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In this work, we consider the recently proposed well-defined theory that permits a healthy D → 4 limit
of the Einstein-Gauss-Bonnet combination, which requires the addition of a scalar degree of freedom. We
continue the construction of exact, hairy black hole solutions in this theory in the presence of matter
sources, by considering a nonlinear electrodynamics source, constructed through the Plebański tensor and a
precise structural function HðPÞ. Computing the thermodynamic quantities with the Wald formalism, we
identify a region in parameter space where the hairy black holes possess well-defined, nonvanishing, finite
thermodynamic quantities, in spite of the relaxed asymptotic approach to planar AdS. We test its local
stability under thermal and electrical fluctuations and we also show that a Smarr relation is satisfied for
these black hole configurations.
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I. INTRODUCTION

Undoubtedly, general relativity (GR) is the most suc-
cessful of tested theories of gravity, showing compatibility
from experimental observations on the solar system to
external astrophysical systems [1,2]. In spite of such
success, there are strong reasons to explore theories beyond
GR. In fact, the tension between GR and quantum
mechanics as well as the accelerated expansion of the
universe [3,4], have triggered a high interest in the
community to explore alternative gravity theories.
Beyond dimension four, Lovelock gravity defines an

interesting conservative extension of GR [5–8]. Indeed, it is
the most general model constructed on the Riemann
curvature tensor with second-order equations of motion.
In three dimensions, it coincides with GR with a cosmo-
logical constant. In the four-dimensional case, Lovelock
gravity adds a quadratic term, called the Gauss-Bonnet
density,

LGB ¼ R2 − 4RμνRμν þ RμνσρRμνσρ; ð1Þ

but according to the Chern theorem [9], the contribution of
LGB is proportional to the bulk term of the Euler character-
istic of the spacetime manifold. Consequently, Lovelock
gravity actively modifies GR in dimensions higher than
four, only. In consequence, the simplest nontrivial exten-
sion, for D ≥ 5, is captured by the action

SEGB ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p ½R − 2Λþ αLGB�; ð2Þ

commonly referred to as the Einstein-Gauss-Bonnet model
(EGB), which possesses a rich family of solutions, e.g.,
exact spherically symmetric black holes [10–13], topologi-
cal black holes [14,15] as well as charged and/or hairy
configurations via the addition of matter sources as
Maxwell fields or nonminimally coupled scalar fields
[16–19]. Furthermore, the EGB model is also interesting
for theoretical reasons. Recently, microscopic wormholes
have been studied in [20,21], where α is related to the throat
of the wormhole (see also [22–26]). From a holographic
perspective, particularly in applications on the transport
coefficients, on planar manifolds the model induces a
violation in the well known Kovtun-Son-Starinets (KSS)-
bound, a universal limit that was proposed on the ratio
between the shear viscosity η and the entropy density s
(η=s) [27]. Also, the interpretation of higher-order curva-
ture terms as α0 corrections in the low energy limit of string
theory (see for example [28–33]) reinforces the interest on
such terms, which as mentioned contribute to the dynamics
only above dimension four.
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Recently, novel attempts to obtain a nontrivial quadratic
contribution in the curvature, leading to second order field
equations, even in dimension four have been explored. One
of the consistent approaches comes from the ideas in
Refs. [34–36], where the regularization of the D → 4 limit
is due to a counterterm introduced through a conformal
transformation, which generates a perfectly healthy four
dimensional limit at the cost of an additional scalar degree
of freedom. A second idea was constructed from a Kaluza-
Klein reduction [37,38] of a maximally symmetric internal
spacetime of D − 4 dimensions. On planar manifolds these
two approaches converge to the same action principle.1

The relevant action principle in four dimensions reads:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lg

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λþ α̃ðϕLGB þ 4Gμνϕμϕν

− 4X□ϕþ 2X2Þ�: ð3Þ

Here,Gμν is the Einstein tensor, and for simplicity we adopt
the following notation: ϕμ ≔ ∇μϕ, □ϕ ¼ ∇σ∇σϕ, and
X ≔ ∇μϕ∇μϕ stands for the kinetic term. It is noted that
the theory under consideration belongs to the shift-
symmetric sector of the Horndeski family [44], and in
terms of the Galileon theory it is constructed via a covariant
formulation (see for example Refs. [45–47]). Hereafter we
will refer to the action (3) as four dimensional-scalar-
Einstein-Gauss-Bonnet (4DS-EGB), and it is the theory
that we will consider throughout this work.
This theory has been intensively studied in the recent

years: black holes with spherical topology were constructed
in [37,39], together with the inclusion of axionic fields for
planar black holes in [48]. Charged solutions in the context
of the nonlinear electrodynamics of Born-Infeld were
constructed in [49], and the properties of compact objects
were studied in [50]. Even three dimensional scenarios for
static [36] and spinning configurations [51–53] have been
explored, obtaining a generalization of the Bañados-
Teitelboim-Zanelli black hole [54], as well as the Bondi-
Sachs framework [55].
In the present work, continuing the investigations of

4DS-EGB coupled to matter, we introduce a further scalar
ψ , which is conformally coupled, as well as a nonlinear
electrodynamics, namely we consider the action

S½gμν;ϕ; Aμ; Pμν� ¼ Sþ Sψ þ SNLE; ð4Þ

where

Sψ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lψ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μψ∂

μψ −
1

12
Rψ2 − ζψ4

�
;

and

SNLE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LNLE

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
FμνPμν þHðPÞ

�
:

In general, the electrodynamics is described by the field
strength Fμν ¼ ∂μAν − ∂νAμ and its Hodge dual, ⋆Fμν,
tensors that allow to construct a scalar F ¼ 1

4
FμνFμν and

a pseudoscalar G ¼ 1
4
⋆FμνFμν. If L ¼ LðF;GÞ is the

Lagrangian density of the nonlinear electrodynamic source,
the Plebánski tensor Pμν is formally defined through

Pμν ≡ 2
∂L
∂Fμν

¼ LFFμν þ LG⋆Fμν; ð5Þ

where LF, LG are partial derivatives. Using a Legendre
transformation, the Lagrangian can be successfully
rewritten using a structural function H (a Hamiltonian
function), which in general depends on P ¼ 1

4
PμνPμν and

Q ¼ 1
4
⋆PμνPμν, but in this work we will focus on static

configurations, so that H ¼ HðPÞ. Here, we will deal with
electrically charged configurations, Aμ ¼ AtðrÞdt, and for
simplicity we will fix the structural function HðPÞ as:

HðPÞ ¼ a1
ffiffiffiffiffiffiffiffiffi
−2P

p
þ a2P; ð6Þ

where ζ, a1, a2 are coupling constants that will be suitably
fixed. As shown below, this model allows for planar,
asymptotically AdS, exact black hole solutions, which
approach the background in a relaxed manner as compared
with the asymptotic conditions constructed by Henneaux-
Teitelboim in [56]. In spite of such slow asymptotic
behavior, we show that using the Wald’s method to
compute Noether charges leads to a finite expression for
the mass, the entropy and the electric charge, which even
more fulfill an Smarr-type relation.
It is known that nonminimally coupled, self-interacting

scalars with self interactions allow us to construct hairy
black holes as well a other interesting configurations in
vacuum in GR (see, e.g., [57–63]). Even more, quartic self-
interactions allow us to construct hairy black holes in the
presence of higher-curvature terms in dimension greater
than four, ψ [64,65], which has led us to considering the
4DS-EGBmodel in presence of such a further scalar degree
of freedom. Most of the solutions considered in the latter

1Interestingly enough, the exploration of these ideas was
triggered by an ill-defined limit that is consistent only on
four-dimensional spacetimes with symmetries as constructed in
[39] (see [40–42] for a detailed analysis of the inconsistency of
the original approach and a review on this topic, respectively, and
[43] for an alternative approach of taking the D → 4 limit by
breaking the temporal diffeomorphism invariance).
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references lead to vanishing charges, which as explained in
[66] can be circumvented, e.g., by the introduction of a
power-law Maxwell term. Even more, it is known that
conformally coupled scalar fields in dimension four allow
us to by-pass no-hair results as shown in the pioneering
works leading to the BBMB solution [67,68] (see also
[69,70] for its extension in the presence of a nonvanishing
cosmological constant as well as [71,72] for extra dressings
of such solutions given by a Kalb-Ramond potentials and a
massless scalar fields which is linear along the planar
coordinates of the horizon, respectively). On the other hand
on the electromagnetic side, recently, there has been a
growing interest in a different nonlinear electrodynamics
source, characterized by the antisymmetric conjugate
tensor Pμν (the Plebański tensor), and a structure-function
HðPÞ. This choice of a matter source has allowed obtaining
regular black holes solutions [73–77], an exact solution of a
massive, electromagnetically charged and rotating configu-
ration [78–80], black holes with nonstandard asymptotic
behavior [81,82], slowly rotating black holes [83], and the
construction of black holes within the context of critical
gravity [84]. A hint to the present work is taken from this
last reference. As it is known, critical gravity generically
leads to fourth-order equations of motion, and its vacuum
solution from Ref. [85] admits an AdS black hole with
vanishing thermodynamic quantities. A complete analysis
of this statement is performed through Noether-Wald
charges in [86,87], also for its six-dimensional analog.
The introduction of the NLE source in [84] generates a
fruitful interaction with all the integration constants, lead-
ing to a stable black hole with non-null mass, entropy, and
electric charge.
As a consequence, there is enough evidence to con-

jecture that the 4DS-EGB theory, coupled to a conformal
scalar and interacting with a nonminimal electrodynamics,
may lead to exact hairy, charged black hole solutions. The
presence of the NLE leads to nonvanishing, finite charges.
In the present work we confirm such expectation.
This paper is structured as follows: In Sec. II we will

derive the four-dimensional solution to be discussed, taking
into account an arbitrary value of the constant α̃. In Sec. III,
we explore the thermodynamics of these configurations via
the Wald formalism, studying their local stability under
thermal fluctuations and electrical fluctuations, respec-
tively. Finally, Sec. IV is devoted to our conclusions and
further discussion.

II. THE SETUP AND THE SOLUTION

The field equations of the model considered here, with
action principle given in (4) are

Eμν ≔ Gμν þ Λgμν − α̃Tϕ
μν − Tψ

μν − TNLE
μν ¼ 0; ð7Þ

Eϕ ≔ LGB −∇μð8Gμνϕν − 8□ϕϕμ þ 8XϕμÞ
− 4∇ν∇μðXgμνÞ ¼ 0; ð8Þ

Eψ ≔ □ψ −
1

6
Rψ − 4ζψ3 ¼ 0; ð9Þ

Eν
F ≔ ∇μPμν ¼ 0; ð10Þ

Eμν
P ≔

�
∂H
∂P

�
Pμν − Fμν ¼ 0; ð11Þ

whereGμν is the Einstein tensor, and the explicit form of the
energy-momentum tensors Tϕ

μν, T
ψ
μν, TNLE

μν are given in the
Appendix.
To begin the derivation of the solution, we consider the

following ansatz

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2; ð12Þ

with dΩ2
2 the line element for the Euclidean flat space of

dimension 2, where we assume that the planar coordinates
belong to a compact set 0 ≤ x1 ≤ Ωx1 and 0 ≤ x2 ≤ Ωx2 .
The difference Et

t − Er
r ¼ 0 provides the branch ϕðrÞ ¼

lnðrÞ followed up by

ψðrÞ ¼
ffiffiffi
a

p
r

; ð13Þ

where a is a positive integration constant. It is noted that the
logarithmic behavior of ϕðrÞ ensures that Eϕ ¼ 0 is
satisfied.
The equation Eψ ¼ 0 leads to a nonhomogeneous

second-order Euler differential equation for the metric
function fðrÞ given by

r2f00 − 2rf0 þ 2f ¼ 24ζa;

where ð0Þ denotes the derivative with respect to the radial
coordinate r, and the general expression takes the form

fðrÞ ¼ C2r2 þ C1rþ 12ζa; ð14Þ

where C1 and C2 are integration constants. The Maxwell
equation EF ¼ 0 leads to

Prt ¼ Q
r2
; ð15Þ

so that P ¼ −Q2=ð2r4Þ and, by using EP ¼ 0, one obtains:

Frt ¼ a2

�
Q
r2

�
− a1: ð16Þ
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With the above setup, in order to solve the rest of the
Einstein equations some relations between the constants
will emerge. In fact, the analysis of the equations leads to a
black hole solution described by a single integration
constant. With this in mind, we will opt for the following
representation of the metric function:

fðrÞ ¼ r2

2α̃

�
1þ ðμ − 1Þrh

r
−
μr2h
r2

�
; ð17Þ

to express all quantities in terms of rh, which will be our
degree of freedom that also represents the location of the
horizon, since fðrhÞ ¼ 0. The parameter μ in the metric
function switches on/off the scalar field, but it is also related
to both coupling constants of the structural function HðPÞ.
In fact, one gets the following set of relations:

a ¼ −
μr2h
24α̃ζ

; Q ¼ −r2h; Λ ¼ −
3

4α̃
; ð18Þ

a1 ¼ −
ðμ − 1Þ2

4α̃
; a2 ¼ −

μ2ð144ζα̃þ 1Þ
288ζα̃2

: ð19Þ

Many comments can be raised with respect to the
solution (6), (12), (13), (15)–(19). The first one, in order
to obtain a real scalar field ψ in (13), from (18) we have that
the quotient between the constants μ and ζ must be negative
(here we have supposed α̃ > 0), together with a negative
cosmological constant Λ. Additionally, the particular cases
μ ¼ 1 and μ ¼ 0 allow us to explore two branches, where
for the first situation the structural function becomes linear
(HðPÞ ∼ P) and the metric functions takes the form

fðrÞ ¼ r2
2α̃ ð1 −

r2h
r2Þ, while that for the uncharged situation

(this is μ ¼ 1 and 144ζα̃ ¼ −1) the integration constant a
and the location of the event horizon rh are related as
a ¼ 6r2h, which can be considered as the four dimensional
limit of the spacetime considered in [64,65]. On the other
hand, it is interesting to note that when the constant μ
vanishes, the scalar field ψ becomes zero, while HðPÞ ∼ffiffiffiffiffiffiffiffiffi
−2P

p
together with fðrÞ ¼ r2

2α̃ ð1 − rh
r Þ.

Notice that from (17), on can see that the spacetime
approaches a locally AdS spacetime in the planar foliation.
The subleading terms in the metric component are relaxed
with respect to those of Henneaux-Teitelboim [56] since in
our case

gtt ¼ −
r2

l2
þ fttrþOð1Þ; ð20Þ

grr ¼ r2

l2
þ frrrþOð1Þ; ð21Þ

where the coefficients f denote the terms that define an
slow asymptotic approach.

Given the structure of this new four-dimensional charged
hairy configuration, and the relation between the integra-
tion constants rh, a, andQ, in the following section we will
derive its thermodynamic quantities.

III. THERMODYNAMICS ANALYSIS VIA WALD
FORMALISM

After obtaining the solution for the previous model, in
the following lines we compute and analyze their thermo-
dynamic quantities via the Wald formalism [88,89], con-
structing a conserved Noether current. As a first step, the
variation of the total action, namely Eq. (4), is formally
written as

δS ¼ ffiffiffiffiffiffi
−g

p ½Eμνδgμν þ Eϕδϕþ Eψδψ

þ Eν
FδðAνÞ þ Eμν

P δðPμνÞ� þ ∂μJ μ; ð22Þ

where Eμν are the equations of motion with respect to the
metric, while that Eϕ, Eψ , Eν

F, and Eμν
P are the field

equations with respect to ϕ, ψ , Aν, and Pμν respectively,
present in the Eqs. (7)–(11). Together with the above
expressions, from the Eq. (22) a surface term J μ arises,
which reads

J μ ¼ ffiffiffiffiffiffi
−g

p �
2ðPμðαβÞγ∇γδgαβ − δgαβ∇γPμðαβÞγÞ

þ δL
δðϕμÞ

δϕ−∇ν

�
δL

δðϕμνÞ
�
δϕþ δL

δðϕμνÞ
δðϕνÞ

−
1

2

δL
δðϕμρÞ

ϕσδgσρ −
1

2

δL
δðϕρμÞ

ϕσδgσρ

þ 1

2

δL
δðϕσρÞ

ϕμδgσρ þ
δL

δðψμÞ
δψ þ δL

δð∂μAνÞ
δAν

�
; ð23Þ

where L ¼ Lg þ Lψ þ LNLE is the Lagrangian for the total
action, ψμ ≔ ∇μψ , and Pαβγδ, δL=δðϕμÞ, δL=δðψμÞ,
δL=δðϕμνÞ, and δL=δð∂μAνÞ are reported in the Appendix.
To compute the thermodynamic quantities using the surface
term given in (23), we first define a 1-formJ ð1Þ ¼ J μdxμ as
well as its Hodge dual Θð3Þ ¼ ð−1Þ � J ð1Þ. Then, after
making use of the equations of motions, we have the
expression

J ð3Þ ¼ Θð3Þ − iχ � L ¼ −d � J ð2Þ;

where iχ is a contraction of the vector field χμ on the first
index of �L. The above relation allows to define a 2-form
Qð2Þ ¼ �J ð2Þ such that J ð3Þ ¼ dQð2Þ, which in this case
takes the following form:
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Qð2Þ ≔ Qα1α2

¼ εα1α2μν

�
2Pμνρσ∇ρχσ − 4χσ∇ρPμνρσ

þ δL
δϕμσ

ϕνχσ −
δL
δϕνσ

ϕμχσ −
δL

δð∂μAνÞ
χσAσ

�
: ð24Þ

We report in the Appendix the explicit expression for each
element from (24). The vector field χμ is supposed to be a
time-translationvector, which is a Killing vector and it is null
on the location of the event horizon where, as before, is
denoted as rh. Finally, the variation of the Hamiltonian reads

δH ¼ δ

Z
C
J ð3Þ −

Z
C
dðiχΘð3ÞÞ

¼
Z
Σð2Þ

ðδQð2Þ − iχΘð3ÞÞ; ð25Þ

whereC andΣð2Þ represent aCauchy surface and its boundary
respectively. Herewe note that (25) has two components, one
of them located at infinity (denoted asH∞) and the other at
the horizon (given by Hþ).
In our case, the boundary term reads

δH ¼ −
3

2

μðμ − 1Þ
�
ζα̃þ 1

432

�
α̃2ζ

r2hδrhΩ2; ð26Þ

where Ω2 is the finite volume of the compact planar base
manifold given by

R
dx1dx2 ¼

R
dΩ2 ¼ Ω2 ¼ Ωx1Ωx2, so

that the contribution at the infinity is related to the mass
parameter, which reads

M ¼ −
μðμ − 1Þ
2α̃2ζ

�
ζα̃þ 1

432

�
r3hΩ2: ð27Þ

We immediately note that, in order to obtain a non-null
mass for the black hole, we need as a minimum to turn on
the scalar field ψ and to receive both contributions from our
structural function (6). This is, in turn, the same observation
that led to nonzero thermodynamic quantities in four-
dimensional Critical Gravity [84] as well as the Einstein-
Proca model [81,82], and that highlights the importance of
the choice of the NLE as a matter source.
On the other hand, the component at the horizon reads

δHþ ¼ TδS þΦeδQe;

an in order to construct the rest of the thermodynamic
quantities, we start with the Hawking temperature for this
solution, which reads

T ¼ ðμþ 1Þrh
8α̃π

; ð28Þ

and the electric potential is defined as

Φe ¼ −AtðrhÞ ¼ ða1 þ a2Þrh; ð29Þ

where the constants a1 and a2 were given previously in
(19), and the electric charge takes the form

Qe ¼ −Q ¼ r2hΩ2: ð30Þ

Finally, the Wald entropy reads

S ¼ πðμþ 144ζα̃Þ
72ζα̃

r2hΩ2: ð31Þ

With respect to these thermodynamic parameters, we can
mention that for a suitable choice of the constants μ and ζ, it
is possible to obtain positive expressions for the extensive
as well as the intensive parameters, as it is shown in Fig. 1.
The zero-entropy condition is plotted in the diagonal line
(blue), and the entropy is positive in the bottom half region,
μþ 144ζα̃ < 0. The zero-mass conditions (green) are
represented with horizontal lines at μ ¼ 0 and μ ¼ 1,
and the vertical line at ζ ¼ − 1

432α̃ (or 144ζα̃ ¼ − 1
3
in the

scale chosen for the plot). The electric potential vanishes
along the dashed curve (red). Recall that the scalar field ψ is
real provided μζ < 0 (19), which forces us to work in the
second and fourth quadrants. As it was shown before, for

FIG. 1. Graphic representation of the region R (filled, in gray)
where the constants ζ and μ can be chosen in order to satisfy that
all the thermodynamic quantities of the solution (6), (12), (13),
(15)–(19) are non-negative. We scale the axis to be 144ζα̃ and μ
for simplicity. The big black dot located at ð−1; 1Þ in our graph
corresponds to the four-dimensional limit from Refs. [64,65]. A
nontrivial interaction between the nonlinear source and the
geometry is observed at ð− 1

3
; 1
3
Þ.
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the special case μ ¼ 1 the structural functionHðPÞ is linear
(6). In this case, themassM vanishes, butS > 0 andΦe < 0

when ζ < − 1
144α̃, which is represented to the left of the big

black point at ð−1; 1Þ. Indeed, this special point corresponds
to the four-dimensional limit of Refs. [64,65]. Surprisingly,
our analysis unveils another point where the mass and the
entropy vanishes, obtained when μ ¼ 1

3
, 144ζα̃ ¼ − 1

3
.

Remarkably, the electric potential also vanishes in that point,
even when the scalar field and the nonlinear source are
nontrivially interacting with the geometry.
Moving to the right of the point ð−1; 1Þ, the big point at

ð− 1
3
; 1Þ (colored in green) represents the case when a2 ¼ 1,

which recovers the classical Maxwell source, since Pμν ¼
Fμν in that specific case. It is noted that, in consistency with
the results from Ref. [66], the entropy becomes negative in
this sector. In contrast, when μ ¼ 0 the scalar field ψ
vanishes and HðPÞ ∼ ffiffiffiffiffiffiffiffiffi

−2P
p

, where M ¼ 0, S ¼ 2πr2hΩ2,
while that the Hawking temperature T and the electric
potential Φe are given by T ¼ rh=ð8πα̃Þ and Φe ¼
−rh=ð4α̃Þ respectively. Finally, the dotted line at μ ¼ −1
corresponds to an extremal solution, in the sense that the
Hawking temperature vanishes (28), contrary to the other
quantities which are not null [see (27), (29)–(31)]. In this
extremal solution, the entropy S can be positive if we
choose ζ ∈�0; 1

144α̃ ½.
We end this section by analyzing this charged black hole

configuration as a thermodynamic system under small
perturbations around the equilibrium, we will consider
the grand canonical ensemble, where the temperature T
as well as the electric potentialΦe are fixed quantities. As a
first step, the mass M, the entropy S, and the electric
chargeQe can be rewritten in the function of these intensive
thermodynamic parameters as follows

M ¼ 16π3T3α̃ð144ζα̃þ μÞΩ2

27ðμþ 1Þ2ζ þ 2Φ2
eΩ2

3ða1 þ a2Þ2
; ð32Þ

S ¼ 8π3T2α̃ð144ζα̃þ μÞΩ2

9ðμþ 1Þ2ζ ; ð33Þ

Qe ¼
Φ2

eΩ2

ða1 þ a2Þ2
; ð34Þ

where the local thermodynamic (in)stability under thermal
fluctuations can be determined via the behavior of the
specific heat CΦe

, which reads

CΦe
¼

�
∂M
∂T

�
Φe

¼ T

�
∂SW

∂T

�
Φe

¼ 16π3T2α̃ð144ζα̃þ μÞΩ2

9ðμþ 1Þ2ζ ; ð35Þ

where the subindex stands for a constant electric chargeΦe.
From (35), in order to have a non-negative expression, we
need to consider the special case

α̃ð144ζα̃þ μÞ
ζðμþ 1Þ2 ≥ 0;

which is satisfied considering the region R1 from Fig. 2,
allowing us a locally stable configuration under thermal
fluctuations. Together with the above, the study of charged
configurations allows the analysis of how its response now
under electrical fluctuations, characterized through the
electric permittivity ϵT [90,91], given by

ϵT ¼
�
∂Qe

∂Φe

�
T
¼ 2ΦeΩ2

ða1 þ a2Þ2
;

where now the subindex stands for at constant Hawking
temperature T. Like in the previous situation, we note that ϵT
is positivewhen the constant ζ andμ belong to the regionR2,
as shown in Fig. 3. Nevertheless, in this situation ϵT ¼ 0 is
not possible, because this implies that a1 þ a2 ¼ 0.

FIG. 2. Graphic representation of the region R1, where the
constants ζ and μ satisfy the condition CΦe

≥ 0.

FIG. 3. Graphic representation of the region R2, where the
constants ζ and μ satisfy the condition ϵT > 0.
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Curiously enough, from the intersection between the regions
R1 andR2, the regionR from Fig. 1 is naturally recovered,
where this charged configuration is locally stable under
thermal and electrical fluctuations.
For the sake of completeness, the extensive thermody-

namic parameters (32)–(34), and the intensive ones (28)
and (29), fulfill the first law of black hole thermodynamics

δM ¼ TδS þΦeδQe; ð36Þ

as well as a Smarr relation in four dimensions [92,93]

M ¼ 2

3
ðTS þΦeQeÞ: ð37Þ

IV. CONCLUSIONS AND DISCUSSIONS

Due to recent research on Lovelock gravity sourced with a
nonminimally coupled together with self-interacting scalar
field, and its thermodynamic parameters, and the recent
interest to explore an active contribution of higher gravity
theories in four dimensions, in this work we have explored
the four-dimensional-scalar-Einstein-Gauss-Bonnet (4DS-
EGB) model (3), described in [34–38] considering planar
manifolds, and adding a new matter source, consisting in a
self-interacting and conformally coupled scalar field ψ
together with nonlinear electrodynamics characterized via
a structural function HðPÞ.
These configurations have only one integration constant,

related to the location of the horizon rh, parametrizing the
metric function fðrÞ (17) through the constant μ, allowing
us to switch on/off the scalar field as well as the coupling
constants present in the structural function. In particular, for
μ ¼ 1, HðPÞ ∼ P, while for a suitable election for the
constants α̃ and ζ, we obtain the uncharged case obtained
previously in [64,65]. On the other hand, for μ ¼ 0 the
scalar field is not present, while that HðPÞ ∼ ffiffiffiffiffiffiffiffiffi

−2P
p

.
Additionally, with the inclusion of these matter sources

in the 4DS-EGB model emerges the apparition of new
interesting and nonzero thermodynamic parameters, sat-
isfying the four-dimensional first law (36) and a Smarr
relation (37), where in order to obtain a nonzero massM, it
must exist a contribution of the scalar field and the
structural function. The above shows us the importance
of HðPÞ, which plays a very important role in the
characterization of these four-dimensional hairy charged
solutions. Together with the above, and as was shown in
Fig. 1, it is possible to obtain positive expressions for the
extensive and the intensive parameters, given a suitable
election of the constants μ and ζ.
It is interesting to note that this solution enjoys local

stability under thermal fluctuations, thanks to the non-
negativity of the specific heat CΦe

, and under electrical
fluctuation, via the positivity of the electric permittivity ϵT,
represented through the Figs. 2 and 3, respectively.

Curiously enough, the intersection between the regions
present in Figs. 2 and 3 correspond to the sector of Fig. 1,
where this charged configuration is simultaneously locally
stable under thermal and electrical fluctuations. This
feature has been obtained previously for critical gravity
black holes [84], not so for the nonlinear charged configu-
rations [66] dressed with a scalar field nonminimally
coupled, where this solution enjoys local stability under
thermal fluctuations but not under electrical ones.
Given that we are working on a planar base manifold,

some natural open problems can arise. One of them is the
possibility to explore new charged black hole solutions
with some special asymptotically behavior, for example,
the Lifshitz case [94], as well as the hyperscaling violation
situation [95]. Together with the above, by the introduction
of an improper coordinate transformation, called as Lorentz
boost on a static metric (12)

t →
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2
p ðtþ ωx1Þ; x1 →

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ðx1 þ ωtÞ;

ð38Þ

which is well defined for ω2 < 1, we can obtain from the
solution (6), (12), (13), and (15)–(19) spinning and charged
configurations. Additionally, following [64,65], it would be
interesting to construct solutions for different values of the
nonminimal coupling parameter ξ.
Finally, from a holographic motivation, this nonzero

entropy S obtained in the present work, will allow us to
explore the connection between planar black holes and the
effects on shear viscosity, following the steps performed in
[96–98], where the KSS bound for the η=s ratio can be
affected due to the contribution of the coupling constant α̃,
the introduction of the conformal scalar field ψ , as well as
the nonlinear electrodynamics through HðPÞ.
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APPENDIX: EXPLICIT EXPRESSIONS FOR
SOME USEFUL DERIVATIVES

1. Energy-momentum tensor Tϕ
μν, T

ψ
μν

and TNLE
μν from the Eqs. (7)–(11)

In this subsection, we report the energy-momentum
tensor Tϕ

μν, T
ψ
μν and TNLE

μν from the equations of motion
present in Eqs. (7)–(11), which read
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Tϕ
μν ¼ 4

	
1

2
ϕμϕνR − 2ϕλϕðμRλ

νÞ − ϕλϕρRμλνρ − ϕλ
μϕνλ þ ϕμν□ϕþ 1

2
GμνX − gμν

�
−
1

2
ϕλρϕλρ þ

1

2
ð□ϕÞ2 − ϕλρRλρ

�


−
	
−4ϕRλ

μRνλ þ 2ϕgμνRσρRσρ þ 2ϕRμνR −
1

2
ϕgμνR2 − 4ϕRσρRμσνρ þ 2ϕRσρτ

μ Rνσρτ −
1

2
ϕgμνRσρτζRσρτζ

− 2Rϕμν − 4Rμν□ϕþ 2gμνR□ϕþ 8Rλðμϕλ
νÞ − 4gμνRσρϕ

σρ þ 4RμðλjνjσÞϕλσ




− 4

�
−□ϕϕμϕν þ ϕðμXνÞ −

1

2
gμνϕλXλ

�
− 4Xϕμϕν þ gμνX2;

Tψ
μν ¼ ∇μψ∇νψ − gμν

�
1

2
∇σψ∇σψ þ UðψÞ

�
þ ξðgμν□ −∇μ∇ν þGμνÞψ2;

TNLE
μν ¼

�
dH
dP

�
PμαPα

ν − gμν

�
2P

�
dH
dP

�
−H

�
:

2. Pαβγδ, δL=δðϕμÞ, δL=δðψμÞ, δL=δðϕμνÞ and δL=δð∂μAνÞ given in J μ (23) and Qð4Þ (24)

In this subsection, we present the expression of Pαβγδ, δL=δðϕμÞ, δL=δðψμÞ, δL=δðϕμνÞ and δL=δð∂μAνÞ present in the
surface term (23) as well as the 2-form (24):

Pαβγδ ¼ δL
δRαβγδ

¼ 1

4
ð1 − ξψ2Þðgαγgβδ − gαδgβγÞ þ α̃ϕ

2
Rðgαγgβδ − gαδgβγÞ − α̃ϕðgβδRαγ − gβγRαδ − gαδRβγ þ gαγRβδÞ

þ α̃ϕRαβγδ þ α̃

2
ðgαγϕβϕδ þ gβδϕαϕγ − gβγϕαϕδ − gαδϕβϕγ − gαγgβδX þ gαδgβγXÞ;

δL
δðϕμÞ

¼ 4α̃ðGμνϕν −□ϕϕμ þ XϕμÞ;

δL
δðψμÞ

¼ −ψμ;
δL

δðϕμνÞ
¼ −2α̃Xgμν;

δL
δð∂μAνÞ

¼ −Pμν:
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