. It is important to study the dependence of the
performance, but we leave it as future work.

VI. CONCLUSION

CGWs from asymmetrically rotating neutron stars or
depleting boson clouds around rotating black holes are
exciting targets of the ground-based interferometers.
However, there are two main difficulties for all-sky
searches of CGWs: (1) the computational cost due to the
Doppler effect and (2) the presence of non-Gaussian line
noise. In this work, we study the use of CNNs for all-sky
searches when data are contaminated by line noise. We
train our CNN to classify data into four classes: only
Gaussian noise, astrophysical signals injected into
Gaussian noise, line noise and Gaussian noise, and an
astrophysical signal contaminated by line noise and
Gaussian noise. Our CNN safely discriminates the presence
and the absence of line noise. In the absence of a line noise,
the CNN gives a false alarm probability of 0.5% and can
detect an astrophysical signal with the amplitude of
log10 ĥ0 ≳ −1.64 with 95% detection probability. On the
other hand, if line noise exists in the data, the CNN’s false
alarm probability increases compared to the case in which
line noise is absent. To remedy it, we try to modify the
detection criterion. The sensitivity depth when a line is
present is estimated as D95% ≃ 3.62, with the false alarm

TABLE VII. Comparison of the computational time of the
standard methods and our method. We estimate the core hour
with the spec of Intel E5-2670; the clock frequency is 2.6 GHz,
eight operations per clock leading to the computational speed of
20.8 GFlops per core. This computational time includes only
floating-point operations. We take these values from [25], except
that the computational time of SOAP is taken from [54]. We do
not consider input/output (I/O) time.

Method Corehour

Frequency Hough 9 × 106

Sky Hough 2.5 × 106

Time-domain F -statistic 2.4 × 107

SOAP 1–2 × 102

Our method 1.4 × 105 FIG. 8. Computational cost of preprocessing with various
parameter values. The horizontal axis is fup, and the vertical
axis is Tseg. Blue lines and orange lines show the case of δΦ� ¼
0.01 and 0.02, respectively. Solid, dashed, and dotted lines,
respectively, correspond to the contour lines of 105, 106, and 107

core hour. We assume a CPU Intel E5-2670 with a computational
speed of 20.8 GFlops. The black dot shows our current choice of
parameters fup ¼ 100 Hz and Tseg ¼ 2048 sec.

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-13



probability of 10%. In terms of the computational time of
this pipeline, the preprocess requires Oð1019Þ floating-
point operations. It is more efficient than the standard
methods, though we put the difference of the parameter
range and the strain duration aside. Also, the estimated
computational time for candidate selection by the CNN is
Oð108Þ sec with a single GPU. Improving the hardware
and using multiple GPUs would enable us to use CNNs in a
real search.
Accounting for the conditions we neglect is necessary to

apply our method to real data. In this work, we ignore the
nonstationarity of detector noise, the gaps in the strain data,
and the use of multiple detectors. As for line noise, we do
not treat the finite coherence time and the comblike pattern.
Also, we need to simulate CGWs with larger _f and train
CNNs to specifically handle this case. We show that our
CNN is sensitive to astrophysical signals with j _fj≲
10−12 Hz= sec even if it is trained with monochromatic
waveforms. On the other hand, standard all-sky search
pipelines are sensitive to a signal with j _fj≲ 10−8 Hz= sec.
Considering the effect of _f would also be useful to
discriminate a line from an astrophysical signal because
they have different frequency evolutions. We will extend
our method to handle signals with j _fj≳ 10−12 Hz= sec in
the future.
Our method includes various parameters to be optimized.

The duration of a SFT segment Tseg is one of the crucial
parameters governing the sensitivity. If we choose a short
Tseg, the frequency resolution becomes coarse, leading to
signal power being contained in one frequency bin even for
large _f. At the same time, line noise will also stay within a
frequency bin. Thus, the confusion with line noise could be
serious. On the other hand, if we use a long Tseg, the
confusion with a line noise will be suppressed; however, the
range of _f in which our method can be applied will become
even more limited. To manage the trade-off, we need to try
our method with various values of Tseg.
Another parameter is the residual phase δΦ�. If it is

small, the signal after the preprocessing step can become
large, resulting in better sensitivity. But, the number of
the grid points in the sky, and therefore the computational
cost, also increase. We should determine δΦ� by consid-
ering the trade-off between the computational cost and the
sensitivity. Optimizing these parameters will be done in
future works.
Our systematic studies of the efficiency of CNNs to

detect (quasi) monochromatic CGWs in the presence of line
noise are the first of their kind. They represent a significant
step toward better understanding and applying CNNs in a
real all-sky search. As we show, CNNs can be used to
greatly reduce the computational cost compared to existing
all-sky search methods, while maintaining impressive
sensitivity toward CGW signals in both the presence and
absence of line noise.

ACKNOWLEDGMENTS

We thank Chris Messenger for carefully checking
our draft and giving us valuable comments. We also
thank Marco Cavaglia and Rodrigo Tenorio for giving
us useful comments. This work was supported by JSPS
KAKENHI Grants No. JP17H06358 and No. JP17H06357,
A01: Testing gravity theories using gravitational waves,
as a part of the innovative research area, “Gravitational
wave physics and astronomy: Genesis,” and Grant
No. JP20K03928. A. L. M. is a beneficiary of a FSR
Incoming Postdoctoral Fellowship. This material is based
upon work supported by NSF’s LIGO Laboratory which
is a major facility fully funded by the National Science
Foundation.

APPENDIX A: NEURAL NETWORK

An artificial neural network (ANN) is widely used in
big-data analysis, e.g., image recognition and natural
language processing (see [59] as a textbook). An elemen-
tary unit of an ANN is called a neuron that is inspired by
neural cells in human brains. A neuron can take several
values as inputs from other neurons, carry out a linear
transformation, and return outputs after a nonlinear trans-
formation called an activation function. A number of
neurons are stacked into a layer, and an ANN has several
layers stacked. The input data are fed into the first layer,
and the output of the first layer is passed to the second
layer, and so on. As a whole, the input data flow through an
ANN to the last layer (the output layer). Usually, the
information goes through in one direction from input to
output, called forward calculation. Each layer transforms an
input vector x ∈ RNin to an output vector o ∈ RNout by the
transformation defined by

zi ¼
XNin

j¼1

wijxj þ bi; oi ¼ gðziÞ: ðA1Þ

Here, wij and bi are called weight and bias, respectively.
The function g is an activation function. In this work, we
use ReLU [65] defined by

gðxÞ ¼
	
x x ≥ 0;

0 x < 0:
ðA2Þ

The transformation given by Eq. (A1) is often named a
fully connected layer because all elements of an input
vector affect every element of an output vector. It can be
schematically pictured by the neurons connected by
directed arrows (see Fig. 9). The number of parameters
in Eq. (A1) is determined by

Nin × Nout þ Nout; ðA3Þ

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-14



where the first and second terms correspond to the size of
the weight and the bias, respectively.
As stated previously, all elements in an input vector x

connect to every element in an output vector z in a fully
connected layer. Fukushima [66] proposed the neocogni-
tron that has a structure in which each element of an output
vector connects to a local portion of the input vector. It can
be written as

zi ¼
XK
j¼1

wjxsði−1Þþj−1 þ bi: ðA4Þ

Here, the weight w is often referred to as a filter, andK is the
size of the filter. In the transformation (A4), a small region of
the input vector is convolved with a filter. The filter is
gradually shifted by the width of s to cover the input vector.
LeCun [67] shows that the connection given by Eq. (A4) is
advantageous for extracting local patterns characterizing the
input vector. Nowadays, the structure given by Eq. (A4) is
referred to as a convolutional layer and is widely applied
especially to image recognition tasks. Another property of
convolutional layers is weight sharing. In a fully connected
layer (A1), the number of weights contained in a layer is
given by multiplication of the input dimension and the
output dimension. It can become a tremendous number of
parameters and easily stall the training. Sharing the weights
between every output element can significantly reduce the
number of tunable parameters and make training an ANN
faster.
An input vector of a convolutional layer can be a two-

dimensional tensor denoted by xai ∈ RCin×Nin. The index i
shows an array of the data. Another index a represents a
channel which corresponds to the different types of input
data. For example, a color image can be characterized by
three integers corresponding to the primary colors, i.e., red,
green, and blue. A color picture can be represented by three
datasets that have the same size as the picture and whose
values determine each color’s strength. The number of
channels of an input is denoted byCin. The weights can also
be shared among different channels. Taking into account

the channels, we can write the process carried out in a
convolutional layer as

zai ¼
XCin

b¼1

XK
j¼1

wabjxb;sði−1Þþj−1 þ ba: ðA5Þ

The weights in a convolutional layer can be represented by
three-dimensional tensors, wabj ∈ RCin×Cout×K . The bias
ba ∈ RCout is a constant for each channel. The number
of parameters can be obtained by

Cin × Cout × K þ Cout: ðA6Þ

We explained that, by virtue of the weight sharing, a
convolutional layer is cheaper than a fully connected layer in
terms of the number of tunable parameters. There is another
way to contract the number of data points, which is called
pooling. Similar to convolutional layers, pooling reduces the
size of an input vector with a particular transformation. In
this work, we use a max pooling defined by

zai ¼ max
j¼1;2;…;K

xa;Kði−1Þþj: ðA7Þ

Typically, convolutional layers and pooling layers
extract the essential features of the input data. After that,
the following fully connected layers exploit the extracted
features to give predictions. A neural network having
convolutional layers is often called a CNN.
In our work, we apply a CNN to detect the CGWs.

Detection of astrophysical signals is a typical classifica-
tion problem where the classifier predicts the class to
which given data likely belong. In the beginning, all
tunable parameters in the neural network are initialized
by assigning random values. In this state, the neural
network cannot give any reliable predictions. Therefore,
we need to tune all weights of the neural network
(training). Here we can generate simulated training data
from the signal and noise models described in Sec. II.
Each simulation can be labeled by a class based on the
model (e.g., Gaussian noise only, astrophysical signal
injected into Gaussian noise). In other words, we a priori
know the class where data should be classified. In
general, the training with a dataset containing pairs of
an input and a target value is named supervised learning.
In supervised learning, the neural network is trained so
that it can accurately reproduce the target data corre-
sponding to the input data.
The output of the neural network should be appropriate

for the problem we try to solve. For classification, the
softmax transformation defined by

pi ≔
exp½xi�PNclass

j¼1 exp½xj�
ðA8Þ

Input
Latent

Output

FIG. 9. Schematic picture of an artificial neural network. It
consists of two fully connected layers.

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-15



is widely used. Here, Nclass is the number of classes. Each
element pi of the output means the probability that given
data belong to the ith class. The one-hot representation
(1-of-K representation) is a standard representation of the
target vector for the classification problem. A target vector t
represents a vector living in f0; 1gNclass . If input data belong
to the ith classes, only the ith components of the target
vector take a value 1. For example, if the data belong to the
first class, the target vector is represented by

t ¼ ð1; 0; 0;…; 0Þ: ðA9Þ

The vector represented as Eq. (A9) can also be interpreted
in terms of the probability. That is, each element of a vector
t gives a probability that the input data are in each class. For
the training data, we know the class to which the data
belong. Therefore, it is reasonable to assign a probability
unity for the true class and zero for the rest.
In the training, the neural network’s predictions and the

target values need to be compared. The use of a loss function
provides us with a quantitative comparison between the
predictions and the targets. Depending on the problem we try
to solve, we need to carefully choose a loss function. The
cross entropy loss gives a distance between two probabil-
ities. For a discrete probability, it is defined by

Lðp; tÞ ≔ −
XNclass

i¼1

ti lnpi: ðA10Þ

The weights of the neural network are optimized so that the
expected value of the loss function over the dataset is
minimized. We cannot analytically optimize the weights;
therefore, we need an iterative scheme to obtain better
weights. Schematically, an optimization scheme can be
written as

w0 ¼ w − η
∂L
∂w

; ðA11Þ

where w is a weight in the neural network, w0 is an updated
value of the weight, and η is the so-called learning rate and
governs how sensitive the updated amount is to the gradients
of the loss function. During the training, the neural network
is gradually optimized by repeating a set of processes to
(1) feed input data to the ANN, (2) return the prediction,
(3) evaluate the loss function and its gradients, and (4) update
the weights.
Because of a large number of tunable parameters, neural

networks sometimes learn to only fit the training data. If
that happens, neural networks do not have high accuracy on
new data. Such a phenomenon is called overfitting. To
check whether overfitting occurs, we prepare another
dataset (validation data) and monitor the loss of the
validation data in each epoch. If the neural network overfits
the training data, the validation loss gradually deviates from

the training loss and can increase. Figure 10 shows the
training and validation loss as a function of the training
epoch. We find that the loss in our CNN tends to converge
well, and the validation loss follows the training loss. Thus,
overfitting did not happen during training, and we use the
last state of the CNN for testing.

APPENDIX B: FINE-TUNING OF CNN

In general, it takes much time to train a neural network
from scratch. Therefore, as a first step, a neural network is
trained for a more manageable problem than the one we try
to solve finally. This step is called pretraining. Then, a
pretrained neural network is optimized for the problem we
want to solve. The technique optimizing a neural network
in a hierarchical manner is called fine-tuning. In this
appendix, our CNN is fine-tuned, including _f.

FIG. 10. Training curve of CNNs of four classes. Orange line
shows training loss. Blue dots indicate validate losses. The
validation loss has a larger variance than the training loss. This
is because of the difference of the number of the training data and
the validation data.

FIG. 11. Detection probabilities for astrophysical signals
with various values of _f. We set _f from −1.0 × 10−13 to
−1.0 × 10−9 Hz= sec.

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-16



As we explained, for j _fj≳ 10−11 Hz= sec, the signal
power would dissipate to several frequency bins.
Therefore, we guess that it is useless to include the
signal with j _fj≳ 10−11 Hz= sec in the training data.
The dataset is generated with the same setup as shown
in Sec. III except that _f is randomly sampled from
10−14 ≤ j _fj ≤ 10−11 Hz= sec. We use the trained CNN as
an initial state, set the learning rate to 10−4, and update

the weights of the fully connected layers for 150 epochs
with the frozen convolutional layers. Figure 11 shows
the detection probabilities for signals with various _f.
For j _fj ≤ 10−11 Hz= sec, the detection probabilities
get improved by the fine-tune. It does not improve for
j _fj ¼ 10−9 Hz= sec, but it is a predictable result because
the dataset for fine-tuning does not include the signal
with _f ¼ 109 Hz= sec.

[1] P. D. Lasky, Pub. Astron. Soc. Aust. 32, e034 (2015).
[2] K. Glampedakis and L. Gualtieri, Astrophysics and Space

Science Library 457, 673 (2018).
[3] K. Riles, Mod. Phys. Lett. A 32, 1730035 (2017).
[4] M. Sieniawska and M. Bejger, Universe 5, 217 (2019).
[5] R. Tenorio, D. Keitel, and A. M. Sintes, Universe 7, 474

(2021).
[6] D. R. Lorimer and M. Kramer, Handbook of Pulsar

Astronomy (Cambridge University Press, Cambridge,
2004), Vol. 4.

[7] http://www.atnf.csiro. au/people/pulsar/psrcat/.
[8] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs,

Astron. J. 129, 1993 (2005).
[9] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[10] R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1

(2015).
[11] S. D’Antonio et al., Phys. Rev. D 98, 103017 (2018).
[12] M. Isi, L. Sun, R. Brito, and A. Melatos, Phys. Rev. D 99,

084042 (2019).
[13] C. Palomba et al., Phys. Rev. Lett. 123, 171101 (2019).
[14] A. L. Miller, S. Clesse, F. De Lillo, G. Bruno, A. Depasse,

and A. Tanasijczuk, Phys. Dark Universe 32, 100836
(2021).

[15] A. L. Miller, N. Aggarwal, S. Clesse, and F. De Lillo, Phys.
Rev. D 105, 062008 (2022).

[16] O. Pujolas, V. Vaskonen, and H. Veermäe, Phys. Rev. D 104,
083521 (2021).

[17] H. Guo and A. Miller, arXiv:2205.10359.
[18] P. Jaranowski, A. Krolak, and B. F. Schutz, Phys. Rev. D 58,

063001 (1998).
[19] P. Astone, A. Colla, S. D’Antonio, S. Frasca, and C.

Palomba, Phys. Rev. D 90, 042002 (2014).
[20] B. Krishnan, A. M. Sintes, M. A. Papa, B. F. Schutz,

S. Frasca, and C. Palomba, Phys. Rev. D 70, 082001
(2004).

[21] J. Bayley, G. Woan, and C. Messenger, Phys. Rev. D 100,
023006 (2019).

[22] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 96, 062002 (2017).

[23] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 96, 122004 (2017).

[24] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 97, 102003 (2018).

[25] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 100, 024004 (2019).

[26] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. D 103, 064017 (2021).

[27] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. D 105, 082005 (2022).

[28] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), Phys. Rev. D 105, 102001 (2022).

[29] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), Astrophys. J. 932, 133 (2022).

[30] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), arXiv:2201.00697.

[31] P. B. Covas et al. (LSC Collaboration), Phys. Rev. D 97,
082002 (2018).

[32] E. Cuoco et al., Mach. Learn. Sci. Technol. 2, 011002
(2021).

[33] D. George and E. A. Huerta, Phys. Rev. D 97, 044039
(2018).

[34] D. George and E. A. Huerta, Phys. Lett. B 778, 64
(2018).

[35] R. E. Colgan, K. R. Corley, Y. Lau, I. Bartos, J. N. Wright,
Z. Marka, and S. Marka, Phys. Rev. D 101, 102003 (2020).

[36] S. Schmidt, M. Breschi, R. Gamba, G. Pagano, P. Rettegno,
G. Riemenschneider, S. Bernuzzi, A. Nagar, and W. Del
Pozzo, Phys. Rev. D 103, 043020 (2021).

[37] H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and R.
Murray-Smith, Nat. Phys. 18, 112 (2022).

[38] A. J. K. Chua and M. Vallisneri, Phys. Rev. Lett. 124,
041102 (2020).

[39] S. R. Green, C. Simpson, and J. Gair, Phys. Rev. D 102,
104057 (2020).

[40] M. Dax, S. R. Green, J. Gair, J. H. Macke, A. Buonanno,
and B. Schölkopf, Phys. Rev. Lett. 127, 241103 (2021).

[41] H.-S. Kuo and F.-L. Lin, Phys. Rev. D 105, 044016 (2022).
[42] H.Nakano,T.Narikawa,K.-i.Oohara,K.Sakai,H.-a. Shinkai,

H. Takahashi, T. Tanaka, N. Uchikata, S. Yamamoto, and T. S.
Yamamoto, Phys. Rev. D 99, 124032 (2019).

[43] H. Shen, E. A. Huerta, E. O’Shea, P. Kumar, and Z. Zhao,
Mach. Learn. Sci. Technol. 3, 015007 (2022).

[44] T. S. Yamamoto and T. Tanaka, arXiv:2002.12095.
[45] S. Bhagwat and C. Pacilio, Phys. Rev. D 104, 024030

(2021).
[46] A. L. Miller et al., Phys. Rev. D 100, 062005 (2019).
[47] A. Miller et al., Phys. Rev. D 98, 102004 (2018).

ASSESSING THE IMPACT OF NON-GAUSSIAN NOISE ON … PHYS. REV. D 106, 024025 (2022)

024025-17

https://doi.org/10.1017/pasa.2015.35
https://doi.org/10.1007/978-3-319-97616-7
https://doi.org/10.1007/978-3-319-97616-7
https://doi.org/10.1142/S021773231730035X
https://doi.org/10.3390/universe5110217
https://doi.org/10.3390/universe7120474
https://doi.org/10.3390/universe7120474
http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/
https://doi.org/10.1086/428488
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1103/PhysRevD.98.103017
https://doi.org/10.1103/PhysRevD.99.084042
https://doi.org/10.1103/PhysRevD.99.084042
https://doi.org/10.1103/PhysRevLett.123.171101
https://doi.org/10.1016/j.dark.2021.100836
https://doi.org/10.1016/j.dark.2021.100836
https://doi.org/10.1103/PhysRevD.105.062008
https://doi.org/10.1103/PhysRevD.105.062008
https://doi.org/10.1103/PhysRevD.104.083521
https://doi.org/10.1103/PhysRevD.104.083521
https://arXiv.org/abs/2205.10359
https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1103/PhysRevD.90.042002
https://doi.org/10.1103/PhysRevD.70.082001
https://doi.org/10.1103/PhysRevD.70.082001
https://doi.org/10.1103/PhysRevD.100.023006
https://doi.org/10.1103/PhysRevD.100.023006
https://doi.org/10.1103/PhysRevD.96.062002
https://doi.org/10.1103/PhysRevD.96.122004
https://doi.org/10.1103/PhysRevD.97.102003
https://doi.org/10.1103/PhysRevD.100.024004
https://doi.org/10.1103/PhysRevD.103.064017
https://doi.org/10.1103/PhysRevD.105.082005
https://doi.org/10.1103/PhysRevD.105.102001
https://doi.org/10.3847/1538-4357/ac6ad0
https://arXiv.org/abs/2201.00697
https://doi.org/10.1103/PhysRevD.97.082002
https://doi.org/10.1103/PhysRevD.97.082002
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1103/PhysRevD.101.102003
https://doi.org/10.1103/PhysRevD.103.043020
https://doi.org/10.1038/s41567-021-01425-7
https://doi.org/10.1103/PhysRevLett.124.041102
https://doi.org/10.1103/PhysRevLett.124.041102
https://doi.org/10.1103/PhysRevD.102.104057
https://doi.org/10.1103/PhysRevD.102.104057
https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevD.105.044016
https://doi.org/10.1103/PhysRevD.99.124032
https://doi.org/10.1088/2632-2153/ac3843
https://arXiv.org/abs/2002.12095
https://doi.org/10.1103/PhysRevD.104.024030
https://doi.org/10.1103/PhysRevD.104.024030
https://doi.org/10.1103/PhysRevD.100.062005
https://doi.org/10.1103/PhysRevD.98.102004


[48] G. Morrás, J. García-Bellido, and S. Nesseris, Phys. Dark
Universe 35, 100932 (2022).

[49] D. Chatterjee, S. Ghosh, P. R. Brady, S. J. Kapadia, A. L.
Miller, S. Nissanke, and F. Pannarale, Astrophys. J. 896, 54
(2020).

[50] A. Mytidis, A. A. Panagopoulos, O. P. Panagopoulos, A.
Miller, and B. Whiting, Phys. Rev. D 99, 024024 (2019).

[51] C. Dreissigacker, R. Sharma, C. Messenger, R. Zhao, and R.
Prix, Phys. Rev. D 100, 044009 (2019).

[52] F. Morawski, M. Bejger, and P. Ciecieląg, Mach. Learn. Sci.
Technol. 1, 025016 (2020).

[53] B. Beheshtipour and M. A. Papa, Phys. Rev. D 101, 064009
(2020).

[54] J. Bayley, C. Messenger, and G. Woan, Phys. Rev. D 102,
083024 (2020).

[55] S. Walsh et al., Phys. Rev. D 94, 124010 (2016).
[56] T. S. Yamamoto and T. Tanaka, Phys. Rev. D 103, 084049

(2021).
[57] P. Jaranowski and A. Krolak, Analysis of Gravitational-

Wave Data (Cambridge University Press, Cambridge,
England, 2009).

[58] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 074001 (2015).

[59] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016).

[60] H. Nakano, H. Takahashi, H. Tagoshi, and M. Sasaki,
Phys. Rev. D 68, 102003 (2003).

[61] The Tukey window would reduce both the powers of signal
and noise. Therefore, Eq. (2.43) overestimates the variance
of noise. Because the CGW signal and the line noise are
generated with considering the Tukey window, the SNR of
simulated data could be underestimated. In this sense, our
estimation of detection efficiency is conservative.

[62] D. P. Kingma and J. Ba, arXiv:1412.6980.
[63] A. Paszke et al., Advances in Neural Information Process-

ing Systems 32 (Curran Associates, Inc., 2019).
[64] Assuming the use of ten GPUs that are twice faster than the

GTX1080Ti that is used in this work, we have computa-
tional time TCNN ≃ 5.0 × 106 ½sec�.

[65] V. Nair and G. E. Hinton, in Proceedings of the 27th ICML
(Omnipress, Madison, WI, 2010), pp. 807–814.

[66] K. Fukushima, Biol. Cybern. 36, 193 (1980).
[67] Y. LeCun, in Connectionism in Perspective, edited by

R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels (Elsevier,
Zurich, 1989). An extended version was published as a
technical report of the University of Toronto.

YAMAMOTO, MILLER, SIENIAWSKA, and TANAKA PHYS. REV. D 106, 024025 (2022)

024025-18

https://doi.org/10.1016/j.dark.2021.100932
https://doi.org/10.1016/j.dark.2021.100932
https://doi.org/10.3847/1538-4357/ab8dbe
https://doi.org/10.3847/1538-4357/ab8dbe
https://doi.org/10.1103/PhysRevD.99.024024
https://doi.org/10.1103/PhysRevD.100.044009
https://doi.org/10.1088/2632-2153/ab86c7
https://doi.org/10.1088/2632-2153/ab86c7
https://doi.org/10.1103/PhysRevD.101.064009
https://doi.org/10.1103/PhysRevD.101.064009
https://doi.org/10.1103/PhysRevD.102.083024
https://doi.org/10.1103/PhysRevD.102.083024
https://doi.org/10.1103/PhysRevD.94.124010
https://doi.org/10.1103/PhysRevD.103.084049
https://doi.org/10.1103/PhysRevD.103.084049
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRevD.68.102003
https://arXiv.org/abs/1412.6980
https://doi.org/10.1007/BF00344251

