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We study the stability of an asymptotically flat, static, spherically symmetric naked singularity spacetime
in the novel four-dimensional Einstein-Gauss-Bonnet (EGB) gravity. The four-dimensional EGB black
hole for large enough values of the coupling parameter leads to such a naked singularity. The stability and
the response of the spacetime are studied against the perturbations by test scalar, electromagnetic and Dirac
fields, and the time evolution of these perturbations was observed numerically. Implementing a null
Dirichlet boundary condition near the singularity, we observed that for l ¼ 1 modes of scalar,
electromagnetic perturbation, and l ¼ 0, 1 modes of Dirac perturbation, the time-domain profiles give
rise to distinct echoes. However, as the coupling constant increases, the echoes align, and the quasinormal
mode structure of the 4D-EGB naked singularity-spacetime becomes prominent. For higher values of the
multipole number, the spacetime becomes unstable, thereby restricting the parameter space for the coupling
parameter.
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I. INTRODUCTION

Even after a century of its inception, Einstein’s theory
of general relativity (GR) is still the most widely accepted
macroscopic theory of gravity. Despite its enormous
success in both the weak field and strong field regime
[1,2], there is still no consistent way to connect the
macroscopic theory of GR to quantum field theory.
Apart from this, GR does not give any satisfactory answer
to the problem of local energy-momentum conservation.
It predicts space-time singularity, and such singularities
do have mathematical problems of their own. It is believed
that singularities can not represent any physical object in
nature. This led to the quest for alternative theories of
gravity that would reduce to GR as a low energy effective
theory. Interestingly, Lovelock [3] proved that in four
dimensions, GR is the only metric theory of gravity
that gives symmetric, covariant second-order field equa-
tions in terms of the metric tensor. Thus, one of the ways
to modify GR is to work in spacetimes with dimension-
ality other than four [4]. In this regard, perhaps, the most
general class of theories are the Lovelock theories which
give symmetric, covariant second-order field equations
in terms of the metric tensor in arbitrary spacetime

dimensions (see Ref. [5] for an excellent review). The
Lovelock Lagrangian is given by,

L ¼ ffiffiffiffiffiffi
−g

p ð−2Λþ Rþ αGþ � � �Þ; ð1Þ

where G≡ R2 − 4RμνRμν þ RαβμνRαβμν is known as the
Gauss-Bonnet combination and gives the leading order
correction to the Einstein-Hilbert action with a cosmological
constant Λ. The Gauss-Bonnet term gives nontrivial sig-
natures inD > 4 dimensions but is a topological invariant in
four-dimensions [6]. The Gauss-Bonnet term, apart from
being quadratic in curvature invariants, is of wide theoretical
interest both from the perspectives of string theory and
gravity [7–13]. Thus, one is intrigued by the idea of
consistently incorporating the effect of the Gauss-Bonnet
term in a four-dimensional theory of gravity that will lead
to field equations different from GR, circumventing
Lovelock’s theorem. The first step in this direction was
taken by Glavan and Lin [14], who rescaled the Gauss-
Bonnet coupling constant, α → α=ðD − 4Þ, which in the
limit D → 4 cancels the vanishing contribution of the
Gauss-Bonnet term. Consequently several works appear
in the literature which include formulation of cosmological
solutions [15,16], spherical black hole solutions [17–20],
solutions of starlike objects [21], radiating and collapsing
solutions [22,23], extending to more higher-curvature
Lovelock theories [24], thermodynamic behavior of black
holes in such theories [25–28] and the gravitational and
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astrophysical properties of these objects [29–42]. Despite all
these, the regularization scheme used in this novel four-
dimensional Einstein-Gauss-Bonnet (4D-EGB) theory [14]
was found to be inconsistent on several grounds [43–51],
which led to the development of different versions of
regularized (consistent) 4D-EGB theories [16,52–56]. An
explicit formulation of the 4D-EGB theory based on the idea
of an extra dimension of zero proper length has also been
proposed [57], that does not require any singular rescaling of
couplings followed by a classical regularization of divergent
actions. Einstein-Gauss-Bonnet theories have also been
extensively studied in the inflationary framework [58–60].
For a comprehensive discussion on the recent developments
in 4D-EGB theories, we refer to the excellent review
article [61].
There are several reasons why the method proposed in

[14] does not work. It was observed that the field equations
of Einstein-Gauss-Bonnet theory defined in its most general
form in D > 4 dimensions can be split into two different
parts. One of the parts of these field equations always
remains higher dimensional, making the limiting procedure
ofD → 4 nontrivial [43–46,49]. Tree-level graviton scatter-
ing amplitudes were studied in this regard, independently of
the Lagrangian, and it was shown that the dimensional
continuation and D → 4 limiting procedure applied to
Gauss-Bonnet amplitudes does not produce any purely
new four-dimensional Gauss-Bonnet gravitational ampli-
tudes [47]. All of these imply that the existence of D → 4
limiting solutions does not mean the existence of a four-
dimensional theory as proposed in [14]. However, interest-
ingly enough, the field equations of the different versions of
the 4D-EGB gravity [16,52–55] admit the same static
spherically symmetric black hole solution as was proposed
first in [14], and from here onwards, we will refer to it as
4D-EGB black hole. The stability and quasinormal modes
of the asymptotically flat 4D-EGB black hole against
perturbation by scalar, electromagnetic, and Dirac fields
have been studied in [30]. Following the D → 4 regulari-
zation of the scalar and vector type gravitational perturba-
tion of the higher dimensional Einstein-Gauss-Bonnet black
hole [62,63], Konoplya et al. showed that the asymptotically
flat, de Sitter and anti-de Sitter black holes are unstable in
the eikonal limit (large l) for large positive values of the
Gauss-Bonnet coupling parameter [30,64]. The quasinormal
modes of the 4D-EGB black hole in the asymptotically de
Sitter and anti–de Sitter spacetime due to scalar, electro-
magnetic, and Dirac perturbations have been studied in
[39,40,42]. The quasibound states of massless scalar,
electromagnetic, and Dirac fields in the asymptotically flat
4D-EGB black hole and the associated stability problem
have been studied recently in [65].
The 4D-EGB black hole for large enough values of the

coupling constant ðα > M2Þ leads to a naked singularity,
violating the Cosmic Censorship Conjecture [66]. Gyulchev
et al. [67] studied the image of a thin accretion disk around

the weakly naked (with a photon sphere) 4D-EGB singu-
larity and observed a series of distinctive bright rings in
the central part of the image which are otherwise absent for
4D-EGB black holes. However, for any astrophysical
system to be observationally relevant, it must be sufficiently
stable. This naturally begs the question of whether such a
spacetime with a central naked singularity is at all stable
under perturbation? If so, how will its response be different
from that of a standard 4D-EGB black hole [30,64,65]?
In this work, we try to answer these questions by

studying the response of the 4D-EGB naked singularity-
spacetime toward the perturbation by test fields. We probe
the spacetime by test scalar, electromagnetic and Dirac
fields. Such an analysis does not give preference to any
particular version of the (consistent) 4D-EGB theory and,
as such, can be regarded as more general. We observe that
for the l ¼ 1 mode of scalar and electromagnetic pertur-
bations and for the l ¼ 0, 1 modes of Dirac perturbation,
when α≳M2, the signature of the difference between the
spacetime due to a black hole and the naked singularity is
quite distinctly elucidated by the existence of echoes in
case of the 4D-EGB naked singularity space-time.
However, that is not the only interesting feature that we
obtain. We also find that as the coupling constant is
increased further, the echoes align and the quasinormal
mode structure of the 4D-EGB naked singularity-space-
time ringdown becomes prominent. For higher values of
the multipole number, the spacetime becomes unstable,
thereby restricting the parameter space of α. In this regard,
it is worth mentioning that presence of echoes in the
ringdown signal due to perturbing fields was already
predicted in the case of Janis-Newman-Winicour naked
spacetime, which has a surface like naked singularity at a
finite radial distance [68]. In general, echoes highlight the
existence of horizonless compact objects and have been
predicted to be present in the ringdown signals of worm-
holes, fuzzballs, and other exotic compact objects [69–78].
The presence of echoes has also been associated with
modified theories of gravity [79] and the existence of
higher dimensions [80,81]. Echoes in gravitational waves
are also expected to bear signatures of quantum gravity via
quantization of the black hole area [82,83], although
Coates et al. [84] has argued differently. For a detailed
review on echoes in gravitational waves, we refer the
reader to the excellent review by Cardoso and Pani [85].
The paper is organized as follows. In Sec. II, we briefly

describe the background spacetime, both in the black hole
and the naked singularity regime. Section III discusses the
perturbation of the 4D-EGB naked singularity spacetime by
test fields. Section IV is dedicated to the time domain
analysis of the perturbation equations and evaluation of
the associated quasinormal mode frequencies. Finally, in
Sec. V, we conclude with a summary and discussion of
the results. Throughout the paper, we employ units in
which G ¼ c ¼ 1.
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II. BACKGROUND SPACETIME

The asymptotically flat, static, spherically symmetric
4D-EGB black hole is described by the line element,

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θÞ; ð2Þ

where

fðrÞ ¼ 1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

r3

r �
ð3Þ

with α being a positive constant and M being the ADM
mass. The spacetime (2) also appears as a solution to semi-
classical Einstein’s equation with Weyl anomaly and in
the context of Einstein gravity with quantum corrections
[86–88]. The uniqueness of the black hole solution (2) in
the scalar-tensor formulation of the 4D-EGB theories has
been discussed in [89] along with another branch of
solution that leads to a naked singularity.
The nature of the solution (2) depends on the values of

the dimensionless constant parameter γ ¼ α=M2. For γ in
the range (0,1], the spacetime defined by Eq. (2) represents
a black hole of mass M, characterized by an outer event
horizon at rþ and an inner horizon at r−, hiding a central
curvature singularity at r ¼ 0, where

r� ¼ Mð1�
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
Þ: ð4Þ

For γ ¼ 1, the line element (2) corresponds to an extremal
black hole characterized by a single horizon at rþ ¼
r− ¼ M. However, for γ > 1, the horizons cloaking the
singularity cease to exist, and the singularity at r ¼ 0
becomes globally naked [67]. It was shown that the
Kretschmann scalar diverges at the location of the singu-
larity at r ¼ 0; however, it does so at a slower rate than the
Schwarzschild one. For γ in the range ð1; 3 ffiffiffi

3
p

=4Þ, the
spacetime is surrounded by a photon sphere of radius rph
and the singularity is classified as being “Weakly naked,”
whereas for γ > 3

ffiffiffi
3

p
=4 no such photon rings are present,

and the singularity is classified as “strongly naked” [90].

III. PERTURBATION BY TEST FIELDS

To analyze the stability and ringdown signatures of the
spacetime (2) with a central naked singularity, we study the
perturbation of the spacetime against test scalar, electro-
magnetic, and Dirac fields.

A. Scalar field

The dynamics of a massless test scalar fieldΨ propagating
in the background (2) is governed by the Klein-Gordon
equation,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨscalarÞ ¼ 0: ð5Þ

The spherical symmetry of the background spacetime allows
us to separate out the angular dependence of the scalar field
Ψ as,

Ψðt; r; θ;ϕÞ ¼ 1

r
ψ scalarðt; rÞYlmðθ;ϕÞ; ð6Þ

where Ylmðθ;ϕÞ are the spherical harmonics of degree l and
order m. Thus, Eq. (5) can be rewritten as

∂
2ψ scalar

∂t2
−
∂
2ψ scalar

∂r2�
þ VscalarðrÞψ scalar ¼ 0 ð7Þ

where,

VscalarðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 1

r
dfðrÞ
dr

�
; ð8Þ

is the effective potential for scalar field perturbation The
coordinate r� is defined analogous to the tortoise coordinate
of black holes,

dr� ¼
dr
fðrÞ : ð9Þ

Close to the singularity, the coordinate r� varies linearly with
r, such that the singularity is by definition at r� ¼ 0.1

B. Electromagnetic field

The motion of a test electromagnetic field in a curved
background is given by the equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
FγσgγμgσνÞ ¼ 0; ð10Þ

where Fγσ ¼ ∂γAσ − ∂σAγ and Aμ is the four vector
potential. The spherical symmetry of the background
spacetime allows us to decompose the angular part of Aμ

in terms of the vector spherical harmonics,

1For numerical computations, we shifted the origin of the
tortoise coordinate from r ¼ 0 to r ¼ 0þ ε, ε ≪ 1. Thus, the
exact position of the singularity is excluded from the domain of
numerical study, but the effect of the singularity in terms of the
divergence of the effective potential drives the dynamics of the
test fields.
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Aμðt; r; θ;ϕÞ

¼
X
l;m

0
BBBB@

2
66664

0

0
almðt;rÞ
sin θ ∂ϕYlm

−almðt; rÞ sin θ∂θYlm

3
77775þ

2
66664

flmðt; rÞYlm

hlmðt; rÞYlm

klmðt; rÞ∂θYlm

klmðt; rÞ∂ϕYlm

3
77775

1
CCCCA

ð11Þ

where the first term inside the summation is of odd parity,
ð−1Þlþ1, while the second term is of even parity ð−1Þl.
Plugging Eq. (11) back into Eq. (10) one can arrive at a
Schrödinger like equation,

∂
2ψem

∂t2
−
∂
2ψem

∂r2�
þ VemðrÞψem ¼ 0; ð12Þ

where ψem ¼ alm is for odd parity and ψem ¼
r2

lðlþ1Þ ð∂thlm − ∂rflmÞ for even parity and

VemðrÞ ¼ fðrÞ lðlþ 1Þ
r2

ð13Þ

is the effective potential for electromagnetic perturbation.

C. Dirac field

The dynamics of a massless fermionic field ψdirac in a
curved background is determined by the Dirac equation,

γμð∂μ − ΓμÞψdirac ¼ 0; ð14Þ

where γμ are the coordinate dependent Dirac four-matrices
and Γμ are the spin connections in the tetrad formalism.
Following [91], we separate out the angular dependence
and rewrite the covariant equations of motion Eq. (14) as

∂
2ψ�

dirac

∂t2
−
∂
2ψ�

dirac

∂r2�
þ V�

diracðrÞψ�
dirac ¼ 0; ð15Þ

where

V�
diracðrÞ ¼

lþ 1

r
fðrÞ

�
lþ 1

r
∓

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

� d
ffiffiffiffiffiffiffiffiffi
fðrÞp
dr

�
ð16Þ

are the effective potential corresponding to the two
chiralities labeled as “þ” and “−.” However, for the
background spacetime of the form (2), one can transform
the potential for opposite chiralities into one another
following a Darboux transformation (DT). The DT is a
method for relating second-order ordinary differential
equations (ODE) written in a form without involving
first-order derivative terms [92,93]. Such forms of an
ODE are generally known as the canonical form. For
the case of black hole perturbation theory, it was observed
that the equations governing the black hole perturbations
of different parity are related. The Regge-Wheeler equa-
tion governing the odd parity perturbations and the Zerilli
equation governing the even parity one are isospectral.
Chandrasekhar [94] showed that the solutions of the two
different parity perturbation equations are related to each
other. The transformation proposed by Chandrasekhar to
relate the odd and even parity perturbations is one example
of the DT. The fact that the solutions to black hole
perturbation equations corresponding to different parity
can be transformed among each other using the DT can be
seen from the simple fact that such equations can be
written as Schrödinger like second-order ODEs. In the case
of the Dirac equation in curved space-time, as mentioned
in this subsection, ψþ

dirac and ψ−
dirac are related by the DT as

ψþ
dirac ¼ c

� ffiffiffiffiffiffiffiffiffi
fðrÞ

p
þ d
dr�

�
ψ−
dirac; c¼ constant: ð17Þ

The potentials V�
dirac is an example of the DT where one

can be transformed into the other. This, in turn, implies that
both potentials provide the same quasinormal spectrum
(i.e., they are isospectral), as shown in [93,94]. Thus, we
will only consider the potential Vþ

dirac.
Figure 1 shows the effective potential for scalar, electro-

magnetic and Dirac perturbation as a function of the
coordinate r� for different values of the dimensionless
parameter γ in the naked singularity regime. We observe
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FIG. 1. Plots of the effective potential for massless scalar (left panel), electromagnetic (middle panel) and Dirac (right panel)
perturbations with respect to the coordinate r� for l ¼ 1 and different values of γ in the naked singularity regime.
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that in the regime of weakly naked singularity ð1 < γ <
3

ffiffiffi
3

p
=4Þ, the potential profile for all the three types of

perturbations are characterized by a peak at r� > 0
which rises to an infinite wall close to the singularity
[Vðr → 0Þ → ∞], except for the l ¼ 0 mode of scalar
perturbation. The effective potential for the l ¼ 0 mode
of scalar perturbation diverges to −∞ close to the singu-
larity, ½Vl¼0

scalarðr → 0Þ → −∞�, rendering the system unsta-
ble [95]. Hereafter, unless otherwise mentioned, wewill only
consider l > 0 modes of scalar and electromagnetic pertur-
bations and l ≥ 0 modes of Dirac perturbation.
The divergence of the effective potential distinguishes the

spacetime (2) with a naked singularity from the correspond-
ing black hole solution, in which case the effective potential
is characterized by a single potential peak outside the event
horizon. As γ increases from γ ≈ 1, the potential peak shifts
toward smaller values of r�, until it changes to a plateau and
finally merges with the potential wall at sufficiently large
values of γ. In this case, the effective potential is charac-
terized solely by the infinite wall near the singularity. We
also note from Fig. 2 that the height of the peak of the
potential profile for a given value of the parameter γ changes
with the type of perturbation considered. From Fig. 2 we
note that for a given γ, the height of the peak of the effective
potential is maximum for the fermionic (or Dirac) pertur-
bation and minimum for electromagnetic perturbation. Also,
for each type of perturbation, the peak height and width
increase with the multipole number.

IV. TIME EVOLUTION OF PERTURBATION

To study the time-evolution of the perturbation we
rewrite the perturbation equations (7), (12), and (15) in
terms of null coordinates, u ¼ t − r� and v ¼ tþ r�,

4
∂
2

∂u∂v
ψ iðu; vÞ þ Viðu; vÞψ iðu; vÞ ¼ 0;

i ∈ ðscalar; em; diracÞ ð18Þ

To numerically integrate Eq. (18), we follow the integration
scheme, proposed by Chirenti and Rezzolla [96],

ψ iðNÞ ¼ ðψ iðWÞ þψ iðEÞÞ
16−Δ2ViðsÞ
16þΔ2ViðsÞ

− ψ iðSÞ þOðΔ4Þ

ð19Þ

where Δ is the step-size and S ¼ ðu; vÞ, W ¼ ðuþ Δ; vÞ,
E ¼ ðu; vþ ΔÞ and N ¼ ðuþ Δ; vþ ΔÞ are the grid-
points in the u–v plane. For an effective potential of the
form, depicted Figs. 1,2, the above integration scheme is
found to be more stable compared to more popular
integration scheme due to Gundlach, Price and Pullin [97],
consistent with the observation in Ref. [96]. In general, in
the linear regime the eigenfrequencies are not sensitive to
the choice of the initial conditions, hence, we model the
initial perturbation by a Gaussian wave packet of width σ
centered around v ¼ vc,

ψ iðu ¼ 0; vÞ ¼ e−
ðv−vcÞ2

2σ2 : ð20Þ

We also assume that close to the singularity the perturbation
is constant,

ψ iðr� ¼ 0; tÞ ¼ ψ iðu¼ v− v0; vÞ ¼ 0; ∀ t; ε≪ 1: ð21Þ

The choice of the null boundary condition (21) deserves
some attention.
The presence of the central naked singularity renders

the spacetime (2) (with γ > 1) globally nonhyperbolic.
However, following Wald’s suggestion [98] (see also
Refs. [99–105]), it is possible to uniquely define dynamics
of test fields even in such a spacetime, provided there exist
a unique self adjoint extension of the operator Ai,

Ai ≡ −
d2

dr2�
þ Vi ð22Þ
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FIG. 2. The left panel shows the difference in the effective potential for the scalar, electromagnetic and Dirac perturbations for
γ ¼ 1.005 and l ¼ 1. The right panel shows the effective potential for massless scalar perturbation for γ ¼ 1.005 for different values of l.
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The operator Ai acts on the Hilbert space of square
integrable functions, H ¼ L2ðr�; dr�Þ on a static hyper-
surface orthogonal to a unit time-like Killing vector ∂t.
To analyze, the existence of an unique self adjoint exten-
sion of the operator Ai, one studies the eigenfunction of the
equation,

Aiψ i ¼ �iψ i: ð23Þ

The operator Ai is said to be essentially self-adjoint
(existence of a unique self-adjoint extension) if at least
one of the eigenfunctions of Ai (for each sign of i) fails
to be square-integrable near the singularity. Close to the
singularity, one can approximate

fðrÞ ≈ 1 −

ffiffiffiffiffiffiffi
2

γM

s
r1=2 þOðr3=2Þ; ð24Þ

r� ≈ rþOðr3=2Þ; ð25Þ

ViðrÞ ≈
lðlþ 1Þ þ 2Ci

2γM2
þ lðlþ 1Þ

r2
þOðr−3=2Þ; ð26Þ

where Ci ¼ 1; 0; 3ð8γ − 1Þðlþ 1Þ=ð32γÞ for scalar, electro-
magnetic and Dirac perturbations respectively. Thus, close
to the singularity one can write Eq. (23) as

−
d2ψ iðr�Þ

dr2�
þ
�
lðlþ 1Þ

r2�
þ � � �

�
ψ iðr�Þ ¼ �iψ iðr�Þ: ð27Þ

The general solution to Eq. (27) close to the singularity is of
the form (for both signs of the eigenvalue �i)

ψ i ∼ C1ðr−l� þ � � �Þ þ C2ðrlþ1� þ � � �Þ as r� → 0: ð28Þ

The first solution fails to be square-integrable near the
singularity, and hence, Ai is essentially self-adjoint. It is
important to note that the addition of positive terms to the
effective potential in Eq. (27) (including the mass of the test
field) does not alter the essential self-adjointness of the
operator Ai. Such terms effectively act as repulsive terms,

increasing the rate of divergence of the larger solution
and the convergence of the smaller solution close to the
singularity [99,106]. Further, assuming the time-dependence
of the perturbation field as ψ iðt; r�Þ ¼ e−iωtψ iðr�Þ, we write
Eqs. (7), (12) and (15), near the singularity (up to leading
order in r�) as

−
d2ψ iðr�Þ

dr2�
þ
�
lðlþ 1Þ

r2�
þ � � �

�
ψ iðr�Þ ¼ ω2ψ iðr�Þ: ð29Þ

The general solution of the Eq. (29) is of the form as Eq. (28)
and for ψ i to be normalizable close to the singularity,
C1 must vanish, which implies

rl�ψ ijr�¼0 ¼ 0: ð30Þ

Thus, the boundary condition (21) guarantees that the
perturbation field is normalizable close to the singularity
and is also consistent with Ref. [98].
Figure 3 shows the time evolution of the scalar pertur-

bation for the l ¼ 1 mode along a line of constant r�. We
observe that close to the black-hole limit (γ ¼ 1), the time
profile of the scalar perturbation is characterized by distinct
echoes with diminishing amplitude and frequency. As γ
increases, the echoes become less prominent. For suffi-
ciently large values of γ, the enveloping oscillation of the
echoes align to give rise to characteristic quasinormal
modes, which later decay to give late-time tails. A study
on the time domain profiles for all the three different types
of perturbations suggests that the tail falls off as t−ð2lþ2þγÞ.
It may be noted that the existence of distinct echoes in

the time evolution of perturbations was found to be related
to the presence of a weakly naked singularity in the Janis-
Newman-Winicour spacetime [68], however, in the present
case, the quasinormal ringing and late-time tails can also be
observed in the time evolution of the massless scalar field
when the singularity is strongly naked.
Time evolution of the l ¼ 1 mode of electromagnetic

and l ¼ 0, 1 modes of Dirac fields also show similar
characteristics (Fig. 4). However, for higher multipole
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modes, all the three types of perturbation (scalar, electro-
magnetic, and Dirac) grow unboundedly with time,
suggesting instability. Figure 5 shows the time-evolution
of the l ¼ 2, 3, 4, 8 modes of the perturbations. To
ascertain that the instability of the 4D-EGB naked singu-
larity-spacetime is not a numerical artefact, we have also

checked our results by slightly shifting the location of
the inner boundary, ðrin ¼ r0in � ε2; where r0in ∼ ε; ε≪ 1Þ.
The consistency of our numerical analysis is further
supported by testing the instability of the negative-mass
Schwarzschild singularity against even parity metric
perturbations [105,107,108].
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Once the echoes align, mode frequencies can be
extracted from the time profile by using Prony’s method
of fitting the time-domain data with a series of damped
exponentials with some excitation factors [95,109],

ψðtÞ ≃
Xp
j¼1

Cje−iωjt; ð31Þ

where ωj is the complex quasinormal frequency of the jth
mode. The real part of the quasinormal normal frequency
corresponds to the actual frequency of the wave motion,
while the imaginary part corresponds to the damping rate.
The fundamental quasinormal mode frequency is charac-
terized by the value of ωj with the lowest damping rate, i.e.,
with the smallest ImðωÞ. Table I shows the characteristic
fundamental quasinormal frequencies for the l ¼ 1 mode of
scalar and electromagnetic perturbation and l ¼ 0, 1 modes
of Dirac perturbation. The quasinormal frequencies have
been extracted for values of the dimensionless parameter γ
for which the echoes have aligned. We observe that the
magnitude of both the real and imaginary parts of the
quasinormal frequencies increases with γ for each type of

perturbation. If we consider the mass (μ) of the perturbing
scalar field to be non zero, then the effective potential in
Eq. (8) gets modified to,

VðμÞ
scalarðrÞ ¼ fðrÞ

�
lðlþ 1Þ

r2
þ 1

r
dfðrÞ
dr

þ μ2
�
: ð32Þ

Thus the asymptotic value of the effective potential changes

to VðμÞ
scalarðr → ∞Þ → μ2. For a sufficiently large mass of the

probing scalar field, there exists a trough in the effective
potential outside the peak, resulting in quasibound states,
which are manifested as elongation of the individual
echoes (Fig. 6).
The quasinormal mode frequencies evaluated using

Prony’s method depend on the choice of the starting point
of the ringdown profile. To eliminate possible errors in
determining the quasinormal mode frequencies, we have
verified the quasinormal mode frequencies with time-
profile data generated using different grid sizes (Δ). For
each such time profile, we have checked the stability of
the fundamental quasinormal mode frequencies by fitting
with the series in Eq. (31) with a different number of
terms (∼100–200).

TABLE I. Characteristic fundamental quasinormal frequencies for l ¼ 1 mode of massless scalar and
electromagnetic perturbations and l ¼ 0, 1 modes of massless Dirac perturbations.

Scalar Electromagnetic Dirac

γ ωðl ¼ 1Þ ωðl ¼ 1Þ ωðl ¼ 0Þ ωðl ¼ 1Þ
1.25 0.3699 − 0.0082i 0.3528 − 0.0132i 0.2545 − 0.0131i 0.4676 − 0.0084i
1.28 0.3797 − 0.0107i 0.3613 − 0.0166i 0.2614 − 0.0149i 0.4787 − 0.0113i
1.29 0.3827 − 0.0116i 0.3638 − 0.0177i 0.2634 − 0.0155i 0.4820 − 0.0123i
1.30 0.3855 − 0.0125i 0.3662 − 0.0188i 0.2653 − 0.0161i 0.4852 − 0.0133i
1.35 0.3977 − 0.0170i 0.3766 − 0.0243i 0.2750 − 0.0207i 0.4985 − 0.0186i
1.40 0.4074 − 0.0215i 0.3842 − 0.0301i 0.2827 − 0.0248i 0.5097 − 0.0241i
1.60 0.4314 − 0.0390i 0.3943 − 0.0451i 0.2957 − 0.0392i 0.5375 − 0.0399i
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V. CONCLUSION

The cosmic censorship conjecture suggests that space-
time singularities must always be hidden by an event
horizon. However, it has been argued that under suitable
initial conditions, gravitational collapse may lead to a
naked singularity [66]. In general, for gravitational col-
lapse, the quantum considerations are toward avoidance of
a singularity [110–113]. So, if, for certain values of theory
parameters, a gravity theory predicts the occurrence of a
naked singularity, then it is of paramount importance
to check the stability of such a spacetime with naked
singularity against perturbation. If such a spacetime
happens to be sufficiently stable, then one asks the
associated question of how to observationally distinguish
such an atypical spacetime.
In the present work, we considered an asymptotically flat,

static, spherically symmetric spacetime (2) with a central
singularity. We observed that the singularity becomes
globally naked for γ > 1. It is important to emphasize that
the metric (2) satisfies the field equations of all variants of
the (consistent) 4D-EGB theory [16,52–55]. Hence, we
studied the stability and response of such a naked singu-
larity-spacetime against perturbation by test fields without
resorting to any particular version of the (consistent)
4D-EGB theory.
We added test scalar, electromagnetic, and Dirac fields in

the background of the 4D-EGB naked singularity-spacetime
and observed the time evolution of the perturbations
numerically. The effective potential of all the three types

of perturbation diverges to ∞ close to the singularity. So,
we chose the null Dirichlet boundary condition consistent
with [68,114]. We observed that for l ¼ 1 modes of scalar,
electromagnetic perturbation, and l ¼ 0, 1 modes of Dirac
perturbation, the time-domain profile gives distinct echoes
when the dimensionless parameter γ is slightly greater than
unity (weakly naked singularity regime). As gamma
increases, the time gap between the individual echoes
decreases, and finally, for sufficiently large gamma, the
echoes align to yield characteristic quasinormal frequency
of the spacetime. However, as l is increased from unity, the
time-domain profile (Fig. 5) suggests an instability. We have
verified the instability of the spacetime till l ¼ 10.
So, we conclude that the 4D-EGB spacetime with a

naked singularity is unstable against test scalar, electro-
magnetic, and Dirac perturbations which constrain the
Gauss-Bonnet coupling constant α ≤ M2. We plan to
extend our analysis to study the full gravitational pertur-
bation of the 4D-EGB black hole and naked singularity in
all versions of the (consistent) 4D-EGB theory. Such an
analysis will not only provide an opportunity to constrain
the parameter space of α but will also be able to predict
direct observational distinctions between the different
versions of the 4D-EGB theories.
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Lett. 125, 149002 (2020).
[47] J. Bonifacio, K. Hinterbichler, and L. A. Johnson, Phys.

Rev. D 102, 024029 (2020).
[48] W.-Y. Ai, Commun. Theor. Phys. 72, 095402 (2020).
[49] S. Mahapatra, Eur. Phys. J. C 80, 992 (2020).
[50] M. Hohmann, C. Pfeifer, and N. Voicu, Eur. Phys. J. Plus

136, 180 (2021).
[51] L.-M. Cao and L.-B. Wu, Eur. Phys. J. C 82, 124 (2022).
[52] H. Lu and Y. Pang, Phys. Lett. B 809, 135717 (2020).
[53] P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J.

Mulryne, Phys. Rev. D 102, 024025 (2020).
[54] R. A. Hennigar, D. Kubizńák, R. B. Mann, and C. Pollack,

J. High Energy Phys. 07 (2020) 027.
[55] K. Aoki, M. A. Gorji, and S. Mukohyama, Phys. Lett. B

810, 135843 (2020).
[56] P. G. S. Fernandes, Phys. Rev. D 103, 104065 (2021).
[57] S. Sengupta, J. Cosmol. Astropart. Phys. 02 (2022) 020.
[58] S. D. Odintsov, V. K. Oikonomou, and F. P. Fronimos,

Nucl. Phys. B958, 115135 (2020).
[59] V. K. Oikonomou and F. P. Fronimos, Classical Quantum

Gravity 38, 035013 (2021).
[60] V. K. Oikonomou, Classical Quantum Gravity 38, 195025

(2021).

[61] P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J.
Mulryne, Classical Quantum Gravity 39, 063001
(2022).

[62] T. Takahashi and J. Soda, Prog. Theor. Phys. 124, 711
(2010).

[63] T. Takahashi and J. Soda, Prog. Theor. Phys. 124, 911
(2010).

[64] R. A. Konoplya and A. Zhidenko, Phys. Dark Universe 30,
100697 (2020).

[65] H. S. Vieira, arXiv:2107.02065.
[66] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969).R. Penrose,

Gen. Relativ. Gravit. 34, 1141 (2002).
[67] G. Gyulchev, P. Nedkova, T. Vetsov, and S. Yazadjiev,

Eur. Phys. J. C 81, 885 (2021).
[68] A. Chowdhury and N. Banerjee, Phys. Rev. D 102, 124051

(2020).
[69] V. Cardoso and P. Pani, Nat. Astron. 1, 586 (2017).
[70] K. Saraswat and N. Afshordi, J. High Energy Phys. 04

(2020) 136.
[71] E. Maggio, L. Buoninfante, A. Mazumdar, and P. Pani,

Phys. Rev. D 102, 064053 (2020).
[72] V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela,

and P. Pani, Phys. Rev. D 94, 084031 (2016).
[73] Z. Mark, A. Zimmerman, S. M. Du, and Y. Chen, Phys.

Rev. D 96, 084002 (2017).
[74] R. A. Konoplya, Z. Stuchlík, and A. Zhidenko, Phys. Rev.

D 99, 024007 (2019).
[75] L. F. L. Micchi and C. Chirenti, Phys. Rev. D 101, 084010

(2020).
[76] M. S. Churilova and Z. Stuchlík, Classical Quantum

Gravity 37, 075014 (2020).
[77] K. A. Bronnikov and R. A. Konoplya, Phys. Rev. D 101,

064004 (2020).
[78] P. Dutta Roy, S. Aneesh, and S. Kar, Eur. Phys. J. C 80, 850

(2020).
[79] R. Dong and D. Stojkovic, Phys. Rev. D 103, 024058

(2021).
[80] R. Dey, S. Chakraborty, and N. Afshordi, Phys. Rev. D

101, 104014 (2020).
[81] R. Dey, S. Biswas, and S. Chakraborty, Phys. Rev. D 103,

084019 (2021).
[82] I. Agullo, V. Cardoso, A. D. Rio, M. Maggiore, and

J. Pullin, Phys. Rev. Lett. 126, 041302 (2021).
[83] K. Chakravarti, R. Ghosh, and S. Sarkar, Phys. Rev. D 105,

044046 (2022).
[84] A. Coates, S. H. Völkel, and K. D. Kokkotas, Classical

Quantum Gravity 39, 045007 (2022).
[85] V. Cardoso and P. Pani, Living Rev. Relativity 22, 4

(2019).
[86] R.-G. Cai, L.-M. Cao, and N. Ohta, J. High Energy Phys.

04 (2010) 082.
[87] R.-G. Cai, Phys. Lett. B 733, 183 (2014).
[88] G. Cognola, R. Myrzakulov, L. Sebastiani, and S. Zerbini,

Phys. Rev. D 88, 024006 (2013).
[89] P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J.

Mulryne, Phys. Rev. D 104, 044029 (2021).
[90] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004

(2002).
[91] D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465

(1957).

CHOWDHURY, DEVI, and CHAKRABARTI PHYS. REV. D 106, 024023 (2022)

024023-10

https://doi.org/10.1016/j.physletb.2020.135793
https://doi.org/10.1016/j.physletb.2020.135793
https://arXiv.org/abs/2003.08778
https://doi.org/10.1140/epjc/s10052-020-8164-7
https://doi.org/10.1140/epjc/s10052-020-08639-8
https://doi.org/10.1140/epjc/s10052-020-08639-8
https://doi.org/10.3390/universe6080103
https://doi.org/10.3390/universe6080103
https://doi.org/10.1103/PhysRevD.102.024059
https://doi.org/10.1103/PhysRevD.102.024059
https://doi.org/10.1016/j.aop.2021.168599
https://doi.org/10.1088/1674-1137/abc16c
https://doi.org/10.1088/1674-1137/abc16c
https://doi.org/10.1209/0295-5075/133/50006
https://doi.org/10.1140/epjc/s10052-020-08606-3
https://doi.org/10.1140/epjc/s10052-020-08606-3
https://doi.org/10.1088/1475-7516/2020/09/030
https://doi.org/10.1088/1475-7516/2020/09/030
https://doi.org/10.1007/s10714-020-02763-2
https://doi.org/10.1140/epjc/s10052-020-8311-1
https://doi.org/10.1140/epjc/s10052-020-8311-1
https://doi.org/10.1140/epjc/s10052-020-8298-7
https://doi.org/10.1140/epjc/s10052-020-8298-7
https://doi.org/10.1140/epjc/s10052-020-08511-9
https://doi.org/10.1016/j.aop.2021.168425
https://doi.org/10.1016/j.aop.2021.168425
https://doi.org/10.1140/epjc/s10052-020-8200-7
https://doi.org/10.1140/epjc/s10052-020-8200-7
https://doi.org/10.1103/PhysRevLett.125.149001
https://doi.org/10.1103/PhysRevLett.125.149001
https://doi.org/10.1088/1674-1137/abc1d4
https://doi.org/10.1088/1674-1137/abc1d4
https://doi.org/10.1103/PhysRevLett.125.149002
https://doi.org/10.1103/PhysRevLett.125.149002
https://doi.org/10.1103/PhysRevD.102.024029
https://doi.org/10.1103/PhysRevD.102.024029
https://doi.org/10.1088/1572-9494/aba242
https://doi.org/10.1140/epjc/s10052-020-08568-6
https://doi.org/10.1140/epjp/s13360-021-01153-0
https://doi.org/10.1140/epjp/s13360-021-01153-0
https://doi.org/10.1140/epjc/s10052-022-10079-5
https://doi.org/10.1016/j.physletb.2020.135717
https://doi.org/10.1103/PhysRevD.102.024025
https://doi.org/10.1007/JHEP07(2020)027
https://doi.org/10.1016/j.physletb.2020.135843
https://doi.org/10.1016/j.physletb.2020.135843
https://doi.org/10.1103/PhysRevD.103.104065
https://doi.org/10.1088/1475-7516/2022/02/020
https://doi.org/10.1016/j.nuclphysb.2020.115135
https://doi.org/10.1088/1361-6382/abce47
https://doi.org/10.1088/1361-6382/abce47
https://doi.org/10.1088/1361-6382/ac2168
https://doi.org/10.1088/1361-6382/ac2168
https://doi.org/10.1088/1361-6382/ac500a
https://doi.org/10.1088/1361-6382/ac500a
https://doi.org/10.1143/PTP.124.711
https://doi.org/10.1143/PTP.124.711
https://doi.org/10.1143/PTP.124.911
https://doi.org/10.1143/PTP.124.911
https://doi.org/10.1016/j.dark.2020.100697
https://doi.org/10.1016/j.dark.2020.100697
https://arXiv.org/abs/2107.02065
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1140/epjc/s10052-021-09624-5
https://doi.org/10.1103/PhysRevD.102.124051
https://doi.org/10.1103/PhysRevD.102.124051
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1007/JHEP04(2020)136
https://doi.org/10.1007/JHEP04(2020)136
https://doi.org/10.1103/PhysRevD.102.064053
https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1103/PhysRevD.96.084002
https://doi.org/10.1103/PhysRevD.96.084002
https://doi.org/10.1103/PhysRevD.99.024007
https://doi.org/10.1103/PhysRevD.99.024007
https://doi.org/10.1103/PhysRevD.101.084010
https://doi.org/10.1103/PhysRevD.101.084010
https://doi.org/10.1088/1361-6382/ab7717
https://doi.org/10.1088/1361-6382/ab7717
https://doi.org/10.1103/PhysRevD.101.064004
https://doi.org/10.1103/PhysRevD.101.064004
https://doi.org/10.1140/epjc/s10052-020-8409-5
https://doi.org/10.1140/epjc/s10052-020-8409-5
https://doi.org/10.1103/PhysRevD.103.024058
https://doi.org/10.1103/PhysRevD.103.024058
https://doi.org/10.1103/PhysRevD.101.104014
https://doi.org/10.1103/PhysRevD.101.104014
https://doi.org/10.1103/PhysRevD.103.084019
https://doi.org/10.1103/PhysRevD.103.084019
https://doi.org/10.1103/PhysRevLett.126.041302
https://doi.org/10.1103/PhysRevD.105.044046
https://doi.org/10.1103/PhysRevD.105.044046
https://doi.org/10.1088/1361-6382/ac4618
https://doi.org/10.1088/1361-6382/ac4618
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/JHEP04(2010)082
https://doi.org/10.1007/JHEP04(2010)082
https://doi.org/10.1016/j.physletb.2014.04.044
https://doi.org/10.1103/PhysRevD.88.024006
https://doi.org/10.1103/PhysRevD.104.044029
https://doi.org/10.1103/PhysRevD.65.103004
https://doi.org/10.1103/PhysRevD.65.103004
https://doi.org/10.1103/RevModPhys.29.465
https://doi.org/10.1103/RevModPhys.29.465


[92] G. Darboux, C. R. Acad. Sci. (Paris) 94, 1456 (1882),
arXiv:physics/9908003.

[93] K. Glampedakis, A. D. Johnson, and D. Kennefick, Phys.
Rev. D 96, 024036 (2017).

[94] S. Chandrasekhar, The Mathematical Theory of Black
Holes, Oxford Classic Texts in the Physical Sciences
(Oxford University Press, New York, 1983).

[95] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793
(2011).

[96] C. B. M. H. Chirenti and L. Rezzolla, Classical Quantum
Gravity 24, 4191 (2007).

[97] C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D 49,
883 (1994).

[98] R. M. Wald, J. Math. Phys. (N.Y.) 21, 2802 (1980).
[99] G. T.Horowitz andD.Marolf, Phys.Rev.D52, 5670 (1995).

[100] A. Ishibashi and A. Hosoya, Phys. Rev. D 60, 104028
(1999).

[101] A. Ishibashi and R. M. Wald, Classical Quantum Gravity
20, 3815 (2003).

[102] T. M. Helliwell, D. A. Konkowski, and V. Arndt, Gen.
Relativ. Gravit. 35, 79 (2003).

[103] A. Ishibashi and R. M. Wald, Classical Quantum Gravity
21, 2981 (2004).

[104] G. W. Gibbons, S. A. Hartnoll, and A. Ishibashi, Prog.
Theor. Phys. 113, 963 (2005).

[105] V. Cardoso and M. Cavaglia, Phys. Rev. D 74, 024027
(2006).

[106] O. Svítek, T. Tahamtan, and A. Zampeli, Ann. Phys.
(Amsterdam) 418, 168195 (2020).

[107] R. J. Gleiser and G. Dotti, Classical Quantum Gravity 23,
5063 (2006).

[108] G. Dotti and R. J. Gleiser, Classical Quantum Gravity 26,
215002 (2009).

[109] E. Berti, V. Cardoso, J. A. Gonzalez, and U. Sperhake,
Phys. Rev. D 75, 124017 (2007).

[110] T. Harada, H. Iguchi, K.-i. Nakao, T. P. Singh, T. Tanaka,
and C. Vaz, Phys. Rev. D 64, 041501 (2001).

[111] M. Bojowald, R. Goswami, R. Maartens, and P. Singh,
Phys. Rev. Lett. 95, 091302 (2005).

[112] Y. Liu, D. Malafarina, L. Modesto, and C. Bambi, Phys.
Rev. D 90, 044040 (2014).

[113] C. Kiefer and T. Schmitz, Phys. Rev. D 99, 126010
(2019).

[114] C. Chirenti, A. Saa, and J. Skakala, Phys. Rev. D 87,
044034 (2013).

NAKED SINGULARITY IN 4D EINSTEIN-GAUSS-BONNET … PHYS. REV. D 106, 024023 (2022)

024023-11

https://arXiv.org/abs/physics/9908003
https://doi.org/10.1103/PhysRevD.96.024036
https://doi.org/10.1103/PhysRevD.96.024036
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1088/0264-9381/24/16/013
https://doi.org/10.1088/0264-9381/24/16/013
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1063/1.524403
https://doi.org/10.1103/PhysRevD.52.5670
https://doi.org/10.1103/PhysRevD.60.104028
https://doi.org/10.1103/PhysRevD.60.104028
https://doi.org/10.1088/0264-9381/20/16/318
https://doi.org/10.1088/0264-9381/20/16/318
https://doi.org/10.1023/A:1021307012363
https://doi.org/10.1023/A:1021307012363
https://doi.org/10.1088/0264-9381/21/12/012
https://doi.org/10.1088/0264-9381/21/12/012
https://doi.org/10.1143/PTP.113.963
https://doi.org/10.1143/PTP.113.963
https://doi.org/10.1103/PhysRevD.74.024027
https://doi.org/10.1103/PhysRevD.74.024027
https://doi.org/10.1016/j.aop.2020.168195
https://doi.org/10.1016/j.aop.2020.168195
https://doi.org/10.1088/0264-9381/23/15/021
https://doi.org/10.1088/0264-9381/23/15/021
https://doi.org/10.1088/0264-9381/26/21/215002
https://doi.org/10.1088/0264-9381/26/21/215002
https://doi.org/10.1103/PhysRevD.75.124017
https://doi.org/10.1103/PhysRevD.64.041501
https://doi.org/10.1103/PhysRevLett.95.091302
https://doi.org/10.1103/PhysRevD.90.044040
https://doi.org/10.1103/PhysRevD.90.044040
https://doi.org/10.1103/PhysRevD.99.126010
https://doi.org/10.1103/PhysRevD.99.126010
https://doi.org/10.1103/PhysRevD.87.044034
https://doi.org/10.1103/PhysRevD.87.044034

