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We apply the recent derivations of dual charges in asymptotically flat spacetimes to asymptotically
locally anti–de Sitter (AdS) spacetimes. In contrast to the results in the flat case, in the AdS case with a
Dirichlet boundary the dual charge contribution vanishes at the leading order. However, by focusing on the
Taub-NUT(Newman-Unti-Tambourino)-AdS solution, we show that, nevertheless, more generally, the dual
charge is nonvanishing and corresponds to the NUT parameter. We propose a complex first law of black
mechanics in the presence of NUT charges that is inspired by the naturally complex nature of the charges
derived using Hamiltonian methods.
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I. INTRODUCTION

The study of charges in asymptotically (locally)
anti–de Sitter (AdS) backgrounds has a rich history [1,2]
that has taken on a particular importance in the context of
the AdS=CFT correspondence [3]. This correspondence,
formulated in a stringy framework, establishes a physical
duality between (Dþ 1)-dimensional theories of quantum
gravity with negative cosmological constant and a D-
dimensional conformal field theory at the boundary.
In this paper, we revisit the study of AdS charges in light

of recent developments in the flat case [4–7]. In Ref. [6] it is
argued that in order to have access to all possible gravita-
tional charges, one must include in the gravitational
Lagrangian any terms that do not contribute to the equations
ofmotion.One simple such term is theHolst term [8], whose
equations of motion give the algebraic Bianchi identity and
are therefore trivial. Nevertheless, the inclusion of such a
term leads to nontrivial charges, which correspond [7] to the
dual charges of Refs. [4,5]. Themain questionwewould like
to address here is what happens if we apply this idea to
asymptotically (locally) AdS backgrounds?
There are many methods to derive charges/Hamiltonians

in AdS backgrounds. These include the covariant phase
space formalism [9–13], the asymptotic study of Brown-
Henneaux [2,14,15], conformal methods [16,17], and
cohomological methods [1,18–20]. The study of charges

has been motivated amongst other things by an under-
standing of the first law of black hole mechanics [21–26].
Here, as in Ref. [6], wewill use the covariant phase space

formalism,1 in which charges are derived as Hamiltonians
associated with asymptotic symmetry transformations on
the covariant phase space. These transformations are
dictated by the boundary conditions one prescribes at
the AdS boundary. One typically introduces Dirichlet
boundary conditions (fixing the induced metric at the
boundary) or Neumann boundary conditions (fixing the
energy momentum tensor Tjk) [28,29]. In four dimensions,
the first conditions give the group of isometries of AdS4
while the second conditions gives an empty asymptotic
group. One can also introduce “mixed” boundary condi-
tions as in [28] giving a group of the form R ⊕ A withA a
group of area-preserving transformations.
We will in this work find such charges for the Einstein-

Palatini-Holst action.This actionwill give two sets of distinct
charges: the usual charges, which will be referred to as the
“electric charges,” while the second set will be referred to as
the “dual charges.”The latter come from theHolst term in the
action. Dual asymptotic charges may be thought of as the
generalization ofNUT (Newman-Unti-Tambourino) charges
in the same way that the usual asymptotic charges are the
generalization of mass. In turn NUT charges may be viewed
as the gravitational analogs of magnetic charges. In fact this
relation can be made quite explicit in a characteristic value
formulation of the Einstein equation [30].
In the flat context, the existence of dual charges is

important for a Hamiltonian interpretation of Newman-
Penrose charges [5,31] and the consistency of the action of
Bondi-Metzner-Sachs (BMS) charges on phase space [32].
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1While, more clear in the covariant phase space formalism, dual
charges can also be derived using cohomological methods [27].
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While dual charges in the spirit of Ref. [6] have not been
studied in the AdS context prior to this work, there is a rich
literature on NUT or more generally magnetic charges in
the AdS backgrounds [24,33–44]. For the most part, the
interest in magnetic masses is with relation to a consistent
formulation of black holes thermodynamics. In particular,
[33] argues that Misner strings do contribute to the entropy.
In [35], it is argued that the Taub-NUT solution may be
interpreted most appropriately as a ground state in the
regularized theory. This is because the presence of a NUT
charges causes the total Noether charge to vanish for this
solution. From a holographic perspective, the existence of
magnetic charges is useful for studying the richness of the
boundary theory. Moreover, such solutions always lift to
solutions of M theory and are as such consistent [45].
We will find that the dual charges defined following the

prescription of [6] vanish on the boundary for asymptoti-
cally AdS spacetimes with Dirichlet boundary conditions.
To be precise, we find that the dual charges are of the form:

=δξH̃ ¼ OðzÞ; ð1:1Þ

where z, defined in Sec. III A, parametrizes the distance
from the boundary. More generally, however, dual charges
are possible. In particular, they are nonvanishing for
backgrounds with global dual or NUT charges, such as
the Taub-NUT-AdS solution, which is parametrized by a
mass parameter m and NUT parameter n. Deriving the
charges for this solution, as expected, one gets the usual
energy E ¼ m in the electric part, plus an angular momen-
tum contribution from the Misner string that can be taken to
be zero if the wire singularity is equally distributed between
the north and south poles of the sphere. The dual charge is
given by

Ẽ ¼ n
�
1 −

4Λ
3

n2
�
; ð1:2Þ

whereΛ is the cosmological constant. The existence of dual
global charges naturally leads to an investigation of the first
law of black holes in the presence of NUT charges within
the context of the covariant phase space formalism; a
subject of recent interest [24,25,40,44,46,47]. In contrast to
previous literature, we take the interpretation of the NUT
charge as a dual mass [48] seriously. This leads us to view
the complex combination of the mass and NUT charge (see
also [49,50])

M ¼ m − in ð1:3Þ

as a generalized mass that satisfies its own first law.
In Sec. II, we will review the first-order tetrad formalism.

The tetrad formalism allows one to write more general
terms in the action, which do not contribute to the equations
of motion. In Sec. III, we introduce asymptotically AdS and

asymptotically locally AdS (ALAdS) backgrounds and
explain the difference between them. Moreover, we
define the Fefferman-Graham expansion of the metric of
ALAdS spacetimes and review the symmetries of the
backgrounds. In Sec. IV, we apply the covariant phase
space formalism to AdS backgrounds and derive the
Hamiltonians in this context. An important element to
consider is the role of the internal Lorentz transformations,
which add further gauge degrees of freedom. For the
charges to be Lorentz invariant, one has to introduce
compensating Lorentz transformations using the prescrip-
tion outlined in Ref. [51]. In Sec. V we compute the charges
for ALAdS spacetimes, verifying that the standard charges
correspond to the well-known Brown-York charges and
finding that there are no dual charges. In the final Sec. VI,
we focus on the Taub-NUT-AdS solution. We find that in
this case the dual charge is nonzero. We propose a first law
of black hole thermodynamics.
Notation.—Lowercase latin letters denote general tan-

gent indices (a; b;… ¼ 0;…3) and lowercase hatted latin
letters denote the tangent subspace (â; b̂;… ¼ 0;…; 2).
Similarly, greek letters μ; ν;… denote general spacetime
indices and latin letters i; j;… denote transverse directions.

II. FIRST-ORDER TETRAD FORMALISM

General relativity is usually written in terms of space-
times fields (such as the metric gμν, the stress-energy tensor
Tμν; …) with dynamics dictated by the Einstein-Hilbert
action:

SEH½g� ¼ κ

Z
M

ffiffiffiffiffi
jgj

p
ðR½g� − 2ΛÞ þ SM; ð2:1Þ

where κ ¼ 1
16πG, Λ is the cosmological constant and SM the

action for matter. This formalism, although intuitive, turns
out to be incompatible with the addition of fermions
interacting with the metric. The reason is actually rather
easy to understand: for the same reason that a spinor can be
seen as the “square root” of a spacetime vector, we will
define the frame field2 ea as the “square root of metric”:

ηabeaμebν ¼ gμν: ð2:2Þ

These fields can formally be seen as Lorentz-valued
spacetime 1-forms and are thus fixed up to a Lorentz
transformation in SOð1; n − 1Þ. Such objects are trans-
ported in a nontrivial way under parallel transport and one
needs to define a covariant derivative “seeing” the Lorentz
indices:

Dea ¼ dea þ ωa
b ∧ eb; ð2:3Þ

2Also called a vielbein in n dimensions or vierbein and tetrad
in 4D.

MAHDI GODAZGAR and SIMON GUISSET PHYS. REV. D 106, 024022 (2022)

024022-2



where ωab is the connection on the tangent space obeying
the following constraint:

Dμη
ab ¼ 0; ð2:4Þ

which, in particular, forces ωab to be antisymmetric. We
also define the Riemann curvature 2-form as the covariant
derivative of the spin connection:

Rab ¼ dωab þ ωa
c ∧ ωcb: ð2:5Þ

Using the expression of the 2-form curvature (2.5) above,
one can at this stage easily prove the following differential
Bianchi identity that will be heavily used in the following:

dRab ¼ Ra
c ∧ ωcb − ωa

c ∧ Rcb: ð2:6Þ

This identity can also be understood as the vanishing of the
covariant derivative of the curvature:

DR ¼ dR − ½R;ω� ¼ 0; ð2:7Þ

where ½R;ω� ¼ R ∧ ω − ω ∧ R.
In this formalism, general relativity is described as a

gauge theory where fω;Rg are the slð2;CÞ gauge con-
nections and curvatures, respectively. The frame field e is
thus a section on the associated vector bundle. It is easy to
see that the Einstein-Hilbert action can be written in terms
of these new fields as

SP½e;ω� ¼
κ

2
εabcd

Z
M
Rab ∧ ec ∧ ed

þ l−2

2
ea ∧ eb ∧ ec ∧ ed; ð2:8Þ

where we have introduced the AdS length l2 ¼ − 3
Λ > 0.

The first order formalism, in which we shall work, is
defined by taking fe;ωg as independent fields in contrast to
the second order formalism in which feg is the only
dynamical field. This means that there is an equation of
motion associated with both these fields:

εabcdðRab þ l−2ea ∧ ebÞ ∧ ec ¼ 0; ð2:9Þ

dea þ ωa
b ∧ eb ¼ 0: ð2:10Þ

The first equation, which corresponds to the equation of
motion of the vierbein, is equivalent to the usual Einstein
equation in metric form, while the second one, correspond-
ing to the equation of motion of the spin connection,
implies the vanishing of the torsion tensor Ta ¼ Dea. Note
that in contrast to the second order formalism where we
take ω as being fixed by e from the algebraic equation
Ta ¼ 0, in the first order formalism, the vanishing of the
torsion is a consequence of the equations of motion.

The first term in the action can also be written as

SP½e;ω� ¼ κ

Z
M
R ∧ ⋆ðe ∧ eÞ; ð2:11Þ

which provides a guide for how we could add another term
to this action by drawing a parallel with electromagnetism.
Starting with the usual Maxwell action,

SM ¼ e
Z
M
F ∧ ⋆F; ð2:12Þ

it is well known that one can add to this action a topological
term

Sθ ¼
θ

2π

Z
M
F ∧ F ð2:13Þ

whose equations of motion is the Bianchi identity, which is
trivially satisfied. Such a term in electromagnetism has
important consequences in the quantum theory and when
nonzero, violates CP symmetry. It can be analogously
constructed in gravity and is called the Holst term [8]3:

SH ¼ κiλ
Z
M
Rab ∧ ea ∧ eb; ð2:14Þ

where the constant λ is usually called the Immirzi param-
eter. There is a priori no reason not to add this term. The
equations of motion from this term, assuming Ta ¼ 0,
correspond to the algebraic Bianchi identity, which is
trivially zero on shell. However such a term can give
nontrivial asymptotic charges [6,7] by modifying the
symplectic structure of the theory such as in asymptotically
flat spacetimes where it leads to dual BMS charges [4,5].
The study of these dual charges in the AdS context will be
the focus of this work and we will therefore consider the
full Palatini-Holst action:

SPH ¼ κPabcd

Z
M

�
Rab ∧ ec ∧ edþl−2

2
ea ∧ eb ∧ ec ∧ ed

�

þΩ½ej
∂M;ωj∂M�; ð2:15Þ

where

Pabcd ¼
1

2
εabcd þ iληa½cηd�b ð2:16Þ

3More generally, one considers the Nieh-Yan topological
invariant (see [6] for more details):

SNY ¼ κiλ
Z
M
ðRab ∧ ea ∧ eb − Ta ∧ TaÞ:
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and Ω is a boundary term that is a functional of the fields at
infinity.4 Before proceeding, we make two remarks:
(1) The tensor Pabcd obeys the following symmetry

relations: Pabcd ¼ Pcdab, Pabcd ¼ −Pbacd. It thus
can be viewed as a 6 × 6 symmetric tensor
P½ab�½cd�. Such a tensor is invertible for λ ≠ �1:

P−1
abcd ¼

1

2ðλ2 − 1Þ ðεabcd − 2iληa½cηd�bÞ: ð2:17Þ

(2) The boundary term plays an important role in the
covariant phase space formalism. It will be chosen
such that the spacetime is indeed asymptoticallyAdS.

III. ALAdS SPACETIMES AND THE
FEFFERMAN-GRAHAM EXPANSION

A. Definition, action, and topological renormalization

We recall here that AdS4 is the unique maximally
symmetric solution to the vacuum Einstein equations with
a negative cosmological constant Λ ¼ −3=l2. It is known
that the Riemann curvature of a maximally symmetric
spacetime can be written explicitly as

Rμνγλ þ l−2ðgμγgνλ − gμλgνγÞ ¼ 0: ð3:1Þ

Note that this condition can be written in terms of the
Riemann curvature 2-form Rab as

R̄ab ≡Rab þ l−2ea ∧ eb ¼ 0: ð3:2Þ

The curvature 2-form R̄ab also satisfies the differential
Bianchi equation:

dR̄ab ¼ R̄a
c ∧ ωcb − ωa

c ∧ R̄cb: ð3:3Þ

Inspired by Eq. (3.2), we define ALAdS spacetimes [16,17]
(see also [13]) to be a solution of (2.9) such that its metric
obeys the fall-off condition

R̄abjI ¼ 0; ð3:4Þ

with I as the conformal boundary ofM.5 It was proven by
Fefferman-Graham [52] that one can always find a set of
coordinates ðz; xaÞ at least near the conformal boundary I
such that fz ¼ 0g ⊂ I and the metric is of the form

g ¼ 1

z2
ðl2dz2 þ γijðz; xaÞdxidxjÞ; ð3:5Þ

where we have an expansion for metric γ of the form

γ ¼ γð0Þ þ z2γð2Þ þ z3γð3Þ þOðz4Þ: ð3:6Þ

We then locally define the boundary as the Lorentzian
manifold ðI ; γð0ÞÞ. It can be shown that the equations of
motion fix γð2Þ and the trace of γð3Þ:

γð2Þij ¼ −Rð0Þ
ij þ 1

4
Rð0Þγð0Þij ; γð0Þijγð3Þij ¼ 0; ð3:7Þ

where Rð0Þ
ij and Rð0Þ are the Ricci tensor and scalar of γð0Þ,

respectively.
Such spacetimes are in fact very general, and the

question of whether they give rise to well-posed problems
is subtle. A sufficient condition for having a well-posed
ALAdS problem is to require the action to have an
extremum when one imposes R̄ab ¼ 0 at I .
Following [11], we consider a variation of the action

(2.15), which gives

δS ¼ 2κ

Z
M
Pabcd½R̄ab ∧ ec ∧ δed − Ta ∧ eb ∧ δωcd�

þ
Z
I
θðe;ω; δe; δωÞ; ð3:8Þ

where θðe;ω; δe; δωÞ ¼ κPabcdea ∧ eb ∧ δωcd þ δΩ is
called the presymplectic potential. Using the equations
of motion and the algebraic Bianchi identity, the first
integral vanishes. Therefore, in order to have an extremum
for any ALAdS spacetime, one must choose Ω so that θ is
proportional to R̄ab and thus vanishes on shell. It is clear
that this is achieved by choosing Ω such that

δΩ ¼ κl2Pabcd

Z
I
Rab ∧ δωcd: ð3:9Þ

In this case,

θðe;ω; δe; δωÞ ¼ κl2PabcdR
ab ∧ δωcdjI ; ð3:10Þ

which does indeed vanish using condition (3.4). Observe
that δΩ is nothing but the variation of a quantity that may be
viewed as a generalized Euler density,

Pabcd

Z
I
Rab∧ δωcd ¼ 1

2
δ

�
Pabcd

Z
M
Rab∧Rcd

�
: ð3:11Þ

Substituting this expression for the boundary term Ω in
action (2.15) gives the full ALAdS action, up to a constant,

S½e;ω� ¼ κl2

2

Z
M
PabcdR̄ab ∧ R̄cd: ð3:12Þ

4We will see in Sec. III A the significance of this boundary
term.

5In contrast, we define an asymptotically AdS spacetime to be
ALAdS spacetime together with a Dirichlet boundary condition
that fixes the induced boundary R × S2.
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In summary, in order to define a well-posed problem, we
have added simply a higher-order topological term propor-
tional to l2 to the original action. Furthermore, as we
shall find below, this addition actually renormalizes the
Euclidean action and makes the boundary charges well
defined [11,40]. Such a procedure is known as a topological
renormalization.

B. Symmetries of ALAdS spacetimes

We work with Fefferman-Graham coordinates ðz; xiÞ
valid in some neighborhood of the boundary fz ¼ 0g,
where the metric takes the form of (3.5).
From the form of the metric, we choose a canonical

frame ðeâ; e3Þ of the form

eâkdx
k ¼ 1

z
ðeð−1Þâ þ z2eð1Þâ þ z3eð2ÞâÞ þOðz4Þ;

e3zdz ¼
l
z
dz; ð3:13Þ

where

γð0Þij ¼ eð−1Þâði eð−1Þb̂jÞ ηâ b̂; γð2Þij ¼ 2eð−1Þâði eð1Þb̂jÞ ηâ b̂;

γð3Þij ¼ eð−1Þâði eð2Þb̂jÞ ηâ b̂: ð3:14Þ

The inverse vierbeins are given by

ekâ∂k ¼ zfeð−1Þkâ þ z2ðeð1Þkâ − γð2Þikeð−1Þâi Þ
þ z3ðeð2Þkâ − γð3Þikeð−1Þâi Þ þOðz4Þg∂k;

ez3∂z ¼
z
l
∂z; ð3:15Þ

where we have used the convention that all â; b̂;… indices
are lowered/raised with ηâ b̂ and its inverse and all i; j;…

indices are raised and lowered with γð0Þij and its inverse.
Thus, for example,

eð−1Þiâ ¼ γð0Þijeð−1Þb̂j ηâ b̂: ð3:16Þ

We will be interested in isometries of ALAdS back-
grounds, namely, diffeomorphisms that keep the form of
the Fefferman-Graham expansion unchanged. In particular,
we require that the action of a diffeomorphism ξ be such that

δξgzz ¼ 0 ¼ δξgzi; ð3:17Þ

or, in terms of coordinates,

∂z

�
ξz

z

�
¼ 0; ∂zξ

kγki þ l2
∂iξ

z ¼ 0: ð3:18Þ

These equations may be integrated easily to give

ξzðz; xiÞ ¼ zξ̂zðxiÞ;

ξiðz; xiÞ ¼ ξ̂iðxiÞ − l2
∂jξ̂

z
Z

z

0

sγijðs; xiÞds

¼ ξ̂iðxiÞ − l2

2
z2γð0Þij∂jξ̂

zðxiÞ þOðz4Þ; ð3:19Þ

where ξ̂μ is simply ξμjz¼0, the restriction of the diffeo-
morphism on ∂M.
One can show that there is a one-to-one correspondence

between these asymptotic isometries and conformal trans-
formations of the boundary metric. For example, taking
ξ̂k ¼ 0, and using the expansion (3.19),

gij þ Lξgij ¼
1

z2
ð1 − 2ξ̂zÞγð0Þij þOðz0Þ; ð3:20Þ

which is nothing but an infinitesimal conformal trans-

formation of the boundary metric γð0Þij , also referred to as a
“Penrose-Brown-Henneaux” transformation. As a conse-
quence, an ALAdS spacetime has its boundary metric γð0Þ
fixed, up to some conformal transformation or in other
words:

δξγ
ð0Þ ∝ γð0Þ: ð3:21Þ

Thus, we may choose either a particular conformal frame in
which δξγð0Þ ¼ 0 or work in a conformally invariant way as
above. We will in the following choose the first possibility,
but one has to keep in mind the equivalence of the two
possibilities, the second being simply a reparametrization
invariance of the variable z.
The transformation of γij is given, at leading order, by

δξγ
ð0Þ
ij ¼ Lξ̂γ

ð0Þ
ij − 2ξ̂zγð0Þij : ð3:22Þ

Imposing the above to vanish, one sees that ξ̂i must be a
conformal Killing vector of γð0Þ and that ξ̂z ¼ 1

3
Dkξ̂

k with
Dk being the Levi-Civita connection on ðI ; γð0ÞÞ.
The expansion (3.13) should also be kept fixed under

asymptotic transformations of the form (3.19). We thus
require

δe3 ¼ 0; δeâz ¼ 0; δeð−1Þâk ¼ 0: ð3:23Þ

One could also require higher order conditions but they will
not be needed here.
The transformation of the vierbeins involves also an

internal Lorentz transformation

δΛea ¼ Λa
beb: ð3:24Þ

Hence, the combined action of the diffeomorphisms and
internal Lorentz transformations is given by
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δξ;Λea ¼ Kξ;Λea ¼ Lξea þ Λa
beb: ð3:25Þ

Following [51], we fix the internal Lorentz transformation so
that the combined action as given in Eq. (3.25) produces the
required transformation of thevierbein components set out in
(3.23). Note that in the case where the diffeomorphism
corresponds to aKilling isometry of the background, then the
Lie derivative of the tetrad will vanish, which means that a
compensating transformation will not be required.
Assuming an expansion of Λ in z of the form

Λab ¼ Λð0Þab þ zΛð1Þab þ z2Λð2Þab…; ð3:26Þ

the conditions given in (3.23) fix the form of Λ order
by order.
Consider first the condition δe3z ¼ 0:

δξ;Λe3z ¼ Lξe3z þ Λ3
aeaz ;

¼ ξz∂ze3z þ e3z∂zξz þ Λ3
3e3z ;

¼ ∂zðξze3zÞ ¼ ∂zðlξ̂zÞ ¼ 0;

where we have used the form of the vierbeins (3.13) and the
fact that Λ is antisymmetric. Thus, this condition does not
impose any constraints on Λ and is trivially satisfied.
Similarly, it can be shown that the conditions δe3k ¼ 0,
δξeâk ¼ 0 imply that

Λ3â ¼ −l∂kξ̂zekâ; ð3:27Þ

and the condition δξe
ð−1Þâ
k ¼ 0 implies at leading order that

Λð0Þâ b̂ ¼ eð−1Þk½âLξ̂e
ð−1Þb̂�
k ¼ eð−1Þi½âeð−1Þb̂�j Diξ̂

j; ð3:28Þ

where Di denotes covariant derivative associated with the

metric γð0Þij . Since we are only interested in the charges at
the boundary, it turns out that we will not need in this work
higher order terms in Λ. However, for completeness, one
can show that

Λð1Þâ b̂ ¼ 0 ð3:29Þ

and

Λð2Þâ b̂ ¼ eð−1Þi½âLξ̂e
ð1Þb̂�
i þ 1

3
eð−1Þi½âeð1Þb̂�i Djξ̂

j

þ eð−1Þi½âeð−1Þb̂�jeð−1Þĉkeð1Þĉi D½jξ̂k�: ð3:30Þ

Moreover, the variation of the on-shell spin connections
is of the form6

δξ;Λω
ab ¼ Kξ;Λω

ab ¼ Lξω
ab −DΛab; ð3:31Þ

where D is the covariant derivative with respect to ω, in
other words:

DΛab ¼ dΛab þ ωacΛc
d − Λacωc

d: ð3:32Þ

IV. ASYMPTOTIC CHARGES
OF THE AdS THEORY

As explained in the introduction, there are several
different methods for computing (asymptotic) charges for
general gravitational systems. Here, we follow the covar-
iant phase space formalism (see [7,53] for details), which is
summarized by the following steps:
(1) One computes the boundary term, or presymplectic

potential θðϕ; δϕÞ from an arbitrary variation of the
action:

δLðϕÞ ¼ EðϕÞδϕþ dθðϕ; δϕÞ; ð4:1Þ

where ϕ represents the fields of the theory, L is the
Lagrangian, and E are the equations of motion.

(2) The exterior derivative of the presymplectic potential
on phase space gives the presymplectic 2-form7:

ωðϕ; δ1ϕ; δ2ϕÞ ¼ δ1θðϕ; δ2ϕÞ − δ2θðϕ; δ1ϕÞ: ð4:2Þ

(3) Finally, the variation of the Hamiltonian =δHξ is given
by the integral on Σ of the presymplectic potential
contracted in phase space with a direction associated
with the symmetry of interest:

=δHτ ¼
Z
Σ
ωðϕ; δϕ; δτϕÞ: ð4:3Þ

We write =δHτ since the integral may not be neces-
sarily integrable.

In general, we would expect (or hope) to transform the
volume integral in (4.3) into a boundary integral over ∂Σ so
that the charge/Hamiltonian8 really does only depend on
the asymptotic form of the fields. However, this is done on
a case-by-case basis. For a diffeomorphism generated by ξ,
this can be done and the variation of the asymptotic charge
is given by

6We simply write Λab for the Lorentz transformation, but we
should keep in mind that it is determined by the choice of e and
depends on the diffeomorphism ξ as explained above.

7We assume throughout that the variations commute. In
particular, the variation of transformation generators is always
taken to be trivial. Of course, onemay consider different slicings of
phase space [54].

8We use the terms charge and Hamiltonian interchangeably
here. No confusion should arise from this.
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=δHξ ¼
Z
∂Σ
fδQξ − ιξθðϕ; δϕÞg; ð4:4Þ

where, in the AdS case that we are interested here, ∂Σ is a
section of I , the conformal boundary, andQξ is the Noether
charge obtained from the Noether current,

jξ ¼ dQξ ¼ θðϕ; δξϕÞ − ιξLðϕÞ: ð4:5Þ

Thus, as a first step we calculate the presymplectic
potential θ associated with the theory defined by action
(3.12). Varying the associated Lagrangian gives

δL ¼ 2κPabcdðR̄ab ∧ ec ∧ δed −Dea ∧ eb ∧ δωcdÞ
þ dðκl2Pabcdδω

ab ∧ R̄cdÞ; ð4:6Þ

where we make free use of the differential Bianchi identity
(3.3) and the Schouten identity. We recognize in the first
two terms the equations of motion corresponding to the
fields e and ω, respectively,9

εabcdR̄ab ∧ ec ¼ 0; εabcdTa ∧ eb ¼ 0: ð4:7Þ

We can read off the presymplectic potential from the third
term of (4.6),

θðω; δω; eÞ ¼ κl2Pabcdδω
ab ∧ R̄cd: ð4:8Þ

The Noether current, as defined in (4.5), is then of the form

jξ¼κl2PabcdðKξ;Λω
ab− ιξR̄abÞ∧R̄cd;

¼κl2PabcdððLξ− ιξdÞωab−dΛabþ½ιξω−Λ;ω�abÞ∧R̄cd;

¼dðκl2Pabcdðιξω−ΛÞabR̄cdÞ
þκl2Pabcdð½ιξω−Λ;ω�ab∧R̄cd−ðιξω−ΛÞab½R̄;ω�cdÞ;
¼dðκl2Pabcdðιξω−ΛÞabR̄cdÞ; ð4:9Þ

where, in the second equality, we have used Eqs. (3.31),
(2.5), and (4.7); in the third equality, we have used the
Cartan magic formula

Lξ ¼ ιξdþ dιξ ð4:10Þ

and Bianchi identity (3.3), and in the final equality we have
used the Schouten identity. Therefore, we conclude that the
Lorentz invariant Noether charge is

Qξ ¼ κl2Pabcdðιξωab − ΛabÞR̄cd: ð4:11Þ

Now that we have an expression for the Noether charge,
we can write down an expression for =δξH

10

=δξH ¼
Z
∂Σ
δQξ;Λ − ιξθðe;ω; δωÞ; ð4:12Þ

¼ κl2Pabcd

Z
∂Σ
ðιξωab − ΛabÞδR̄cd þ δωab ∧ ιξR̄cd;

¼ κl2Pabcd

Z
∂Σ
ðιξωab − ΛabÞδRcd þ δωab ∧ ιξRcd

þ 2κPabcd

Z
∂Σ
ðιξωab − ΛabÞδec ∧ ed

þ δωabιξec ∧ ed: ð4:13Þ

The last line is the variation of the charge in the flat case:

=δHflat
ξ ¼ 2κPabcd

Z
∂Σ
ððιξωab − ΛabÞδec þ ιξecδωabÞ ∧ ed;

ð4:14Þ

while the remaining terms are contributions that exist
because of the nonzero cosmological constant. These terms
can be simplified to a single expression [6]

κl2Pabcd

Z
∂Σ
ðιξωab − ΛabÞδRcd þ δωab ∧ ιξRcd

¼ κl2Pabcd

Z
∂Σ
δωab ∧ Kξ;Λω

cd: ð4:15Þ

In summary, the variation of the asymptotic charge is

=δξH ¼ =δHξ;1 þ =δHξ;2 þ =δHξ;3; ð4:16Þ

where

=δHξ;1 ¼ κl2Pabcd

Z
∂Σ
δωab ∧ Kξ;Λω

cd; ð4:17Þ

=δHξ;2 ¼ 2κPabcd

Z
∂Σ
ðιξωab − ΛabÞδec ∧ ed; ð4:18Þ

=δHξ;3 ¼ 2κPabcd

Z
∂Σ
ιξecδωab ∧ ed: ð4:19Þ

Of course, there is no reason to believe that (4.18) and
(4.19) should be decoupled and in fact, they are not. We
split the charge in the same way as in the flat case [7], with
(4.17) corresponding to the higher-derivative charges
studied in [51].

9The equation εabcdTa ∧ eb ¼ 0 is equivalent to Ta ¼ 0.

10Note that we treat Λ as a transformation parameter and
therefore set its arbitrary variation to zero. This is consistent with
the order by order expansion of Λ discussed in Sec. III B.
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V. ASYMPTOTIC CHARGES
OF ALAdS SPACETIMES

Now that we have the general expression for the
asymptotic diffeomorphism charges of the AdS theory,
we need to evaluate the expressions for the symmetry
generators derived in Sec. III B and the variation of the
fields. Recall that the only nonvanishing variations is the
traceless part of γð3Þ and the corresponding vierbein

component eð2Þâi . Thus, we keep δγð3Þ nonzero while

keeping in mind that γð0Þijδγð3Þij ¼ 0.
First, let us study the asymptotics of the spin connec-

tions. We will find that this will dramatically simplify the
computations. On shell, the spin connections are given by
the torsion-free condition

ωabμ ¼ eν½a∂μeb�ν þ eν½ae
σ
b�∂σgμν: ð5:1Þ

From the antisymmetry of ωab and gzâ ¼ 0, it can be
easily observed that

ω3b̂
z ¼ 0; ωâ b̂

z ¼ OðzÞ; δωâ b̂
z ¼ Oðz2Þ: ð5:2Þ

We will find later that these components do not contribute
to the charges. The other components are of the form

ω3b̂
k ¼ 1

lz
eð−1Þb̂k þ z

l
ðeð1Þb̂k − γð2Þkl e

ð1Þb̂lÞ

þ z2

l

�
eð2Þb̂k −

3

2
γð3Þkl e

ð−1Þb̂l
�
þOðz3Þ;

δω3b̂
k ¼ z2

l

�
δeð2Þb̂k −

3

2
δγð3Þkl e

ð−1Þb̂l
�
þOðz3Þ; ð5:3Þ

and

ωâ b̂
k ¼ ωð0Þâ b̂

k þOðzÞ; δωâ b̂
k ¼ Oðz3Þ; ð5:4Þ

where ωð0Þâ b̂
k corresponds to the spin connection associated

with dreibein eð−1Þâ; i.e., it corresponds, at leading order, to
the spin connection of the three manifold ðI ; γð0ÞÞ and is
thus fixed by the equations of motion at leading order.
From the fact that we find that δωab ¼ Oðz2Þ, we

conclude simply that

=δHξ;1 ¼ Oðz2Þ; ð5:5Þ

hence, it does not contribute to the boundary charges of the
ALAdS background. We are then left with =δHξ;2 and =δHξ;3.
Moreover, from the expansion of the Lorentz parameter
(3.26) and the fact that δea ¼ Oðz2Þ, we find that the
second term in =δHξ;2 vanishes, so that

=δHξ ¼ 2κPabcd

Z
∂Σ
ðιξωabδec þ ιξecδωabÞ ∧ ed

þOðzÞ: ð5:6Þ

In analogy with the flat case [7], we choose to split the
analysis into an electric and magnetic/dual part. The
electric contribution is given by the ε part of Pabcd, as
defined in (2.16), while the magnetic/dual part is controlled
by the parameter λ.

A. Electric charges

Using the expansion (5.3), the fact that the boundary I
does not extend along the direction z and that at least one of
the indices has to be 3, it is simple to show that

=δQξjz¼0¼2κε3b̂ĉd̂

Z
∂Σ
ðιξω3b̂δeĉþ ιξeĉδω3b̂Þ∧ed̂;

¼3κ

l
ε3b̂ĉd̂

Z
∂Σ
ξ̂keð−1Þb̂k eð−1Þĉleð−1Þd̂J δγð3ÞlI dx

I∧dxJ;

¼−
3κ

2l
ε3b̂ĉd̂

Z
∂Σ
ξ̂kδγð3Þkl e

ð−1Þb̂leð−1Þĉ∧eð−1Þd̂; ð5:7Þ

where fxIg are coordinates on ∂Σ as a section of I . Note
that we have used a Schouten identity in the final equality
and the trace-free condition on γð3Þ.
Thus, we have an integrable charge, that coincides with

the usual Brown-York charge

QBY½ξ� ¼ −
3κ

l

Z
∂Σ

ffiffiffi
q

p
ξ̂kγð3Þkl n

ld2x; ð5:8Þ

where n is an outward pointing normal vector to ∂Σ
such that γð0Þðn; nÞ ¼ −1 and

ffiffiffi
q

p
d2x is the area element

on ∂Σ.
Consider the Schwarzschild-AdS solution, which has a

Fefferman-Graham form, with the coordinates on the
boundary, the usual ðt; θ;ϕÞ coordinates11:

γð0ÞðxiÞ ¼ −
1

l2
dt2 þ dΩ2

2;

γð2ÞðxiÞ ¼ −
1

2
ðdt2 þ l2dΩ2

2Þ γð3ÞðxiÞ

¼ 4

3
mGNdt2 þ 6l2mGNdΩ2

2: ð5:9Þ

Thus, the section ∂Σ on I is simply S2 and the normal n is
l∂t. Plugging these expressions into Eq. (5.8) with ξ̂ chosen

11The Fefferman-Graham form of the metric is obtained
from that in the usual Schwarzschild coordinates by setting
rðzÞ ¼ 1

z þ 3
4Λ z −

m
Λ z

2 þOðz3Þ.
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as −∂t and ∂ϕ, one recovers the expected energy and
angular momentum,

E ¼ QBY½−∂t� ¼ m; L ¼ QBY½∂ϕ� ¼ 0: ð5:10Þ

B. Dual charges

The dual charges involve contractions of each term in the
charges. Since only δeâ;ð2Þμ varies, one gets the following for
=δHξ;2:

=δQ̃ξjz¼0 ¼ 2κ

Z
∂Σ
ðιξωabδea þ ιξeaδωabÞ ∧ eb;

¼ 2κ

Z
∂Σ
ðιξωâ b̂δe

â þ ιξeaδωab̂Þ ∧ eb̂: ð5:11Þ

From the expressions for vierbein and the spin connection,
(3.13), (5.3), and (5.4), it is simple to see that

ιξωâ b̂δe
â þ ιξeaδωab̂ ¼ Oðz2Þ;

which implies that the dual charge

=δQ̃ξ ¼ OðzÞ: ð5:12Þ

As a consequence, the dual charges identically vanish at the
boundary of ALAdS spacetimes with a Dirichlet boundary
condition. This is in contrast to the flat case, where dual
charges do contribute at leading order at null infinity [7].

VI. TAUB-NUT-AdS

We have seen in the previous section that dual charges
are trivial on the boundary of ALAdS backgrounds
satisfying the Dirichlet condition. We consider in this
section an example of an ALAdS black hole solution
giving nontrivial dual charges at the boundary.

A. Preliminaries

The Taub-NUT-AdS spacetimes are a two-parameter
family of metrics, parametrized by a mass parameter m
and NUT parameter n, which in local Boyer-Lindquist-like
coordinates12 ðt; r; θ;ϕÞ ∈ R × ðrþ;∞Þ × ð0; πÞ × ½0; 2πÞ
take the form [55]

ds2¼−
Q
Σ
ðdt−AÞ2þ Σ

Q
dr2þΣðdθ2þ sin2 θdϕ2Þ; ð6:1Þ

with13

Q ¼ r4l−2 þ r2ð1þ 6n2l−2Þ − 2mr − 3n4l−2 − n2;

Σ ¼ n2 þ r2;

A ¼ −2nðcos θ þ σÞdϕ: ð6:2Þ

This vacuum solution exhibits some interesting features:
(i) The NUT parameter n can be seen in many ways as a

monopole charge, the solutions being thus analo-
gous to the Dirac monopole [30]. It may also be
viewed as an angular momentum source.

(ii) Just like the Dirac monopole, there exists a wire
singularity. The location of this singularity on the
sphere can be moved by adjusting the constant σ,
which represents the freedom to shift t:
t → tþ constant × ϕ. σ ¼ �1 corresponds to hav-
ing the singularity at the south and north pole,
respectively, while σ ¼ 0 distributes the singularity
symmetrically between the two poles.

(iii) The solution possesses closed timelike and null
geodesics for jσj > 1. For this reason, we will only
consider the case jσj ≤ 1.

One way of dealing with the wire singularity, suggested
by Misner [56], is to consider the Euclidean metric with the
identification of t such as t ∼ tþ 8πn. However, this
constrains the parameters of the solution, implying that

m ¼ n

�
1þ 4n2

l2

�
; ð6:3Þ

which makes it difficult to analyze the thermodynamics of
the solution.
We shall stick with the Lorentzian solution and make no

assumption on the metric, except on the value of σ outlined
above. As argued in [25], this spacetime is in fact less
pathological than is usually claimed. We shall find that one
recovers the expected conserved charges and that the first
law can be written using the full ALAdS action and its
corresponding charges.
Metric (6.1) can be put in a Fefferman-Graham form

(3.5) using the expansion

rðzÞ ¼ 1

z
−
1

4
zð5n2 þ l2Þ þ l2

3
mz2

þ n2z3
�
n2 þ l2

4

�
þOðz3Þ; ð6:4Þ

with z ∈ ð0; z0Þ an inverse radius coordinate such that
rðz0Þ ¼ rþ, giving8>><
>>:
γð0Þ ¼− 1

l2 ðdt−AÞ2þdΩ2
2

γð2Þ ¼−1
2
ð1þ5n2

l2Þðdt−AÞ2þ 1
2
ð−l2þ3n2ÞdΩ2

2

γð3Þ ¼ 4
3
mðdt−AÞ2þ6l2mdΩ2

2

: ð6:5Þ

Observe that γð0Þ is not the metric on the cylinderR × S2: the
NUT parameter n modifies the global topology of the

12rþ corresponds to the horizon radius given by the maxi-
mal root of QðrÞ ¼ 0. In the flat case, one has simply
rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
.

13For brevity, we have set GN ¼ 1.
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boundary.Moreover, as a consequence δγð0Þ; δγð2Þ; δγð3Þ ≠ 0.
Therefore, the analysis of Sec. V no longer applies.
We choose a canonical frame ea with

e0 ¼ −
ffiffiffiffi
Q
Σ

r
ðdt − AÞ; e1 ¼

ffiffiffi
Σ

p
dθ;

e2 ¼
ffiffiffi
Σ

p
sin θdϕ; e3 ¼ lz−1dz; ð6:6Þ

whose expansion in terms of z is of the form

e0 ¼ −
1

z

�
1þ 1

4
ðl2 þ 5n2Þz2 þ 2

3
mz3 þOðz4Þ

�
ðdt − AÞ;

e1 ¼ 1

z

�
1 −

1

4
ð3n2 þ l2Þz2 þ l2

3
mz3 þOðz4Þ

�
dθ;

e2 ¼ 1

z

�
1 −

1

4
ð3n2 þ l2Þz2 þ l2

3
mz3 þOðz4Þ

�
sin θdϕ:

ð6:7Þ

As defined in (3.13), we will refer to eðkÞâ with k ¼ −1, 1, 2
for the first, second, and third term in the expansions above,
respectively.
The goal is now to compute the charges and dual charges

for the Taub-NUT-AdS solution. The expectation is that the
appearance of n as a parameter will give a nontrivial
contribution to the dual charges.

B. Charges of Taub-NUT-AdS

In this section we shall compute the electric and dual
charges corresponding to the symmetry generators ξμ given
in Eq. (3.19). Note that the charges derived in Sec. IV,
namely expressions (4.17), (4.18), (4.19) must be supple-
mented in this case by a total derivative term that we
dropped there. Indeed, expression (4.17) was obtained in
Eq. (4.15) using an integration by parts and discarding the
boundary terms. Those terms, however, cannot be simply
thrown away for Taub-NUT backgrounds because the
presence of a wire singularity makes the boundary non-
smooth at θ ¼ f0; πg depending on the value of σ. Thus,
we must include this nontrivial boundary term, which is of
the form

=δψξ þ iλ=δψ̃ξ ¼ κl2Pabcd

Z
∂Σ
dðιξωabδωcdÞ: ð6:8Þ

As we shall see below, this term actually plays an important
role in the regularization of the charges and behaves like a
counterterm. Since this term does not appear in the
Schwarzschild-AdS case, it should naturally only depend
on δn.
In order to derive the charges, we substitute the vierbeins

(6.6) into the expression for the spin connections given in
Eqs. (5.2), (5.3), and (5.4). It is simple to see that =δH̃1;ξ will
still not contribute.

The full dual charge =δQ̃ξ ¼ =δH̃2;ξ þ =δH̃3;ξ þ =δψ̃ at the
boundary is given by

δQ̃ξjz¼0 ¼ −4κ
Z
∂Σ

�
δ

�
n
�
1þ 4n2

l2

��
ξ̂tðt; θ;ϕÞ ð6:9Þ

þ 3δ

�
n2
�
1þ 4n2

l2

��
ðcos θ þ σÞξ̂ϕðt; θ;ϕÞ

�

× sinðθÞ; ð6:10Þ

while the electric charge is

δQξjz¼0 ¼ −4κ
Z
∂Σ
ð3ðcos θ þ σÞδðmnÞξ̂ϕðt; θ;ϕÞ

þ δmξ̂tðt; θ;ϕÞÞÞ sin θ: ð6:11Þ

In deriving these charges, it is interesting to note the role
of the boundary term (6.8). It is in fact a singular term that
is of order Oðz−1Þ. Therefore, it acts as a counterterm
canceling divergent terms in the other contributions to the
charges and ensuring that the final result is finite and
perfectly well defined at the boundary.
For ξ̂μ constant, one expects to reproduce the usual

energy δE ∼ δm and the dual energy (interpreted as a
magnetic charge) δẼ ∼ δn. This is indeed the case, although
one also has angular momentum contributions and higher
order terms14:

δQ̃ξ ¼ −ξ̂tδ
�
nþ 4n3

l2

�
− 3ξ̂ϕσδ

�
n2 þ 4n4

l2

�
;

δQξ ¼ −ξ̂tδm − 3ξ̂ϕσδðmnÞ:

Thus,

E¼m; L¼−3σmn¼−3σnE;

Ẽ¼n

�
1þ4n2

l2

�
; L̃¼−3n2

�
1þ4n2

l2

�
¼−3σnẼ: ð6:12Þ

Observe how the flat limit gives the expected dual energy
and angular momentum. Note also that the NUT parameter
appears in both the dual energy and the angular momentum.
Recall that n is usually interpreted as either an angular
momentum parameter or as a magnetic charge. Briefly, we
review the justifications for these two points of view.
The NUT parameter n as an angular momentum.—The

rotation parameter Ω can be read off from the metric
components to be

14We have used the fact that we have set GN ¼ 1 and so
16πκ ¼ 1.
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Ω ¼ −
gtϕ
gϕϕ

¼ Q2Aϕ

−A2
ϕQ

2 þ Σ3 sin2 θ
: ð6:13Þ

Such a rotation vanishes at the horizon,ΩH ¼ 0, but it turns
out to be nonzero at the boundary since

Ω∞ ¼ 1

2nðσ þ cos θÞ ≠ 0:

In the σ ¼ 0 case, one has two Misner strings rotating in
opposite directions since15

Ωjθ¼0;σ¼0 ¼
1

2n
; Ωjθ¼π;σ¼0 ¼ −

1

2n
: ð6:14Þ

The vanishing of L and L̃ in this case simply can be
understood in terms of the canceling of the opposite
angular momenta generated by the Misner string.
Observe the similarity with the Kerr solution since in that
case LKerr ¼ ma with a the angular momentum parameter.
The factor of 3 in the expression for L is because the natural
Killing vector to consider is χ ¼ ∂ϕ − 2σn∂t rather than ∂ϕ

and in this case:

Lχ ¼ −σmn: ð6:15Þ

The NUT parameter n as a magnetic charge.—Viewing
A ¼ −2nðcos θ þ σÞdϕ as a gauge form, the different
fluxes are given by

1

8π

Z
∂Σ
⋆dA ¼ 0;

1

8π

Z
∂Σ
dA ¼ n: ð6:16Þ

In fact, in the asymptotically flat case, taking a character-
istic initial value problem point of view, one can make this
statement more precise by showing how one may construct
the Taub-NUT solution from a Dirac monopole solution
[30]. The relation is not as simple in the AdS case since the
dual energy given by the Holst term is16 Ẽ ¼ nð1 − 4

3
Λn2Þ.

With the first law of black hole mechanics in mind, rather
than viewing the NUT parameter solely as a magnetic
charge or solely as an angular momentum parameter, it may
be more fruitful to view it as playing both of these
roles [46].

C. Black hole first law

We have found the conserved quantities for the general
Taub-NUT solution: E; Jσ; Ẽ; J̃σ, with Jσ; J̃σ vanishing
if σ ¼ 0.
One would like to relate the charges we have just

computed to thermodynamic quantities defined on the

horizon of the black hole. To do this, we need to take
into account the full topology of the spacetime. The Cauchy
surface Σ has as a boundary a combination of the sphere at
infinity S∞, where we computed the charges, the horizonH
and finally the two Misner strings, where the metric
becomes singular, S�. The boundary of the Cauchy surface
can thus be taken to be

∂Σ ¼ S∞ − ðHþ Sþ − S−Þ; ð6:17Þ

where the minus signs are due to the orientation.
Let us take ξ to be the Killing null generator of the

horizon, ξ ¼ ∂t. Since ξ is Killing, the integral of the
presymplectic form ω on the whole Cauchy surface
vanishes identically:

Z
Σ
ωðψ ; δψ ; δξψÞ ¼ 0: ð6:18Þ

Defining kξ ≡ δQξ − ιξθðe;ω; δωÞ, we then have that

0 ¼
Z
∂Σ
kξ ¼

Z
S∞

kξ −
Z
H
kξ þ

Z
Sþ

kξ −
Z
S−

kξ: ð6:19Þ

As observed in [47], a simple computation shows that the
integration on the Misner strings split into terms depending
only either on S∞ or on H in the following way:

Z
Sþ

kξ ¼ Kþ
ξ ðS∞Þ − Kþ

ξ ðHÞ ð6:20Þ

and similarly for S−. As a consequence, we can rewrite
Eq. (6.18) as

Z
S∞

kξ þ Kþ
ξ ðS∞Þ − K−

ξ ðS∞Þ ¼
Z
H
kξ þ Kþ

ξ ðHÞ − K−
ξ ðHÞ:

ð6:21Þ

This relation forms the basis of the first law: it relates global
quantities calculated at infinity to thermodynamic quan-
tities defined at the horizon. Of course, the challenge then is
to identify these quantities. This is what we now turn to.
For simplicity, we set Λ ¼ 0, since the cosmological

constant does not play an important role in this discus-
sion.17 Moreover, we consider the symmetric case σ ¼ 0.
We know from (6.12) that the integral at infinity is simply
equal to the total energy:

δH∂t
¼ −δm − iλδn: ð6:22Þ

The integral on the horizon gives, on the other hand, after
using m ¼ 1

2rþ
ðr2þ − n2Þ15See [57] for more details.

16Note that the solution suggested by Misner (6.3) is simply a
self-dual statement. 17See the Appendix for the general expressions with Λ ≠ 0.

DUAL CHARGES FOR AdS SPACETIMES AND THE FIRST LAW … PHYS. REV. D 106, 024022 (2022)

024022-11



Z
H
kξ ¼ −δm

−iλnrþ þ r2þ
ðr2þ þ n2Þ − δn

n3 − 2iλn2rþ þ 3nr2þ
2rþðn2 þ r2þÞ

:

ð6:23Þ

We find that the contribution of the Misner strings at
infinity Kþ

ξ ðS∞Þ and K−
ξ ðS∞Þ vanish. Moreover, since

the integrals are proportional to cos θ, we have that
Kþ

ξ ðHÞ ¼ −K−
ξ ðHÞ. Thus,

Kþ
ξ ðHÞ − K−

ξ ðHÞ ¼ −δm
nðnþ iλrþÞ
2ðn2 þ r2þÞ

− δn
n3 þ 3nr2þ − 2iλð2n2rþ þ r3þÞ

4rþðn2 þ r2þÞ
:

ð6:24Þ

Writing the integral on the horizon (6.23) in terms
of δrþ instead of δm allows us to relate it to the usual
definition of the black hole entropy as area given by a
Noether charge [58]

Z
H
kξ ¼

1

4πrþ
πδðn2 þ r2þÞ − iλ

n
2rþ

δrþ

¼ TH
δA
4

− iλ
n
2rþ

δrþ; ð6:25Þ

where

A ¼
Z
H

ffiffiffi
γ

p ¼
Z
S2
Σ
				
r¼rþ

sin θ ¼ 4πðr2þ þ n2Þ ð6:26Þ

and

TH ¼ f0ðrþÞ
4π

; fðrÞ ¼ Q=Σ: ð6:27Þ

Similarly, the contribution from the Misner string can be
written as

Kþ
ξ ðHÞ−K−

ξ ðHÞ ¼ 1

4πn
δ

�
−2π

n3

rþ

�
þ iλ

�
n
2rþ

δrþ þ δn

�
;

ð6:28Þ

where we recognize in the first term the Misner potential
ψ ¼ 1

4πn and the Misner charge N ¼ −2π n3
rþ

[59]. And one

obtains a first law, on the electric side at least:

δm ¼ THδSH þ ψδN: ð6:29Þ

An important point to observe here is that the two
thermodynamic quantities SH; N are not Noether
charges. If one indeed computes the Noether charge at

the horizon, as prescribed by Wald [58], using ξ ¼ − 1
T ∂t,

one obtains

=δS ¼ δSH þ ψ

TH
δN þ iλ4πrþδn: ð6:30Þ

This “complex” entropy S is clearly nonintegrable. Thus,
the presence of the Misner strings seems to make the
notion of entropy less clear. In some sense, the black hole
entropy has to take into account the presence of the Misner
strings.
There is an alternative interpretation for the quantities we

have in the electric part. Using the generating Killing
vectors of the Misner strings ξ� ¼ ∂t ∓ 1

2n ∂ϕ, we can
define a Misner entropy [60]:

K�
ξ�ðHÞ ¼ ∓ κ

4π
δAM ∓ δrþ

4
; ð6:31Þ

with κ ¼ 1
2n the surface gravity of the Misner strings and

δAM ¼ −2πδðnrþÞ the variation of the “area” of the Misner
string, up to some divergent terms. To obtain the full first
law, it is also necessary to compute the previous integrals
with respect to a rotation vector η� ¼ � 1

2n ∂ϕ:

K�
η�ðHÞ ¼ Ω�δJ �

δrþ
4

∓ iλ
�
δrþ

n
4rþ

þ δn
2

�
; ð6:32Þ

with Ω� ¼ � 1
2n and J ¼ mn, giving the following first law

in the electric part:

δE¼δm¼
Z
H
k∂t þKþ

ξþðHÞþKþ
ηþðHÞ−K−

ξ−
ðHÞ−K−

η−ðHÞ;

ð6:33Þ

¼ THδSH þ 2κδAM þ 2jΩjδJ: ð6:34Þ

All the thermodynamic functions we computed here
(SH; AM; J) are integrable but, as discussed earlier, cannot
be interpreted as Noether charges.
So far in this discussion, we have ignored the dual

contributions. We now turn to this. Note from Eqs. (6.25)
and (6.28) that both the black hole and the Misner strings
seem to carry nontrivial thermodynamic dual quantities. To
be precise, we have

δẼ ¼ δn ¼ −
n
2rþ

δrþ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Horizon

þ δnþ n
2rþ

δrþ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Misner

: ð6:35Þ

These quantities ought to correspond, in some sense,
to nontrivial thermodynamic quantities. An example
would be
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δẼ ¼ −
n

4πr2þ
δðπr2þÞ þ

1

2rþn
δðn2rþÞ; ð6:36Þ

where each of the terms in the expression above would
have a particular physical interpretation, which thus far
eludes us.
A perhaps more natural way to treat the first law in the

presence of dual charges is to complexify it, thereby
obtaining a complex first law. Such an interpretation is
suggested by the fact that the Hamiltonian conjugate to
time translations is itself complex, with the real part
corresponding to the mass and the imaginary part corre-
sponding to the NUT charge. Of course, a specific value of
λ must be chosen in this case to obtain a truly complex law.
Previous studies have suggested for various reasons that the
most appropriate value to take is [5,32]

λ ¼ −1: ð6:37Þ

With this choice, we can write a first law of the form

δM ¼ T δS −
3

2r2þ
δðn2rþÞ; ð6:38Þ

where

M¼m− in; T ¼ 1

4πrþ
þ i
2π

n
r2þ

; S¼ πr2þ−4πinrþ:

ð6:39Þ

As before, the various components of this equation would
need to have a physical interpretation, which remains
unclear to us. However, it is worth speculating whether
such a meaningful complex relation is possible.
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APPENDIX: FIRST LAW FOR THE
FULL AdS CASE

The first law for the AdS case will be a bit more subtle
since the action used here contains topological terms that
will not affect the global first law but will make the
identification of each thermodynamic quantity a bit more
difficult. The free energy, which is given by the on-shell
action divided by β ¼ 1=T, is on the electric side

FðβÞ ¼ m − TS − ψN −
Λr3þ
8

− 3
ð1 − Λn2Þ2

8Λrþ
; ðA1Þ

with

T ¼ 1

4πrþ
ð1 − Λðr2þ þ n2ÞÞ; SH ¼ πðr2þ þ n2Þ;

ψ ¼ 1

4πn
; N ¼ −2π

n3

rþ
−
4Λ
3

rþn3
�
1 −

n2

r2þ

�
; ðA2Þ

where the last term of (A1) has no nice flat limits, which is a
consequence of the form of the action. This should not
affect the global first law but will make the identification of
the thermodynamic quantities more subtle for each integral.
The idea, however, if one keeps Λ constant, should be
exactly the same as in the flat case and the topics discussed
in this special case thus remain the same.
In this section, we will simply compute the integrals

=δQξ½H� þ 2=δQξ½Sþ� for the full n;m;Λ ≠ 0. We will
nonetheless consider Λ to be nonvarying since one would
need to deal with new singular terms. The study of the
black hole first law with a varying thermodynamic pressure
[61] is an interesting topic in its own right that we shall not
discuss further here.
The method used here is exactly the same as in the flat

case but the calculations are longer. Let us start with the
electric part.
The horizon integral gives

=δQξ½H� ¼
Z
H
δQ − ιξθ;

¼ δm
2Λn2r2þ þ 3n2ðΛn2 − 1Þ − Λr4þ

Λðn2 þ r2þÞ2
;

− nδn
11Λ2n6 þ n2ð−15Λ2r4þ þ 10Λr2þ þ 6Þ − Λn4ð7Λr2þ þ 17Þ þ 3Λr4þðΛr2þ þ 1Þ

2Λrþðn2 þ r2þÞ2
; ðA3Þ

while the Misner string contribution gives
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2Qξ½S�� ¼
Z
S�

δQ − ιξθ;

¼ nδm
nð3 − 4Λr2þÞ − 4Λn3

Λðn2 þ r2þÞ2

þ nδn
11Λ2n6 þ n2ð−15Λ2r4þ þ 10Λr2þ þ 6Þ − Λn4ð7Λr2þ þ 17Þ þ 3Λr4þðΛr2þ þ 1Þ

2Λrþðn2 þ r2þÞ2
; ðA4Þ

where we integrated on ðrþ;∞Þ × ð0; 2πÞ with θ ¼ 0 and t kept fixed. It is easy to see from these expressions that the two
δn terms exactly cancel. Combining the two expressions gives the expected result:

=δQξ½H� þ 2Qξ½S�� ¼ −δm: ðA5Þ

The dual charge contribution is computed similarly and gives for the horizon

=δQ̃ξ½H� ¼ nδm
ð−3Λn4 þ n2ð2Λr2þ þ 3Þ þ r2þð5Λr2þ − 3ÞÞ

2Λrþðn2 þ r2þÞ2

þ δnð3Λ2n8 þ n4ð−48Λ2r4þ þ 58Λr2þ þ 3Þ − 2Λn6ð25Λr2þ þ 3Þ
4Λr2þðn2 þ r2þÞ2

þ2n2r2þðΛr2þðΛr2þ þ 11Þ − 6Þ − 3r4þðΛr2þ − 1Þ2Þ
4Λr2þðn2 þ r2þÞ2

; ðA6Þ

while for the Misner string:

2=δQ̃ξ½S�� ¼ nδm
ð3Λn4 − n2ð2Λr2þ þ 3Þ − r2þð5Λr2þ þ 3ÞÞ

2Λrþðn2 þ Λr2þÞ2

þ δnð3Λ2r8þ þ 2Λr6þð7Λn2 − 5Þ þ r4þð10Λn2ð8Λn2 − 3Þ þ 3Þ
4Λr2þðn2 þ r2þÞ2

þ2n2r2þðΛn2ð33Λn2 − 31Þ þ 6Þ − 3n4ðΛn2 − 1Þ2Þ
4Λr2þðn2 þ r2þÞ2

: ðA7Þ

Observe how the δm terms cancel exactly while the total sum gives

=δQ̃ξ½H� þ 2=δQ̃ξ½S�� ¼ −δnð1 − 4Λn2Þ; ðA8Þ

which is nothing but the variation of the dual charge in Eq. (4.16).
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