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Electromagnetic self-force on a charged particle on Kerr spacetime:
Equatorial circular orbits
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We calculate the self-force acting on a charged particle on a circular geodesic orbit in the equatorial plane
of a rotating black hole. We show by direct calculation that the dissipative self-force balances with the sum of
the flux radiated to infinity and through the black hole horizon. Prograde orbits are found to stimulate black
hole superradiance, though we confirm that the condition for floating orbits cannot be met. We calculate the
conservative component of the self-force by application of the mode sum regularization method, and we
present a selection of numerical results. We obtain the leading-order coefficients in post-Newtonian
expansions of the dissipative and conservative components of the self-force, using an analytical method and
numerical fitting, respectively. The self-force on the innermost stable circular orbits of the Kerr spacetime is
calculated, and comparisons are drawn between the electromagnetic and gravitational self forces.
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I. INTRODUCTION

The first detection of gravitational waves in 2015
heralded the arrival of gravitational wave astronomy as
an observational science [1]. Two years on, the near-
coincident detection of gravitational waves (GWs) and
gamma rays from a binary neutron-star merger confirmed
that GWs travel at the speed of light [2]. This dual detection
highlighted the potential of multimessenger astronomy, as
the host galaxy was quickly located by telescopes working
in the electromagnetic spectrum, enabling a new measure-
ment of the expansion rate of the universe to be made,
that is, an independent determination of the Hubble param-
eter [3]. By 2021, ground-based detectors had reported
90 gravitational wave events, detailed in the transient
catalogues (GWTCs) 1, 2 and 3 [4]. With each doubling
of sensitivity, we can expect that number to increase by a
factor of approximately eight.

The mathematical modeling of compact binary inspirals,
and their gravitational wave signatures, has progressed
steadily over recent decades. Three leading approaches to
modeling the gravitational two-body problem give comple-
mentary information, namely, post-Newtonian expansions
[5], self-force calculations [6], and the simulations of
numerical relativity [7]. The essential inspiral process can
be understood from the leading-order term in the post-
Newtonian expansion. A pair of compact bodies of masses
M, and M,, on quasicircular orbits about the center of mass,
will radiate gravitational waves predominantly in the
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quadrupole mode (£ = 2) at twice the orbital frequency
[8,9]. Consequently, the binary system loses energy, and the
GW frequency increases with a characteristic chirp profile,

)~ (SGQM) T )

8 c

where f is the wave frequency, c is the speed of light, 7, is
the time of collision, and M = (M, M,)> /(M + M,)'/3
is the chirp mass [10]. The spectrogram of the gravitational
wave signal from the binary neutron star inspiral was found
to track this chirp profile remarkably closely over the last
~100 seconds before merger [11], despite the fact that,
formally, Eq. (1) arises only from the leading-order term of a
post-Newtonian expansion for the radiated flux [9].

A natural question arises: does the catalogue of GW
events from inspirals put strong constraints on beyond-GR
theories, such as Einstein-Maxwell-dilaton theory [12,13],
or dark matter scenarios featuring exotic charges [14]? A
more prosaic, but related, question is whether the compact
bodies could carry significant electromagnetic charges. In
both scenarios, the existence of a radiative dipole mode
(Z = 1) will, in principle, change the character of the
inspiral. However, numerical simulations [15] suggest
that the gravitational-wave chirps observed from compa-
rable mass binaries are compatible with non-negligible
charge-to-mass ratios (e.g., up to ~0.3 for GW 150914, for
example [15]).

In future decades, space-based observatories will detect
low-frequency gravitational waves from systems involving
supermassive black holes. A key target for LISA are so-
called extreme mass-ratio inspirals (EMRIs) with M| > M,.
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The scenario in which the central black hole (M) is charged
was recently investigated using black hole perturbation
theory [16,17]. In this work, we consider the complementary
case, in which the central black hole (M) is uncharged, but
the orbiting body (M) carries an electromagnetic charge g.
We shall approach this problem from the perspective that the
orbiting body experiences an electromagnetic self-force, at
order g2, that causes a radiation reaction upon its motion.
First, let us review the roots of this idea in the birth of
quantum theory.

It is well-known that classical field theory is unable
to satisfactorily account for the observed stability of
the hydrogen atom. In the “planetary” version of the
Rutherford atomic model [18], a pointlike electron orbits
the atomic nucleus. The centripetal acceleration of the
charged electron generates electromagnetic (EM) radia-
tion at the orbital frequency of ~10'5 Hz and, conse-
quently, a radiation-reaction force acts upon the electron,
causing the rapid collapse of the atom within 1073 s.
Invoking the Abraham-Lorentz [19,20] force law,
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nonrelativistic classical theory1 implies that a pointlike
electron on a quasicircular inspiral trajectory will generate
EM radiation with the following “chirp” profile [cf. Eq. (1)]
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Here « is the fine-structure constant and aq is the Bohr
radius (see Appendix A for a derivation).

There is no experimental support for collapsing atoms
and/or EM chirps, of course. To the contrary, experiments
with electric discharges from the 1850s onwards show that
atoms emit EM radiation at certain discrete frequencies
[22]. Tension between theory and experiment led to the
introduction of the Bohr-Rutherford atomic model [23],
and on to quantum theory itself. However, the idea of an
orbit driven by a radiation-reaction force has reemerged as a
useful concept on a very different scale in the universe.

In this article we consider the radiation-reaction process
for a charged particle orbiting a black hole of mass M, rather
than a charged nucleus. We shall assume that the length-
scales of the particle, such as its Compton wavelength,
are substantially smaller than the curvature scale, so that
classical field theory provides an adequate framework. One
might expect that, since the gravitational force and the
Coulomb force both follow inverse square-laws in the weak-
field, the radiation reaction process will proceed in a broadly

"For a fully relativistic treatment, one would instead start
with the Abraham-Lorentz-Dirac equation [21]; but note that
v/c < 0.01 for a pointlike electron at the Bohr radius.

similar fashion, producing a chirp frequency which scales
with (1, — t)~'/? while v < ¢ and r > GM/c*. However,
an important difference that cannot be overlooked is that the
spacetime of a black hole is curved, not flat.

The first expression for an EM self-force on a weakly
curved spacetime was obtained by DeWitt-Morette and
DeWitt [24] in 1964. The self-force on a particle of charge
g on a vacuum spacetime characterized by a Newtonian
potential ®y = GM/c*r < 1 is given by

2
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where g = —c?>V®,, is the Newtonian gravitational field.

The first term in parentheses in Eq. (4) is the standard
Abraham-Lorentz force, which leads to the dissipation of
orbital energy, and thus to an analogue of Eq. (3). The
second term is a conservative correction to the Newtonian
force mg, which is not present in flat spacetime. Analogous
equations were obtained for scalar and gravitational self-
forces in weakly-curved spacetimes in Ref. [25].

To move beyond the Newtonian/weak-field context, we
must acknowledge several key differences between a point
mass in Newtonian theory and a black hole in general
relativity. First, there exists an innermost stable circular orbit
(ISCO), inside of which circular orbits cannot be sustained.
Second, orbital velocities are sizable (v/c ~0.4 at the
Schwarzschild ISCO), necessitating a fully relativistic
description. Third, the issue of regularization is more subtle
in a curved space-time, and Dirac’s time-reversal approach
(“half-advanced-minus-retarded”) breaks down and requires
modification [26-28].

The conservative component of the EM self-force leads to
a shift in the orbital energy and angular momentum, and to a
shift in the ISCO radius and frequency. The dissipative
component of the EM self-force leads to orbital decay, and
to the possibility of two interesting phenomena: floating
orbits, and synchrotron radiation. The possibility of floating
orbits—orbits which do not decay—arises due to super-
radiance, which allows a particle on a corotating orbit to
stimulate the release of energy and angular momentum from
arotating black hole [29-31]. The possibility of synchrotron
radiation arises from the high velocities on ISCO orbits,
leading to the beaming of radiation in the direction of
motion [32,33].

In 1960, DeWitt and Brehme [26] derived an expression
for the self-force on a point electric charge (see Eq. (1.33)
in Ref. [34]) that consists of two parts: a local term which
depends on the external force and the local Ricci tensor
[35], and a tail integral, which encapsulates the effect of
radiation emitted at earlier times that reaches the particle
after interacting with the spacetime curvature. Thus, self-
force in curved spacetime is nonlocal in time, since it
depends on the past history of the motion of the particle, as
well as its current state.
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Calculating the tail integral in practice is a technical
challenge (though see [36]); fortunately, there are equivalent
formulations available, as described in the review articles
[34,6] (see also Ref. [37]). Prominent among these is the
mode sum regularization (MSR) method introduced by
Barack and Ori [38], which has been applied by numerous
authors [39-48] for efficient and accurate calculations of the
self-force. Schematically, a regularized self-force F,* is

obtained by subtracting regularization parameters F ,[fl],

F [0], etc., from the £ modes of a “bare” force:

Frg=Y (Feel —m o+ 1) - FY - ). (5)
=0

The regularization parameters are obtained from a local
analysis of the symmetric-singular Detweiler-Whiting field
[27]. Happily, regularization parameters for the EM field
have already been calculated for the Schwarzschild black
hole by Barack and Ori [49] and for the Kerr black hole by
Heffernan, Wardell and Ottewill [50-52], and we make use
of these here.

The MSR method is suited to cases where the field
equations allow for a complete decomposition into modes in
such a way as to reduce the problem to the solution of
ordinary differential equations. Fortunately, the field equa-
tions for an EM field on Kerr spacetime fall into this class,
as shown by Teukolsky [53-55], and the Faraday tensor F,,
can be fully reconstructed from Maxwell scalars of spin-
weight 1 that satisfy second-order ODEs [56,57].

The article is organized as follows. Section II describes
the formulation of the calculation, covering the spacetime
and its geodesic orbits (Il A); Maxwell’s equations in the
Teukolsky formalism (II B); the distributional source terms
due to the particle (Il C); the mode solutions (II D) and the
special cases of static modes and the monopole (Il E); the
dissipative self-force and fluxes (Il F); and the conservative
self-force (Il G) calculated by projecting from spin-
weighted spheroidal harmonics to spherical harmonics
(ITG2) and by mode sum regularization (IIG 3).
Section III describes the implementation, addressing
numerical issues (III A) and the validation of the results
(I B). Results are given in Sec. IV for the dissipative (IV A)
and conservative (IV B) aspects of the self-force. We
conclude with a discussion in Sec. V.

We employ units in which the physical constants G, ¢
and 4ze, are equal to unity. The spacetime signature
is {—+++}.

II. FORMULATION
A. Spacetime and geodesic orbits

1. Spacetime

The Kerr solution with mass M and angular momentum
J =aM expressed in Boyer-Lindquist coordinates
{t,r,0,¢} has the line element

ds* = G dx'dx¥
A 0 2, 25 2
=-5 (dt — asin“0d¢)* + Kdr + Xdo

sin%0
>

((r? + a*)dep — adt)?, (6)

where X =r*+ad%cos’@ and A=r’>-2Mr+ a’.
When the condition a? < M? is satisfied, the Kerr
solution corresponds to a black hole spacetime with two

distinct horizons: an internal (Cauchy) horizon at r_ =
M —VM?—a*> and an external (event) horizon at

r, =M +VM? — a*. The angular velocity of the event
horizon is [58]

a
Q, = . 7
h 2Mr ()

The inverse metric g"* can be written in terms of a null
basis {I#,n*, m*,m*}, where the overline denotes the
complex conjugate, as

¢ = =21%n¥) 4 2mEmY) (8)
Ar Ly 1 Ly
:El(il_) +Em5ﬁm_). 9)

Here we employ the Kinnersley tetrad [59],

A, 1
m=—"l, =", (10)

r=r, K
2% V2(r+iacos6)

written in terms of an non-normalized null basis

I =[£(r’ +d*) /A, 1,0, £a/A],

T
m', = [tiasin®,0, 1, £icscl] = mk. (11)

The legs /', are aligned with the two principal null
directions of the spacetime. The inner products of the
tetrad /. and m’_ are

2
Gl It = e Gum'm? = 2%, (12)

with all others zero.

2. Circular equatorial geodesic orbits
Let x%(z) denote the particle’s worldline, with tangent
vector u# = dd—xf’ satisfying g, u*u” = —1. In the absence of
forces xh(7r) is a geodesic, satisfying u*V, u* =0.
Geodesic orbits on the Kerr spacetime are characterized
by three constants of motion: energy £ = _Mﬂf/(f>’ azimu-

thal angular momentum L = uﬂf’(’ M) and Carter constant
0 = O"™u,u,, where f’(‘t) = (9,)* and 5’(‘¢> = (0y)F are
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Killing vectors and Q" is the Killing tensor. For a
circular orbit in the equatorial plane at Boyer-Lindquist
radius ry,

1-202+a? 1 —2a’ +a*v* 00
:—, = I l/—’ = s

VI-3212a° V=32 120
(13)

where & = a/M and v = /M /ry. Explicitly, the equatorial
circular geodesic orbit has x(7) = [t(7), ro, 0, Q#(7)] and
w =u'[1,0,0,Q], where

3 1 ~ 3
o-— Y . w- % g
M1+ a?) V1 =3+ 2a

We adopt the convention [60] that L and Q are always
positive and a > 0 (a < 0) for prograde (retrograde) orbits.
The innermost stable circular orbit (ISCO) is at the radius

Fico/M =342, F\/(3-2))3+Z,+22,) (15)

where Z, =1+ (1 -a*)'"3[(1 +a)'3 + (1 —a)'/3] and

Z, = m and the upper (lower) sign in Eq. (15)
corresponds to prograde (retrograde) motion [61,62].

B. Maxwell’s equations and the Teukolsky formalism

The electromagnetic field equations in their standard
covariant form are

VP = 4gJt,  VF,, =0, (16)

where F* is the Faraday tensor and J* is a vector field
representing a four-current that is divergence-free
(V,J# = 0). It is convenient to introduce a complexified
version of the Faraday tensor, F* = F* — iF", where
~ denotes the Hodge dual, i.e., Frv = %e"”"VF oy The
complexified tensor is self-dual by virtue of the property
F* = iF*. The field equations (16) then reduce to a single
tensorial equation

V,FH = 4zt (17)

The six degrees of freedom of F*¥ are encapsulated in
3 complex Maxwell scalars,

1
d)OEF;wlﬂmD’ ¢25prn—1ﬂnl/, ¢1 EEFMv(lﬂnD_mﬂmy)v
(18)

and the self-dual Faraday tensor is specified in terms of
Maxwell scalars by

P = d(gombn) + gy llmt) + ¢y (nW 1) = mlm)). - (19)

For future reference, we introduce rescaled quantities:

1 _ A
O, =pyg=—7lm"F, & 52Q2¢2:\/—

W mvF
V20 - 20

1 uys

(20)

where ¢ = r + iacos 6.

Projecting (17) onto a null tetrad aligned with the
principal null directions leads to four equations in
Newman-Penrose form [54]

(D =2p)p, — (6 + m = 2a)py = —2nJ;,  (21a)
(6 —20)¢, — (A +u—2y)o = —2aJ,, (21b)
(D —p+2€)pr — (6 +2m)p, = =2nJ5, (21c)
(6—7+2B)p, — (A +2u)py = —22J,, (21d)

where D = l*9,, A =n"d,, 6 =m"'d, are directional
derivatives, and J, = I"J,, J,, = n"J,,, etc., are projections
of the four-current, and «, p, 7, 7 etc. are the Newman-
Penrose coefficients associated with the null tetrad.

In 1973, Teukolsky [54] showed that one can obtain a
decoupled equation for ¢, and also for ¢,, by exploiting a
commutation relation between first-order operators. After
inserting the Newman-Penrose quantities for the Kinnersley
tetrad, viz. k =6 =v =1=0,

p=—1/(r—iacos9), f=—p*cot/2v/2,

m = iap?sin0/V/2, a=n-—p", (22a)
T = —iapp* sin0/V/2, u=p*pA,/2,

1
y=p+ pr*A’, e=0, (22b)

one arrives at a master equation, Eq. (4.7) in Ref. [54]. This
may be cast into the form [63]

[(Vy + Fﬂ)(V" + F”) - 4lI/2]¢’¢1 =4xT,, (23)

where Vﬂ denotes the covariant derivative on the Kerr

spacetime, and here the so-called “connection vector”
[63] is

1 [M(r*—a? -M

F”E—{(rfa)—(r—l—iacosﬁ),r—M,O,%
cos 6

S0 24

’sinze} (24)

and w, = M/(r —iacos@)? is the only nonvanishing
Weyl scalar for the Kerr spacetime in the Kinnersley
tetrad. The source terms in Eq. (23) are
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T,,=Jo=06-p—-a—-2c+7)J,
_(D_€+é_2p_/_))‘]mv (25)

1 _ _
z—égT—1:J25(A+7—7+2ﬂ+#)Jm

—(0+a+p+2n—1),. (26)
Remarkably, Eq. (23) admits separable solutions. The

solution can be constructed from a sum over modes, with
each mode in the form

Dy = Ry (r)Sy (@)e7 ™t (27)
In the vacuum case (J# =0), inserting Eq. (27) into
Eq. (23) leads to homogeneous Teukolsky equations in

Chandrasekhar’s form,

(AD'D - 2iwr — A)P_, = 0,

(ADD' + 2iwr —A)P,, =0, (28a)
(EEI +2awcosf+2)S_; =0,
(ETEI —2awcos O + /1)S+1 = 0, (Zgb)

where P, = AR,,, P_; = R_; and A is the separation
constant for s = —1 [57]. Here we have made use of
directional derivatives along { /., I*, m"_, m" }, denoted by
{D,D", L', L}, where

iK
Dzliaﬂ:a,—K, Li=mo,=0—0, (29)
4 iK
D'=1td,=0,+—+. L=mto,=0d+0Q. (29b)

with K = w(r* +a?) —am and Q = mcsc6 — awsin.
We assume that these operators act only on quantities
with  harmonic time dependence y = e i®tmd
Furthermore, let £, = £ 4+ ncotf and Lh =L+ ncotd.

For consistency these functions must also satisfy the
Teukolsky-Starobinsky identities,

ADDP_, =BP,,, LLIS.,=BS., (30a)

AD%D%Ple - BP—I? ££1S+1 - BS—l’ (30b)

where B = VA* + 4amw — 4a’0?.

The modes of the Maxwell scalar of zero spin-weight,
¢, can be constructed by applying differential operators
to the modes of ¢, and ¢, [56]. From Chap. 8 in
Chandrasekhar [59],

m _ X
P = V2(r — iacos 6)? [9.41(r)L1541(0)
~iaf 4 ()PP (r) G1a
—_ £ Aot
= ﬂ(r  iacos 9)2 [9-1(r)L1S-1(0)
—iaf 1 (0)D"P(r)] (31b)
where
Bg,i(r) = (rD=1)P_, (32a)
Bg_i(r) = (rD' = )P, (32b)
Bf ;1(0) = (cos OL] + sin6)S_;, (32¢)
Bf_1(6) = (cosOL; +sind)S, ;. (32d)

C. Source terms

For a pointlike charge ¢ on a geodesic orbit, the four-
current is

=g / W ()5 (o — () (~g(w))V2dr. (33)

— q—lfl5(r —710)8(0 — 1/2)8(¢p — Q). (34)

o

On the second line we have inserted the expressions in
Sec. I A2 to specialize to a circular geodesic orbit in the
equatorial plane (0 = z/2). Here O" = w /u' =11,0,0,Q],
with Q defined in Eq. (14); projecting onto the Kinnersley
tetrad yields

A N 2r(2)
U'l, = =(1 - aQ) = U'n,——,
Ay
. i
Utm, = 2+ a®)Q —a). 35
U \/il"() (( 0 ) ) ( )

The first task is to compute the source terms J, and J, in
Egs. (25) and (26). Here we must handle the distributional
terms with some care (see Appendix E), noting that whereas
F(x0)8(x — x9) = f(x9)8(x — xg), on the other hand

F(x)8 (x = x0) = f(x0)8 (x = x0) = f(x0)8(x — xg), (36)

where f(x) is any differentiable function and x, is a
constant. Using

1 & .
(=@ =5 D g gm= MW, (3T)

and evaluating on the equatorial plane at r = r, after
employing (36) leads to

024024-5
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Sy = 2n:/q§r0 Zm: {(1 —aQ) (a(, —m(1 - aQ) + %)

+i((R + a)Q - a) (a, _im(rg +A‘;2)Q —a) rio)];(ma(r - r0)5<9 - g) :

At this point we employ the orthonormality of the spin-weighted spheroidal harmonics,

/ 1
[ sa@stroacoso) = 5o,

to establish that

Hence

q ‘m : 2 2 ‘m z /
Slo=——) S (O)y,si((r5+a*)Q—a)S" "= |5 (r—rg)+
0 \/il"o 2 +1( ))( { (( 0 ) ) +1 <2> ( 0)

— (1 - aQ)s’m <”) 8(r = ro) + {irOQ +m (((r‘% +a)Q-a) aQ)2>] st <’2T) 5(r — ro)}.

2 Ao

From the form of (42), we see that the master equation Eq. (23) admits a separable solution
00 14
Oy = Z RIS
=1 m=—¢
where
(ADDT + 2imQr — A) P = S(+iBS &' (r — ro) + {(mA") +iA)S, + CS', }5(r — ry)),
(ADID — 2imQr — )P = S(—iBS_8 (r — ro) + {(mA") —iA)S_ — CS_}8(r — ry)),
where Pi" = AR?" and P7" = R”?, and Sy, = S7%(%) and S, = S7%(%), and

4rq

8: ’
\@ro

B = Ay((r3 +a®)Q —a),
Al = ro(ro((r% +a?)Q* — 1) +2M(1 — aQ)?),
A = a?(2M — r))Q + 2a(rg — M) — r3Q,

C = —Ay(1 - aQ).

024024-6
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D. Mode solutions

The source terms in Eqs. (44) are distributions with
support at » = ry only. Hence solutions to the inhomo-
geneous equations may be constructed from solutions to the

homogeneous equations in the standard manner. Let P'i”f'h

and Pi’?’m be a pair of solutions to Eq. (28) that satisfy the

Zm,h

physical boundary conditions, that is, let P%'|"" be ingoing

at the future horizon, and let P%"*® be outgoing at future
infinity. The inhomogeneous solution takes the form

PLi(r) = a2 PLY (r)O(r = 1) + P (1)@ (ry = 1),
(46)
where ©(+) is the Heaviside step function, and a%; and o't |

are complex coefficients to be determined. Inserting (46)
into (44) yields the matrix equation
B,
A )
r=ro

A N N S (AT
) BWa\ Py P

(47)
where
b dem,oo . dem,h
Wy = P ;rl - Py dj;l . (48a)
B, = +iSBS,, (48b)
A, = S{(mAD +iAD)s, +CS, ). (48¢)

Here S, B, A" and C are defined in Eq. (45), and
./2“1) = roA()Q.

E. Static modes and the monopole

1. m=0 homogeneous modes
The m = 0 modes are static (w = 0). In this case we
employ the homogeneous modes
PO = A0,Pi(2), PO =A0,0.(2), (49)
where P,(-) and Q,(-) are Legendre functions with the

branch cut on the real axis from —oo to +1, and
z=A,/(r, —r_). The Wronskian is

dP{*® L dPOM ]
_Ps ’

W, =Py
* Hooar dr

The angular functions are

204+1 d
+ Py(cosd),  (51)

SO =F |~ 4
40 = F\zz a0

such that the normalization condition (39) holds.

2. Monopole mode

To complete the solution, we must now add “by hand” a
nonradiative monopole mode which is responsible for the
q/r part of the electric field far from the black hole.

The homogeneous vector potential

9
<

A’(‘0

=2 -, (52

M

in Lorenz gauge (VMA’(‘O) = 0) generates a homogeneous
Faraday tensor F’(‘g) = VHAY — V¥AF that satisfies the
vacuum equation V,F ’(‘g) = 0. It has the key properties that

q

Fioy =5+ 007), (53)
in the far-field and

1 o

3 Fl)dS,, = 4nq, (54)

where the two-surface integral is taken over any ‘“sphere”
of constant Boyer-Lindquist coordinate r, or any closed
surface enclosing the horizon. It is quick to verify that the
Maxwell scalars ¢, and ¢, (but not ¢,) associated with the
homogeneous solution are zero.

The inhomogeneous monopole mode,

Fivono = O(r — rO)F’(‘g>,

(55)
does not satisfy the vacuum equation; instead, V,Fiono =
ArWsono Where Fhaono = Fhaono — iFhaono and it is straight-
forward to show that

q A 1

@ﬁm”ﬁ —1£)5(r = ry).  (56)

H —
\J]mono -

Note that Jeno associated with the step in the monopole
mode is not restricted to the particle worldline, but instead
has support on the sphere at r = ry. Although Jono itself
is not zero, a short calculation shows that there are no
additional source terms for the Teukolsky equation (23),
that is, J§" = J5°" = 0. In other words, the inhomo-
geneous monopole is associated with a step in ¢, the
Maxwell scalar of spin-weight zero, only.

The inhomogeneous monopole mode makes a contribu-
tion to the radial component of the self-force of
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(r3 — a® cos? 0)(1 — aQsin? 0)
22

= Z fmonoon ) (57)
=0

]:'rrnono — q2 ut

Evaluating at 6 = /2 yields For° = qzut(l - GQ)/V%-

F. Dissipative force and fluxes

1. Dissipative component of the self-force

The dissipative components of the self-force are the ¢
and ¢ components of F, = gF,, u". From the symmetry
of the Faraday tensor, it is straightforward to see that
F=qlFQu' = -F,Q and in the following we will
focus on the ¢ component of the self-force. The (¢)
component of the Faraday tensor can be expressed in

terms of the Maxwell scalars as:

Foy= v/2Re |i sin O(r — iacos0)¢p,

iAsin@
2%

(r+iacos 6’)4)0]. (58)

Evaluating the force on the particle’s worldline, i.e., at
r=rqand 6 = z/2, yields

A
Fi = V2qu'QRe {iroqsz + ’2—°¢0} (59)
To
qQu’

—— ;’;Re [in’{‘(ro)Sﬁ" <g> +iP (ro) ST <g)]
(60)

- f/‘;’; %;Re [i((—l )7t PLY (ro) + P (r0)) ST <g>] ,

(61)

where we have used the fact that S77'(%) = (=1)"""S7%(%).

2. Energy flux
For an electromagnetic field given by a Faraday tensor F,,
with energy-momentum T = Fr*Fg,, — LF¥PF g9,
and a Killing vector K*, one can construct a current:

Y# =THK,. (62)
In vacuum, this current is divergence-free but in the presence

of a source, which is the case of interest here, the current
satisfies the following continuity equation:

F,K*
V. Y¢=F"K,J, = ﬁ&(}" )5(9 — —) 5(¢p — Q).

(63)

Using Gauss’ theorem

/V”Y”\/—gd“x:/ Yrdx, (64)
v v

where V is a space-time volume with boundary oV that spans
from the horizon to infinity, we can relate the force at the
particle to the fluxes through the boundary. Since the system
is stationary, only the fluxes at infinity and through the
horizon contribute to the total flux (see Appendix B):

F.K

— 0K 4+ @K, (65)
l/t

where the superscript K correspond to the choice of Killing
vector. As mentioned the link between the 7 and ¢ component
of the force is trivial and we focus on the time component of
the force which correspond to the choice K* = [1,0,0, 0]. In
the following we will drop the superscript K and keep in
mind that we are considering the energy flux. In Appendix B
we derive the expression for the energy flux at infinity and
through the horizon in terms of the « coefficients defined in
Eq. (46). Explicitly, the energy flux at infinity is

1 y )
= — o2 66
2 210 (66)
and through the horizon,

P, (67)

1
b, =
" 8 Z2Mr+
with @ = w — mQ,, and Q,, as defined in Eq. (7).

G. Conservative force and regularization

1. Conservative component of the self-force

We compute here the conservative component of the
self-force, i.e., F,, in terms of the Maxwell scalars. From
the definition of the force, we have:

Fy = qF it = qui(F+ FrgQ). (68)

Using the expression of the Faraday tensor in terms of the
Maxwell scalars,

= 2[prlymy) + oy ny + @1 (nyly) +mym,))| +c.c.,
(69)

we get that
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Fr_ a2+ r)Q —a)sinf|—
o= Vi@ + )2 -a) 9[

iy N ihy(r — iacos0)
4(r —iacos0) 2A

} + (1 — aQsin’0) ¢, + c.c. (70)

Inserting the mode decompositions (27) and (31a) and evaluating at ¢p = Qt yields

\/E((r2 +a*)Q—a)
F, = t in(@ [ le Slm le Slm}
au ; 4A(r —iacos0) sin(6) |~ i -1
E Slm ia flmppim
+ (1 — aQsin’6) g WafZiPPI | e (71)

V2(r — iacos 6)?

2. Projection onto scalar harmonics

Before the mode sum regularization procedure can be applied, it is necessary to project the spin-weighted spheroidal

harmonics onto the scalar spherical harmonics. Using the results of Appendix C,

ot \/E((FZ—FLZZ)Q—LI)
Fr=qu Z{ 4A(r — iacos ) [

l.mjj

lm CE

le C+1 I lleC_

— id|

Imli Im 11} (72)

CE . _cos®+CHLD

+ (1= aQsin29) Iml1
with
C?;nlll = ( )%(Aﬁl) (74&)
Clnill (bm ) (A}’_Vll> (74b)
cE = () [\/i(ﬂ 1)5§-am9(A11>§]. (74c)

Expanding (73) in z = cos 6, we have

Fr= qutZ[OFfm

‘m

+ A f i 4 o(2)|YE", (75)
with

((r(2)+a2)9—a)
Flm — le C+1 _ lec 1
0% r %: \/§ Agro [ Iml¢ lmlf}

+1 lm
_,_ﬂ(l —aQ)R [ L iaC, , DP”

r(2) Iml¢ B

, (76)

and

Dp™Mmy
iml1 ml} Yin 4+ c.c. 73
V2B(r — iacos §)? } 0 (73)

2 2
‘m __ ((rO ta )Q - a) Im p+1 Im 1
1/ —aZ V20012 RelPYiCe = P1IC0)
n
2\/5(] - CIQ) Im AL +1 Im
_TI mlg?iC,, lf_Ecl 1 PPi]
L Im
+ 2(1 —aQ) Im ClmlfDP—l (77)
V2r} B
fm o 2 ((rg + a*)Q a) Im o+1 Im -1
of a Z \/_Aoro I[P Cz 0~ P- Cz lf]
3ﬁ(1 —aQ) o e _iaC} L DP",
- r e Iml# B
Im
N 2\5(13— aQ) [C, i PP }
I B
iaC'", DP™™
Im AL Imlt
N PR L

Finally, expanding zY3™ and z2Y5™ using

cos QY5 = ZIBQ"Y?’”, (79a)
4
cos? QY4 = 2235311/"2”, (79b)

where
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(BOm = (=1)"\/(2€ + 1)(2¢, + 1)
(o0 0 )0 m n) ®

2\/2¢ +1)(26, + 1)
3

(2 ¢ f2><2 ¢ f2)+15 1)
X J—
00 0/\o m —m/) 37"

leads to

232" = <—1>m

Fr=qu'y [(F"+  F"+,F 0 4 o(2)|Yg",  (82a)
‘m
=> ¢ (82b)
=0

with

(Fim= Y fom By (83a)
?

(83b)

‘m __ £ym £om
JF = E :1fr2 2B
123

3. Mode sum regularization

The regularization procedure is based on the subtraction
of an appropriate singular component from the retarded
field, in order to leave a finite regular field that is solely
responsible for the self-force. The subtracted component
must have the same singular structure as the retarded field
in the vicinity of the particle, and must be sufficiently
symmetric as to not contribute to the self-force (or at least,
not in such a way that cannot be easily corrected for).
Detweiler and Whiting identified an appropriate choice of
the singular (S) field, based on a Green’s function decom-
position [27]. Subtracting this singular field is equivalent to
regularizing at the level of the Z-mode sum [6,34,38—48].

In the electromagnetic case, Heffernan er al. [50-52]
(see also Haas [64,65]) showed that subtracting the S field
leads to a regularized force F,® with a radial component in
the form

Te 2 :Fregn
rg - r ’
=0

where [n] denotes the order of the local expansion of the S
field, and

;eg[n]f - ff _ f[,n]f, (84)

F
(26 -1)(2¢ + 3)

+ o+ FIIG L (2). (85)

F =+ yF +

Here n >0 is an even integer denoting the order, and
G () =1/2¢+1-n)2¢0+3~=n)...2¢ +1+n) is

defined for n >0 such that ) % ;G (¢) = 0. Explicit
expressions for the mode sum regularization parameters
FU A% and 2 are given in Eq. (2.54), (2.56), and
(2.59) of Ref. [51] for the Kerr case, and F [r4] is given in
Eq. (5.52) of Ref. [50] for the Schwarzschild case.

The regularized force in Eq. (85) should include the
monopole piece given in Eq. (57).

III. IMPLEMENTATION

A. Numerics

1. Homogeneous solution to the Teukolsky equations

In order to compute the components of the self-force, we
need to evaluate radial Teukolsky functions P’ (r) and
spin-weighted spheroidal harmonics S'", () at the particle’s
location, that is r = ry and @ = /2. To do so, we use the
BlackHolePerturbation toolkit [66]. The angular functions
are computed using the SpinWeightedSpheroidalHarmonics
package and the radial functions are computed with the
Teukolsky package of the toolkit. The Teukolsky package
implements the Mano-Suzuki-Takasugi (MST) method
[67,68] to compute the homogeneous solution of the
Teukolsky equations.

2. High-l tail contribution

Our approach to compute the self-force requires us to
sum over spin-weighted spheroidal modes or scalar spheri-
cal modes. Ideally one would sum an infinite number of
modes but in practice we can only compute a finite number
of components, up to £, In the case of the dissipative
components of the self-force, the magnitude of the terms to
be summed over decays exponentially, as can be seen in
Fig. 4, and therefore the error from truncating the sum is
negligible. However, for the regularized conservative part
of the self-force, the terms in the sum decay as an inverse
power of L = ¢ + 1/2 instead of an exponential, and the
associated error from neglecting the higher modes is
sizable. To reduce this error, we estimate the contribution
coming from the # > ¢, modes following the standard
approach of [39] which we outline below.

In the large-Z regime, the modes of the regularized force
in Eq. (84) are approximately

reg(n]t &
Fre n s, (86)

where n denotes the regularization order (with n = 6 in the
Schwarzschild case and n = 4 in the Kerr case) and D, is a
numerical coefficient to be determined by fitting to the
high-# modes. Figure 5 shows that Eq. (86) is a reasonable
approximation for high values of #. The contribution of the
high-Z modes is then approximately
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(6] Dn
el > = D0l + 1), (87)
=L an+1 =L +1

where {(s, a) is the Hurwitz Zeta function.

3. Projection

In order to apply the mode-sum regularization procedure,
we need to project the force onto the scalar spherical
harmonics basis. The original quantities in the spin-
weighted spheroidal harmonics (associated to the index /)
are first projected onto the spin-weighted spherical har-
monics (associated with the index 1) which are then
expanded onto scalar spherical harmonics (associated with
the index £). For the subdominant terms, which are propor-
tional to cos@ and cos” @, one extra projection is needed
(associated with the index ¢ and #,). Due to the presence
of the 3j-symbols, and their association to spin-weighted or
scalar quantities, the summation indices satisfy

£=2<0,<C+2 (88)
£=1<t,<t+1 (89)
£—(1+n) <1<+ (1+4n) (90)
im| < L1.¢.¢\.05 (91)

where n =0, 1, 2 when computing the dominant, sub-
dominant or subsubdominant term.

Since one spin-weighted spheroidal mode couples to
several scalar spherical modes, we first compute all spin-
weighted spheroidal modes separately and then perform
the sums. We start by summing over ;| or ¢, if we are

computing the subdominant contributions at fixed m, I
and /. We then sum over m modes with fixed / and / and

then we sum over | modes at fixed /. All these sums
performed at this point are finite and can be performed for
any value of /. Finally we sum over / which in principle can
take any nonzero integer values. In practice however, we
sum over a finite number of / modes and estimate the
contribution of the higher / as described above.

B. Validation

In order to validate our numerical code when computing
the energy fluxes at infinity and through the horizon, we
compare the total flux with the dissipative component of the
self-force computed using (61). We check that the two
quantities agree up to numerical accuracy according to (65).
Furthermore, each flux is computed at r = r and r = rg
using different solutions to the homogeneous Teukolsky
equations. We verify that the two fluxes obtained agree to
numerical accuracy, meaning that our dissipative compo-
nent of the self-force is continuous across the particle.

In the case of the conservative piece of the self-force, we
do not have a conservation law to support our numerical
code. To validate our numerical approach in this case, we
first verify that the radial component of the self-force is
continuous across the particle as in the conservative
component case. We note that while F, is continuous
across the particle, up to the expected precision, each
spherical harmonic component FZ is discontinuous (for
a # 0). We also observe that the sum of the even (odd) 7
modes are independently continuous across the particle.
Both features are likely due to the fact that we are only using
a finite number of terms when expanding around cos 8 = 0.

We observe that the bare modes, FZ, are well regularized
using the regularization parameters found in the literature
[50,51]. Finally, our result for the conservative self-force in
the Schwarzschild case agrees with the results of Haas [64]
(see Fig. 7).

IV. RESULTS

Below we present a selection of numerical results for the
self-force. Where a dimensionless value is stated, e.g., F s
the physical value should be inferred by reinstating the
dimensionful constants, e.g., F, = (¢*/4me;)(c?/GM)*F,.

A. Dissipative effects

1. Total fluxes

Figure 1 shows the total energy flux @ for a charged
particle on a circular orbit about a black hole, as a function
of orbital radius. The total flux is related to the self-force
component F; by Eq. (65). In the large-ry limit, the flux
approaches an asymptotic value of @y, wWhere

q2C5

4re,G*M? 92)

2
Dnewt = gﬁr(){ p=
and
7"0 = ro/(GM/CZ). (93)

In Appendix A, it is shown that @y, results from
combining Keplerian orbits with the Abraham-Lorentz
force (2). In the discussion below, we omit the dimension-
ful factor S.

By fitting the numerical results in the weak-field region
(ro > M), we infer that, for the flux at infinity, @ & Onew:
at leading order, with a linear-in-a contribution of

—%Eﬁa H/2 leading order (where @ = a/M). For the
horizon flux, we infer that @, = % 75" at leading order for
the Schwarzschild case, with a linear-in-a contribution of
—%Fﬁa 172 a¢ leading order in the Kerr case. Note that, for
the horizon flux, the Kerr term begins at a lower order in the

expansion in 1/7, than the Schwarzschild term.
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Alternatively, an expansion of the fluxes in inverse
powers of 1/7, can be obtained using the Mano-Suzuki-
Takasugi (MST) formalism [67] by applying the approach
of Kavanagh et al. [69,70] to our Egs. (66) and (67). At

leading orders, we find that the dipole flux is ol =
2554 — #3555 and the quadrupole flux is ®% > = 8753,
which sum to @, = 27;* — 375 through next-to-leading
order. This expansion is consistent with the numerical data
presented in Fig. 1.

Figure 2 shows the ratio of the flux through the horizon
to the flux radiated away to infinity, for the three types of
field (scalar, electromagnetic and gravitational). The scalar
and electromagnetic cases are qualitatively similar, with
radiation emitted principally in the dipole (£ = 1) modes.
For particles that are orbiting in the same sense as the black
hole spin, superradiance can lead to a significant extraction
of energy from the horizon. For a = 0.99M, the energy
extracted from the hole is up to ~26.5% of that radiated
away in the EM case, and up to ~22.3% in the scalar-field
case. Since this ratio falls below the threshold for balance
(100%), there are no floating orbits. In the gravitational
case, radiation is emitted principally in the quadrupole
(¢ = 2) modes, and the maximum ratio is smaller (~8.7%
for a = 0.99M). Again, there are no floating orbits.

a=-099

z
7z
B
3
&
04|
02
a = 0.99
10° 10! 10° 10°
T()/M
FIG. 1. The radiated flux for an electromagnetically charged

particle on a circular orbit at radius r = ry around a Kerr black
hole of spin a. Here the total flux @, = ®, + @, has been
scaled by the Newtonian value @y, (see Eq. (92)). The solid
lines correspond to prograde orbits (a > 0), while the dotted lines
correspond to retrograde orbits (a < 0), and the color of the lines
gives the magnitude of a. In each case, the minimum radius is the
innermost stable circular orbit.

In the gravitational case, these results are consistent with
those previously presented by Kapadia, Kennefick and
Glampedakis [31].

Figure 3 shows the ratio of fluxes @, /@, for a particle on
the innermost stable circular orbit (ISCO), as a function of the
spin of the black hole. The ratio changes sign at a = a, &~
0.359403M. This is the value of a at which the angular
frequency of the ISCO orbit [see Eq. (15)] matches the
angular frequency of the event horizon Q,,. For a > a,, the
(prograde) horizon frequency exceeds the orbital frequency.
In this case, the electromagnetic field slows the rotation of
the black hole, generating superradiance, leading to an
extraction of flux from the event horizon and ®,,/®_, < 0.

Figure 4 shows the multipolar structure of the flux
generated by a particle at the ISCO for the scalar, electro-
magnetic and gravitational-wave cases. The lowest radiative
multipole # = max(|s|, 1) generates the greatest flux at the
horizon, and the low multipoles also dominate the flux at
infinity. The plots show evidence for the expected expo-
nential fall-off of the modal fluxes with Z + 1/2.

B. Conservative effects

1. Schwarzschild case

Regularization. Figure 5 illustrates the application of the
regularization procedure to the radial component of the
self-force, in the a = 0 case. The unregularized (“bare”)
modes scale with L = # + 1/2 in the large-# limit. After

subtracting F [r_l]f and F [ro]f as in Eq. (85), that is, removing
the leading and subleading order regularization terms, one
obtains modes that scale with L~2. This is the minimum
necessary to obtain a convergent sum. To reduce the error
associated with the high- tail, and to demonstrate that our
results match expectations, we removed a further two

regularization terms, that is, we subtracted JF [fw, leaving
a mode sum whose terms converge as L~° in the large-#
regime, as shown in Fig. 5.

Weak field expansion. Using numerical data for the
radial component of the self-force at large values of r, we
infer a weak-field expansion in the form

2 ~
g GM 3 alog(Fy)
Folro) v — 20 (14— 4 20800
(o) dregc® ry < +2?0 I

+f—§+o<%>> (94)

where 7 is the dimensionless radial coordinate introduced
in Eq. (93). The coefficients a, and a3 were estimated from
summing over the first 15¢-modes, with data in two ranges
(1) 1000 < ry < 1500 and (ii) 900 < ry < 1000, yielding

m=1249(2)  a =1.231(1) (95a)

a = 1.38(1) o = 1.48(1). (95b)
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FIG. 2. The ratio of the energy flux falling onto the horizon, ®,,, to the energy flux radiated to infinity, @, as a function of orbital
radius r(, for various spin parameters &, and for the scalar, electromagnetic and gravitational cases. The solid lines correspond to
prograde orbits (a > 0). The dotted lines on the second plot, corresponds to retrograde orbits (@ < 0). The color of the lines gives the
magnitude of a. Negative ratios arise due a negative flux from the horizon associated with superradiance. A value less than —1 would

indicate the existence of floating orbits.

The numeral in parantheses is the confidence
interval in the final digit quoted, which is specific to
the particular dataset used for the fitting. The data
supports the presence of a log term at sub-sub-leading
order, but accurate estimates for a, and @3 have not
been obtained.

Figure 6 compares the weak-field expansion, Eq. (94),
with numerical data for F, for a = 0. It shows that F,
increases monotonically as r, decreases. Moreover, F,
differs from the leading order term in Eq. (94) by no more

than a factor of ~1.44 across the range [ris,, o). Including
successive terms in the expansion improves the agreement
with the data; and Eq. (94) gives a relative error of ~6% at
the ISCO.

Shifts in orbital parameters. The conservative self-force
has the effect of shifting the orbital parameters from their
geodesic values at order g”. For a circular orbit on the
Schwarzschild spacetime, the fractional change in the
orbital energy E, angular momentum J and frequency Q
is given by
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0.15

0.1

0.05

FIG. 3. The ratio of fluxes ®,/®, for a particle on the
innermost stable circular orbit, as a function of a the spin of
the black hole. Negative (positive) values of a correspond to
retrograde (prograde) circular orbits. For €, > Q, there is a
negative flux (®, < 0) from the horizon, a manifestation of
superradiance.

0 5 10 15 20
14

FIG. 4. The multipolar structure of the flux radiated through the
horizon (upper) and to infinity (lower) by a charged particle on a
circular orbit at the ISCO of a Kerr black hole with a = 0.99M.
The trendline indicates an exponential fall-off with multipole
number 7.

x L!

1 5 10
L

15 20

FIG. 5. Scalar spherical modes of the radial component of the
self-force F,, and regularization at various orders. Here we have
chosen a = 0 (Schwarzschild) and r,/M = 20. The blue dots are
the values of the bare force, which grow linearly with L =
¢+ 1/2 at large L. The solid black lines are guidelines to
represent the decay of the regularized force.

10 10°
To/M

FIG. 6. Comparison between the numerically-determined value
of F, (solid) and the weak-field expansion in Eq. (94) (dashed),

for the Schwarzschild (a = 0) case. Here the dashed lines F §">
show truncated versions of (94), with n indicating the number of
terms included.
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FIG. 7. Fractional change of the energy (green), angular
momentum (blue) and frequency (red) for a particle on a circular
orbit as a function of the orbital radius r, in the Schwarzschild
case. The inset shows the radial range presented in Fig. 12 of
Haas [64]. Our results agree with [64] and provides the behavior
of the fractional for a larger radial range.
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FIG. 8. Scalar-spherical modes of the radial component of the

self-force and their regularization at various orders in the Kerr
case. Here we have chosen ry/M =20 and a = %M . The blue
dots are the values of the bare force, which (at leading order) grow
linearly with L = ¢ + 1/2. The solid black lines are guidelines to
indicate the power-law decay of the regularized modes.
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Figure 7 shows the shift in E, J and Q as a function
of ry. In each case, the self-force leads to a reduction
in E, J and Q. The shifts for the Kerr case are given in
Appendix D.

2. Kerr case

Figure 8 shows that the bare modes of the force, F%
defined in Eq. (82), are correctly regularized with the
regularization parameters calculated by Heffernan et al.
[51]. This is a nontrivial test of the formulation, and of the
projection onto spherical harmonics. In the projection
step, we find that it is necessary to expand to subsu-
bleading order in z =cosf in Eq. (82) to achieve
regularization at order n = 2, and to obtain a regularized

force F¢? which is well defined on the particle such that

14+

131

09 1

0.8 : :
10° 10! 10
To/M

FIG. 9. Radial component of the self-force (scaled by rg) for
various black hole spins, a € {—0.99,0.5,0,0.5,0.99}. The solid
lines correspond to prograde orbits (a > 0), while the dotted lines
correspond to retrograde orbits (@ < 0), and the color of the lines
gives the magnitude of a. In each case, the minimum radius is the
innermost stable circular orbit.
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—F
F

FIG. 10. The radial and time components of the self-force for
a particle on the innermost stable circular orbit, as a function
of a the spin of the black hole. Negative (positive) values of a
correspond to retrograde (prograde) circular orbits.

its left-sided limit ( — r;) and right-sided limit (r — rg )
are in agreement.

Figure 9 shows F, as a function of r, for several values
of the black hole spin parameter a/M. We observe that F,
is everywhere positive (i.e., repulsive) and greater than
q*/ rg. At fixed radius, F, is larger on the retrograde orbit
than on the prograde orbit. The effect of black hole rotation
increases as r, decreases, as expected.

By fitting the numerical data, we find a linear-in-a

contribution to F, of —3a¥, 2 at leading order.

Figure 10 shows the self-force on the ISCO, as a function
of a/M. The conservative component, F,, is always
positive (i.e., repulsive). The total flux is always positive,
indicating that superradiance is insufficient for a floating
orbit to arise. The magnitudes of F, and F, are largest on
the corotating ISCO of a rapidly-rotating black hole. In the
limit a — M, the ISCO approaches ry = M.

Table I provides a selection of values of F, for circular
orbits of radii ry € [ris, SOM], for the black hole spin
parameters @ = 0, £0.5M and +0.99M.

TABLE L.

V. DISCUSSION AND CONCLUSION

In this article, we have computed the electromagnetic
self-force acting on a point charge—or, with caveats, on a
charged compact body—on a circular geodesic lying in
the equatorial plane of a rotating black hole. This
represents the first EM self-force calculation on Kerr
spacetime in a dynamical scenario (see below for static
cases). Our results complement those already available for
the gravitational self-force on Kerr [42,43,48,62,71-73],
a topic which has received much attention due to its
relevance in modeling extreme mass-ratio inspirals for
gravitational wave detectors.

To compare the dissipative effects of the electromag-
netic and gravitational self-forces, consider once more the
inspiral of a particle or compact body of mass u and charge
q into a black hole of mass M, driven by the dissipative
component of the self-force. From the chirp formulas (3)
and (1), valid in the large-r( regime, an order-of-magnitude
estimate of the merger timescale, starting with an orbit of
radius r, is

megGMg\ (MY (_ro \* 1o

M ( > ) (u> (GM/&) o O
5 M r() 3 r()

() () () 2 o

Here Q is the net charge density of the particle/compact
body in Coulombs per solar mass, and we have made
the assumption that y << M to obtain (97b). Numerical
evaluation of the first parantheses in Eq. (97a) yields
7.4 x10% C2/Q?, and thus, for a compact body, an
electromagnetically driven inspiral is much slower than
a gravitationally-driven inspiral, unless the compact body
can support implausibly high net charge densities of
Q> 10" C per solar mass. On the other hand, for an
elementary charged particle the converse is true, as
Q ~ 1.9 x 10°® C per solar mass for a proton, for instance.
That is, for a charged elementary particle, the EM inspiral
is more rapid and the gravitational wave flux is negligible;
but nevertheless, the inspiral into a black hole is exceed-
ingly slow due to the suppressing factor M/u. Of course,

Radial component of self-force for circular equatorial geodesic orbits. The dimensionless values in the table correspond to

F./[(g*/4mey)(c?/GM)?]. The digit in parantheses is an estimate of the uncertainty in the final quoted digit. The ISCO radius, defined
in Eq. (15), is rio/M € {8.971861,7.554585,6.0,4.233003, 1.454498} (to 7 s.f.) for the cases a/M € {-0.99,-0.5,0,0.5,0.99}.

‘7:,(}”0)
ro/M a=-0.99 a=-05 a=0 a=0.5 a=0.99
Fisco/ M 0.001967652(2) 0.003315094(1) 0.0066497(5) 0.019003(2) 0.479(1)
10 0.0013513595(1) 0.0012770754(1) 0.00120985(2) 0.00114927(1) 0.001093823(1)
20 0.000141150327(2) 0.00013867449(5) 0.00013624(1) 0.000133916(2) 0.0001316275(1)
50 0.000008332378(2) 0.000008296911(1) 0.000008261044(2) 0.000008225470(2) 0.000008190833(6)
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an elementary-particle-black-hole-inspiral scenario is
rather artificial, not least because we have neglected all
contents of the universe but two.

One key result of this work is a demonstration that the
local dissipative component of the self-force F, exactly
balances with the sum of the electromagnetic flux radiated
to infinity and down the horizon of the black hole, in accord
with Eq. (65), up to the expected numerical precision.
Closer examination of the fluxes, in Figs. 1, 2 and 3, shows
that superradiance is stimulated when the angular velocity
of the black hole horizon exceeds the orbital angular
velocity. However, we find that superradiance is not
sufficient to support floating orbits, even at the ISCO
(see also [31]).

A key difference between the electromagnetic self-force
and the gravitational self-force is that the latter is gauge-
dependent under small changes in the coordinate system at
O(u). More precisely, for circular orbits the dissipative
component of the gravitational self-force—relating to the
radiated fluxes—can be identified uniquely, but the
conservative component cannot; it is coordinate-dependent.
This means that it is not possible to directly compare F,
between the electromagnetic and gravitational cases.
Instead, one must look to the gauge-invariant consequences
of the conservative component of self-force to make
meaningful comparisons. For example, Fig. 7 shows the
fractional change in the orbital energy, angular momentum
and frequency at fixed ry due to the conservative compo-
nent of the self-force.

One such gauge-invariant consequence, slightly beyond
the scope of this work, is the shift in the ISCO at O(g?) that
arises due to the conservative component of the self-force.
This can be calculated by examining mildly eccentric
orbits [74], or possibly by using a Hamiltonian approach
with circular-orbit data as input [62]; a comparison with
known results for the ISCO shift induced by the gravita-
tional self-force would certainly be of interest. Another
observable that could be compared directly is the self-force-
induced shift in the advance of the periapsis of an eccentric
bound orbit [71].

The new results presented in Sec. [V are mostly numerical
in nature. We have inferred leading order terms in weak-
field expansions by fitting the numerical data. A comple-
mentary approach is to apply the Mano-Suzuki-Takasugi
(MST) formalism [67] to obtain analytical results in the
form of post-Newtonian expansions (see e.g., [69,70]). This
has been done successfully in the gravitational self-force
case, for quantities such as fluxes [75-77], Detweiler’s
redshift invariant [78], and the spin-precession invariant
[79]. The MST method can be straightforwardly adapted
from the s = 2 to the s = 1 case. Indeed, in Sec. IVA 1 we
have applied this method to obtain the flux through
subleading order in 7;'. A promising avenue for future
work, therefore, is to apply the MST method to the formulae

herein to obtain very high-order expansions of (e.g.,) 7, and

F, in closed form.

It is worth noting that the calculation presented here is
not fully self-consistent, in the sense that we have evaluated
the self-force by assuming the past worldline of the particle
is a geodesic, rather than a trajectory that has itself been
accelerated by its own self-force. Introducing the “true”
trajectory would introduce subdominant contributions to
the force starting at O(g*). One challenge, for future
investigation, is to evolve the orbit in a fully self-consistent
manner under the action of the electromagnetic self-force.
This has already been done successfully for the gravita-
tional self-force [73,80].

The electrostatic self-force on a charged particle on Kerr
was examined many years ago by Léauté and Linet [81],
and later by Piazzese and Rizzi [82]. For the special case of
a particle at rest on the symmetry axis @ = 0 at r = r, the
(repulsive, conservative) self-force is available in closed
form [82],

2 2
q*(Mro —a”)
Flar :W(zg’ (98)

where €4 is a unit spacelike vector along the symmetry axis.
It is notable that Eq. (98) does not depend on the sign of a,
and thus frame-dragging effects are absent in this highly
symmetric case. Here, we have established that F, has a
linear-in-a contribution for geodesic orbits in the equato-
rial plane.

Two further avenues of enquiry suggest themselves.
First, the self-force on the ISCO in the a —» M extremal
limit has been investigated in the gravitational self-force
context [83], but not yet in the electromagnetic self-force
context. Second, an additional physical effect which has not
been examined here is the self-torque that would arise at
O(g?) if the particle (or compact body) is endowed with a
magnetic dipole moment. In other words, the force arising
from the (regularized) magnetic field in the rest frame of
the particle.
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APPENDIX A: DISSIPATIVE SELF-FORCE
IN THE NEWTONIAN LIMIT

For circular orbits far from a black hole (ry > GM/c?),

the speed of the particle, |v| = rgQ = \/GM/ry, is small
in comparison with the speed of light ¢, and a leading-order
Newtonian approximation for the flux (92) and the chirp
formula (3) is obtained by combining the Abraham-Lorentz
force (2) with circular orbits in Newtonian gravity.

The work done in unit time P upon a particle of charge g
by the Abraham-Lorentz force (2) is

6]2

4reyc?

p:F.V% (A1)

Inserting a fixed circular orbit with r = ryf and v=r =
roQ¢p and a=v = —r,Q’f and a = -r,Qp, where f

and (;5 are unit vectors and Q = /GM/ r(3) is the angular
frequency of the orbit, yields

2 q2
P=—— 204 A2
3 4zxeyc? "0 (A2)
2 P GM?
-= — (A3)

By conservation of energy, the flux radiated to infinity
is equal and opposite to the work done on the particle by
the Abraham-Lorentz force, that is, @y, = —P, yield-
ing Eq. (92).

For a particle of mass u on a circular orbit under gravity,
the sum of kinetic and (Newtonian) potential energies is
E =—-GMu/2ry. We now allow the particle to gradually
spiral inwards on a sequence of quasicircular orbits, by

equating P with E = —GMur/2r*. This leads to

[ 824
= tnap (84)

where f = Q/2x is the orbital frequency. Integrating with
respect to time leads to

1 [4zeocu

f(o) = (g —1)7'72, (AS)

4z q2

where the time of collision 7, arises as the constant of
integration. For the case of an electron of mass y = m,
and charge g = —e, Eq. (A5) reduces to Eq. (3) once we
insert the definition of the fine-structure constant a =
e?/(4reyhc) and the Bohr radius ay = 4zeyh®/(m,e?).

APPENDIX B: ENERGY FLUX
1. Flux at infinity

At infinity the energy flux is given by

DK = A1 / TK,ds, (B1)

where we have chosen K* = [1,0,0,0] to be the Killing
vector and dX, is defined by the condition r — oo and is
given by

d%, = n,dz, (B2)
with
0,1,0,0
n, = % and dX = |h|'2dtdOdg. (B3)
VY
where £, is the induced metric on the hypersurface define

by r — 0. Since |h| = g/g,,, we have

d¥, =[0,1,0,0]\/—gdtdOdg. (B4)
The flux is then given by
Dy = / T",\/—gdbdg. (B5)

The energy-momentum tensor can be expressed in terms of
the Maxwell scalars as [54]

47[T;w = —{4504')31’1#71” +2¢1¢T [l(un +m ym;)] +¢2¢§lﬂlu
—Apidingmy —4hidylm,y +2drdim,m, } +c.c.
(B6)

where parentheses denote symmetrization. With our choice
of tetrad, we find that the relevant terms as r — co are

i, = oL (.03 - 200) (B7)
We recall that
ho = IZ—Hle Si”f ) i'n<¢_gt)’ (BS)
2(r—iacos0)%y = Y Ry, (r)S71(0)e™ @~ (BY)
Im
as well as the fact that
lim )R, ()] =0 and tim = Fm 0l g B10)
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Using the orthonormality properties of the spin-weighted
spheroidal harmonics, we therefore get the energy flux
radiated at infinity

r? s1n9

o, = lim

r—>00

Pap3d0dep = Z' il g1

2. Flux through the horizon

In order to evaluate the flux of energy through the horizon,
we first need to modify the tetrad basis we have defined
in Eq. (10) since it is singular at the horizon. Following
Chap. 8 Sec. 76(b) of [59], we first perform a rotation of
class III (according to Chandrashekar’s convention):

A 1 A a
Iz _H = |, ,0, B12
TP+ ) [2 2(7 + d?) 2(r2+a2)] (B12)
and
2 2 2
pr— - . Bl
[ a7z %A (B13)

We then go to a Kerr-Schild frame via the coordinate
transformation:
2 2
r+a
dv =dt+

dr and dc?):dgb—l—%dr. (B14)

In this frame, the null vectors l’(‘ HH) and n’<‘H H) where HH

stands for Hartle-Hawking, are given by

A a
o = |1, 0, BI15
) [ 27 +a?)" az} 1)
2
W = [o —%,o, 0]. (B16)

On the horizon, the vector /) can be expressed in terms
of the time and angular Killing vector K% = [1,0,0, 0] and
K7 =10,0,0,1] as

l’;HH) = Ky + Q,K}. (B17)
where Q;, = a/2Mr, is the angular frequency of the
horizon. In this basis, which is well behaved at the horizon,

the Maxwell scalars gb(()HH) is related to the Maxwell scalar
¢o computed in the basis (10) via

)y A

W =St (B18)

The surface element dX, of the horizon, which is a null
hypersurface, is given by

s, = 1" dod (B19)
where do = 2Mr__ sin(0)dOd¢ is the elementary surface
area of the event horizon. Therefore, the elementary flow of

energy and angular momentum through the horizon are

d*oj (HH) 1y ot
(dt dg> omr 1" Ky T (B20)
d* @}, (HH) 1y
<dld9> omr 1" kY T (B21)

Combining these with (B17) and using the fact that
®T = —Q®F yields

AN
drdQ)

By definition 7w ) — plH) gt 127 and
therefore

2Mr,
 — mL,,

T (B22)

d>®! w

= B23
(dzdg) 8Mr+w27z¢0¢0 (B23)
Finally, integrating over the surface element using the
decomposition (B8), the orthonomality of the spin-weighted

spheroidal harmonics, and the asymptotic behavior of the
radial function near the horizon,

T_ o 2
o =Yl (B2

APPENDIX C: PROJECTION ONTO SCALAR
SPHERICAL HARMONICS

To compute the physical conservative part of the self-
force we apply the mode-sum regularization procedure. As
a preliminary step before applying the regularization, one
should decompose the radial force onto a basis of scalar
spherical harmonics. Since the structure of the Kerr metric
invited us to use spin-weighted spheroidal harmonics as a
basis for the angular functions of our problem, we now
need to project the spin-weighted spheroidal harmonics
onto scalar spherical harmonics.

1. Projection of the spin-weighted spheroidal harmonics

a. From spin-weighted spheroidal harmonics
to spin-weighted spherical harmonics

We first decompose the spin-weighted spheroidal har-
monics S onto the spin-weighted spherical harmonics Y/

Sin(0) = > (b)Y (cos 0).

1

(C1)
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The coefficients (bm) are computed using the Black Hole
Perturbation Toolkit [66].

b. From spin-weighted spherical harmonics to scalar
spherical harmonics

We decompose the spin-weighted spherical harmonics in
terms of spherical harmonics Y2,

Ylm l Ylm 7 C2
Z st )
Ylm Zél Ylm <C3)
Ylm l Ylm (C4)
Z ﬁ =
where z = cos @ and the coefficients are given by
(Am)! = (=1 20+ D@D+ 1)
11 1 111
(LD e
0 m —-m I -1 0
(Am)! = (=1)"\ /220 + 1) (2T + 1)
111 111
X < ) ( > (C5b)
0 m —-m -1 1 0

It follows from the properties of the Wigner 3j symbols
that

(A7)f = (=1)H(Am ) (Co)

7
Combining the two decompositions, we can write the
spin-weighted spheroidal harmonics as

Ylm( )
1-z2

St (g) = (b)iAam)]

11

- (C7)

Note that due to the presence of the 3j-symbols in
Eqs. (C5), the indices [ and [ satisfy 1 — 1 <71<7+ 1.

2. Expansion of £,5™ ()
The definition of £,S"" is

cosf
nesir
(C8)

»CISi:n]( ) a@slm (9) + (ﬁ_ awSlHQ) Slm

In order to project £S 1 onto scalar spherical harmonics,
we first need to project 695

The spherical harmonics of different spins are related by

ovin = =) +s+ DY, (C9)

Ylm = —\ /(I +s)(I—s+ 1)YI™ (C10)
where the spin-raising and spin-lowering operators d and d

are defined by

07,(0.0) = ~(sin0y [+ <2 (sino) 1) (C11)
i 0

) 5]
0f(0.¢) = —(sind)~° [69 s1n90¢

}«sme)ffs) (€12)

We have that

0pSI™ (0) = (C13)

PCAIEAL:

1

" (cos 6).

We can eliminate the derivative using the relation (C11) and
the expression for 3, namely,

m N ) i o], . .
oY'm (z) = —(sing)™! [@_ﬁﬁ} (sin@Y"" (z)) (Cl4)
1 ” ) .
=—= [(cos O + m)Y"" (z) + sin @9, Y™ (2)]
(C15)
11+ 1yyim. (C16)
Therefore, we have that
0pS"" (6 Z(b ( 11+ 1)yl (cos 6)
sin 6 +1 )

Substituting (C17) into (C9), we get

Llsﬁq:Z(bzl)g[ i(i+1)YZ)m—aszin9Ym (C18)
7

_ Z D10+ 18l = am@az, )] Vi

(C19)

APPENDIX D: SHIFTS IN ORBITAL
PARAMETERS FROM CONSERVATIVE
SELF-FORCE

On Kerr spacetime, the shifts in the energy and angular
momentum at fixed r, are
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AE_ rvo(Lo(ro—zM) +2aME0)

and the shift in the angular velocity at fixed ry is

AQ

— D1
Ee SEX Fo/u, (Dla)
AL rOAO(EO(r8+a2(r0+2M)) —2CIMLO)
— F./u, Dl1b
» SLoX o/ 1 (D1b)
X = (r3 =3Mr} —2Ma*)E\Ly + aM((3r3 + a*)E} + L3) (Dlc¢)
A2R2((F + a? DM E? — 4E LoaM — L3(ry — 2M
oro((rg 4+ a*(rg +2M))Ej oLoa 5(ro ) F.lu. (D2)

Q) 2X(Egro(rd + a?) — 2aM(Ly — aEy))(roLo — 2M (Lo — aEy))

APPENDIX E: A DISTRIBUTIONAL IDENTITY

The Dirac delta distribution &(x — x;) is of compact
support, with 6(x — xo) = 0 for x # x, and the fundamental

property
/ Xo+€
Xg—€

Here € > 0, x is a real constant and %(x) is a test function
that is continuous at x; (and, below, differentiable). Now
consider f(x)& (x — xo) appearing in Eq. (36), where f(x)
is a differentiable function and the prime denotes an
ordinary derivative with respect to x. By application of
integration by parts,

h(x)8(x — x)dx = h(xy). (E1)

[ 8 e xop

0—€

= [ W) + s Wt =)

0—€

= —h'(x0)f (x0) = h(x0)f" (x0)- (E2)

By contrast, the integral of f(xy)d (x — xg), where f(xo)
is a constant rather than a function of x, has but a single
term,

/ Xo+€
Xo—€

Hence f(x)&' (x — xq) and f(xy)& (x — xy) are not equiv-
alent. On the other hand,

h(x)f(x0)8' (x — xo)dx = —=h'(x0)f(x0).  (E3)

lxweh(x){f(xo)é’(x ~ x9) = f"(%0)8(x = xo) }dx

0—€

= — 1 (x0) f (x0) = h(x0) £ (x0). (E4)

which matches Eq. (E2). This equivalence justifies the
replacement made in Eq. (36).
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