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We calculate the self-force acting on a charged particle on a circular geodesic orbit in the equatorial plane
of a rotating black hole. We show by direct calculation that the dissipative self-force balances with the sum of
the flux radiated to infinity and through the black hole horizon. Prograde orbits are found to stimulate black
hole superradiance, though we confirm that the condition for floating orbits cannot be met. We calculate the
conservative component of the self-force by application of the mode sum regularization method, and we
present a selection of numerical results. We obtain the leading-order coefficients in post-Newtonian
expansions of the dissipative and conservative components of the self-force, using an analytical method and
numerical fitting, respectively. The self-force on the innermost stable circular orbits of the Kerr spacetime is
calculated, and comparisons are drawn between the electromagnetic and gravitational self forces.
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I. INTRODUCTION

The first detection of gravitational waves in 2015
heralded the arrival of gravitational wave astronomy as
an observational science [1]. Two years on, the near-
coincident detection of gravitational waves (GWs) and
gamma rays from a binary neutron-star merger confirmed
that GWs travel at the speed of light [2]. This dual detection
highlighted the potential of multimessenger astronomy, as
the host galaxy was quickly located by telescopes working
in the electromagnetic spectrum, enabling a new measure-
ment of the expansion rate of the universe to be made,
that is, an independent determination of the Hubble param-
eter [3]. By 2021, ground-based detectors had reported
90 gravitational wave events, detailed in the transient
catalogues (GWTCs) 1, 2 and 3 [4]. With each doubling
of sensitivity, we can expect that number to increase by a
factor of approximately eight.
The mathematical modeling of compact binary inspirals,

and their gravitational wave signatures, has progressed
steadily over recent decades. Three leading approaches to
modeling the gravitational two-body problem give comple-
mentary information, namely, post-Newtonian expansions
[5], self-force calculations [6], and the simulations of
numerical relativity [7]. The essential inspiral process can
be understood from the leading-order term in the post-
Newtonian expansion. A pair of compact bodies of masses
M1 andM2, on quasicircular orbits about the center of mass,
will radiate gravitational waves predominantly in the

quadrupole mode (l ¼ 2) at twice the orbital frequency
[8,9]. Consequently, the binary system loses energy, and the
GW frequency increases with a characteristic chirp profile,

fðtÞ ≈ 5

8π

�
5GM
c3

�
−5=8

ðt0 − tÞ−3=8; ð1Þ

where f is the wave frequency, c is the speed of light, t0 is
the time of collision, and M ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5
is the chirp mass [10]. The spectrogram of the gravitational
wave signal from the binary neutron star inspiral was found
to track this chirp profile remarkably closely over the last
∼100 seconds before merger [11], despite the fact that,
formally, Eq. (1) arises only from the leading-order term of a
post-Newtonian expansion for the radiated flux [9].
A natural question arises: does the catalogue of GW

events from inspirals put strong constraints on beyond-GR
theories, such as Einstein-Maxwell-dilaton theory [12,13],
or dark matter scenarios featuring exotic charges [14]? A
more prosaic, but related, question is whether the compact
bodies could carry significant electromagnetic charges. In
both scenarios, the existence of a radiative dipole mode
(l ¼ 1) will, in principle, change the character of the
inspiral. However, numerical simulations [15] suggest
that the gravitational-wave chirps observed from compa-
rable mass binaries are compatible with non-negligible
charge-to-mass ratios (e.g., up to ∼0.3 for GW150914, for
example [15]).
In future decades, space-based observatories will detect

low-frequency gravitational waves from systems involving
supermassive black holes. A key target for LISA are so-
called extrememass-ratio inspirals (EMRIs) withM1 ≫ M2.
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The scenario in which the central black hole (M1) is charged
was recently investigated using black hole perturbation
theory [16,17]. In this work, we consider the complementary
case, in which the central black hole (M1) is uncharged, but
the orbiting body (M2) carries an electromagnetic charge q.
We shall approach this problem from the perspective that the
orbiting body experiences an electromagnetic self-force, at
order q2, that causes a radiation reaction upon its motion.
First, let us review the roots of this idea in the birth of
quantum theory.
It is well-known that classical field theory is unable

to satisfactorily account for the observed stability of
the hydrogen atom. In the “planetary” version of the
Rutherford atomic model [18], a pointlike electron orbits
the atomic nucleus. The centripetal acceleration of the
charged electron generates electromagnetic (EM) radia-
tion at the orbital frequency of ∼1015 Hz and, conse-
quently, a radiation-reaction force acts upon the electron,
causing the rapid collapse of the atom within 10−8 s.
Invoking the Abraham-Lorentz [19,20] force law,

F ¼ 2

3

e2

4πϵ0c3
_a; ð2Þ

nonrelativistic classical theory1 implies that a pointlike
electron on a quasicircular inspiral trajectory will generate
EM radiation with the following “chirp” profile [cf. Eq. (1)]

fðtÞ ≈ 1

4πα

ffiffiffiffiffi
c
a0

r
ðt0 − tÞ−1=2: ð3Þ

Here α is the fine-structure constant and a0 is the Bohr
radius (see Appendix A for a derivation).
There is no experimental support for collapsing atoms

and/or EM chirps, of course. To the contrary, experiments
with electric discharges from the 1850s onwards show that
atoms emit EM radiation at certain discrete frequencies
[22]. Tension between theory and experiment led to the
introduction of the Bohr-Rutherford atomic model [23],
and on to quantum theory itself. However, the idea of an
orbit driven by a radiation-reaction force has reemerged as a
useful concept on a very different scale in the universe.
In this article we consider the radiation-reaction process

for a charged particle orbiting a black hole of massM, rather
than a charged nucleus. We shall assume that the length-
scales of the particle, such as its Compton wavelength,
are substantially smaller than the curvature scale, so that
classical field theory provides an adequate framework. One
might expect that, since the gravitational force and the
Coulomb force both follow inverse square-laws in theweak-
field, the radiation reaction process will proceed in a broadly

similar fashion, producing a chirp frequency which scales
with ðt0 − tÞ−1=2 while v ≪ c and r ≫ GM=c2. However,
an important difference that cannot be overlooked is that the
spacetime of a black hole is curved, not flat.
The first expression for an EM self-force on a weakly

curved spacetime was obtained by DeWitt-Morette and
DeWitt [24] in 1964. The self-force on a particle of charge
q on a vacuum spacetime characterized by a Newtonian
potential ΦN ¼ GM=c2r ≪ 1 is given by

Fself ≈
q2

4πϵ0c3

�
2

3

dg
dt

þ GMc
r3

r̂

�
; ð4Þ

where g ¼ −c2∇ΦN is the Newtonian gravitational field.
The first term in parentheses in Eq. (4) is the standard
Abraham-Lorentz force, which leads to the dissipation of
orbital energy, and thus to an analogue of Eq. (3). The
second term is a conservative correction to the Newtonian
forcemg, which is not present in flat spacetime. Analogous
equations were obtained for scalar and gravitational self-
forces in weakly-curved spacetimes in Ref. [25].
To move beyond the Newtonian/weak-field context, we

must acknowledge several key differences between a point
mass in Newtonian theory and a black hole in general
relativity. First, there exists an innermost stable circular orbit
(ISCO), inside of which circular orbits cannot be sustained.
Second, orbital velocities are sizable (v=c ∼ 0.4 at the
Schwarzschild ISCO), necessitating a fully relativistic
description. Third, the issue of regularization is more subtle
in a curved space-time, and Dirac’s time-reversal approach
(“half-advanced-minus-retarded”) breaks down and requires
modification [26–28].
The conservative component of the EM self-force leads to

a shift in the orbital energy and angular momentum, and to a
shift in the ISCO radius and frequency. The dissipative
component of the EM self-force leads to orbital decay, and
to the possibility of two interesting phenomena: floating
orbits, and synchrotron radiation. The possibility of floating
orbits—orbits which do not decay—arises due to super-
radiance, which allows a particle on a corotating orbit to
stimulate the release of energy and angular momentum from
a rotating black hole [29–31]. The possibility of synchrotron
radiation arises from the high velocities on ISCO orbits,
leading to the beaming of radiation in the direction of
motion [32,33].
In 1960, DeWitt and Brehme [26] derived an expression

for the self-force on a point electric charge (see Eq. (1.33)
in Ref. [34]) that consists of two parts: a local term which
depends on the external force and the local Ricci tensor
[35], and a tail integral, which encapsulates the effect of
radiation emitted at earlier times that reaches the particle
after interacting with the spacetime curvature. Thus, self-
force in curved spacetime is nonlocal in time, since it
depends on the past history of the motion of the particle, as
well as its current state.

1For a fully relativistic treatment, one would instead start
with the Abraham-Lorentz-Dirac equation [21]; but note that
v=c < 0.01 for a pointlike electron at the Bohr radius.
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Calculating the tail integral in practice is a technical
challenge (though see [36]); fortunately, there are equivalent
formulations available, as described in the review articles
[34,6] (see also Ref. [37]). Prominent among these is the
mode sum regularization (MSR) method introduced by
Barack and Ori [38], which has been applied by numerous
authors [39–48] for efficient and accurate calculations of the
self-force. Schematically, a regularized self-force F reg

μ is

obtained by subtracting regularization parameters F ½−1�
μ ,

F ½0�
μ , etc., from the l modes of a “bare” force:

F reg
μ ¼

X∞
l¼0

ðF bare;l
μ − F ½−1�

μ ð2lþ 1Þ − F ½0�
μ −…Þ: ð5Þ

The regularization parameters are obtained from a local
analysis of the symmetric-singular Detweiler-Whiting field
[27]. Happily, regularization parameters for the EM field
have already been calculated for the Schwarzschild black
hole by Barack and Ori [49] and for the Kerr black hole by
Heffernan, Wardell and Ottewill [50–52], and we make use
of these here.
The MSR method is suited to cases where the field

equations allow for a complete decomposition into modes in
such a way as to reduce the problem to the solution of
ordinary differential equations. Fortunately, the field equa-
tions for an EM field on Kerr spacetime fall into this class,
as shown by Teukolsky [53–55], and the Faraday tensor Fμν

can be fully reconstructed from Maxwell scalars of spin-
weight �1 that satisfy second-order ODEs [56,57].
The article is organized as follows. Section II describes

the formulation of the calculation, covering the spacetime
and its geodesic orbits (II A); Maxwell’s equations in the
Teukolsky formalism (II B); the distributional source terms
due to the particle (II C); the mode solutions (II D) and the
special cases of static modes and the monopole (II E); the
dissipative self-force and fluxes (II F); and the conservative
self-force (II G) calculated by projecting from spin-
weighted spheroidal harmonics to spherical harmonics
(II G 2) and by mode sum regularization (II G 3).
Section III describes the implementation, addressing
numerical issues (III A) and the validation of the results
(III B). Results are given in Sec. IV for the dissipative (IVA)
and conservative (IV B) aspects of the self-force. We
conclude with a discussion in Sec. V.
We employ units in which the physical constants G, c

and 4πϵ0 are equal to unity. The spacetime signature
is f−þþþg.

II. FORMULATION

A. Spacetime and geodesic orbits

1. Spacetime

The Kerr solution with mass M and angular momentum
J ¼ aM expressed in Boyer-Lindquist coordinates
ft; r; θ;ϕg has the line element

ds2 ≡ gμνdxμdxν

¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

ððr2 þ a2Þdϕ − adtÞ2; ð6Þ

where Σ≡ r2 þ a2 cos2 θ and Δ≡ r2 − 2Mrþ a2.
When the condition a2 ≤ M2 is satisfied, the Kerr
solution corresponds to a black hole spacetime with two
distinct horizons: an internal (Cauchy) horizon at r− ¼
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and an external (event) horizon at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. The angular velocity of the event

horizon is [58]

Ωh ¼
a

2Mrþ
: ð7Þ

The inverse metric gμν can be written in terms of a null
basis flμ; nμ; mμ; m̄μg, where the overline denotes the
complex conjugate, as

gμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ ð8Þ

¼ Δr

Σ
lðμþ lνÞ− þ 1

Σ
mðμ

þmνÞ
− : ð9Þ

Here we employ the Kinnersley tetrad [59],

lμ¼ lμþ; nμ¼−
Δr

2Σ
lμ−; mμ¼ 1ffiffiffi

2
p ðrþ iacosθÞm

μ
þ; ð10Þ

written in terms of an non-normalized null basis

lμ� ≡ ½�ðr2 þ a2Þ=Δ; 1; 0;�a=Δ�;
mμ

� ≡ ½�ia sin θ; 0; 1;�i csc θ� ¼ m̄μ∓: ð11Þ

The legs lμ� are aligned with the two principal null
directions of the spacetime. The inner products of the
tetrad lμ� and mμ

� are

gμνl
μ
þlν− ¼ 2Σ

Δ
; gμνm

μ
þmν

− ¼ 2Σ; ð12Þ

with all others zero.

2. Circular equatorial geodesic orbits

Let xμpðτÞ denote the particle’s worldline, with tangent

vector uμ ≡ dxμp
dτ satisfying gμνuμuν ¼ −1. In the absence of

forces xμpðτÞ is a geodesic, satisfying uν∇νuμ ¼ 0.
Geodesic orbits on the Kerr spacetime are characterized
by three constants of motion: energy E ¼ −uμξ

μ
ðtÞ, azimu-

thal angular momentum L ¼ uμξ
μ
ðϕÞ and Carter constant

Q ¼ Qμνuμuν, where ξμðtÞ ¼ ð∂tÞμ and ξμðϕÞ ¼ ð∂ϕÞμ are
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Killing vectors and Qμν is the Killing tensor. For a
circular orbit in the equatorial plane at Boyer-Lindquist
radius r0,

E¼ 1−2ν2þ ãν3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3ν2þ2ãν3

p ; L¼ r0ν
1−2ãν3þ ã2ν4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3ν2þ2ãν3

p ; Q¼0;

ð13Þ

where ã ¼ a=M and ν ¼ ffiffiffiffiffiffiffiffiffiffiffi
M=r0

p
. Explicitly, the equatorial

circular geodesic orbit has xμpðτÞ ¼ ½tðτÞ; r0; 0;ΩtðτÞ� and
uμ ¼ ut½1; 0; 0;Ω�, where

Ω ¼ ν3

Mð1þ ãν3Þ ; ut ¼ 1þ ãν3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3ν2 þ 2ãν3

p : ð14Þ

We adopt the convention [60] that L and Ω are always
positive and a > 0 (a < 0) for prograde (retrograde) orbits.
The innermost stable circular orbit (ISCO) is at the radius

risco=M ¼ 3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
ð15Þ

where Z1 ¼ 1þ ð1 − ã2Þ1=3½ð1þ ãÞ1=3 þ ð1 − ãÞ1=3� and
Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ã2 þ Z2

1

p
and the upper (lower) sign in Eq. (15)

corresponds to prograde (retrograde) motion [61,62].

B. Maxwell’s equations and the Teukolsky formalism

The electromagnetic field equations in their standard
covariant form are

∇νFμν ¼ 4πJμ; ∇½μFνσ� ¼ 0; ð16Þ

where Fμν is the Faraday tensor and Jμ is a vector field
representing a four-current that is divergence-free
(∇μJμ ¼ 0). It is convenient to introduce a complexified
version of the Faraday tensor, Fμν ¼ Fμν − iF̃μν, where
˜ denotes the Hodge dual, i.e., F̃μν ¼ 1

2
εμνσγFσγ . The

complexified tensor is self-dual by virtue of the property
F̃μν ¼ iFμν. The field equations (16) then reduce to a single
tensorial equation

∇νFμν ¼ 4πJμ: ð17Þ

The six degrees of freedom of Fμν are encapsulated in
3 complex Maxwell scalars,

ϕ0≡Fμνlμmν; ϕ2≡Fμνm̄μnν; ϕ1≡1

2
Fμνðlμnν−mμm̄νÞ;

ð18Þ

and the self-dual Faraday tensor is specified in terms of
Maxwell scalars by

Fμν ¼ 4ðϕ0m̄½μnν� þϕ2l½μmν� þϕ1ðn½μlν� − m̄½μmν�ÞÞ: ð19Þ

For future reference, we introduce rescaled quantities:

Φþ1≡ϕ0¼
1ffiffiffi
2

p
ϱ
lμþmνþFμν Φ−1≡2ϱ̄2ϕ2¼

Δffiffiffi
2

p
ϱ
lμ−mν

−Fμν;

ð20Þ

where ϱ ¼ rþ ia cos θ.
Projecting (17) onto a null tetrad aligned with the

principal null directions leads to four equations in
Newman-Penrose form [54]

ðD − 2ρÞϕ1 − ðδ̄þ π − 2αÞϕ0 ¼ −2πJl; ð21aÞ

ðδ − 2τÞϕ1 − ðΔþ μ − 2γÞϕ0 ¼ −2πJm; ð21bÞ

ðD − ρþ 2ϵÞϕ2 − ðδ̄þ 2πÞϕ1 ¼ −2πJm̄; ð21cÞ

ðδ − τ þ 2βÞϕ2 − ðΔþ 2μÞϕ1 ¼ −2πJn; ð21dÞ

where D ¼ lμ∂μ, Δ ¼ nμ∂μ, δ ¼ mμ
∂μ are directional

derivatives, and Jl ¼ lμJμ, Jn ¼ nμJμ, etc., are projections
of the four-current, and α, ρ, τ, π etc. are the Newman-
Penrose coefficients associated with the null tetrad.
In 1973, Teukolsky [54] showed that one can obtain a

decoupled equation for ϕ0, and also for ϕ2, by exploiting a
commutation relation between first-order operators. After
inserting the Newman-Penrose quantities for the Kinnersley
tetrad, viz. κ ¼ σ ¼ ν ¼ λ ¼ 0,

ρ ¼ −1=ðr − ia cos θÞ; β ¼ −ρ� cot θ=2
ffiffiffi
2

p
;

π ¼ iaρ2 sin θ=
ffiffiffi
2

p
; α ¼ π − β�; ð22aÞ

τ ¼ −iaρρ� sin θ=
ffiffiffi
2

p
; μ ¼ ρ2ρ�Δr=2;

γ ¼ μþ 1

4
ρρ�Δ0; ϵ ¼ 0; ð22bÞ

one arrives at a master equation, Eq. (4.7) in Ref. [54]. This
may be cast into the form [63]

½ð∇μ � ΓμÞð∇μ � ΓμÞ − 4ψ2�Φ�1 ¼ 4πT�1; ð23Þ

where ∇μ denotes the covariant derivative on the Kerr
spacetime, and here the so-called “connection vector”
[63] is

Γμ ≡ 1

Σ

�
Mðr2 − a2Þ

Δ
− ðrþ ia cos θÞ; r −M; 0;

aðr −MÞ
Δ

þ i
cos θ
sin2θ

�
ð24Þ

and ψ2 ¼ M=ðr − ia cos θÞ3 is the only nonvanishing
Weyl scalar for the Kerr spacetime in the Kinnersley
tetrad. The source terms in Eq. (23) are
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Tþ1 ¼ J0 ≡ ðδ − β − ᾱ − 2τ þ π̄ÞJl
− ðD − ϵþ ϵ̄ − 2ρ − ρ̄ÞJm; ð25Þ

1

2ϱ̄2
T−1 ¼ J2 ≡ ðΔþ γ − γ̄ þ 2μþ μ̄ÞJm̄

− ðδ̄þ αþ β̄ þ 2π − τ̄ÞJn: ð26Þ

Remarkably, Eq. (23) admits separable solutions. The
solution can be constructed from a sum over modes, with
each mode in the form

Φ�1 ¼ R�1ðrÞS�1ðθÞe−iωtþimϕ: ð27Þ

In the vacuum case (Jμ ¼ 0), inserting Eq. (27) into
Eq. (23) leads to homogeneous Teukolsky equations in
Chandrasekhar’s form,

ðΔD†D − 2iωr − λÞP−1 ¼ 0;

ðΔDD† þ 2iωr − λÞPþ1 ¼ 0; ð28aÞ

ðLL†
1 þ 2aω cos θ þ λÞS−1 ¼ 0;

ðL†L1 − 2aω cos θ þ λÞSþ1 ¼ 0; ð28bÞ

where Pþ1 ¼ ΔRþ1, P−1 ¼ R−1 and λ is the separation
constant for s ¼ −1 [57]. Here we have made use of
directional derivatives along flμþ; lμ−; mμ

þ; mμ
−g, denoted by

fD;D†;L†;Lg, where

D≡ lμþ∂μ ¼ ∂r −
iK
Δ

; L† ≡mμ
þ∂μ ¼ ∂θ −Q; ð29aÞ

D† ≡ lμ−∂μ ¼ ∂r þ
iK
Δ

; L≡mμ
−∂μ ¼ ∂θ þQ; ð29bÞ

with K ≡ ωðr2 þ a2Þ − am and Q≡m csc θ − aω sin θ.
We assume that these operators act only on quantities
with harmonic time dependence χ ≡ e−iωtþimϕ.
Furthermore, let Ln ¼ Lþ n cot θ and L†

n ¼ L† þ n cot θ.
For consistency these functions must also satisfy the

Teukolsky-Starobinsky identities,

ΔDDP−1 ¼ BPþ1; L†L†
1S−1 ¼ BSþ1; ð30aÞ

ΔD†D†Pþ1 ¼ BP−1; LL1Sþ1 ¼ BS−1; ð30bÞ

where B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4amω − 4a2ω2

p
.

The modes of the Maxwell scalar of zero spin-weight,
ϕ1, can be constructed by applying differential operators
to the modes of ϕ0 and ϕ2 [56]. From Chap. 8 in
Chandrasekhar [59],

ϕlm
1 ¼ χffiffiffi

2
p ðr − ia cos θÞ2 ½gþ1ðrÞL1Sþ1ðθÞ

− iaf−1ðθÞDP−1ðrÞ� ð31aÞ

¼ −
χffiffiffi

2
p ðr − ia cos θÞ2 ½g−1ðrÞL

†
1S−1ðθÞ

− iafþ1ðθÞD†Pþ1ðrÞ� ð31bÞ
where

Bgþ1ðrÞ ¼ ðrD − 1ÞP−1; ð32aÞ

Bg−1ðrÞ ¼ ðrD† − 1ÞPþ1; ð32bÞ

Bfþ1ðθÞ ¼ ðcos θL†
1 þ sin θÞS−1; ð32cÞ

Bf−1ðθÞ ¼ ðcos θL1 þ sin θÞSþ1: ð32dÞ

C. Source terms

For a pointlike charge q on a geodesic orbit, the four-
current is

Jμ ¼ q
Z

uμðτÞδ4ðxμ − xμpðτÞÞð−gðxÞÞ−1=2dτ; ð33Þ

¼ qÛμ

r20
δðr − r0Þδðθ − π=2Þδðϕ −ΩtÞ: ð34Þ

On the second line we have inserted the expressions in
Sec. II A 2 to specialize to a circular geodesic orbit in the
equatorial plane (θ ¼ π=2). Here Ûμ ≡ uμ=ut ¼ ½1; 0; 0;Ω�,
with Ω defined in Eq. (14); projecting onto the Kinnersley
tetrad yields

Ûμlμ ¼ −ð1 − aΩÞ ¼ Ûμnμ
2r20
Δ0

;

Ûμmμ ¼
iffiffiffi
2

p
r0
ððr20 þ a2ÞΩ − aÞ: ð35Þ

The first task is to compute the source terms J0 and J2 in
Eqs. (25) and (26). Here we must handle the distributional
terms with some care (see Appendix E), noting that whereas
fðxÞδðx − x0Þ ¼ fðx0Þδðx − x0Þ, on the other hand

fðxÞδ0ðx − x0Þ ¼ fðx0Þδ0ðx − x0Þ − f0ðx0Þδðx − x0Þ; ð36Þ

where fðxÞ is any differentiable function and x0 is a
constant. Using

δðϕ −ΩtÞ ¼ 1

2π

X∞
m¼−∞

χm; χm ≡ eimðϕ−ΩtÞ; ð37Þ

and evaluating on the equatorial plane at r ¼ r0 after
employing (36) leads to
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ΣJ0 ¼
−q

2π
ffiffiffi
2

p
r0

X
m

�
ð1 − aΩÞ

�
∂θ −mð1 − aΩÞ þ ia

r0

�

þ iððr20 þ a2ÞΩ − aÞ
�
∂r −

imððr20 þ a2ÞΩ − aÞ
Δ0

þ 1

r0

��
χmδðr − r0Þδ

�
θ −

π

2

�
: ð38Þ

At this point we employ the orthonormality of the spin-weighted spheroidal harmonics,Z
Slm�1ðθÞSl

0m
�1 ðθÞdðcos θÞ ¼

1

2π
δll0 ; ð39Þ

to establish that

δ

�
θ −

π

2

�
¼ 2π

X∞
l¼1

Slm�1

�
π

2

�
Slm�1ðθÞ; ð40Þ

δ0
�
θ −

π

2

�
¼ 2π

X∞
l¼1

−Slm0
�1

�
π

2

�
Slm�1ðθÞ: ð41Þ

Hence

ΣJ0 ¼
−qffiffiffi
2

p
r0

X
lm

Slmþ1ðθÞχm
�
iððr20 þ a2ÞΩ − aÞSlmþ1

�
π

2

�
δ0ðr − r0Þþ

− ð1 − aΩÞSlm0
þ1

�
π

2

�
δðr − r0Þ þ

�
ir0Ωþm

�ððr20 þ a2ÞΩ − aÞ2
Δ0

− ð1 − aΩÞ2
��

Slmþ1

�
π

2

�
δðr − r0Þ

�
: ð42Þ

From the form of (42), we see that the master equation Eq. (23) admits a separable solution

Φ�1 ¼
X∞
l¼1

Xl
m¼−l

Rlm
�1S

lm
�1χm ð43Þ

where

ðΔDD† þ 2imΩr − λÞPlm
þ1 ¼ SðþiBSþδ0ðr − r0Þ þ fðmAðrÞ þ iAðiÞÞSþ þ CS0þgδðr − r0ÞÞ; ð44aÞ

ðΔD†D − 2imΩr − λÞPlm
−1 ¼ Sð−iBS−δ0ðr − r0Þ þ fðmAðrÞ − iAðiÞÞS− − CS0−gδðr − r0ÞÞ; ð44bÞ

where Plm
þ1 ¼ ΔRlm

þ1 and Plm
−1 ¼ Rlm

−1 , and S�1 ¼ Slm�1ðπ2Þ and S0�1 ¼ Slm0
�1 ðπ2Þ, and

S ¼ −
4πqffiffiffi
2

p
r0
; ð45aÞ

B ¼ Δ0ððr20 þ a2ÞΩ − aÞ; ð45bÞ

AðrÞ ¼ r0ðr0ððr20 þ a2ÞΩ2 − 1Þ þ 2Mð1 − aΩÞ2Þ; ð45cÞ

AðiÞ ¼ a2ð2M − r0ÞΩþ 2aðr0 −MÞ − r30Ω; ð45dÞ

C ¼ −Δ0ð1 − aΩÞ: ð45eÞ
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D. Mode solutions

The source terms in Eqs. (44) are distributions with
support at r ¼ r0 only. Hence solutions to the inhomo-
geneous equations may be constructed from solutions to the
homogeneous equations in the standard manner. Let Plm;h

�1

and Plm;∞
�1 be a pair of solutions to Eq. (28) that satisfy the

physical boundary conditions, that is, let Plm;h
�1 be ingoing

at the future horizon, and let Plm;∞
�1 be outgoing at future

infinity. The inhomogeneous solution takes the form

Plm
�1ðrÞ ¼ α∞�1P

lm;∞
�1 ðrÞΘðr− r0Þ þ αh�1P

lm;h
�1 ðrÞΘðr0 − rÞ;

ð46Þ

where Θð·Þ is the Heaviside step function, and α∞�1 and α
h
�1

are complex coefficients to be determined. Inserting (46)
into (44) yields the matrix equation

 
αlm;∞
�1

αlm;h
�1

!
¼ 1

Δ0W�

 
−ðPlm;h

�1 Þ0 Plm;h
�1

−ðPlm;∞
�1 Þ0 Plm;∞

�1

!					
r¼r0

 
B�
A�

!
:

ð47Þ

where

W� ¼ Plm;h
�1

dPlm;∞
�1

dr
− Plm;∞

�1

dPlm;h
�1

dr
; ð48aÞ

B� ¼ �iSBS�; ð48bÞ

A� ¼ SfðmAðrÞ � iÃðiÞÞS� � CS0�g: ð48cÞ

Here S, B, AðrÞ and C are defined in Eq. (45), and
ÃðiÞ ¼ r0Δ0Ω.

E. Static modes and the monopole

1. m= 0 homogeneous modes

The m ¼ 0 modes are static (ω ¼ 0). In this case we
employ the homogeneous modes

Pl0;h
�1 ¼ Δ∂rPlðzÞ; Pl0;∞

�1 ¼ Δ∂rQlðzÞ; ð49Þ

where Plð·Þ and Qlð·Þ are Legendre functions with the
branch cut on the real axis from −∞ to þ1, and
z≡ Δ;r=ðrþ − r−Þ. The Wronskian is

W� ≡Pl0;h
�1

dPl0;∞
s

dr
−Pl0;∞

s
dPl0;h

s

dr
¼ 1

2
ðrþ − r−Þlðlþ 1Þ:

ð50Þ

The angular functions are

Sl0�1ðθÞ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4πlðlþ 1Þ

s
d
dθ

Plðcos θÞ; ð51Þ

such that the normalization condition (39) holds.

2. Monopole mode

To complete the solution, we must now add “by hand” a
nonradiative monopole mode which is responsible for the
q=r part of the electric field far from the black hole.
The homogeneous vector potential

Aμ
ð0Þ ≡

qr
2Σ

ðlμþ − lμ−Þ; ð52Þ

in Lorenz gauge (∇μA
μ
ð0Þ ¼ 0) generates a homogeneous

Faraday tensor Fμν
ð0Þ ¼ ∇μAν −∇νAμ that satisfies the

vacuum equation ∇νF
μν
ð0Þ ¼ 0. It has the key properties that

Ftr
ð0Þ ¼

q
r2

þOðr−3Þ; ð53Þ

in the far-field and

1

2

Z
Fμν
ð0ÞdSμν ¼ 4πq; ð54Þ

where the two-surface integral is taken over any “sphere”
of constant Boyer-Lindquist coordinate r, or any closed
surface enclosing the horizon. It is quick to verify that the
Maxwell scalars ϕ0 and ϕ2 (but not ϕ1) associated with the
homogeneous solution are zero.
The inhomogeneous monopole mode,

Fμν
mono ¼ Θðr − r0ÞFμν

ð0Þ; ð55Þ

does not satisfy the vacuum equation; instead, ∇νF
μν
mono ¼

4πJμmono where Fμν
mono ≡ Fμν

mono − iF̃μν
mono and it is straight-

forward to show that

Jμmono ¼ q
4π

Δ
2Σ

1

ðr − ia cos θÞ2 ðl
μ
þ − lμ−Þδðr − r0Þ: ð56Þ

Note that Jμmono associated with the step in the monopole
mode is not restricted to the particle worldline, but instead
has support on the sphere at r ¼ r0. Although Jμmono itself
is not zero, a short calculation shows that there are no
additional source terms for the Teukolsky equation (23),
that is, Jmono

0 ¼ Jmono
2 ¼ 0. In other words, the inhomo-

geneous monopole is associated with a step in ϕ1, the
Maxwell scalar of spin-weight zero, only.
The inhomogeneous monopole mode makes a contribu-

tion to the radial component of the self-force of
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Fmono
r ¼ q2ut

ðr20 − a2 cos2 θÞð1 − aΩ sin2 θÞ
Σ2

≡X∞
l¼0

F l;mono
r Yl0

0 ðθÞ: ð57Þ

Evaluating at θ ¼ π=2 yields Fmono
r ¼ q2utð1 − aΩÞ=r20.

F. Dissipative force and fluxes

1. Dissipative component of the self-force

The dissipative components of the self-force are the t
and ϕ components of F μ ≡ qFμνuν. From the symmetry
of the Faraday tensor, it is straightforward to see that
F t ¼ qFtϕΩut ¼ −FϕΩ and in the following we will
focus on the t component of the self-force. The ðtϕÞ
component of the Faraday tensor can be expressed in
terms of the Maxwell scalars as:

Ftϕ ¼
ffiffiffi
2

p
Re

�
i sin θðr − ia cos θÞϕ2

þ iΔ sin θ
2Σ

ðrþ ia cos θÞϕ0

�
: ð58Þ

Evaluating the force on the particle’s worldline, i.e., at
r ¼ r0 and θ ¼ π=2, yields

F t ¼
ffiffiffi
2

p
qutΩRe

�
ir0ϕ2 þ

iΔ0

2r0
ϕ0

�
ð59Þ

¼ qΩutffiffiffi
2

p
r0

X
lm

Re

�
iPlm

−1 ðr0ÞSlm−1
�
π

2

�
þ iPlm

þ1ðr0ÞSlmþ1

�
π

2

��

ð60Þ

¼qΩutffiffiffi
2

p
r0

X
lm

Re

�
iðð−1ÞlþmPlm

−1 ðr0ÞþPlm
þ1ðr0ÞÞSlmþ1

�
π

2

��
;

ð61Þ

where we have used the fact that Slm−1 ðπ2Þ ¼ ð−1ÞlþmSlmþ1ðπ2Þ.

2. Energy flux

For an electromagnetic field given by a Faraday tensor Fμν

with energy-momentum Tμν ¼ FμαFνβgαβ − 1
4
FαβFαβgμν,

and a Killing vector Kμ, one can construct a current:

Yμ ¼ TμνKν: ð62Þ

In vacuum, this current is divergence-free but in the presence
of a source, which is the case of interest here, the current
satisfies the following continuity equation:

∇μYμ ¼ FμνKμJν ¼
F μKμ

r20u
t δðr − r0Þδ

�
θ −

π

2

�
δðϕ − ΩtÞ:

ð63Þ

Using Gauss’ theoremZ
V
∇μYμ ffiffiffiffiffiffi

−g
p

d4x ¼
Z
∂V

YμdΣμ ð64Þ

where V is a space-time volume with boundary ∂V that spans
from the horizon to infinity, we can relate the force at the
particle to the fluxes through the boundary. Since the system
is stationary, only the fluxes at infinity and through the
horizon contribute to the total flux (see Appendix B):

F aKa

ut
¼ ΦK

∞ þΦK
h ; ð65Þ

where the superscript K correspond to the choice of Killing
vector. As mentioned the link between the t and ϕ component
of the force is trivial and we focus on the time component of
the force which correspond to the choice Ka ¼ ½1; 0; 0; 0�. In
the following we will drop the superscript K and keep in
mind that we are considering the energy flux. In Appendix B
we derive the expression for the energy flux at infinity and
through the horizon in terms of the α coefficients defined in
Eq. (46). Explicitly, the energy flux at infinity is

Φ∞ ¼ 1

8π

X
lm

jαlm;∞
−1 j2; ð66Þ

and through the horizon,

Φh ¼
1

8π

X
lm

ω

2Mrþω̃
jαlm;h

þ1 j2; ð67Þ

with ω̃ ¼ ω −mΩh and Ωh as defined in Eq. (7).

G. Conservative force and regularization

1. Conservative component of the self-force

We compute here the conservative component of the
self-force, i.e., F r, in terms of the Maxwell scalars. From
the definition of the force, we have:

F r ¼ qFrμuμ ¼ qutðFrt þ FrϕΩÞ: ð68Þ

Using the expression of the Faraday tensor in terms of the
Maxwell scalars,

Fμν ¼ 2½ϕ2l½μmν� þϕ0m̄½μnν� þϕ1ðn½μlν� þm½μm̄ν�Þ�þ c:c:;

ð69Þ

we get that
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F r

qut
¼

ffiffiffi
2

p
ðða2 þ r2ÞΩ − aÞ sin θ

�
−

iϕ0

4ðr − ia cos θÞ þ
iϕ2ðr − ia cos θÞ

2Δ

�
þ ð1 − aΩsin2θÞϕ1 þ c:c: ð70Þ

Inserting the mode decompositions (27) and (31a) and evaluating at ϕ ¼ Ωt yields

F r ¼ qut
X
lm

ffiffiffi
2

p ððr2 þ a2ÞΩ − aÞ
4Δðr − ia cos θÞ sinðθÞ

h
−iPlm

þ1S
lm
þ1 þ iPlm

−1S
lm
−1

i

þ ð1 − aΩsin2θÞ g
lm
þ1L1Slmþ1 − iaflm−1DPlm

−1ffiffiffi
2

p ðr − ia cos θÞ2 þ c:c: ð71Þ

2. Projection onto scalar harmonics

Before the mode sum regularization procedure can be applied, it is necessary to project the spin-weighted spheroidal
harmonics onto the scalar spherical harmonics. Using the results of Appendix C,

F r ¼ qut
X
l;m;l̂;l̃

� ffiffiffi
2

p ððr2 þ a2ÞΩ − aÞ
4Δðr − ia cos θÞ

h
−iPlm

þ1C
þ1

lml̂ l̃
þ iPlm

−1C
−1
lml̂ l̃

i
ð72Þ

þ ð1 − aΩsin2θÞBg
lm
þ1C

L
lml̂ l̃

− ia½CL
lml̂ l̃

cos θ þ Cþ1

lml̂ l̃
�DPlm

−1ffiffiffi
2

p
Bðr − ia cos θÞ2

�
Yl̃m
0 þ c:c: ð73Þ

with

Cþ1

lml̂ l̃
¼ ðbmþ1Þll̂ðAm

þ1Þl̂l̃ ð74aÞ

C−1
lml̂ l̃

¼ ðbm−1Þll̂ðAm
−1Þl̂l̃ ð74bÞ

CL
lml̂ l̃

¼ ðbmþ1Þll̂
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ 1Þ
q

δl̂
l̃
− amΩðAm

þ1Þl̂l̃
i
: ð74cÞ

Expanding (73) in z ¼ cos θ, we have

F r ¼ qut
X
lm

½0F lm
r þ 1f

lm
r zþ 2f

lm
r z2 þ oðz3Þ�Ylm

0 ; ð75Þ

with

0F
lm
r ¼

X
ll̂

ððr20þa2ÞΩ−aÞffiffiffi
2

p
Δ0r0

Im½Plm
þ1C

þ1

lml̂l
−Plm

−1C
−1
lml̂l

�

þ
ffiffiffi
2

p ð1−aΩÞ
r20

Re

�
glmþ1C

L
lml̂l

−
iaCþ1

lml̂l
DPlm

−1

B

�
; ð76Þ

and

1f
lm
r ¼ a

X
ll̂

ððr20 þ a2ÞΩ − aÞffiffiffi
2

p
Δ0r20

Re½Plm
þ1C

þ1

lml̂l
− Plm

−1C
−1
lml̂l

�

−
2
ffiffiffi
2

p ð1 − aΩÞ
r30

Im½glmþ1C
L
lml̂l

−
ia
B
Cþ1

lml̂l
DPlm

−1�

þ 2ð1 − aΩÞffiffiffi
2

p
r20

Im

�CL
lml̂l

DPlm
−1

B

�
; ð77Þ

2f
lm
r ¼ a2

X
ll̂

−ððr20 þ a2ÞΩ − aÞffiffiffi
2

p
Δ0r30

Im½Plm
þ1C

þ1

lml̂l
− Plm

−1C
−1
lml̂l

�

−
3
ffiffiffi
2

p ð1 − aΩÞ
r40

Re

�
glmþ1C

L
lml̂l

−
iaCþ1

lml̂l
DPlm

−1

B

�

þ 2
ffiffiffi
2

p ð1 − aΩÞ
r30

Re

�CL
lml̂l

DPlm
−1

B

�

þ aΩ
X
ll̂

ffiffiffi
2

p

r20
Re

�
glmþ1C

L
lml̂l

−
iaCþ1

lml̂l
DPlm

−1

B

�
; ð78Þ

Finally, expanding zYlm
0 and z2Ylm

0 using

cos θYlm
0 ¼

X
l1

1B
lm
l1
Yl1m
0 ; ð79aÞ

cos2 θYlm
0 ¼

X
l2

2B
lm
l2
Yl2m
0 ; ð79bÞ

where
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1B
lm
l1

¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þ

p
×

�
1 l l1

0 0 0

��
1 l l1

0 m −m

�
ð80Þ

2B
lm
l2

¼ ð−1Þm 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2l2 þ 1Þp

3

×

�
2 l l2

0 0 0

��
2 l l2

0 m −m

�
þ 1

3
δl;l2 ð81Þ

leads to

F r ¼ qut
X
lm

½0F lm
r þ 1F

lm
r þ 2F

lm
r þ oðz3Þ�Ylm

0 ; ð82aÞ

¼
X∞
l¼0

F l
r ð82bÞ

with

1F
lm
r ¼

X
l1

1f
l1m
r 1B

l1m
l ð83aÞ

2F
lm
r ¼

X
l2

1f
l2m
r 2B

l2m
l : ð83bÞ

3. Mode sum regularization

The regularization procedure is based on the subtraction
of an appropriate singular component from the retarded
field, in order to leave a finite regular field that is solely
responsible for the self-force. The subtracted component
must have the same singular structure as the retarded field
in the vicinity of the particle, and must be sufficiently
symmetric as to not contribute to the self-force (or at least,
not in such a way that cannot be easily corrected for).
Detweiler and Whiting identified an appropriate choice of
the singular (S) field, based on a Green’s function decom-
position [27]. Subtracting this singular field is equivalent to
regularizing at the level of the l-mode sum [6,34,38–48].
In the electromagnetic case, Heffernan et al. [50–52]

(see also Haas [64,65]) showed that subtracting the S field
leads to a regularized force F reg

μ with a radial component in
the form

F reg
r ¼

X∞
l¼0

F reg½n�l
r ; F reg½n�l

r ≡ F l
r − F ½n�l

r ; ð84Þ

where [n] denotes the order of the local expansion of the S
field, and

F ½n�l
r ¼ ð2lþ 1ÞF ½−1�

r þ F ½0�
r þ F ½2�

r

ð2l − 1Þð2lþ 3Þ
þ � � � þ F ½n�

r G½n�ðlÞ: ð85Þ
Here n ≥ 0 is an even integer denoting the order, and
G½n�ðlÞ≡ 1=ð2lþ 1 − nÞð2lþ 3 − nÞ…ð2lþ 1þ nÞ is

defined for n > 0 such that
P∞

l¼0 G½n�ðlÞ ¼ 0. Explicit
expressions for the mode sum regularization parameters

F ½−1�
r , F ½0�

r and F ½2�
r are given in Eq. (2.54), (2.56), and

(2.59) of Ref. [51] for the Kerr case, and F ½4�
r is given in

Eq. (5.52) of Ref. [50] for the Schwarzschild case.
The regularized force in Eq. (85) should include the

monopole piece given in Eq. (57).

III. IMPLEMENTATION

A. Numerics

1. Homogeneous solution to the Teukolsky equations

In order to compute the components of the self-force, we
need to evaluate radial Teukolsky functions Plm

�1ðrÞ and
spin-weighted spheroidal harmonics Slm�1ðθÞ at the particle’s
location, that is r ¼ r0 and θ ¼ π=2. To do so, we use the
BlackHolePerturbation toolkit [66]. The angular functions
are computed using the SpinWeightedSpheroidalHarmonics
package and the radial functions are computed with the
Teukolsky package of the toolkit. The Teukolsky package
implements the Mano-Suzuki-Takasugi (MST) method
[67,68] to compute the homogeneous solution of the
Teukolsky equations.

2. High-l tail contribution

Our approach to compute the self-force requires us to
sum over spin-weighted spheroidal modes or scalar spheri-
cal modes. Ideally one would sum an infinite number of
modes but in practice we can only compute a finite number
of components, up to lmax. In the case of the dissipative
components of the self-force, the magnitude of the terms to
be summed over decays exponentially, as can be seen in
Fig. 4, and therefore the error from truncating the sum is
negligible. However, for the regularized conservative part
of the self-force, the terms in the sum decay as an inverse
power of L ¼ lþ 1=2 instead of an exponential, and the
associated error from neglecting the higher modes is
sizable. To reduce this error, we estimate the contribution
coming from the l > lmax modes following the standard
approach of [39] which we outline below.
In the large-l regime, the modes of the regularized force

in Eq. (84) are approximately

F reg½n�l
r ≈

Dn

Ln ; ð86Þ

where n denotes the regularization order (with n ¼ 6 in the
Schwarzschild case and n ¼ 4 in the Kerr case) and Dn is a
numerical coefficient to be determined by fitting to the
high-l modes. Figure 5 shows that Eq. (86) is a reasonable
approximation for high values of l. The contribution of the
high-l modes is then approximately
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X∞
l¼lmaxþ1

F reg½n�l
r ≈

X∞
l¼lmaxþ1

Dn

Ln ¼ Dnζðn;lmax þ 1Þ; ð87Þ

where ζðs; aÞ is the Hurwitz Zeta function.

3. Projection

In order to apply the mode-sum regularization procedure,
we need to project the force onto the scalar spherical
harmonics basis. The original quantities in the spin-
weighted spheroidal harmonics (associated to the index l)
are first projected onto the spin-weighted spherical har-
monics (associated with the index l̂) which are then
expanded onto scalar spherical harmonics (associated with
the index l). For the subdominant terms, which are propor-
tional to cos θ and cos2 θ, one extra projection is needed
(associated with the index l1 and l2). Due to the presence
of the 3j-symbols, and their association to spin-weighted or
scalar quantities, the summation indices satisfy

l − 2 ≤ l2 ≤ lþ 2 ð88Þ

l − 1 ≤ l1 ≤ lþ 1 ð89Þ

l − ð1þ nÞ ≤ l̂ ≤ lþ ð1þ nÞ ð90Þ

jmj ≤ l; l̂;l;l1;l2 ð91Þ

where n ¼ 0, 1, 2 when computing the dominant, sub-
dominant or subsubdominant term.
Since one spin-weighted spheroidal mode couples to

several scalar spherical modes, we first compute all spin-
weighted spheroidal modes separately and then perform
the sums. We start by summing over l1 or l2 if we are
computing the subdominant contributions at fixed m, l̂
and l. We then sum over m modes with fixed l̂ and l and
then we sum over l̂ modes at fixed l. All these sums
performed at this point are finite and can be performed for
any value of l. Finally we sum over l which in principle can
take any nonzero integer values. In practice however, we
sum over a finite number of l modes and estimate the
contribution of the higher l as described above.

B. Validation

In order to validate our numerical code when computing
the energy fluxes at infinity and through the horizon, we
compare the total flux with the dissipative component of the
self-force computed using (61). We check that the two
quantities agree up to numerical accuracy according to (65).
Furthermore, each flux is computed at r ¼ rþ0 and r ¼ r−0
using different solutions to the homogeneous Teukolsky
equations. We verify that the two fluxes obtained agree to
numerical accuracy, meaning that our dissipative compo-
nent of the self-force is continuous across the particle.

In the case of the conservative piece of the self-force, we
do not have a conservation law to support our numerical
code. To validate our numerical approach in this case, we
first verify that the radial component of the self-force is
continuous across the particle as in the conservative
component case. We note that while F r is continuous
across the particle, up to the expected precision, each
spherical harmonic component F l

r is discontinuous (for
a ≠ 0). We also observe that the sum of the even (odd) l
modes are independently continuous across the particle.
Both features are likely due to the fact that we are only using
a finite number of terms when expanding around cos θ ≈ 0.
We observe that the bare modes,F l

r , are well regularized
using the regularization parameters found in the literature
[50,51]. Finally, our result for the conservative self-force in
the Schwarzschild case agrees with the results of Haas [64]
(see Fig. 7).

IV. RESULTS

Below we present a selection of numerical results for the
self-force. Where a dimensionless value is stated, e.g., F̃ r,
the physical value should be inferred by reinstating the
dimensionful constants, e.g., F r ¼ ðq2=4πϵ0Þðc2=GMÞ2F̃ r.

A. Dissipative effects

1. Total fluxes

Figure 1 shows the total energy flux Φ for a charged
particle on a circular orbit about a black hole, as a function
of orbital radius. The total flux is related to the self-force
component F t by Eq. (65). In the large-r0 limit, the flux
approaches an asymptotic value of ΦNewt, where

ΦNewt ¼
2

3
βr̃−40 ; β≡ q2c5

4πϵ0G2M2
ð92Þ

and

r̃0 ≡ r0=ðGM=c2Þ: ð93Þ

In Appendix A, it is shown that ΦNewt results from
combining Keplerian orbits with the Abraham-Lorentz
force (2). In the discussion below, we omit the dimension-
ful factor β.
By fitting the numerical results in the weak-field region

(r0 ≫ M), we infer that, for the flux at infinity,Φ∞ ≈ΦNewt
at leading order, with a linear-in-a contribution of
− 8

3
ãr̃−11=20 at leading order (where ã ¼ a=M). For the

horizon flux, we infer that Φh ≈ 8
3
r̃−70 at leading order for

the Schwarzschild case, with a linear-in-a contribution of
− 2

3
ãr̃−11=20 at leading order in the Kerr case. Note that, for

the horizon flux, the Kerr term begins at a lower order in the
expansion in 1=r̃0 than the Schwarzschild term.

ELECTROMAGNETIC SELF-FORCE ON A CHARGED PARTICLE … PHYS. REV. D 106, 024024 (2022)

024024-11



Alternatively, an expansion of the fluxes in inverse
powers of 1=r̃0 can be obtained using the Mano-Suzuki-
Takasugi (MST) formalism [67] by applying the approach
of Kavanagh et al. [69,70] to our Eqs. (66) and (67). At

leading orders, we find that the dipole flux is Φðl¼1Þ
∞ ¼

2
3
r̃−40 − 44

15
r̃−50 and the quadrupole flux is Φðl¼2Þ

∞ ¼ 8
5
r̃−50 ,

which sum to Φ∞ ¼ 2
3
r̃−40 − 4

3
r̃−50 through next-to-leading

order. This expansion is consistent with the numerical data
presented in Fig. 1.
Figure 2 shows the ratio of the flux through the horizon

to the flux radiated away to infinity, for the three types of
field (scalar, electromagnetic and gravitational). The scalar
and electromagnetic cases are qualitatively similar, with
radiation emitted principally in the dipole (l ¼ 1) modes.
For particles that are orbiting in the same sense as the black
hole spin, superradiance can lead to a significant extraction
of energy from the horizon. For a ¼ 0.99M, the energy
extracted from the hole is up to ∼26.5% of that radiated
away in the EM case, and up to ∼22.3% in the scalar-field
case. Since this ratio falls below the threshold for balance
(100%), there are no floating orbits. In the gravitational
case, radiation is emitted principally in the quadrupole
(l ¼ 2) modes, and the maximum ratio is smaller (∼8.7%
for a ¼ 0.99M). Again, there are no floating orbits.

In the gravitational case, these results are consistent with
those previously presented by Kapadia, Kennefick and
Glampedakis [31].
Figure 3 shows the ratio of fluxesΦh=Φ∞ for a particle on

the innermost stable circular orbit (ISCO), as a function of the
spin of the black hole. The ratio changes sign at a ¼ ac ≈
0.359403M. This is the value of a at which the angular
frequency of the ISCO orbit [see Eq. (15)] matches the
angular frequency of the event horizon Ωh. For a > ac, the
(prograde) horizon frequency exceeds the orbital frequency.
In this case, the electromagnetic field slows the rotation of
the black hole, generating superradiance, leading to an
extraction of flux from the event horizon and Φh=Φ∞ < 0.
Figure 4 shows the multipolar structure of the flux

generated by a particle at the ISCO for the scalar, electro-
magnetic and gravitational-wave cases. The lowest radiative
multipole l ¼ maxðjsj; 1Þ generates the greatest flux at the
horizon, and the low multipoles also dominate the flux at
infinity. The plots show evidence for the expected expo-
nential fall-off of the modal fluxes with lþ 1=2.

B. Conservative effects

1. Schwarzschild case

Regularization. Figure 5 illustrates the application of the
regularization procedure to the radial component of the
self-force, in the a ¼ 0 case. The unregularized (“bare”)
modes scale with L ¼ lþ 1=2 in the large-l limit. After

subtractingF ½−1�l
r andF ½0�l

r as in Eq. (85), that is, removing
the leading and subleading order regularization terms, one
obtains modes that scale with L−2. This is the minimum
necessary to obtain a convergent sum. To reduce the error
associated with the high-l tail, and to demonstrate that our
results match expectations, we removed a further two

regularization terms, that is, we subtracted F ½4�l
r , leaving

a mode sum whose terms converge as L−6 in the large-l
regime, as shown in Fig. 5.
Weak field expansion. Using numerical data for the

radial component of the self-force at large values of r0 we
infer a weak-field expansion in the form

F rðr0Þ ≈
q2

4πϵ0c2
GM
r30

�
1þ 3

2r̃0
þ α2 logðr̃0Þ

r̃20

þ α3
r̃20

þ o

�
1

r̃30

��
: ð94Þ

where r̃0 is the dimensionless radial coordinate introduced
in Eq. (93). The coefficients α2 and α3 were estimated from
summing over the first 15l-modes, with data in two ranges
(i) 1000 < r0 < 1500 and (ii) 900 < r0 < 1000, yielding

α2 ¼ 1.249ð2Þ α2 ¼ 1.231ð1Þ ð95aÞ
α3 ¼ 1.38ð1Þ α3 ¼ 1.48ð1Þ: ð95bÞ

FIG. 1. The radiated flux for an electromagnetically charged
particle on a circular orbit at radius r ¼ r0 around a Kerr black
hole of spin a. Here the total flux Φtot ¼ Φ∞ þΦh has been
scaled by the Newtonian value ΦNewt (see Eq. (92)). The solid
lines correspond to prograde orbits (a > 0), while the dotted lines
correspond to retrograde orbits (a < 0), and the color of the lines
gives the magnitude of a. In each case, the minimum radius is the
innermost stable circular orbit.
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The numeral in parantheses is the confidence
interval in the final digit quoted, which is specific to
the particular dataset used for the fitting. The data
supports the presence of a log term at sub-sub-leading
order, but accurate estimates for α2 and α3 have not
been obtained.
Figure 6 compares the weak-field expansion, Eq. (94),

with numerical data for F r for a ¼ 0. It shows that F r

increases monotonically as r0 decreases. Moreover, F r
differs from the leading order term in Eq. (94) by no more

than a factor of ∼1.44 across the range ½risco;∞Þ. Including
successive terms in the expansion improves the agreement
with the data; and Eq. (94) gives a relative error of ∼6% at
the ISCO.
Shifts in orbital parameters. The conservative self-force

has the effect of shifting the orbital parameters from their
geodesic values at order q2. For a circular orbit on the
Schwarzschild spacetime, the fractional change in the
orbital energy E, angular momentum J and frequency Ω
is given by
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FIG. 2. The ratio of the energy flux falling onto the horizon, Φh, to the energy flux radiated to infinity, Φ∞, as a function of orbital
radius r0, for various spin parameters ã, and for the scalar, electromagnetic and gravitational cases. The solid lines correspond to
prograde orbits (a ≥ 0). The dotted lines on the second plot, corresponds to retrograde orbits (a < 0). The color of the lines gives the
magnitude of a. Negative ratios arise due a negative flux from the horizon associated with superradiance. A value less than −1 would
indicate the existence of floating orbits.
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FIG. 3. The ratio of fluxes Φh=Φ∞ for a particle on the
innermost stable circular orbit, as a function of a the spin of
the black hole. Negative (positive) values of a correspond to
retrograde (prograde) circular orbits. For Ωh > Ω, there is a
negative flux (Φh < 0) from the horizon, a manifestation of
superradiance.
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FIG. 4. The multipolar structure of the flux radiated through the
horizon (upper) and to infinity (lower) by a charged particle on a
circular orbit at the ISCO of a Kerr black hole with a ¼ 0.99M.
The trendline indicates an exponential fall-off with multipole
number l.
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FIG. 5. Scalar spherical modes of the radial component of the
self-force F r, and regularization at various orders. Here we have
chosen a ¼ 0 (Schwarzschild) and r0=M ¼ 20. The blue dots are
the values of the bare force, which grow linearly with L ¼
lþ 1=2 at large L. The solid black lines are guidelines to
represent the decay of the regularized force.
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FIG. 6. Comparison between the numerically-determined value
of F r (solid) and the weak-field expansion in Eq. (94) (dashed),

for the Schwarzschild (a ¼ 0) case. Here the dashed lines F ðnÞ
r

show truncated versions of (94), with n indicating the number of
terms included.
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ΔΩ
Ω0

¼ −
ðr0 − 3MÞr0

2μM
F r; ð96aÞ

ΔE
E0

¼ −
r0
2μ

F r; ð96bÞ

ΔJ
J0

¼ −
ðr0 − 2MÞr0

2μM
F r: ð96cÞ

Figure 7 shows the shift in E, J and Ω as a function
of r0. In each case, the self-force leads to a reduction
in E, J and Ω. The shifts for the Kerr case are given in
Appendix D.

2. Kerr case

Figure 8 shows that the bare modes of the force, F l
r

defined in Eq. (82), are correctly regularized with the
regularization parameters calculated by Heffernan et al.
[51]. This is a nontrivial test of the formulation, and of the
projection onto spherical harmonics. In the projection
step, we find that it is necessary to expand to subsu-
bleading order in z ¼ cos θ in Eq. (82) to achieve
regularization at order n ¼ 2, and to obtain a regularized

forceF reg½2�
r which is well defined on the particle such that
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FIG. 7. Fractional change of the energy (green), angular
momentum (blue) and frequency (red) for a particle on a circular
orbit as a function of the orbital radius r0 in the Schwarzschild
case. The inset shows the radial range presented in Fig. 12 of
Haas [64]. Our results agree with [64] and provides the behavior
of the fractional for a larger radial range.
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FIG. 8. Scalar-spherical modes of the radial component of the
self-force and their regularization at various orders in the Kerr
case. Here we have chosen r0=M ¼ 20 and a ¼ 1

2
M. The blue

dots are the values of the bare force, which (at leading order) grow
linearly with L ¼ lþ 1=2. The solid black lines are guidelines to
indicate the power-law decay of the regularized modes.
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FIG. 9. Radial component of the self-force (scaled by r30) for
various black hole spins, a ∈ f−0.99; 0.5; 0; 0.5; 0.99g. The solid
lines correspond to prograde orbits (a > 0), while the dotted lines
correspond to retrograde orbits (a < 0), and the color of the lines
gives the magnitude of a. In each case, the minimum radius is the
innermost stable circular orbit.
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its left-sided limit (r → r−0 ) and right-sided limit (r → rþ0 )
are in agreement.
Figure 9 shows F r as a function of r0, for several values

of the black hole spin parameter a=M. We observe that F r
is everywhere positive (i.e., repulsive) and greater than
q2=r30. At fixed radius, F r is larger on the retrograde orbit
than on the prograde orbit. The effect of black hole rotation
increases as r0 decreases, as expected.
By fitting the numerical data, we find a linear-in-a

contribution to F r of −3ãr̃
−9=2
0 at leading order.

Figure 10 shows the self-force on the ISCO, as a function
of a=M. The conservative component, F r, is always
positive (i.e., repulsive). The total flux is always positive,
indicating that superradiance is insufficient for a floating
orbit to arise. The magnitudes of F r and F t are largest on
the corotating ISCO of a rapidly-rotating black hole. In the
limit a → M, the ISCO approaches r0 ¼ M.
Table I provides a selection of values of F r for circular

orbits of radii r0 ∈ ½risco; 50M�, for the black hole spin
parameters a ¼ 0, �0.5M and �0.99M.

V. DISCUSSION AND CONCLUSION

In this article, we have computed the electromagnetic
self-force acting on a point charge—or, with caveats, on a
charged compact body—on a circular geodesic lying in
the equatorial plane of a rotating black hole. This
represents the first EM self-force calculation on Kerr
spacetime in a dynamical scenario (see below for static
cases). Our results complement those already available for
the gravitational self-force on Kerr [42,43,48,62,71–73],
a topic which has received much attention due to its
relevance in modeling extreme mass-ratio inspirals for
gravitational wave detectors.
To compare the dissipative effects of the electromag-

netic and gravitational self-forces, consider once more the
inspiral of a particle or compact body of mass μ and charge
q into a black hole of mass M, driven by the dissipative
component of the self-force. From the chirp formulas (3)
and (1), valid in the large-r0 regime, an order-of-magnitude
estimate of the merger timescale, starting with an orbit of
radius r0, is

τEM ∼
�
πϵ0GM2

⊙

Q2

�
·
�
M
μ

�
·
�

r0
GM=c2

�
2

·
r0
c
; ð97aÞ

τgrav ∼
�

5

21=332

�
·
�
M
μ

�
·
�

r0
GM=c2

�
3

·
r0
c
: ð97bÞ

Here Q is the net charge density of the particle/compact
body in Coulombs per solar mass, and we have made
the assumption that μ ≪ M to obtain (97b). Numerical
evaluation of the first parantheses in Eq. (97a) yields
7.4 × 1039 C2=Q2, and thus, for a compact body, an
electromagnetically driven inspiral is much slower than
a gravitationally-driven inspiral, unless the compact body
can support implausibly high net charge densities of
Q≳ 1018 C per solar mass. On the other hand, for an
elementary charged particle the converse is true, as
Q ≈ 1.9 × 1038 C per solar mass for a proton, for instance.
That is, for a charged elementary particle, the EM inspiral
is more rapid and the gravitational wave flux is negligible;
but nevertheless, the inspiral into a black hole is exceed-
ingly slow due to the suppressing factor M=μ. Of course,
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FIG. 10. The radial and time components of the self-force for
a particle on the innermost stable circular orbit, as a function
of a the spin of the black hole. Negative (positive) values of a
correspond to retrograde (prograde) circular orbits.

TABLE I. Radial component of self-force for circular equatorial geodesic orbits. The dimensionless values in the table correspond to
F r=½ðq2=4πϵ0Þðc2=GMÞ2�. The digit in parantheses is an estimate of the uncertainty in the final quoted digit. The ISCO radius, defined
in Eq. (15), is risco=M ∈ f8.971861; 7.554585; 6.0; 4.233003; 1.454498g (to 7 s.f.) for the cases a=M ∈ f−0.99;−0.5; 0; 0.5; 0.99g.

F rðr0Þ
r0=M a ¼ −0.99 a ¼ −0.5 a ¼ 0 a ¼ 0.5 a ¼ 0.99

risco=M 0.001967652(2) 0.003315094(1) 0.0066497(5) 0.019003(2) 0.479(1)
10 0.0013513595(1) 0.0012770754(1) 0.00120985(2) 0.00114927(1) 0.001093823(1)
20 0.000141150327(2) 0.00013867449(5) 0.00013624(1) 0.000133916(2) 0.0001316275(1)
50 0.000008332378(2) 0.000008296911(1) 0.000008261044(2) 0.000008225470(2) 0.000008190833(6)
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an elementary-particle-black-hole-inspiral scenario is
rather artificial, not least because we have neglected all
contents of the universe but two.
One key result of this work is a demonstration that the

local dissipative component of the self-force F t exactly
balances with the sum of the electromagnetic flux radiated
to infinity and down the horizon of the black hole, in accord
with Eq. (65), up to the expected numerical precision.
Closer examination of the fluxes, in Figs. 1, 2 and 3, shows
that superradiance is stimulated when the angular velocity
of the black hole horizon exceeds the orbital angular
velocity. However, we find that superradiance is not
sufficient to support floating orbits, even at the ISCO
(see also [31]).
A key difference between the electromagnetic self-force

and the gravitational self-force is that the latter is gauge-
dependent under small changes in the coordinate system at
OðμÞ. More precisely, for circular orbits the dissipative
component of the gravitational self-force—relating to the
radiated fluxes—can be identified uniquely, but the
conservative component cannot; it is coordinate-dependent.
This means that it is not possible to directly compare F r
between the electromagnetic and gravitational cases.
Instead, one must look to the gauge-invariant consequences
of the conservative component of self-force to make
meaningful comparisons. For example, Fig. 7 shows the
fractional change in the orbital energy, angular momentum
and frequency at fixed r0 due to the conservative compo-
nent of the self-force.
One such gauge-invariant consequence, slightly beyond

the scope of this work, is the shift in the ISCO atOðq2Þ that
arises due to the conservative component of the self-force.
This can be calculated by examining mildly eccentric
orbits [74], or possibly by using a Hamiltonian approach
with circular-orbit data as input [62]; a comparison with
known results for the ISCO shift induced by the gravita-
tional self-force would certainly be of interest. Another
observable that could be compared directly is the self-force-
induced shift in the advance of the periapsis of an eccentric
bound orbit [71].
The new results presented in Sec. IVare mostly numerical

in nature. We have inferred leading order terms in weak-
field expansions by fitting the numerical data. A comple-
mentary approach is to apply the Mano-Suzuki-Takasugi
(MST) formalism [67] to obtain analytical results in the
form of post-Newtonian expansions (see e.g., [69,70]). This
has been done successfully in the gravitational self-force
case, for quantities such as fluxes [75–77], Detweiler’s
redshift invariant [78], and the spin-precession invariant
[79]. The MST method can be straightforwardly adapted
from the s ¼ 2 to the s ¼ 1 case. Indeed, in Sec. IVA 1 we
have applied this method to obtain the flux through
subleading order in r̃−10 . A promising avenue for future
work, therefore, is to apply the MSTmethod to the formulae

herein to obtain very high-order expansions of (e.g.,)F t and
F r in closed form.
It is worth noting that the calculation presented here is

not fully self-consistent, in the sense that we have evaluated
the self-force by assuming the past worldline of the particle
is a geodesic, rather than a trajectory that has itself been
accelerated by its own self-force. Introducing the “true”
trajectory would introduce subdominant contributions to
the force starting at Oðq4Þ. One challenge, for future
investigation, is to evolve the orbit in a fully self-consistent
manner under the action of the electromagnetic self-force.
This has already been done successfully for the gravita-
tional self-force [73,80].
The electrostatic self-force on a charged particle on Kerr

was examined many years ago by Léauté and Linet [81],
and later by Piazzese and Rizzi [82]. For the special case of
a particle at rest on the symmetry axis θ ¼ 0 at r ¼ r0, the
(repulsive, conservative) self-force is available in closed
form [82],

F μ
self ¼

q2ðMr0 − a2Þ
ðr20 þ a2Þ2 eμ3; ð98Þ

where eμ3 is a unit spacelike vector along the symmetry axis.
It is notable that Eq. (98) does not depend on the sign of a,
and thus frame-dragging effects are absent in this highly
symmetric case. Here, we have established that F r has a
linear-in-a contribution for geodesic orbits in the equato-
rial plane.
Two further avenues of enquiry suggest themselves.

First, the self-force on the ISCO in the a → M extremal
limit has been investigated in the gravitational self-force
context [83], but not yet in the electromagnetic self-force
context. Second, an additional physical effect which has not
been examined here is the self-torque that would arise at
Oðq2Þ if the particle (or compact body) is endowed with a
magnetic dipole moment. In other words, the force arising
from the (regularized) magnetic field in the rest frame of
the particle.
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APPENDIX A: DISSIPATIVE SELF-FORCE
IN THE NEWTONIAN LIMIT

For circular orbits far from a black hole (r0 ≫ GM=c2),
the speed of the particle, jvj ¼ r0Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=r0
p

, is small
in comparison with the speed of light c, and a leading-order
Newtonian approximation for the flux (92) and the chirp
formula (3) is obtained by combining the Abraham-Lorentz
force (2) with circular orbits in Newtonian gravity.
The work done in unit time P upon a particle of charge q

by the Abraham-Lorentz force (2) is

P ¼ F · v ¼ 2

3

q2

4πϵ0c3
_a · v: ðA1Þ

Inserting a fixed circular orbit with r ¼ r0r̂ and v≡ _r ¼
r0Ωϕ̂ and a≡ _v ¼ −r0Ω2r̂ and _a≡ −r0Ω3ϕ̂, where r̂

and ϕ̂ are unit vectors and Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r30

q
is the angular

frequency of the orbit, yields

P ¼ −
2

3

q2

4πϵ0c3
r20Ω4 ðA2Þ

¼ −
2

3

q2

4πϵ0c3
G2M2

r40
: ðA3Þ

By conservation of energy, the flux radiated to infinity
is equal and opposite to the work done on the particle by
the Abraham-Lorentz force, that is, ΦNewt ¼ −P, yield-
ing Eq. (92).
For a particle of mass μ on a circular orbit under gravity,

the sum of kinetic and (Newtonian) potential energies is
E ¼ −GMμ=2r0. We now allow the particle to gradually
spiral inwards on a sequence of quasicircular orbits, by
equating P with _E ¼ −GMμ _r=2r2. This leads to

_f
f3

¼ 8π2q2

4πϵ0c3
; ðA4Þ

where f ¼ Ω=2π is the orbital frequency. Integrating with
respect to time leads to

fðtÞ ¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πϵ0c3μ

q2

s
ðt0 − tÞ−1=2; ðA5Þ

where the time of collision t0 arises as the constant of
integration. For the case of an electron of mass μ ¼ me
and charge q ¼ −e, Eq. (A5) reduces to Eq. (3) once we
insert the definition of the fine-structure constant α ¼
e2=ð4πϵ0ℏcÞ and the Bohr radius a0 ¼ 4πϵ0ℏ2=ðmee2Þ.

APPENDIX B: ENERGY FLUX

1. Flux at infinity

At infinity the energy flux is given by

ΦK
R ¼ Δt−1

Z
TabKbdΣa ðB1Þ

where we have chosen Kμ ¼ ½1; 0; 0; 0� to be the Killing
vector and dΣμ is defined by the condition r → ∞ and is
given by

dΣμ ¼ nμdΣ; ðB2Þ

with

nμ ¼
½0; 1; 0; 0�ffiffiffiffiffiffi

grr
p and dΣ ¼ jhj1=2dtdθdϕ: ðB3Þ

where hμν is the induced metric on the hypersurface define
by r → ∞. Since jhj ¼ g=grr, we have

dΣμ ¼ ½0; 1; 0; 0� ffiffiffiffiffiffi−g
p

dtdθdϕ: ðB4Þ

The flux is then given by

ΦR ¼
Z

Tr
t
ffiffiffiffiffiffi
−g

p
dθdϕ: ðB5Þ

The energy-momentum tensor can be expressed in terms of
the Maxwell scalars as [54]

4πTμν¼−fϕ0ϕ
�
0nμnνþ2ϕ1ϕ

�
1½lðμnνÞþmðμm�

νÞ�þϕ2ϕ
�
2lμlν

−4ϕ�
0ϕ1nðμmνÞ−4ϕ�

1ϕ2lðμmνÞþ2ϕ2ϕ
�
0mμmνgþc:c:

ðB6Þ

where parentheses denote symmetrization. With our choice
of tetrad, we find that the relevant terms as r → ∞ are

lim
r→∞

Tr
t ¼

1

2π

�
ϕ2ϕ

�
2 −

ϕ0ϕ
�
0

4

�
ðB7Þ

We recall that

ϕ0 ¼
X
l;m

þ1RlmðrÞSlmþ1ðθÞeimðϕ−ΩtÞ; ðB8Þ

2ðr − ia cos θÞ2ϕ2 ¼
X
l;m

−1RlmðrÞSlm−1 ðθÞeimðϕ−ΩtÞ; ðB9Þ

as well as the fact that

lim
r→∞

r2jþ1RlmðrÞj¼0 and lim
r→∞

j−1RlmðrÞj
r

¼j−1α∞lmj: ðB10Þ
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Using the orthonormality properties of the spin-weighted
spheroidal harmonics, we therefore get the energy flux
radiated at infinity

Φ∞ ¼ lim
r→∞

Z
r2 sin θ
2π

ϕ2ϕ
�
2dθdϕ ¼

X
l;m

j−1α∞lmj2
8π

ðB11Þ

2. Flux through the horizon

In order to evaluate the flux of energy through the horizon,
we first need to modify the tetrad basis we have defined
in Eq. (10) since it is singular at the horizon. Following
Chap. 8 Sec. 76(b) of [59], we first perform a rotation of
class III (according to Chandrashekar’s convention):

lμ →
Δ

2ðr2 þ a2Þ l
μ ¼

�
1

2
;

Δ
2ðr2 þ a2Þ ;0;

a
2ðr2 þ a2Þ

�
ðB12Þ

and

nμ →
2ðr2 þ a2Þ

Δ
nμ

¼
�ðr2 þ a2Þ2

ΣΔ
;−

ðr2 þ a2Þ
Σ

; 0; a
ðr2 þ a2Þ

ΣΔ

�
: ðB13Þ

We then go to a Kerr-Schild frame via the coordinate
transformation:

dv ¼ dtþ r2 þ a2

Δ
dr and dϕ̃ ¼ dϕþ a

Δ
dr: ðB14Þ

In this frame, the null vectors lμðHHÞ and nμðHHÞ, where HH

stands for Hartle-Hawking, are given by

lμðHHÞ ¼
�
1;

Δ
2ðr2 þ a2Þ ; 0;

a
r2 þ a2

�
; ðB15Þ

nμðHHÞ ¼
�
0;−

r2 þ a2

Σ
; 0; 0

�
: ðB16Þ

On the horizon, the vector lðHHÞ can be expressed in terms
of the time and angular Killing vector Kμ

T ¼ ½1; 0; 0; 0� and
Kμ

L ¼ ½0; 0; 0; 1� as
lμðHHÞ ¼ Kμ

T þ ΩhK
μ
L: ðB17Þ

where Ωh ¼ a=2Mrþ is the angular frequency of the
horizon. In this basis, which is well behaved at the horizon,

the Maxwell scalars ϕðHHÞ
0 is related to the Maxwell scalar

ϕ0 computed in the basis (10) via

ϕðHHÞ
0 ¼ Δ

2ðr2 þ a2Þϕ0: ðB18Þ

The surface element dΣa of the horizon, which is a null
hypersurface, is given by

dΣμ ¼ lðHHÞ
μ dσdt ðB19Þ

where dσ ¼ 2Mrþ sinðθÞdθdϕ is the elementary surface
area of the event horizon. Therefore, the elementary flow of
energy and angular momentum through the horizon are

�
d2ΦT

h

dtdΩ

�
¼ 2Mrþl

ðHHÞ
μ Kν

TT
μ
ν ðB20Þ

�
d2ΦL

h

dtdΩ

�
¼ 2Mrþl

ðHHÞ
μ Kν

LT
μ
ν ðB21Þ

Combining these with (B17) and using the fact that
ΦT ¼ −ΩΦL yields

�
d2ΦT

h

dtdΩ

�
¼ 2Mrþω

ω −mΩh
TμνlðHHÞ

μ lðHHÞ
ν : ðB22Þ

By definition TμνlðHHÞ
μ lðHHÞ

ν ¼ ϕðHHÞ
0 ϕ�

0
ðHHÞ=2π, and

therefore

�
d2ΦT

h

dtdΩ

�
¼ ω

8Mrþω̃
Δ
2π

ϕ0ϕ
�
0: ðB23Þ

Finally, integrating over the surface element using the
decomposition (B8), the orthonomality of the spin-weighted
spheroidal harmonics, and the asymptotic behavior of the
radial function near the horizon,

ΦT
h ¼

X
l;m

ω

16πMrþω̃
jþ1α

h
lmj2: ðB24Þ

APPENDIX C: PROJECTION ONTO SCALAR
SPHERICAL HARMONICS

To compute the physical conservative part of the self-
force we apply the mode-sum regularization procedure. As
a preliminary step before applying the regularization, one
should decompose the radial force onto a basis of scalar
spherical harmonics. Since the structure of the Kerr metric
invited us to use spin-weighted spheroidal harmonics as a
basis for the angular functions of our problem, we now
need to project the spin-weighted spheroidal harmonics
onto scalar spherical harmonics.

1. Projection of the spin-weighted spheroidal harmonics

a. From spin-weighted spheroidal harmonics
to spin-weighted spherical harmonics

We first decompose the spin-weighted spheroidal har-
monicsSlms onto the spin-weighted spherical harmonicsYlm

s :

Slms ðθÞ ¼
X
l̂

ðbms Þll̂Yl̂m
s ðcos θÞ: ðC1Þ
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The coefficients ðbms Þll̂ are computed using the Black Hole
Perturbation Toolkit [66].

b. From spin-weighted spherical harmonics to scalar
spherical harmonics

We decompose the spin-weighted spherical harmonics in
terms of spherical harmonics Ylm

0 ,

Ylm
þ1ðzÞ ¼

X
l̃

ðAm
þ1Þll̃ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p Yl̃m

0 ðzÞ; ðC2Þ

Ylm
0 ðzÞ ¼

X
l̃

δl
l̃
Yl̃m
0 ðzÞ; ðC3Þ

Ylm
−1ðzÞ ¼

X
l̃

ðAm
−1Þll̃ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p Yl̃m

0 ðzÞ; ðC4Þ

where z ¼ cos θ and the coefficients are given by

ðAm
þ1Þll̃ ¼ ð−1Þmþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2lþ 1Þð2l̃þ 1Þ

q

×

�
1 l l̃

0 m −m

��
1 l l̃

1 −1 0

�
; ðC5aÞ

ðAm
−1Þll̃ ¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2lþ 1Þð2l̃þ 1Þ

q

×

�
1 l l̃

0 m −m

��
1 l l̃

−1 1 0

�
: ðC5bÞ

It follows from the properties of the Wigner 3j symbols
that

ðAm
þ1Þll̃ ¼ ð−1Þlþl̃ðAm

−1Þll̃: ðC6Þ
Combining the two decompositions, we can write the
spin-weighted spheroidal harmonics as

Slms ðθÞ ¼
X
l̂;l̃

ðbms Þll̂ðAm
s Þl̂l̃

Yl̃m
0 ðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p : ðC7Þ

Note that due to the presence of the 3j-symbols in
Eqs. (C5), the indices l̃ and l̂ satisfy l̃ − 1 ≤ l̂ ≤ l̃þ 1.

2. Expansion of L1Slm+ 1ðθÞ
The definition of L1Slmþ1 is

L1Slmþ1ðθÞ ¼ ∂θSlmþ1ðθÞþ
�

m
sinθ

−aωsinθ

�
Slmþ1þ

cosθ
sinθ

Slmþ1:

ðC8Þ

In order to project L1Slmþ1 onto scalar spherical harmonics,
we first need to project ∂θSlmþ1 .

The spherical harmonics of different spins are related by

ðYlm
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
Ylm
sþ1; ðC9Þ

ð̄Ylm
s ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
Ylm
s−1; ðC10Þ

where the spin-raising and spin-lowering operators ð and ð̄
are defined by

ðfsðθ;ϕÞ ¼ −ðsin θÞs
�
∂

∂θ
þ i
sin θ

∂

∂ϕ

�
ððsin θÞ−sfsÞ ðC11Þ

ð̄fsðθ;ϕÞ ¼ −ðsinθÞ−s
�
∂

∂θ
−

i
sinθ

∂

∂ϕ

�
ððsinθÞsfsÞ: ðC12Þ

We have that

∂θSlmþ1ðθÞ ¼
X
l̂

ðbmþ1Þll̂∂θYl̂m
þ1ðcos θÞ: ðC13Þ

We can eliminate the derivative using the relation (C11) and
the expression for ð̄, namely,

ð̄Ylm
þ1ðzÞ ¼ −ðsinθÞ−1

�
∂

∂θ
−

i
sinθ

∂

∂ϕ

�
ðsinθYlm

þ1ðzÞÞ ðC14Þ

¼ −
1

sin θ
½ðcos θ þmÞYlm

þ1ðzÞ þ sin θ∂θYlm
þ1ðzÞ�

ðC15Þ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Ylm
0 : ðC16Þ

Therefore, we have that

∂θSlmþ1ðθÞ ¼
X
l̂

ðbmþ1Þll̂
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ 1Þ
q

Yl̂m
0 ðcos θÞ

−
ðcos θ þmÞ

sin θ
Yl̂m
þ1ðcos θÞ

�
: ðC17Þ

Substituting (C17) into (C9), we get

L1Slmþ1¼
X
l̂

ðbmþ1Þll̂
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ1Þ
q

Yl̂m
0 −amΩsinθYl̂m

þ1

i
ðC18Þ

¼
X
l̂;l̃

ðbmþ1Þll̂
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ 1Þ
q

δl̂
l̃
− amΩðAm

þ1Þl̂l̃
i
Yl̃m
0 :

ðC19Þ

APPENDIX D: SHIFTS IN ORBITAL
PARAMETERS FROM CONSERVATIVE

SELF-FORCE

On Kerr spacetime, the shifts in the energy and angular
momentum at fixed r0 are
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ΔE
E0

¼ −
r0Δ0ðL0ðr0 − 2MÞ þ 2aME0Þ

2E0X
F r=μ; ðD1aÞ

ΔL
L0

¼ −
r0Δ0ðE0ðr30 þ a2ðr0 þ 2MÞÞ − 2aML0Þ

2L0X
F r=μ; ðD1bÞ

X ¼ ðr30 − 3Mr20 − 2Ma2ÞE0L0 þ aMðð3r20 þ a2ÞE2
0 þ L2

0Þ ðD1cÞ

and the shift in the angular velocity at fixed r0 is

ΔΩ
Ω0

¼ −
Δ2

0r
3
0ððr30 þ a2ðr0 þ 2MÞÞE2

0 − 4E0L0aM − L2
0ðr0 − 2MÞÞ

2XðE0r0ðr20 þ a2Þ − 2aMðL0 − aE0ÞÞðr0L0 − 2MðL0 − aE0ÞÞ
F r=μ: ðD2Þ

APPENDIX E: A DISTRIBUTIONAL IDENTITY

The Dirac delta distribution δðx − x0Þ is of compact
support, with δðx − x0Þ ¼ 0 for x ≠ x0 and the fundamental
property Z

x0þϵ

x0−ϵ
hðxÞδðx − x0Þdx ¼ hðx0Þ: ðE1Þ

Here ϵ > 0, x0 is a real constant and hðxÞ is a test function
that is continuous at x0 (and, below, differentiable). Now
consider fðxÞδ0ðx − x0Þ appearing in Eq. (36), where fðxÞ
is a differentiable function and the prime denotes an
ordinary derivative with respect to x. By application of
integration by parts,Z

x0þϵ

x0−ϵ
hðxÞfðxÞδ0ðx − x0Þdx

¼ −
Z

x0þϵ

x0−ϵ
fh0ðxÞfðxÞ þ hðxÞf0ðxÞgδðx − x0Þ;

¼ −h0ðx0Þfðx0Þ − hðx0Þf0ðx0Þ: ðE2Þ

By contrast, the integral of fðx0Þδ0ðx − x0Þ, where fðx0Þ
is a constant rather than a function of x, has but a single
term,

Z
x0þϵ

x0−ϵ
hðxÞfðx0Þδ0ðx − x0Þdx ¼ −h0ðx0Þfðx0Þ: ðE3Þ

Hence fðxÞδ0ðx − x0Þ and fðx0Þδ0ðx − x0Þ are not equiv-
alent. On the other hand,

Z
x0þϵ

x0−ϵ
hðxÞffðx0Þδ0ðx − x0Þ − f0ðx0Þδðx − x0Þgdx

¼ −h0ðx0Þfðx0Þ − hðx0Þf0ðx0Þ; ðE4Þ

which matches Eq. (E2). This equivalence justifies the
replacement made in Eq. (36).
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[81] B. Léauté and B. Linet, J. Phys. A 15, 1821 (1982).
[82] F. Piazzese and G. Rizzi, Gen. Relativ. Gravit. 23, 403

(1991).
[83] S. E. Gralla, A. P. Porfyriadis, and N. Warburton, Phys. Rev.

D 92, 064029 (2015).

THEO TORRES and SAM R. DOLAN PHYS. REV. D 106, 024024 (2022)

024024-22

https://doi.org/10.1088/1475-7516/2016/05/054
https://doi.org/10.1103/PhysRevLett.126.041103
https://doi.org/10.1103/PhysRevLett.126.041103
https://doi.org/10.1103/PhysRevD.97.104058
https://doi.org/10.1103/PhysRevD.102.104030
https://doi.org/10.1103/PhysRevD.102.104030
https://doi.org/10.1080/14786440308635117
https://doi.org/10.1080/14786440308635117
https://doi.org/10.1098/rspa.1938.0124
https://doi.org/10.1103/RevModPhys.54.697
https://doi.org/10.1140/epjh/e2012-30009-7
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.3
https://doi.org/10.1103/PhysRevD.65.084001
https://doi.org/10.1103/PhysRevD.65.084001
https://doi.org/10.1016/0003-4916(60)90030-0
https://doi.org/10.1016/0003-4916(60)90030-0
https://doi.org/10.1103/PhysRevD.67.024025
https://doi.org/10.1103/PhysRevD.67.024025
https://doi.org/10.1103/PhysRevD.80.024031
https://doi.org/10.1103/PhysRevD.80.024031
https://doi.org/10.1038/238211a0
https://doi.org/10.1038/238211a0
https://doi.org/10.1103/PhysRevLett.107.241101
https://doi.org/10.1103/PhysRevD.87.044050
https://doi.org/10.1103/PhysRevD.87.044050
https://doi.org/10.1103/PhysRevLett.28.998
https://doi.org/10.1103/PhysRevLett.28.998
https://doi.org/10.1103/PhysRevLett.28.1352
https://doi.org/10.1103/PhysRevLett.28.1352
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.1016/0003-4916(68)90231-5
https://doi.org/10.1103/PhysRevD.89.084021
https://doi.org/10.1140/epjp/s13360-021-01640-4
https://doi.org/10.1103/PhysRevD.61.061502
https://doi.org/10.1103/PhysRevD.75.064021
https://doi.org/10.1103/PhysRevD.81.084021
https://doi.org/10.1103/PhysRevD.83.124026
https://doi.org/10.1103/PhysRevD.83.064018
https://doi.org/10.1103/PhysRevD.86.084059
https://doi.org/10.1103/PhysRevD.86.084059
https://doi.org/10.1103/PhysRevD.88.104009
https://doi.org/10.1103/PhysRevD.88.104009
https://doi.org/10.1103/PhysRevD.87.084066
https://doi.org/10.1103/PhysRevD.90.104031
https://doi.org/10.1103/PhysRevD.90.104031
https://doi.org/10.1103/PhysRevD.92.064025
https://doi.org/10.1103/PhysRevD.92.064025
https://doi.org/10.1103/PhysRevD.97.104033
https://doi.org/10.1103/PhysRevD.67.024029
https://doi.org/10.1103/PhysRevD.86.104023
https://doi.org/10.1103/PhysRevD.86.104023
https://doi.org/10.1103/PhysRevD.89.024030
https://doi.org/10.1103/PhysRevD.89.024030
https://doi.org/10.1086/152445
https://doi.org/10.1086/152445
https://doi.org/10.1086/152444
https://doi.org/10.1086/153180
https://doi.org/10.1086/153180
https://doi.org/10.1098/rspa.1976.0056
https://doi.org/10.1103/PhysRevD.81.084039
https://doi.org/10.1103/PhysRevD.81.084039
https://doi.org/10.1086/151796
https://doi.org/10.1086/151796
https://doi.org/10.1103/PhysRevLett.113.161101
https://doi.org/10.1103/PhysRevLett.113.161101
https://doi.org/10.1143/PTP.107.967
https://doi.org/10.1143/PTP.107.967
https://arXiv.org/abs/1112.3707
bhptoolkit.org
bhptoolkit.org
https://doi.org/10.1143/PTP.95.1079
https://doi.org/10.1143/PTP.95.1079
https://doi.org/10.1143/PTP.96.549
https://doi.org/10.1143/PTP.96.549
https://doi.org/10.1103/PhysRevD.92.084025
https://doi.org/10.1103/PhysRevD.92.084025
https://doi.org/10.1103/PhysRevD.93.124038
https://doi.org/10.1103/PhysRevD.93.124038
https://doi.org/10.1103/PhysRevLett.118.011101
https://doi.org/10.1103/PhysRevD.94.044034
https://doi.org/10.1088/1361-6382/aac8ce
https://doi.org/10.1088/1361-6382/aac8ce
https://doi.org/10.1103/PhysRevLett.102.191101
https://doi.org/10.1143/PTP.128.971
https://doi.org/10.1093/ptep/ptv012
https://doi.org/10.1103/PhysRevD.102.124001
https://doi.org/10.1103/PhysRevD.91.064050
https://doi.org/10.1103/PhysRevD.91.064064
https://doi.org/10.1103/PhysRevD.85.061501
https://doi.org/10.1088/0305-4470/15/6/021
https://doi.org/10.1007/BF00756605
https://doi.org/10.1007/BF00756605
https://doi.org/10.1103/PhysRevD.92.064029
https://doi.org/10.1103/PhysRevD.92.064029

