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Rotating black holes at large D in Einstein-Gauss-Bonnet theory
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Applying the large D approach to the Einstein-Gauss-Bonnet theory, we construct equally rotating black
hole solutions in odd dimensions. This provides the first example of the analytic solutions that describe
not-slowly rotating black holes. For the next-to-leading-order solutions in the 1/D expansion, we discuss
the physical aspects such as thermodynamics and the phase diagram.
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The Einstein-Gauss-Bonnet (EGB) theory is a simplest
extension of the Einstein theory to the theory with higher
curvature terms, which describes string theory inspired
ultraviolet corrections to the Einstein gravity [1]. In
particular, the EGB theory in D = 5 can be regarded as
the low energy limit of string theory when the theory is
dimensionally reduced from D =11 to D =35 by com-
pactifying 6 of the 11 dimensions in compact Calabi-Yau
threefold [2,3]. Furthermore, such quadratic terms of
curvatures appears as a one-loop correction of heterotic
string theory [1]. Thus, the physics of black holes in the
D =5 EGB theory has been the subject of increased
attention for the reason that it provides us some insight
on a quantum aspect of black holes.

The first exact solutions of black holes in the EGB theory
were found by Boulware and Deser for a spherically
symmetric and static case in Ref. [4]. The static solutions
were also generalized to an electrically charged case [5,6].
However, so far, finding rotating black hole solutions in the
EGB theory has been considered to be a hard and unsolved
problem, since the Kerr-Schild formalism, which is a
powerful tool for finding rotating black hole solutions,
cannot work at all in this EGB theory. In spite of the
technical difficulty, there have been some attempts to
construct rotating EGB black hole solutions. Equally
rotating black hole solutions in D = 5 were obtained as
numerical solutions [7], and slowly rotating charged anti—
de Sitter black hole solutions in D > 5 were obtained as
perturbative and analytic solutions [8].
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The large dimension limit, or large D limit [9-11],
is a useful approximation, which largely simplifies the
black hole analysis in higher dimensions. Because of the
localization of the gravity at large D, the dynamical
degrees of freedom of the horizon are confined within a
thin layer of the near-horizon region, which form an
effective theory insensitive to the global structure of the
spacetime [12-15].

So far the large D effective theory approach has been a
viable tool to study the black hole dynamics, not only
in general relativity (GR), but also in EGB theory. The
(in)stabilities of the static EGB black holes [16] and black
strings [17] were studied by using the large D approach,
in which the black string instability is weakened by the
Gauss-Bonnet (GB) term for the small GB coupling,
whereas it is enhanced for the large GB coupling.
Moreover, black ring solutions at large D in the EGB
theory were also studied [18], where they obtained the
quasinormal modes of the EGB black ring and showed
that the thin EGB black ring becomes unstable against
nonaxisymmetric perturbation.

In this paper, we construct new rotating black hole
solutions with equal angular momenta in an odd-
dimensional EGB theory by using the 1/D expansion up
to the next-to-leading order (NLO). The assumption of
equal angular momenta in odd dimensions enhances a
spacetime symmetry to a class of cohomogeneity one. The
further key assumption is that the metric of a rotating black
hole at D — oo is locally similar to that of the boosted black
string, which was first noticed in the studies of rotating
black holes in GR [19,20]. By imposing this assumption,
the leading-order equations are decoupled to be simply
solvable. The thermodynamic property is also studied up to
the relevant order in 1/D.

The action of the EGB theory is given by

1
SkGB = m/ V=9(R + agsLgp)d"x, (1)
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where the GB Lagrangian is

Lgp = R* — 4R, R* + R,,,,R""°. (2)
The equations of motion become
1
Rm/ =+ _Rg/w + aGBHﬂD =0, (3)

2

where

1
H/ll/ = _ELGBg/'”’ + 2RR”D - 4RﬂaRay

— 4R, sR? + 2R 05, R, . (4)

Havp Hopy

The outcome of the large D limit depends on which scales
are fixed in the limit, i.e., which scale of physics we are
going to focus on. To obtain the black hole horizon, we must
fix the length scale of the horizon radius r( at O(1). With the
fixed horizon scale r,, the scalar curvature around the
horizon has the magnitude of O(D?/r3). We are interested
in the intermediate regime in which the Einstein-Hilbert and
GB terms become comparable R ~ aggLap ~ aggR?, oth-
erwise the equation of motion reduces to that of the Einstein
or pure GB theory. Thus, we assume the GB coupling scales
as agg = O(r3/D?) at large D.

Even for the large D limit, it is not so easy to solve the
Einstein equations under the general rotating ansatz, since
the metric functions are nonlinearly coupled already at the
leading order. Instead, we assume that the EGB rotating
black holes have the same property as GR rotating black
holes, i.e., the large D limit of the Myers-Perry metric
reduces to that of the boosted black brane [19,20]. For
instance, in the Einstein-Maxwell theory, the same strategy
has been successful in constructing charged rotating black
holes in the large D limit both with a single angular
momentum [21] and equal angular momenta [22].

We thus start from the following metric ansatz of equally
rotating black holes in D = 2n + 3 dimensions with the
Eddington-Finkelstein gauge:

ds* = =A(r)(e9)? + 2U(r)e@eV) +2C(r)e® e
+ H(r)(e@)? + r2dx?, (5)

where dX? is the Fubini-Study metric on CP" and other
tetrad bases are defined by

_ dt—Qr(dp+A)

L) _r(dp-+ A) - Qr
Vi—Q2

e e
V1-Q?

with the dimensionless spin parameter €, which produces
the local Lorentz boost in the subspace (dt, r(dgp + A)).
Here A is the Kihler potential of CP". In what follows,

we use 1/n as the expansion parameter rather than 1/D
itself, since the large D owes to the large dimension of CP".
We impose that the metric reduces to that of the boosted
black brane at n — oo,1

C=0(n"), H=1+0(nM"). (7)

As the asymptotic boundary condition, we impose

A1, U-1, C -0, H-1 (8)
at r — oo, so that the ansatz (5) is asymptotically flat.
To resolve the thin near-horizon region at the large » limit,

we introduce the following often-used radial coordinate:
R = r?". 9)
Here we set the horizon scale ry =1 using the scaling

degree of freedom. The metric components are expanded
by 1/n as a function of R,

2.1 2.1
A: —AR, U: —-UiR,

> AR >R
c=Ylem. wH=Y1mm. o
=T IE=1 A

To keep the Einstein-Hilbert and GB terms comparable at
the large » limit in Eq. (3), we introduce the rescaled GB
coupling parameter, which remains finite at n — oo,

a = (2n)*agg. (11)

With the assumption (7), we can decouple the leading-order
equation, which yields

U(): 1, COZO, H():l, (12)

where the integration constant m introduces the horizon at
R = m. As one can see in the form of A, the leading-order
metric, therefore, reduces to the boosted black string metric
at large D as in GR [17]. Note that, for the existence of the
horizon, we only consider the parameter region @ > —1/2.

To obtain the information for D < oo, we need to solve
the 1/n correction to the above leading-order metric. In
the higher-order analysis, A; and C; get extra integration
constants, which are not determined by the boundary
condition. They actually correspond to the parameter shift
in the mass parameter m and horizon velocity Qy in each

'"The assumption C = O(n~') alone gives H,U = const +
O(n™!) in GR. However, we could not decouple the leading-order
equation only with the assumption for C in the EGB theory.
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order of n~". Here Q is determined so that k = 9, + Qp0,
becomes the null generator of the horizon. To fix the above
integration constants, we simply set

which takes X =1 at R=o00 and X =1 + 2a on the
horizon.

Having these in mind, the next-to-leading-order solution
is determined as

This sets the horizon at R = m and angular velocity as C, = Qx-1) log da(l + a) , (17)
da(1 - Q?) X?-1
Qy = Qm™ (14)
in all order of 1/n. In the original coordinate, the horizon (X - 1) (a(X=1)=1)
L U, = , 18
radius is given by 1 20a+ 1)2at HX2+ D)(Q2—1) (18)
ry = m. (15)
For the other metric functions, we simply impose the Ho— Q? ) X+1 tan X
regularity at R = m and asymptotic boundary condition. In = (a+1)(1 —Q?) 08 2 —arctan
the derivation, it is convenient to introduce an auxiliary 1 X241
variable [18] + T_ log , (19)
4 2Qa+1) 2
4a(a+ 1)m
Xi=\/14+————, 16
+ R (16) and
|
A (X2 -1)Q%log (X> + 1) (X* = 1)Q*(arctan X —arctan(1 +2a)) (X = 1)(X +2Q° — 1) log(X — 1)
b 16a(2a® + 3a + 1)X(Q* - 1) 8a(a+ 1)X(Q*-1) daX(Q*-1)
(X —1)log(X + 1)(a(4Q? = 2) + X(2a + Q% + 2) + 5Q2 - 2) a,
- X+ =, 20
8a(a+ DX(Q2 - 1) Tatatty (20)

where the coefficients a,, a;, and a, are given by

ap = 10g(4mg(ia i 1)) 4a(1 1_ Qz) > (21)
~ 2(a+1)log(4a(l +a)) +2logm +1
= 8a(l+a)(Q2—1)
2(1+42a)log(2(1+a)/m?) —log(1+ (1+2a)?)
16a(1+a)(1+2a)(Q*—1) ’
22)

+Q?

(14+2a)(1+2logm) log(4a(l+a))
8a(l+a)(Q*-1) 4a(Q?—1)
_Q*(4(a+1)log(2a) + (4a+5)log(2(a+1)))
Sa(at+ 1)(Q—1)
Q*(log(1+ (1+2a)?) —4(2a+1)*logm)
16a(1+a)(1+2a)(Q*-1)

a, =

(23)

One can easily check that the GR limit &« — 0 reproduces
the equally rotating Myers-Perry solutions up to NLO in

[

the corresponding gauge. The large « limit gives another
simplification

Aol- ﬂ(l + mlog(R/m)) (24)

R\ "2:R(1-92))
mQlog(R/m)
C - \/%72’1(1 —Q (25)
and
U—1+0(n?), H—-1+0(n?), (26

which could imply the existence of the analytic form in the
pure GB theory.

The ergosurface of the leading-order metric (12) is given
by the same condition as in GR,

0=g,=(1-Q)71(=A-2QC+ Q2H), (27)

which is solved as
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B (1 +a)m
T (1-9)(1+a(l - Q%)

R +Om™). (28)

This is a monotonically increasing function of a, and hence
the ergoregion is extended by the GB correction. For
a — 00, Rego approaches to a finite value.

In the EGB theory, the thermodynamic variables are
obtained as in GR, except the entropy defined by the Iyer-
Wald formula [23,24]
|

_ €y, (1 +ag)m 1

1
S=L / (14 2aqsR)VAd®2x,  (29)
4G Jy

where i and R are the spacial metric and curvature of the
horizon cross section, respectively. Note that the angular
velocity is already given in Eq. (14). Up to NLO, the
Arnowitt-Deser-Misner (ADM) mass and angular momen-
tum, temperature, and entropy are given by

(4 —8Q%a2 + (—8Q* +2(x — 6)Q% + 8)ay

{1 ~8n(1 - Q) (ay + 1)(2ay + 1)

87G 1 -Q?
—2Q%log (2a% + 2ay + 1) +4Q*(2ay + 1)(log (ay + 1) — arctan (2ay + 1)) + Q* (7 — 4))} , (30)
N1 (1 + ay)ms Q 1 5 5 ) ,
J = 1- 8(2Q2° —1 2Q7log (2 2 1
G -0 | Bl @y 1 1)y 1 1) 2 oe (a2
+4(1 + 2ay)Q? (arctan (2ay + 1) — log(ay + 1)) = 2ay((z — 16)Q? + 10) — (z — 8)Q? — 8)] , (31)
1 402 + 1 402 1+ 202
rtltan o | +2)aH+ % : (32)
nl+2ay 2n(1 = Q*)(ay + 1) 2ay + 1)
Q1 (1 + 20)m™s N ,
§= 8(1-2Q 8ay(1 —2Q
4G \/1_92 +8n(1—92)(051~1 1)(2aH+1>( ( )(XH+ (XH( )
+4(1 + 2a5)Q%(log(1 + ay) — arctan (2ay + 1) + n/4) — 2Q2log (202, + 2ay + 1))} , (33)

where the GB coupling is written in the scale invariant form
ay = a/r}, = a/ms. The first law dM = TdS + QudJ is
easily checked by differentiating with m and Q up to NLO
with o fixed.

From Eq. (32), one can expect the extremal limit would
exist approximately at

2 + S5a + 4a?

=l 20+

(34)

Unfortunately, we will see that T includes (1 —Q?)~2 in
next-to-next-to-leading order [25], which invalidates the
1/n expansion around the extremal limit. This fact should
not be so remarkable, since as pointed out already in the
Einstein gravity [20,26], the large D limit is incompatible
to the extremal limit, so that we need some remedy to
eliminate the apparent breakdown of the 1/n expansion
near the extremal limit, as actually performed for charged
squashed black holes [27]. Finding the analytic solution of
equally rotating black holes in the pure GB theory could
shed some light on the extremal limit in the EGB theory.
Interestingly, the extremal limit of the equally rotating

black holes was examined for small a in D = 5 [28], where
the inner horizon only appears close to the extremality.

Below, we present the phase diagram in the terms of
dimensionless variables related by

S =

R (m(2)
an(4(1 = Pty =47 +3)
(ar + 1) 2ay + 1) >]

(35)

where the angular momentum and entropy are normalized
by the mass scale

_ 87GJ < 87GM )—% (36)
I D \ 1+ 1/2)Q00)
1
. 4GS ( 8aGM ) o 67
(n+ 1)Q, 1 \(n+1/2)Q5, 44

Here the spin parameter is expressed as the function of j,
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FIG. 1. The phase diagram in the space of the entropy and
angular momentum normalized by the mass for n = 4(D = 11).
The thick and dashed curves represents the NLO and LO results,
respectively. The exact Myers-Perry solutions for n = 4 are also
plotted by the gray curve.

R 1—j2 Zasz
a=j-2 |1 - (38
J Zn[og(l—l—aH) (1 + ay)(1 + 2ay) (38)

In Fig. 1, the phase diagram shows that the positive
(negative) value of a gives larger (smaller) entropy than
GR solutions for each j, succeeding the property of the

static solutions. Near the extremality, the convergence of
1/n expansion becomes bad.

In this work, using the large D approach, we have
obtained the first analytic solutions of not-slowly rotating
black holes to the EGB theory in odd dimensions. For
larger a, the size of the ergoregion becomes larger, and then
for @ — oo, it saturates. We have also determined the first
phase diagram of equally rotating EGB black holes. More
technical details and higher-order corrections will be
presented in a forthcoming paper [25].

By introducing the dependence of the metric on the
time and angular coordinates, one can obtain the large D
effective theory, which enables the stability analysis of the
horizon. We expect the same strategy also applies to the
singly rotating case. It would be also interesting to explore
the large D rotating black holes in the more general
Lovelock theory [29] with the same ansatz.
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