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Spin precession is a generic feature of compact binary coalescences that leaves clear imprints in the
gravitational waveforms. Building on previous work, we present an efficient time domain inspiral-merger-
ringdown effective-one-body model for precessing binary black holes, which incorporates subdominant
modes beyond l ¼ 2, and the first effective-one-body frequency domain approximant for precessing binary
neutron stars. We validate our model against 99 “short” numerical relativity precessing waveforms, where
we find median mismatches of 5 × 10−3, 7 × 10−3 at inclinations of 0, π=3, and 21 “long” waveforms with
median mismatches of 4 × 10−3 and 5 × 10−3 at the same inclinations. Further comparisons against the
state-of-the-art NRSur7dq4 waveform model yield median mismatches of 4 × 10−3, 1.8 × 10−2 at
inclinations of 0; π=3 for 5000 precessing configurations with the precession parameter χp up to 0.8
and mass ratios up to 4. To demonstrate the computational efficiency of our model we apply it to parameter
estimation and reanalyze the gravitational-wave events GW150914, GW190412, and GW170817.
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I. INTRODUCTION

From the very first direct detection of a coalescing binary
black hole (BBH) system, gravitational wave astronomy
has provided the scientific community with important (and
at times unexpected) indications about black hole (BH) and
neutron star (NS) physics [1–3]. The LIGO-Virgo collab-
orations have detected (as of the first half of the third
observing run) ∼50 BBH systems [4–15], two binary
neutron star mergers (BNSs) [16,17], and two BHNS
systems [18] with a large number of significant triggers
whose parameters have not been published yet. Analyses so
far indicate that—out of the detected BBH events—two
systems have at least one spinning BH component, and that
for 11 binaries the effective spin parameter χeff [see
Eq. (3) ] is nonzero with more than 95% credibility. Two
events, GW190521 [15,19] and GW190412 [14], individu-
ally exhibit marginal evidence for the phenomenon of
precession1 [23,24], whereby the orbital plane and the
black holes’ spins precess about the total angular momen-
tum of the system. This affects the resulting gravitational
waveforms by modulating the amplitude and contributing
to the phase in a time-dependent manner [25]. Wider
population studies of all the currently observed signals
further indicate evidence for nonvanishing spin-orbit mis-
alignment among the population of merging BBH events,

with the spin-precession parameter χp [see Eq. (4) ] being
non-null at more than 99% credibility.
Source properties are extracted from the data with

matched filtering techniques that employ waveform
templates, i.e., theoretical models of the gravitational waves
(GWs) emitted by the two coalescing bodies. Waveform
templates—also called approximants—should incorporate a
large amount of physical information: the physics that can be
extracted from the data is (at best) that which is contained
within the model itself. Further, such approximants should
also be faithful to numerical relativity (NR) simulations at
high frequencies and computationally efficient in order to be
employed in a parameter estimation (PE) that can require the
generation of up to Oð105–106Þ waveforms.
The last decade has seen a flurry of activity in the

development of various waveform approximants. Several
different approximant “families” have now matured into
their fourth generation versions that incorporate higher
multipolar modes, spin precession, and robust fits to NR
data for the merger-ringdown stages. These families are
clearly distinguished by the underlying approaches that are
employed to build the waveforms.
The effective-one-body (EOB) semianalytic family of

waveforms for BBH [26–31] and BNS [32–34] systems
maps the general-relativistic two-body problem into the
effective problem of describing the evolution of a test mass
orbiting around a deformed Kerr metric. Such a system is
entirely defined by a Hamiltonian, which describes the
conservative motion, and a prescription for the dissipative

1Note, however, that alternative interpretations have been put
forward for GW190521, see, e.g., [20–22].
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dynamics, namely the waveform and radiation reaction. By
relying on systematic resummation of post-Netwonian
(PN) results, EOB models are faithful also in the high-
speed, strong-field regime. They can be extended beyond
the merger stage of the binary with information from NR
simulations. Two main avatars of this family exist: the
SEOBNR [35–42] and the TEOBResumS [43–48] approxi-
mants. They differ from one another in choices of resum-
mation within the conservative Hamiltonian, the amount of
PN and NR information employed, and the radiative sector.
A detailed investigation of the differences between the two
conservative Hamiltonians is presented in Ref. [49]. Both
models include higher-order modes, tidal effects, and
precession (albeit the TEOBResumS description of the latter
previously being limited to the inspiral), with TEOBResumS

also being able to generate waveforms along generic orbits
[50–54].
The most commonly used approximant family in PE are

the phenomenological models [55–65] that combine PN
waveformswith fits to hybrid EOB-NRwaveforms to obtain
computationally cheap, yet accurate, waveforms that can
cover the binary evolution from the early inspiral regime (for
which no NR simulation is available) up to merger. These
models include higher-order modes [66–68], precession
[69–72], and tidal effects, which can be incorporated via
time or frequency domain NRTidal models [73,74].
Finally, NR surrogates [75–79] directly interpolate large

sets of NR simulations, and are able to provide fast and
extremely accurate waveforms within their parameter space
of validity.
In this paper we focus on the description of precessing

compact binaries. We work within the EOB approach
[26,27], and improve on the model TEOBResumS first
presented in Ref. [80]. In particular, we extend that
precessing waveform model to (i) incorporate higher modes
in the waveform for both BBHs and BNSs; (ii) incorporate
the ringdown description for BBHs to obtain a complete
inspiral-merger-ringdown (IMR) approximant; and (iii) pro-
vide an alternative, fast, frequency-domain approximant for
BNS inspiral merger and long BBH inspiral events based
on the nonprecessing approach of Ref. [81]. TEOBResumS

IMR precessing model for BBHs is validated by directly
computing (mis)matches against a significant number of
NR Simulating eXtreme Spacetimes (SXS) [82] waveforms
and against the waveform model NRSur7dq4 [78]. We addi-
tionally indirectly test its performance against the state-of-
the-art IMRPHenomXPHM model [72] by comparing EOB/NR
and Phenom/NR mismatches. Finally, we perform full PE
to further compare the model to other existing approxim-
ants and estimate the source parameters of the binary black
hole merger events GW150914 [1], GW190412 [14], and
the first binary neutron star inspiral-merger event
GW170817 [16].
This article is organized as follows: in Sec. II, we review

our model and introduce the improvements we have made.

Section III details the validation of our model against SXS
and NRSur7dq4 waveforms. Section IV presents the results of
our PE studies. We summarize our results and discuss
future directions in Sec. V.
We work with geometrized units where G ¼ c ¼ 1. m1

and m2 denote the masses of the primary and secondary
components of the compact binary system. Accordingly,
we define the mass ratio as q≡m1=m2 ≥ 1, the sym-
metric mass ratio ν ¼ q=ð1þ qÞ2, the total mass as
M ¼ m1 þm2, and the mass fraction Xi as Xi ¼ mi=M
with i ¼ 1, 2. As is standard, we employ mass-rescaled
units within the EOB and the precession dynamics.
However, when we make comparisons using interferometer
sensitivity, which varies with GW frequency f, thus with
M, we restore the physical dimensions of f and M, which
we express in hertz (Hz) and in solar masses (M⊙),
respectively. S1, S2 denote the dimensionful spin vectors
of the binary components with their respective dimension-
less spin parameters given by χ i ¼ Si=m2

i with χi ≡ jχ ij.
The spin dependence in our baseline EOB model is
expressed via the spin variables

Ŝ ¼ M−2ðS1 þ S2Þ ¼ ðX2
1χ 1 þ X2

2χ 2Þ; ð1Þ

Ŝ� ¼ M−2
�
X2

X1

S1 þ
X1

X2

S2

�
¼ X1X2ðχ 1 þ χ 2Þ: ð2Þ

Let us also recall two standard definitions in the literature
that pertain to the mass-weighted projections of the spins
parallel and perpendicular to the Newtonian orbital angular
momentum of the system LN. For q ≥ 1, the parallel scalar
is given by [29,83,84]

χeff ≡ ðX1χ 1 þ X2χ 2Þ · L̂N;

¼ ðŜþ Ŝ�Þ · L̂N;

¼ ã0; ð3Þ

where L̂N ≡LN=jLNj, and ã0 is one of the spin parameters
that often enter EOB models. This is a conserved quantity
of the orbit-averaged precession equations over the pre-
cession timescale [84]. The perpendicular scalar, first
introduced in Ref. [70], is defined as

χp ≡m−2
1 max

�
jS1;⊥j; q

4þ 3q
3þ 4q

jS2;⊥j
�
; ð4Þ

where Si;⊥ ≡ Si − ðL̂N · SiÞL̂N are the components of Si

perpendicular to L̂N for i ¼ 1, 2.

II. METHOD

In this section we describe in some detail the technical
improvements that have been implemented in the model
with respect to its first version in Ref. [80]. After succinctly
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recalling the conventions that we employ and describing
the spin-aligned baseline model, we will highlight the main
advancements introduced, which pertain to the coupling of
the spin-evolution equations to the EOB orbital dynamics,
the extension of the waveform to merger ringdown, and the
inclusion of higher (l > 2) modes.

A. Reference frames and coprecessing waveform model

When the spins of the binary components S1, S2 are not
aligned with the orbital angular momentum L of the
system, all three vectors precess around the total angular
momentum vector J ¼ Lþ S1 þ S2 [25]. Accordingly,
the orbital plane of the binary is not fixed throughout
its evolution, but rather precesses, inducing nontrivial
modulations in the gravitational waves detected by an
inertial observer. In this scenario, the dominant emission
of gravitational radiation happens along the direction
perpendicular to the orbital plane, i.e., along the
Newtonian orbital angular momentum LN [85–88]. It is
then possible to identify a special “coprecessing” non-
inertial frame, which follows the evolution of LN. In this
frame, the modulations of amplitude and phase due to
precession effectively disappear and the waveform can be
well approximated by that emitted from an aligned spin
system. Then, given the evolution of the coprecessing
frame (i.e., of the vectors S1, S2, and LN) and a coprecess-
ing waveform, it is possible to rotate the latter into the
inertial source frame and obtain the associated precessing
waveform [85,86]. This technique is usually referred to as
the “twist,” due to the time-dependent rotation that relates
the two frames.
To perform the twist, one can in principle use either the

frame set by the Newtonian orbital angular momentum LN
or L. Since, by definition, LN remains orthogonal to the
orbital plane, we employ this frame for the twist.
Reference [89] has shown that the differences in the L
frame vs LN frame twisted waveforms as compared with
precessing NR waveforms are marginal. Accordingly, we
define our inertial source frame such that its z axis is
aligned with the initial Newtonian orbital angular momen-
tum LNð0Þ. Then, following usual conventions, we choose
the line of sight vector N̂ to have spherical angles ðι; π=2 −
ϕrefÞ and define the initial spin components, S1ð0Þ, S2ð0Þ,
in this so-called L0 frame. We then track the evolution of
LN with respect to this frame via its spherical angles α and
β, defined using the Cartesian components of the unit
vector L̂N

α ¼ arctanðL̂Ny=L̂NxÞ; ð5Þ

β ¼ arccosðL̂NzÞ: ð6Þ

A third angle γ, which identifies the coprecessing frame
univocally with respect to the L0 frame [87], is given by

_γ ¼ _α cos β; ð7Þ

where the overdot denotes differentiation with respect to
time. With α, β, and γ, the twisted (precessing) multipolar
waveform hTlm is obtained via an Euler rotation

hTlm ¼
Xm

m0¼−m

hAlm0D
ðlÞ
m0;mð−γ;−β;−αÞ; ð8Þ

where hAlm are the spin-aligned waveforms in the copre-

cessing frame and DðlÞ
m0;mð−γ;−β;−αÞ are the Wigner D

matrices, defined as

DðlÞ
m0;mðα; β; γÞ ¼ e−im

0αe−imγdlm0;mðβÞ ð9Þ

with

dlm0;mðβÞ ¼
Xkf
ki

ð−1Þk−mþm0

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþmÞ!ðl −mÞ!ðlþm0Þ!ðl −m0Þ!p
k!ðlþm − kÞ!ðl − k −m0Þ!ðk −mþm0Þ!

×

�
cos

β

2

�
2l−2kþm−m0�

sin
β

2

�
2k−mþm0

:

Finally, the plus and cross GW polarizations hþ and h× are
obtained from the twisted modes as

hþ − ih× ¼
X
l;m

hTlm−2Y
lmðι; π=2 − ϕrefÞ; ð10Þ

where −2Y
lmðι;ϕÞ are the standard spin weight s ¼ −2

spherical harmonics.
Our baseline model for the spin-aligned coprecessing

waveforms is TEOBResumS v2 [48,90], a multipolar EOB
model for quasicircular BBH and BNS coalescences. Its
nonspinning orbital sector contains analytical PN informa-
tion suitably resummed via Padé approximants in both the
HamiltonianHEOB and radiation reactionFφ. It is informed
by NR via an effective parameter entering the EOB
circular-orbit potential, A, at the relative 5PN order, a6.
Spin-orbit and spin-spin effects are included within the
model Hamiltonian via the centrifugal radius rc [91] (or its
inverse uc ¼ r−1c ) and the gyro-gravitomagnetic coeffi-
cients GS and GS� [91] given in the DJS gauge [92],
and henceforth considered at next-to-next-to-leading order
(NNLO) [46]. The EOB dynamics further contains a spin-
orbit parameter, c3, which is tuned to NR. Multipolar
waveforms up to l ¼ m ¼ 5 additionally contain spin-
dependent terms, which are factorized and analytically
resummed to improve their robustness in the strong-field
regime [48]. Tidal effects are included in both the multi-
polar waveform and the EOB conservative dynamics
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[46,47,93]. The tidal sector of TEOBResumS contains con-
tributions from the multipolar l ¼ 2, 3, 4 gravitoelectric
and l ¼ 2 gravitomagnetic tidal coefficients, and the
former are resummed via a gravitational self-force inspired
expression [47,94,95]. The equation of state-dependent
quadrupole-monopole terms are included at NNLO via
rc [93,96].

B. Spin dynamics

1. Time evolution of the orbital frequency

To obtain the time and frequency evolution of the Euler
angles α, β, and γ we follow Ref. [80] and solve the PN
spin-evolution equations for S1, S2, and L̂N at the next-to-
next-to-next-to-next-to leading order (N4LO). To avoid
clutter, we present the evolution equations up to the next-to-
leading order, which can be cast into classical precession
equations

_Si ¼ Ωi × Si; ð11aÞ
_̂LN ¼ ΩNLO × L̂N; ð11bÞ

for i ¼ 1, 2. The precession frequencies are given by

Ω1 ¼ v5
�
ν

�
2þ 3

2

X2

X1

�
L̂N þ v

2

�
S2

− 3

��
X2

X1

S1 þ S2

�
· L̂N

�
L̂N

��
; ð12aÞ

ΩNLO ¼ −
v
ν
ðΩ1 þΩ2Þ; ð12bÞ

wherev is the relative speed of the binary components andΩ2

is obtained from Ω1 with 1 ↔ 2. The N4LO expression for
this system of nine coupled Ordinary Differential Equations
(ODEs) is explicitly given in Eqs. (4a)–(4b) and (7) of
Ref. [80], together with an expression for the evolution of
the orbital frequency under radiation reaction for which we
employed a TaylorT4-resummed PN expression in our previous
work: _ωPN [97,98]. Specifically, we employed the expres-
sions from Ref. [99] up to 3.5PN, which are integrated
together with the spin ODEs in order to evolve the system
under radiation reaction. Here we study three alternative
reformulations for _ω.
First, we consider a hybrid PN-EOB expression denoted

by _ωHY1. To obtain it, we begin by calculating the magni-
tude of the PN-corrected orbital angular momentum
LPNðωÞ up to relative 4PN order (see Appendix G of
Ref. [72]) and the orbital separation rPNðLPNÞ up to 4PN
[Eqs. (12), (17), (18) of Ref. [93] ]. The resulting quantities
are then employed to evaluate the EOB radiation reaction
Fφ ≡ dL=dt along circular orbits for which the EOB radial
momentum pr� is set to zero. The expression for _ωHY1 is
thus obtained as

_ωHY1 ¼ FφðrPN; LPNÞ
dLPN=dω

: ð13Þ

Alternatively, we can compute another hybrid PN-EOB
expression, denoted by _ωHY2, where we obtain rðωÞ by
numerically inverting the Hamilton equation for ω, evalu-
ated at pr� ¼ 0:

ω ¼ ∂HEOB

∂pφ
¼ 1

νHEOBHorb
eff

½Apφu2c þHorb
eff ðGSŜþ GS� Ŝ�Þ�;

ð14Þ

where Horb
eff is the orbital effective EOB Hamiltionian. The

magnitude of the orbital angular momentum LðrÞ is then
computed as the EOB circular-orbit angular momentum by
analytically solving the equation

∂rHEOB ¼ 0: ð15Þ

Once rðωÞ and LðrÞ are known, we can compute
dL=dω ¼ ðdL=drÞðdω=drÞ−1. The first piece, ðdL=drÞ,
can be immediately obtained by differentiating the ana-
lytical solution found above; the second piece, ðdω=drÞ, is
computed from Eq. (14). Then, we obtain _ωHY2 as
in Eq. (13).
Finally, we also consider “aligned” ωðtÞ relation as given

by the integrating the EOB dynamics before computing the
evolution of the spins. In this case, instead of solving an
ODE system of 9þ 1 equations, we compute the cubic
spline of ωðtÞ and use it to drive the spins evolution.
Notably, the time axis of the EOB dynamics may in
principle have a different origin with respect to the time
axis of the spin dynamics, for which t ¼ 0 always corre-
sponds to the reference (initial) frequency ωref at which the
spin components are specified. Therefore, by solving
ωðtEOBÞ ¼ ωref for tEOB we compute the timeshift Δt ¼
tEOB necessary to align the two time axes. Then, the
frequency at each time step of the spin dynamics is simply
given by ωi ¼ ωðti þ ΔtÞ.
Figure 1 shows the different ωðtÞ relations obtained with

the four methods described above for a system with
ðq; χeff ; χpÞ ¼ ð1.56;−0.06; 0.28Þ at a reference frequency
of Mω ¼ 0.0025. The pure PN implementation ωPN is the
closest to the EOB “aligned” ω evolution. The hybrid PN-
EOB evolutions, instead, appear to either overestimate
(HY1) or underestimate (HY2) dissipation effects by
GW emission. Further, the hybrid evolution stops at lower
values of Mω than the PN or “aligned EOB” one, because
of the denominator of Eq. (13) becoming zero. The
difference between the two hybrid versions can be quali-
tatively understood by considering a simple, spinless, equal
mass case. During the inspiral (Mω < 0.06), at a fixed
Mω value LHY1 ≥ LHY2 and jdL=dωjHY1 ≤ jdL=dωjHY2.
Therefore, by applying Eq. (13), the first hybrid version
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will emit GWs faster—and thus have a steeper orbital
frequency evolution—than the second hybrid, whose phase
in turn will evolve slower than the “aligned” EOB one due
to the (strong) assumption that the coalescence is along
circular orbits and pr� ¼ 0. Although all options are
available in the publicly released TEOBResumS code, we
find that the fully PN expression for _ω consistently gives
the better performance in terms of accuracy and speed when
computing mismatches against NR waveforms (see
Sec. III). Therefore, all results obtained in this paper are
obtained with _ω ¼ _ωPN. We leave to future work the
exploration of different purely PN formulations of _ω.

2. Backward in time integration
and α initial conditions

We further discuss two technical points: the initial
condition for the Euler angle α and the behavior of the
Euler angles when integrating backward in time. Neither is
discussed in depth in the literature, as the former has no real
implication on waveforms [since the in plane spin compo-
nents are determined only up to a rotation, the single x − y
projections can vary: this is equivalent to choosing different
αð0Þ initial conditions] and the latter stems from our hybrid
PN-EOB implementation of the dynamics.
Regarding the first point, in our source frame, the initial

conditions at t ¼ t0 (set to 0 without loss of generality) for
the spin components and the angular momentum are
straightforward to obtain. However, since L̂Nð0Þ is parallel
to the z axis at t ¼ 0, αðtÞ is apparently undefined at t ¼ 0.
Nonetheless, an expression for αð0Þ can be obtained using

the direction of the initial “torque” at t ¼ 0, which only has

x, y components given by _̂LNxð0Þ, _̂LNyð0Þ yielding

αð0Þ ¼ arctan

� _̂LNyð0Þ
_̂LNxð0Þ

�
: ð16Þ

Explicit expressions, as well as a comparison between α
obtained at different PN orders, can be found in
Appendix A. As far as we can tell, this is the only
physically motivated initial condition for αð0Þ and although
for simple precession αð0Þ is often in the fourth quadrant of
the x − y plane, it only equals the commonly used −π=2 for
special cases. On the other hand, there does not seem to be a
physically motivated initial condition for the third Euler
angle γ defined by _γ ¼ _α cos β. Therefore, one has the
freedom to set γð0Þ ¼ 0 or �π=2 or even αð0Þ.
As for the second point, we observe that since the spin

evolution is solved independently from the EOB dynamics,
it may happen that for some binaries the initial orbital EOB
frequency ωEOB

0 is smaller than the initial spin-evolution
frequency ωS

0 specified by the user via ω
S
0 ¼ πfHz0 M, where

fHz0 is input initial GW frequency in hertz. Then, in order to
twist the entire EOB waveform, it is necessary to integrate
the spin dynamics backwards in time, at least to below
ωEOB
0 . Since all the directly evolved quantities vary con-

tinuously when going from t > 0 to t < 0, this procedure
may appear straightforward at a first glance. However, as
can be seen from Fig. 2, αðtÞ can exhibit a jump by π due to
the sign change of both L̂Nx and L̂Ny when L̂N passes
through the origin at t ¼ 0. Since a number of numerical
interpolations of αðtÞ, βðtÞ are required to compute the
twist, when integrating backwards we compute

FIG. 1. Example plot of the frequency evolution ωðtÞ of the
spin dynamics, obtained by integrating pure PN (orange) or
hybrid PN-EOB (blue and red) _ωðωÞ ODEs, or by employing the
ωðtÞ relation as given by the aligned-spin EOB Hamilton
equations (dubbed as “EOB aligned,” black dashed inline).
The bottom panel displays the relative difference of the hybrid
and PN methods with respect to the EOB aligned method. For the
system considered, ωðtÞPN remains the closest to the EOB
frequency evolution at all times.

FIG. 2. Backward time evolution of the Euler angles of Eqs. (5),
(6). At t ¼ 0, α (straight red line) shows a jump of π, while β
(straight blue line) has a cusp. To correct this behavior and avoid
interpolation issues, we compute α0 and β0, which are then
corrected to their true values after interpolation.
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α0t<0 ¼ arctanðL̂Ny=L̂NxÞ þ π; ð17Þ

β0t<0 ¼ − arccosðL̂NzÞ: ð18Þ

Note that this is analogous to changing into a different but
equivalent source frame, in which β → −β, α → αþ π, and
L̂N ¼ ðL̂Nx; L̂Ny; L̂NzÞ is mapped into itself. After remov-
ing the kinks this way then interpolating, we restore the
original frame via αt<0 ¼ α0t<0 − π, βt<0 ¼ −β0t<0, then
perform the standard waveform twist.

C. Coupling of the PN spin evolution
to the EOB dynamics

When analyzing long signals, neglecting the evolution of
the spins in the aligned-spin dynamics can lead to non-
negligible errors. In principle, one should evolve the full
EOB equations, coming from a general Hamiltonian where
the orbital plane is not fixed. Similarly, the waveform and
radiation reaction of the model, too, would need to be
extended to incorporate the effect of the planar components
of the spins. This general approach would increase the
already significant computational cost related to the sol-
ution of the Hamilton equations. Luckily, it was found
[100] that good agreement with NR waveforms can be
achieved by simply replacing in the waveform and radiation
reaction the fixed values of χi with the time-dependent
projections of the spin vectors onto the orbital angular
momentum, i.e., L̂NðtÞ · χ iðtÞ.
In our model, we (optionally) employ the spin dynamics

to compute the projections of the spins onto L̂N either in the
time or frequency domain. We proceed as follows: (i) the
PN spin dynamics is independently evolved with the N4LO
description of the precession equations with _ωPN detailed
above; (ii) we interpolate the spin and angular momentum
components as functions of the “spin” orbital frequencyωS;
(iii) at each step of the EOB evolution, we compute
the EOB orbital frequency and evaluate χ i;zðωEOBÞ≡
L̂NðωEOBÞ · χ iðωEOBÞ via the splines calculated above;
(iv) finally, these quantities are inserted into the appropriate
places in the EOB dynamics. This generic procedure is
applied both when numerically evolving the ODE system
and when applying the postadiabatic approximation of
Ref. [101].
Figure 3 displays the mismatches (see Sec. III A)

obtained between TEOBResumS waveforms with an inclina-
tion of ι ¼ π=3, evolved either with or without spin
projection, for a set of waveforms with q ∈ ½1; 6�,
M ∈ ½50; 225� M⊙, χp ∈ ½0.; 0.8�, and χeff ∈ ½−0.45; 0.65�.
Notably, although a large portion of the mismatches lie
below the 10−3 threshold, the effect of the spin projection
can be relevant for binaries with large in-plane spin
components, i.e., jSi⊥j, for which the parallel components
of the spins to the orbital angular momentum varies more.

D. BBH merger ringdown

To model the final state of the BBH one can employ the
fits of Ref. [102] with minor modifications to account for
the non-null planar components of the BHs’ spins.
Following Ref. [61], we define the remnant spin as

χf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðχfjjÞ2 þ ðS⊥=MfÞ2

q
; ð19Þ

where χfjj and Mf are estimated from the fits of Ref. [102]
using the parallel component of the spins to the orbital
angular momentum at merger, and S⊥ is given by

S⊥ ¼ S1ðωmrgÞ − S1jjðωmrgÞ þ ð1 ↔ 2Þ: ð20Þ

Figure 4 displays the accuracy of the fits when compared
to a handful of SXS NR simulations. We also compare
the output of the fit above to the values obtained with the
“simple” aligned-spin fit, and with the fits provided by
the surrogate model of Refs. [78,103]. Notably, while the
mass of the remnant is approximated (by all approaches) at
the level of 10−3, the difference jχNRf − χsurrf j is up to ten
times smaller with respect to the other approaches. This
result is not surprising, and is in line with the discussion
presented in Ref. [78]. Therefore, although all the results
presented in this paper will employ Eq. (19), we also
implemented the option to take χf and Mf as input
parameters. This way, by externally computing the remnant
properties with the surrogate model (using the surfinBH
package), we can easily obtain a precise description of the
final BH.

FIG. 3. Comparison between waveforms obtained with and
without projected spin dynamics for systems with the same
intrinsic parameters as those examined in Sec. III B (see also
Appendix B). For waveforms with large in-plane spin compo-
nents, the effect of the spin projection is non-negligible and can
lead to mismatches larger than 1%.
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For a complete model of the ringdown phase, it is
necessary to also extend the Euler angles α, β, γ beyond
the merger. The precession of the orbital momentum
effectively stops at the merger, and the direction of the
spin of the final black hole can be thought of as constant
and well-enough approximated by the direction of the
angular momentum at merger. Therefore, one option is to
simply prolong the angles by fixing them to their value at
merger. Alternatively, it was observed that the evolution of
the α angle can be approximately described through the
difference of the l ¼ 2 fundamental quasinormal modes
[42,104]

αðtÞ¼
�
αðtmrgÞþðω22−ω21Þðt− tmrgÞ; χ f ·L̂Nf >0

αðtmrgÞþðω2−1−ω2−2Þðt− tmrgÞ; χ f ·L̂Nf <0
;

ð21Þ

where χ f ¼ χ 1ðωmrgÞ þ χ 2ðωmrgÞ and ωlm are the funda-
mental quasinormal modes ωlm0 for l ¼ 2 and m ¼
2; 1;−1;−2 [105]. One can then fix β to its value at the
merger. γ is subsequently computed by integrating its
evolution equation (7). Both options for the postmerger
evolution of α are currently available in TEOBResumS

public code, and users can choose between one or the
other. The default behavior is given by the quasinormal-
modes extension, which gives marginally better results
when computing mismatches between EOB and NR wave-
forms (see Sec. III).

E. Higher modes and m = 0

The higher modes are obtained by twisting the
l > 2 spin-aligned modes of TEOBResumS v2. Precessing

TEOBResumS computes all modes with l ≤ 5 including the
twisted m ¼ 0 modes. Note that, similarly to most of the
currently available approximants, we compute the copre-
cessing m < 0 modes by means of symmetry with the m >
0 modes. This approximation, which is valid in absence of
precession of the orbital plane, does not hold when
describing precessing systems close to merger [42,106].
Nonetheless, it was found that the effect of employing
this approximation is subdominant to other sources of
error [42].
The contribution of m ¼ 0 modes, negligible when

dealing with spin-aligned waveforms, can become relevant
for precessing binaries.
For example, Fig. 5 shows how the precessing hTl;0

modes of the SXS: BBH: 1409 NR simulation contribute
to the total waveform polarization hþ for two binaries with
inclinations ι ¼ π=3 and ι ¼ π=2. While the amplitude of
hTl;0 modes can become as large as that of hT2;2 close to
merger, the mode sum of hTlm with spin-weighted spherical
harmonics decreases the overall importance of the m ¼ 0
modes when computing the polarizations. Nonetheless, the
contribution to the amplitude for large-inclination binaries
is non-negligible, whereas the phase difference between the
hþs obtained with and without the m ¼ 0 modes oscillates
around zero during the inspiral and remains below ∼1 rad
at the merger. To systematically quantify the importance of
precessing m ¼ 0 modes, we compute the sky-maximized
and SNR-weighted unfaithfulness F̄ SM between our entire
SXS validation set of waveforms (see Secs. III A and III B),
constructed by either setting the precessing m ¼ 0 modes
to zero or by considering them in the construction of the
polarizations. Figure 6 shows the distribution of the
mismatches computed for binaries with ι ¼ π=3. We find

FIG. 4. Relative differences in the dimensionless spin χf of the final black hole (left) and its massMf (right) between NR simulations
and fits of Ref. [78] (blue stars) and the various Jimenez-Forteza (JF) fits of Ref. [102]. The latter are evaluated with the initial z
component spins (red crosses) or corrected to account for the precession by employing the spins at a reference time before merger like in
Eq. (19). While the remnant mass is always estimated at the order of 10−3 and the two methods give comparable results, the surrogate fit
for the remnant spin is up to an order of magnitude more precise. In the left panel, light (dark) gray bands highlight the 5% (1%) relative
error interval; in the right panel the 1‰ one.
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that while most of the mismatches obtained are Oð10−4Þ,
for some high mass ratio systems F̄ SM > 3%. Repeating
this analysis with EOB waveforms yields qualitatively
similar results, with few mismatches surpassing the 3%
threshold. Thus, accurate modeling of the precessing
m ¼ 0 modes is important for very asymmetrical binaries.
We note however that current modeling of the twisted
m ¼ 0 modes is not complete as the default TEOBResumS

treatment of the spin-aligned m ¼ 0 modes sets them to
zero thus overlooking their contributions in the twist

formula (8). We plan to study the effects employing
nonzero spin-aligned m ¼ 0 modes in the future.

F. BNS frequency-domain waveforms

Spin-aligned EOB models can be straightforwardly
extended to the frequency domain by applying a sta-
tionary phase approximation (SPA) to the multipolar modes
hlmðtÞ. The frequency domain, spin-aligned modes h̃lmðfÞ
can then be twisted and combined into plus and cross
polarization as [72]

hþ ¼ 1

2

X
l≥2

X
m0>0

eim
0γh̃lm0

×
Xl
m¼−l

½e−imαdlmm0−2Y
lm þ ð−1Þleimαdlm−m0−2Y

lm��;

ð22aÞ

h× ¼ 1

2

X
l≥2

X
m0>0

eim
0γh̃lm0

×
Xl
m¼−l

½e−imαdlmm0−2Y
lm − ð−1Þleimαdlm−m0−2Y

lm��:

ð22bÞ

The sign differences in our expressions with respect to
those presented in Ref. [72] come from the EOB con-
vention that the phase of the time domain (TD) multipoles
hlm with m > 0 is positive. Hence, h̃lmðfÞ ¼ 0 for m > 0
and f < 0. The Euler angles α, β, γ are all evaluated at the
SPA frequencies 2πf=m.
Figure 7 displays the phase difference in the frequency

domain of the cross polarization h× computed between
the Fast Fourier Transform (FFT) of precessing TEOBResumS

FIG. 5. Plus polarization hþ of the NR simulation SXS: BBH: 1409 having ðq; χeff ; χpÞ ¼ ð4;−0.16; 0.41Þ, obtained with all modes
with l ≤ 5 either including m ¼ 0 modes (black) or not (red). Two different binary inclinations are considered: ι ¼ π=3; π=2. The
largest impact of the hTl;0 modes is in the amplitude of the waveforms close to merger, which can be underestimated up to 50% for edge
on binaries.

FIG. 6. Distribution of F̄ SM between SXS waveforms con-
structed with all modes up to l ¼ 8 and the same modes except
m ¼ 0 ones (blue) or EOB waveforms constructed with all modes
up to l ¼ 5 and the same modes exceptm ¼ 0 ones. We consider
systems with the same parameters as those examined in Sec. III B.
For a fixed inclination of ι ¼ π=3, we find that both sets span the
interval F̄ SM ∈ ½10−5; 5 × 10−2�.
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time domain signals and the SPA-based model described
above. We consider three nominal BNS systems with
fixed spins χ 1 ¼ ð−0.6; 0.1; 0.2Þ, χ 2 ¼ ð−0.1;−0.5;−0.3Þ
inspiraling from an initial frequency f0 ¼ 20 Hz, tidal
polarizability parameters Λ1 ¼ Λ2 ¼ 400, total mass M ¼
3 M⊙ and mass ratios of 1, 1.5, and 2. For all three cases
considered, we find that the phase difference at the merger
(represented by the vertical lines) lies below 0.2 rad. The
conclusions of Ref. [107] regarding the validity of the SPA
up to merger can be applied also to precessing BNS
systems. At the same time, the SPA-based model is less
computationally expensive than its TD counterpart thanks
to the nonuniform time grid that is employed for the
inspiral. Moreover, and more importantly, it opens to the
possibility of generating waveforms directly over a non-
uniform frequency grid, optimized for PE, allowing the
application of techniques such as relative binning [108] or
multibanding [109].

III. VALIDATION

In this section we compare our EOB model to (i) the set
of 99 precessing SXS simulations also employed in
Ref. [61], supplemented with the longer precessing sim-
ulations SXS: BBH: 1389 to SXS: BBH: 1409, and
(ii) 5000 NRSur7dq4 (henceforth NRsur) waveforms, spanning
q ∈ ½1; 4� and jχij ∈ ½0.1; 0.8� yielding a range of −0.8 ≤
χeff ≤ 0.8 and 0.0 ≤ χp ≤ 0.8. We compute the sky-
averaged faithfulness (see Sec. IV of Ref. [110]) for all
considered templates. Then, for a selected number of
systems, we align the time-domain polarizations and
compute the cumulative phase difference of the wave-
form h ¼ hþ − ih×. Overall, we find that the maximum

mismatch between TEOBResumS and SXS is obtained for
very asymmetric, highly spinning binaries. The same
statement holds for NRsur-TEOBResumS mismatches.

A. Faithfulness

TheWiener product between two time domain waveform
templates aðtÞ, bðtÞ is defined as

ða; bÞ ¼ 4Re
Z

ã�ðfÞb̃ðfÞ
SnðfÞ

df;

where SnðfÞ is the power spectral density (PSD) of the
detector and ã; b̃ denote the Fourier transform of the
waveforms. The agreement between a target model s
and a generic template h is usually quantified through
the faithfulness (or match) F , defined as the normalized
inner product between s and h, maximized over the
reference time and phase t0;φ0:

F ¼ max
t0;φ0

ðs; hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs; sÞðh; hÞp : ð23Þ

However, when the template waveform incorporates
higher modes or if the system is precessing, this definition
is not completely independent of the extrinsic para-
meters of the binary. In general, the target and template
waveforms are obtained from the plus and cross polar-
izations as

ki ¼ Fþðθi;ϕi;ψ iÞkþðιi;φi
0; t

i
0;ΘiÞ

þ F×ðθi;ϕi;ψ iÞk×ðιi;φi
0; t

i
0;ΘiÞ; ð24Þ

where i ¼ s, h and θ;ϕ;ψ ; ι;Θ are, respectively, the right
ascension, declination, polarization, inclination, and intrin-
sic parameters (masses, spins, tidal parameters etc.) of the
binary system. Equation (24) can be rearranged into

ki ¼ Aðθi;ϕiÞ½cos κðθi;ϕi;ψ iÞkþðιi;φi
0; t

i
0;ΘiÞ

þ sin κðθi;ϕi;ψ iÞki×ðιi;φi
0; t

i
0;ΘiÞ�; ð25Þ

where κ denotes the effective polarizability and

eiκðθ;ϕ;ψÞ ¼ ½Fþðθ;ϕ;ψÞ þ iF×ðθ;ϕ;ψÞ�=Aðθ;ϕÞ; ð26Þ

Aðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þðθ;ϕ;ψÞ þ F2

×ðθ;ϕ;ψÞ
q

: ð27Þ

When only ð2;�2Þ modes are considered, it can be shown
that Eq. (23) depends on extrinsic parameters only through
overall amplitude and phase factors. On the other hand,
when higher modes are considered, the dependence on the
extrinsic quantities is nontrivial.
We define the (template) sky-maximized (SM) faithful-

ness between the target strain and the waveform template as

FIG. 7. Phase differences between the frequency domain cross
polarizations h× obtained either by twisting SPA-transformed
modes or directly via FFT. The three fiducial BNS systems
considered have varying mass ratios q ¼ f1; 1.5; 2g and fixed
spins, total masses, and tidal parameters. Vertical colored lines
denote the merger frequency. At merger, the largest phase
difference amounts to ≈ − 0.2 radians.
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F SM ¼ max
th
0
;φh

0
;κh

ðs; hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs; sÞðh; hÞp ; ð28Þ

where we dropped the explicit dependence on intrinsic and
extrinsic parameters in the right-hand side. Accordingly,
the unfaithfulness is given by F̄ SM ¼ 1 − F SM. We follow
the procedure outlined in Sec. IV of Ref. [110]. The
maximization over κ is performed analytically, while t0
is maximized via the inverse FFT. The maximization over
the reference phase φ0 is performed numerically through a
dual annealing algorithm, similar to what is done in
Ref. [72]. Finally, we mention that for precessing systems
one additional degree of freedom remains: the freedom to
perform a rigid rotation of the in-plane spin components
about the initial ẑ axis, which is equivalent to choosing
different initial conditions for the α (and γ) Euler angles.
We further maximize F SM over such a rotation by once
more relying on a dual annealing algorithm. We note that
this procedure differs from the one employed in Ref. [42],
where instead the initial (reference) frequency is varied, and
the initial in-plane spin components are kept fixed to their
nominal target value.
Once F SM (or, equivalently, F̄ SM) is computed as

described, we normalize it over the SNR of the signal
and further average over the sky angles of the target
waveform, in order to completely marginalize over any
dependence of the mismatch on the sky position and obtain
values which depend exclusively on the intrinsic para-
meters of the source. We consider Nφ values of φs

0 ∈
½0; 2πÞ and Nκ values of κs ∈ ½0; 2πÞ, and present the
average value over Nφ × Nκ values.

B. BBH IMR EOB/NR comparison

To validate the performance of our model, we compare
our waveforms with a set of selected SXS NR simulations.
In particular, we focus on two different sets: 99 “short”
waveforms, with χp ≲ 0.84, χeff ∈ ½−0.45; 0.65� and q≲ 6,
and 21 “long” simulations with χp ≲ 0.49, χeff ∈
½−0.2; 0.3� and q≲ 4, spanning from ∼60 to ∼146 orbits.
To translate the NR data from the NR frame into the
source frame described in Sec. I, we make use of the public
catalog tools available at [111] and described in, e.g.,
Ref. [112]. For all unfaithfulness computations, we con-
sider total detector-frame masses M ∈ ½50; 225� M⊙,
employ the zero-detuned high-power PSD of Ref. [113]
and average F̄ SM over a grid κNR ¼ f0; π=2; π; 3=2πg and
φNR
0 ¼ f0; 2π=5; 4π=5; 6π=5; 8π=5g. We perform our com-

putations over the frequency range ½fmin; 2048� Hz, where
fmin is the initial GW frequency of the NR waveform,
expressed in physical units.

1. “Short” SXS simulations

Figure 8 shows the sky-averaged F̄ SM as a function of
the total binary mass for three different choices of the

binary inclination, ι ¼ f0; π=3; π=2g. We find that when
ι ¼ 0 (π=3, π=2), all but six (four) notable simulations the
EOB/NR unfaithfulness lies below the 3% threshold for all
values of masses considered, and that 80% (76%, 68%) of
the averaged F̄ SM computed are smaller than 1%. The
configurations for which the EOB/NR faithfulness lies

FIG. 8. NR/EOB mismatch, F̄ SM, for the 99 SXS short
precessing simulations computed with strain mode content
l ≤ 4þ ð5;�5Þ, plotted as a function of the total mass of the
system and computed with a fixed inclination of the binary of
ι ¼ f0; π=3; π=2g (top, middle, and bottom panels, respectively).
A total of ten configurations have F̄ SM, which reaches up to 3%.
The dashed horizontal lines in each panel mark the 3% and 1%
thresholds.
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above the 3% threshold are highly asymmetrical (q > 5) or
strongly precessing (χp > 0.7) systems, with SXS: BBH:
0165 being the most challenging one, as it is a
ðq; χeff ; χpÞ ¼ ð6;−0.45; 0.77Þ coalescence. In Fig. 9 we
consider two more of these systems (SXS: BBH: 0057
and SXS: BBH: 0632), and align the time-domain NR
and EOB waveforms by minimizing their phase difference
ΔϕEOBNR ¼ ϕNR − ϕEOB over a chosen time window (see,
e.g., [74]). We find that the EOB waveform correctly

captures the behavior of the NR waveform up to few orbits
before merger, where differences in phase and amplitude
start to grow.
For comparison, we also compute F̄ SM between the

set of NR simulations here considered and the waveform
approximant IMRPHenomXPHM [72], with fixed inclination
ι ¼ π=3. Figure 10 shows the results of this calculation.
We find that F̄EOB

SM varies between ∼0.002 and 0.06,
with the distribution median peaking at 0.007; while

FIG. 9. Visual comparison between the hþ NR waveforms (black, solid curves) computed from SXS:BBH:0057 (left panel) and
SXS:BBH:0632 (right panel) and the TEOBResumS waveforms obtained with the same intrinsic parameters (red, dashed), inclination
ι ¼ π=3 and all modes with l ≤ 4. The phase difference ΔϕEOBNR ¼ ϕNR − ϕEOB is shown in cyan, and the relative amplitude error
ΔAEOBNR=ANR in orange. Merger is indicated by a black dotted line. The waveforms are aligned by minimizing the phase difference in
the time window highlighted in gray, see Eq. (30) of Ref. [74]. Both systems are characterized by very large in-plane spins at their initial
reference frequency, with SXS : BBH : 0057 also having q > 5. While the phase difference oscillates during the inspiral and generally
remains below 1 rad, the dephasing and the amplitude relative differences increase at merger, indicating that an improved description of
the final moments of the coalescence will be required.

FIG. 10. Left panel: the distribution of NR/TEOBResumS and NR/IMRPHenomXPHM mismatches for the 99 SXS short precessing
simulations of Fig. 8, at a fixed binary inclination of ι ¼ π=3. The black dashed and the dotted black vertical lines mark the 1% and 3%
thresholds, and dashed colored lines the 95th percentiles. We find that the performance of IMRPHenomXPHM is comparable to that of our
EOB approximant, with F̄ EOB

SM falling in the range 0.002–0.06 with median at 0.007, and F̄XPHM
SM falling within the interval 0.002–0.1

and having a median of 0.005. Right panel: the same plot as above, with total masses restricted to below 75 M⊙. Overall, TEOBResumS

performs slightly better than IMRPHenomXPHM for lower masses, and slightly worse for higher ones.
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F̄XPHM
SM spans the interval ∼0.002 to 0.1, with a median

of 0.005.
Overall, the two approximants give consistent results,

with TEOBResumS generally performing marginally worse at
high masses, and marginally better for M < 75 M⊙.

2. “Long” SXS simulations

Figure 11 once more shows the sky-averaged F̄ SM as a
function of the total binary mass for two different choices
of the binary inclination, ι ¼ 0; π=3; π=2. The mismatches
behave similarly to what we described above in the sense

that they generally degrade for increasing magnitude of in-
plane spins and growing inclinations. This well-known fact
can be appreciated also from Fig. 12, where we align the
NR waveform SXS: BBH: 1397 and the corresponding
EOB waveform. We compute the phase difference
ΔϕEOBNR between the two, and find that for ι ¼ 0 it is
constantly smaller than 0.1 rad during the inspiral, growing
to ∼0.6 rad after merger. For ι ¼ π=3 the phase difference
displays larger oscillations, which are however always
smaller than 0.5 rad. The relative difference in the
amplitude ΔAEOBNR=ANR ¼ ðANR − AEOBÞ=ANR, instead,
degrades after merger for the ι ¼ π=3 case. Nonetheless, for
the case considered the behavior of both the EOB phase and
amplitude remain correct during the merger.
Overall we find that all the mismatches computed lie

below 3% for the inclinations considered, and 93% (98%,
87%) below 1% for ι ¼ 0 (ι ¼ π=3; π=2).

C. Comparison with NRSur7dq4

To extend the comparison to a larger number of binaries,
we additionally computed F̄ SM between our model and the
NR surrogate model NRSur7dq4 using all modes with l ≤ 4.
We considered 5000 systems with q ∈ ½1; 4�, which
is the calibration region of the surrogate, and spin magni-
tudes χ1;2 ∈ ½0.1; 0.8� with uniformly distributed spin
vector polar angles θ1;2 ∈ ½0; πÞ and azimuthal angles
ϕ1;2 ∈ ½0; 2πÞ. We set the initial GW frequency to 20 Hz
forM ≥ 100 M⊙ and to a linearly decreasing function ofM
from 37.5 to 20 Hz asM increases from 40 to 100 M⊙. We
do this because the surrogate can at most yield waveforms
of length 4300M [78] so the lighter-mass inspirals need to
start from higher frequencies. Figure 13 shows the dis-
tributions of the unfaithfulness obtained for inclinations of
ι ¼ 0, π=6, π=3, and π=2. We find that, for ι ¼ 0, 98.8% of

FIG. 11. NR/EOB mismatch for the SXS long precessing
simulations 1389 to 1409, plotted as a function of the total mass
of the system and computed with a fixed inclination of the binary
of ι ¼ 0, π=3, π=2 (red, blue, and orange lines, respectively). The
dashed black horizontal line marks the 1% threshold. No
simulations have F̄ SM > 3% for any of the considered inclina-
tions.

FIG. 12. Visual comparison between the hþ waveform computed from SXS:BBH:1397 (black, solid curves) with l ≤ 4 and the
TEOBResumS waveform obtained with the same intrinsic parameters (red, dashed) for two different inclinations, ι ¼ 0 (left panel) and
ι ¼ π=3 (right panel). The phase differenceΔϕEOBNR ¼ ϕNR − ϕEOB is shown in cyan, and the relative amplitude errorΔAEOBNR=ANR in
orange. Merger is indicated by a black dotted line. The waveforms are aligned by minimizing the phase difference in the time window
highlighted in gray. As the inclination increases, so do the importance of higher modes and the amplitude modulations due to precession.

GAMBA, AKÇAY, BERNUZZI, and WILLIAMS PHYS. REV. D 106, 024020 (2022)

024020-12



the systems considered have unfaithfulness below 3% and
87.8% below 1%, with a global distribution spanning the
range F̄ SM ∈ ½0.0027; 0.04� with median 0.0046.
As previously observed, the situation worsens as

the inclination increases, with F̄ SM ∈ ½0.003; 0.05� for
ι ¼ π=6, F̄ SM ∈ ½0.003; 0.1� for ι ¼ π=3 and F̄ SM ∈
½0.006; 0.14� for ι ¼ π=2.
For ι ¼ π=3, only 80% (21%) of the total mismatches are

below the 3% (1%) threshold. The degradation of the
unfaithfulness is observed especially for asymmetric bina-
ries with large χp as can be discerned by comparing the
middle and bottom panels of Fig. 13.

D. Waveform evaluation timing

We now test the computational efficiency of our
EOB model, and compare it to other state of the art
precessing approximants for BBH and BNS coalescences,
SEOBNRv4PHM, IMRPhenomXPHM, and IMRPhenomPv2NRTidalv2.
We choose one reference equal mass BBH binary,
with M ¼ 60 M⊙ and χ 1 ¼ ð−0.6; 0.1; 0.2Þ, χ 2 ¼
ð0.1;−0.5;−0.3Þ, and a list of initial frequencies f0 ¼
f10; 12.5; 15; 17.5; 20:; 22.5; 25; 27.5; 30g Hz. For each
initial frequency fi0 we calculate the average time (over
20 repetitions) needed to evolve the binary and produce the
hþ and h× polarization. This process is then repeated for a
BNS configuration with q ¼ 1;M ¼ 2.8 M⊙ and same
spins as the previous BBH system, and a choice of initial
frequencies f0 ¼ f15; 20; 25; 30; 35g Hz. We performed
this test on a Huawei MateBook 14 with AMD Ryzen 5
2500U processors and 8 Gb RAM.
The results are displayed in Fig. 14. We find that, for

BBH systems, TEOBResumS is approximately three to four
times slower than IMRPHenomXPHM and about one order of
magnitude faster than SEOBNRv4PHM. For BNS systems,
instead, the FD model is about two times faster than its TD
counterpart, and two times slower than the phenomeno-
logical IMRPhenomPv2NRTidalv2. We highlight that the main
evaluation cost for both the TD and FD TEOBResumS models
comes from the twisting procedure itself, rather than from
the solution of the two (PN and EOB) dynamics ODE
systems.

IV. PARAMETER ESTIMATION

We demonstrate possible applications of our model by
performing PE on real GW data. We reanalyze the data of
GW150914 and GW190412, and show that the posteriors
obtained are consistent with those presented in, e.g.,
Refs. [8,23]. Then we analyze GW170817 [2,3,16] and
compute the radius of a NS of mass M ∈ ½1.4; 2.1� M⊙
using the fits of Ref. [114]. All of our PE studies are
performed with the BAJES pipeline [115] and the DYNESTY

[116] sampler.

FIG. 13. Top panel: NRSur7dq4/TEOBResumS sky maximized
l ≤ 4 mismatch for 5000 systems with q ∈ ½1; 4�, spin magni-
tudes χi ∈ ½0.1; 0.8� and random spin directions, computed from
an initial frequency range of 20 to 37.5 Hz with the aLIGO
design PSD noise curve up to 1024 Hz. The dotted, dot-dashed,
and dashed vertical black lines mark unfaithfulness of 1‰, 1%,
and 3%, respectively. The colored, dashed vertical lines mark
the 95th percentiles for the four distributions. Middle and
bottom panels: the behavior of the mismatch over the fq; χpg
parameter space for inclinations of 0 and π=3. The higher
unfaithfulness values are obtained for highly asymmetrical
systems, with large in-plane spins (high χp) and mass ratios
of q > 2.
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A. GW150914

GW150914 [1,8] was the first BBH event observed by
the LIGO collaboration. For our study, we consider eight
seconds of data centered around the GPS time of the event.
We employ 4096 livepoints, and analyze the frequencies
between 20 and 1024 Hz. We fix the sampling rate to
4096 Hz, and sample the component masses enforcing that
the chirp mass lies in M ∈ ½12.3; 45� M⊙, the mass ratio
q ∈ ½1; 8�, and the spin magnitudes jχij ∈ ½0; 0.89� with

i ¼ 1, 2 with an isotropic prior for the tilt angles. We
consider all modes up to l ¼ 4, and marginalize over the
timeshift. Finally, we employ 10 calibration nodes, and the
PSD given in Ref. [8]. Figure 15 displays the posteriors
we recovered from our analysis. We find that M ¼
31.7þ2.0

−1.5 M⊙, q ¼ 1.17þ0.36
−0.16 , χeff ¼ 0.04þ0.09

−0.08 , and χp ¼
0.38þ0.37

−0.29 . Our results are consistent with the analyses
presented in Refs. [1,8,117], performed with other approx-
imants, and with the PE conducted in Ref. [115], which

FIG. 14. Left panel: BBH evaluation time for a q ¼ 1;M ¼ 60 M⊙ precessing system containing the ðl; mÞ ¼ ð2; 1Þ;
ð2; 2Þ; ð3; 2Þ; ð3; 3Þ; ð4; 4Þ modes. Three different state of the art approximants are considered: TEOBResumS, IMRPHenomXPHM and
SEOBNRv4PHM. TEOBResumS is approximately three times slower than IMRPHenomXPHM, and up to an order of magnitude faster than
SEOBNRv4PHM. Right panel: BNS evaluation time for a q ¼ 1;M ¼ 3.5 M⊙ precessing system, whose waveform is constructed with the
(2,2) mode. TD denotes the standard time domain TEOBResumS model with SPA denoting the frequency domain version of Sec. II F.

FIG. 15. Posteriors for chirp mass, mass ratio and spins obtained by analyzing the GW150914 data with TEOBResumS, as discussed in
Sec. IVA. For comparison, we also plot the prior distributions for χeff and χp. As expected, the posterior distribution of χp is consistent
with its prior. The masses obtained in our analysis are consistent with the ones previously reported in Ref. [115], but the uncertainties on
q and M are larger. This is due to the addition of four degrees of freedom, namely the in-plane spin components.
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employed the nonprecessing version of TEOBResumS. The
posteriors of χp are consistent with the prior as GW150914
displays no evidence of precession. Notably, the introduc-
tion of additional spin components widens the credible
intervals on the component masses with respect to the
analysis of Ref. [115], obtained with the same approximant
and similar settings.

B. GW190412

GW190412 was the first highly asymmetrical BBH
event (q ≈ 3–4), which was also one of the “louder” events
of O3a with an SNR of 19 [14,23]. The original LVC data
analysis has yielded well constrained imprints of spin
precession with 0.15≲ χp ≲ 0.5 and θ1 ¼ 0.80þ0.52

−0.36 [23],
support for χeff > 0 with 95% credibility [23], and clear
evidence of the subdominant modes carrying a significant
portion of the SNR. A number of following studies have
further improved on the original analysis by investigating in
more detail the effects of the higher modes [118] and of the
chosen priors [119] on the PE. The same works also carried
out studies to understand the differences observed when
different waveform models are employed to analyze the
signal. Although such detailed investigations lie beyond the
scope of this paper, it is clear that the exceptional nature of
GW190412 makes it very desirable to analyze with
TEOBResumS.
We employ 4096 livepoints and analyze the frequencies

between 20 and 1024 Hz with a fixed sampling rate of
4096 Hz. We sample in the component masses, requiring
that the chirp mass falls in M ∈ ½8; 20� M⊙ and the mass

ratio q ∈ ½1; 10�. We sample in spin magnitudes jχij ∈
½0; 0.89� with i ¼ 1, 2, enforcing an isotropic prior for the
tilt angles. Once again, we consider all modes up to l ¼ 4,
and marginalize over the timeshift.
Posteriors for the masses and spins are plotted in

Fig. 16. We compare the results obtained in our PE with
the publicly available LVC posterior samples, obtained
with the two independent models SEOBNRv4PHM [42] and
IMRPhenomPv3HM [68]. We find that TEOBResumS gives
estimates of GW190412 parameters that are overall con-
sistent with those computed from the other two approx-
imants. We obtain a slightly larger chirp mass, and overall
wider χp and tighter χeff posteriors.

C. GW170817

GW170817 was the first BNS inspiral/merger event. To
date, it is still the loudest detected GW event with an SNR
of 32 [16]. Though observations from millisecond pulsars
yield at most dimensionless spins of χ ≈ 0.5 [120] and the
fastest observed neutron star spin in electromagnetically
observed binary pulsars is χ ≲ 0.05 [121,122], the spins of
the components of GW170817 are not well constrained
[8,16]. For our reanalysis we employ 6000 livepoints and
consider 128 seconds around the GPS time of the event,
analyzing the frequencies between 20 and 1024 Hz to
minimize waveform systematics [107]. We sample the
component masses imposing that M ∈ ½1.1; 1.3� M⊙ and
q ∈ ½1; 3�. The dimensionless spin magnitudes are sampled
in the interval [0, 0.89], with an isotropic prior for the tilt
angles. We sample the dimensionless tidal deformabilities

FIG. 16. Posteriors for chirp mass, mass ratio and spins obtained by analyzing the GW190412 data with TEOBResumS, as discussed in
Sec. IV B. We compare our results to the public LVC posteriors obtained with the precessing models SEOBNRv4PHM and
IMRPhenomPv3HM. The results of our analysis are broadly consistent with the ones obtained by LVC, although some model systematics
are clearly present between the three approximants.
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Λ1, Λ2 over a uniform prior [5, 5000]. Figure 17 displays
the marginalized, two-dimensional posteriors for the detec-
tor masses m1, m2 of the neutron stars and the tidal
parameters Λ̃ and δΛ, which parametrize the LO and
NLO tidal corrections to the PN GW phase [123]. The
masses are slightly bimodal. This effect is not unexpected,
and has already been previously observed [2,8]. Evidently,

it is related to the modelling of spin precession: on the one
hand, allowing spin magnitudes to vary in the large interval
[0, 0.89] increases the correlations between spins and mass
ratio; on the other hand, precession effects can more easily
fit features of the data that might be due to the noise. This
event too, much like GW150914, does not display evidence
for precession or spinning components. Indeed, we find
that χp is consistent with its prior, and χeff ¼ 0.01þ0.04

−0.02 .
Finally, we measure Λ̃ ¼ 406þ238

−150 . This value is marginally
larger than the one obtained with the IMRPhenomPv2NRTidal
model, consistently with Ref. [81], but slightly smaller than
the one obtained with the aligned spin model. By employ-
ing the fits of Ref. [114], we map the source frame masses
and the Λ̃ into posteriors for the radius R of a NS with mass
in ½1.4; 2.1� M⊙ (see Fig. 18). Over this mass interval we
find that the fits give values of R that are weakly dependent
on the mass of the neutron star, and R ∼ 12.0þ1.5

−1.2 km.

V. CONCLUSIONS

In this work we have presented a new efficient multipolar
EOB model for generic-spin binaries. The model presented
builds on the previous work of Ref. [80] and improves it by
including a description for merger and ringdown, higher
modes and time-evolving projected spin components. We
also constructed an inspiral-merger frequency domain
model for precessing BNS systems, which can incorporate
all the advancements added to the time domain approx-
imant, and is—to our knowledge—the first multipolar,

FIG. 17. Marginalized, two dimensional posteriors for detector frame masses (left) and tidal parameters (right) for GW170817,
obtained with the precessing TEOBResumS model or the phenomenological IMRPhenomPv2NRTidal model, from the analysis of Ref. [8].
The 90% intervals are compatible between the two models. We not that the IMRPhenomPv2NRTidal posteriors for Λ̃ display some
bimodalities, which are due to the higher frequency cutoff employed for the analysis.

FIG. 18. Marginalized posterior distributions of RðMÞ com-
puted via the tidal parameters and source masses obtained from
our GW170817 analysis and the fits of Ref. [114]. Overlayed, we
also display the RðMÞ relations for a handful of well-known
equations of state.
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tidal, and precessing frequency domain approximant for
these systems.
We have investigated different realizations of radiation

reaction included in the spin dynamics via the _ωðωÞ
relation. By comparing hybrid EOB-PN expressions with
a pure PN expression and the “aligned” EOB relation, we
observed that the PN expression for _ωðωÞ employed in the
previous work provides a satisfactory description of the
EOB radiation reaction. We also presented a preliminary
investigation of the importance of m ¼ 0 modes in asym-
metrical binaries, showing that the contribution of the hTl;0
modes to the total waveform polarizations is non-negligible
close to merger.
We then validated TEOBResumS IMR BBH model using a

total of 120 SXS simulations, spanning a large portion of
the precessing BBHs parameter space. We found that 96%
(99%, 98%) of the total mismatches lie below the 3%
unfaithfulness threshold for ι ¼ 0 (ι ¼ π=3; π=2). We also
computed the mismatch between a subset of the same SXS
simulations and the state-of-the-art phenomenological
waveform approximant IMRPHenomXPHM. We found good
consistency between the mismatches obtained with the two
waveform models. A similar comparison was performed
against the NR surrogate NRSur7dq4: when considering a
large number of systems, which cover the surrogate’s
parameter space, we found that 98.8% (80%, 67%) of
the systems considered have unfaithfulness below 3% and
87.8% (21%, 2%) below 1% for ι ¼ 0 (ι ¼ π=3; π=2). The
worsening of the unfaithfulness for increasing inclination is
expected, as for more edge-on binaries geometrical effects
enhance the importance of higher modes and precession,
which in turn deteriorate the EOB-NR agreement during
the merger and ringdown phases of the coalescence.
Finally, we applied the model to the PE of three real LVC

signals, namely GW150914, GW190412, and GW170817,
and obtained results consistent with currently published
analyses by relying on the BAJES PE infrastructure and the
DYNESTY sampler. GW150914 and GW170817 display no
evidence for precession, with χp closely following its prior
distribution. Conversely, GW190412 is clearly found to be
an asymmetrical, mildly precessing system with mass ratio
q ∼ 3 and χp ∼ 0.35, χeff ∼ 0.25. Such values are compat-
ible with the ones recovered by the LVK collaboration
employing the precessing waveform approximants
SEOBNRv4PHM and IMRPhenomPv3HM. Marginal differences
due to waveform systematics are nonetheless found in χp
and χeff : we recover a tighter posterior distribution of the
latter and a wider distribution of the former, as well as a
slightly larger chirp mass. Critically, these studies demon-
strate that TEOBResumS can be directly applied to PE, even of
computationally challenging BNS systems, without the
need for additional surrogates or reduced order models.
In spite of the satisfactory performance of the model for

current detectors, some work remains to be done in view of
the continuously increasing sensitivity of the instruments.

In particular, the degradation of the performance of the
model at high masses seen in Fig. 8 indicates the need for
an improved merger-ringdown description of the precess-
ing waveform. This could come from a combination of
three different yet complementary avenues: (i) an improved
description of the ringdown of spin-aligned ðl; mÞ ≠ ð2; 2Þ
modes; (ii) a more accurate model for the evolution of the
Euler angles α, β beyond the merger; (iii) an improved
(analytical) fit for the remnant spin χf (see Fig. 4).
Regarding the first point, in particular, we mention that

the Achille’s heel of the aligned-spin TEOBResumS is the
modeling of the ðl; mÞ ¼ ð2; 1Þ mode, which is known to
become inaccurate close to merger for large spins anti-
aligned with the orbital angular momentum (χzi < −0.8)
[48]. This known issue is potentially even more important
for precessing systems. That is because, clearly, the twisted
modes are obtained as a superposition of spin-aligned
multipoles. Hence, the (2,1) mode directly affects also the
(2,2) and (2,0) multipolar waveforms. However, once an
appropriate solution for the issue is found for the spin-
aligned case, this will immediately have a positive impact
on the precessing model. Similarly, any improvement of the
spin-aligned model (addition of analytical information,
recalibrations of the NR informed parameters, improved
merger ringdown) will immediately be reflected on the
precessing waveform, thanks to the modular nature of our
approximant.
With respect to the second point, instead, we observe that

Ref. [65] recently proposed a phenomenological model to
extend the Euler angles beyond merger, directly fit to NR
simulations. Since the spin evolution is independently
evolved in our model, it is in principle straightforward
to apply the model of Ref. [65] to our EOB waveform.2

To summarize, the TEOBResumS model represents a new
state-of-the-art, robust, faithful, and efficient alternative to
already existing waveform models, which we hope will
prove useful to the gravitational wave community in the
effort of interpreting GW data and understanding the nature
of BNS and BBH systems in the years to come.
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APPENDIX A: THE ANALYTIC
EXPRESSION FOR αð0Þ

At NLO, the q ≥ 1 version of the orbital angular
momentum and spin precession ODEs are given by
Eqs. (11a), (11b) with the following initial conditions

S1ð0Þ ¼ m2
1ðχ1x;0; χ1y;0; χ1z;0Þ; ðA1Þ

S2ð0Þ ¼ m2
2ðχ2x;0; χ2y;0; χ2z;0Þ; ðA2Þ

L̂Nð0Þ ¼ ð0; 0; 1Þ: ðA3Þ

Recall the definition of α:

α ¼ arctan

�
LNy

LNx

�
; ðA4Þ

which is initially undefined as LN points along the z axis.
However, as we explained in Sec. II, we mitigate this by
using the initial torque instead as follows

αð0Þ ¼ arctan

� _̂LNyð0Þ
_̂LNxð0Þ

�
; ðA5Þ

where we employ the initial x, y components of the _̂LN
ODE. At NLO, this yields

αð0Þ ¼ arctan

�
−
qð3þ 4qÞχ1x;0 þ ð4þ 3qÞχ2x;0
qð3þ 4qÞχ1y;0 þ ð4þ 3qÞχ2y;0

�
: ðA6Þ

Equation (A5) can be straightforwardly extended to
higher orders. Figure 19 shows the relative difference
between αð0Þ computed at N4LO and lower orders.

APPENDIX B: NUMERICAL RELATIVITY DATA

Figure 20 shows the properties of the two sets of NR data
considered in this study [127–131] in terms of inverse mass
ratio m2=m1 ¼ 1=q, effective spin parameter χeff and
precessing spin parameter χp.
For the two sets considered, we have q ∈ ½1; 6�, χp ∈

½0.0424; 0.7787� and χeff ∈ ½−0.4364; 0.6522� (“short”
simulations) and q ∈ ½1.217; 4�, χp ∈ ½0.2616; 0.4940�,
χeff ∈ ½−0.2276; 0.3275� (“long” simulations).

FIG. 19. Distributions of the relative differences between
αð0ÞN4LO and αð0ÞX , with X ¼ LO, NLO, NNLO. The 9000
points considered were sampled over the space q ∈ ½0.1; 1Þ,
θ1; θ2 ∈ ½0; πÞ, and ϕ2 ∈ ½0; 2πÞ. The median of the relative
difference between the N4LO and LO or NLO distribution is
Δα=α ∼ 10−3, about one order of magnitude larger than the
difference between the NNLO and N4LO expressions. Given the
analytical simplicity of the NLO expression, we decided to
employ it for our current implementation for the αð0Þ compu-
tation.
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