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We investigate the long-term orbital dynamics of spinless extended bodies in Schwarzschild geometry,
and show that periodic deviations from spherical symmetry in the shape of a test body may trigger the onset
of chaos. We do this by applying Dixon’s formalism at quadrupolar order to a nearly spherical body whose
shape oscillates between a prolate and an oblate spheroid. The late-time chaotic behavior is then verified by
applying Melnikov’s method.
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I. INTRODUCTION

A realistic description of the dynamics of extended
bodies is fundamental to the understanding of several
physical phenomena. For instance, in Newtonian gravity,
an extended body controlling its internal structure can
actively modify its orbit [1–4], as well as stabilize it [5].
The qualitative long-term behavior of a system can also be
deeply affected as finite-size corrections are taken into
account. It was recently shown that this may even trigger
the onset of chaos in an otherwise integrable dynamics of
a test particle [6]. It is to be expected that this fact is all
the more pronounced in relativistic physics, partly due to its
intrinsic nonlinear nature.
In this paper, we explore how extended-body effects in

general relativity may affect the late-time dynamics of a
body by producing chaotic motion, even in situations where
this would not be expected in Newtonian mechanics. We do
this by applying Dixon’s formalism [7–9] at the quadrupolar
order to analyze the motion of a spinless extended body in
the Schwarzschild background, wherein all the point-particle
trajectories (its geodesics) are known and regular. Our key
finding is that periodic perturbations to the internal structure
of a spinless and nearly spherical body can generate chaos in
an otherwise regular translational motion. Bodies of this kind
may be seen as prototypes of spacecrafts or as toy models for
astronomical objects, such as pulsating stars and artificial
satellites with internal motion.

This work is organized as follows. Section II reviews
some aspects of Dixon’s formalism. Section III studies the
dynamics of extended bodies up to quadrupolar order
and prepares the ground for Sec. IV, wherein we apply
Melnikov’s method to show the onset of chaos on the
motion of an extended body with small periodic deviations
from spherical symmetry. We pay special attention to the
case when the body is a nearly spherical ellipsoid whose
shape oscillates between a prolate and a oblate spheroid.
Section V presents our conclusion and final remarks.

II. DIXON’S FORMALISM
FOR QUADRUPOLAR BODIES

Dixon’s formalism is a covariant framework to deal
with extended bodies on curved spacetimes. It was
proposed by Dixon in a series of articles [7–9] in the
seventies; a modern review can also be found at Ref. [10].
It provides both a conceptually satisfying and a powerful
calculation tool to deal with the problem of extended
bodies in general relativity by developing a set of
covariant equations of motion for their linear momentum
pμ and spin tensor Sμν. This is done by means of a (very
carefully chosen) multipolar expansion of the body’s
energy-momentum tensor.
Consider an extended body described by the energy-

momentum tensor Tαβ in a spacetime M with metric gαβ.
We assume that this is a test body, i.e., that the backreaction
of Tαβ on the metric of M is negligible. Its equations of
motion are then given by

∇βTαβ ¼ 0: ð1Þ
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In Dixon’s formalism, the energy-momentum tensor Tαβ

is expressed in terms of a set of multipole moments
associated with it. The four partial differential equations
in (1) are then shown to be equivalent to a set ordinary
differential equations (ODEs) for these multipoles. Crucial
to this method is a very careful choice of a spacetime
foliation near the body by spacelike three-surfaces Σs along
its center-of-mass worldline, zμðsÞ. The latter is implicitly
defined by the condition

SμνðsÞpνðsÞ ¼ 0; ð2Þ

where s is an evolution (timelike) parameter. Each Σs is
given by the three-surface that is orthogonal to pμðsÞ at
zμðsÞ and is generated by all the spacelike geodesics
emanating orthogonally to pμðsÞ from zμðsÞ.
With these particular choices (for the center of mass and

foliation) associated with the body, Eq. (1) determines
ODEs for the evolution of the monopole (pμ) and dipole
(Sμν) moments, while leaving all the remaining (quadru-
pole, octupole, etc.) moments arbitrary. The latter can be
freely chosen as reflecting internal details of the body, such
as its constitutive laws or inner mechanisms. This leads to a
remarkable simplification of the problem.
The new equations of motion are then given by ten ODEs

for the evolution of the momentum pμðsÞ and spin SμνðsÞ
of the body:

Dpμ

ds
¼ −

1

2
Rμ

ναβvνSαβ þ Fμ; ð3aÞ

DSμν

ds
¼ 2p½μvν� þ Nμν; ð3bÞ

where Rμ
ναβ is the Riemann tensor of gαβ and vμ ¼ dzμ=ds

is tangent to the center-of-mass worldline.
The terms Fμ andNμν can be seen as the force and torque

with respect to the center of mass, respectively, that act on
the body, and may be obtained from Eq. (1) in terms of the
multipole expansion discussed above. Their expressions up
to quadrupole order are given by

Fμ ¼ −
1

6
Jαβγδ∇μRαβγδ; ð4aÞ

Nμν ¼ 4

3
Jαβγ½μRν�

γαβ; ð4bÞ

where Jαβγδ is the quadrupole moment of the body [7,8].
This tensor conveys all the information about the internal
structure of the body in Eq. (4) and thus, as long as the
usual energy conditions are satisfied, it may be prescribed
at will [in the sense that any prescription is always
consistent with Eq. (1)]. Moreover, the quadrupole tensor
may be chosen so that it has the same algebraic properties
as the Riemann tensor,

Jαβγδ ¼ J½αβ�γδ ¼ Jαβ½γδ�; J½αβγ�δ ¼ 0: ð5Þ

Symmetries of the spacetime give rise to conserved
quantities constructed from the monopole and dipole
moments. More precisely, one can show that each
Killing vector field ξ on M gives rise to the quantity

Pξ ¼ pμξ
μ þ 1

2
Sμν∇μξν ð6Þ

that is conserved by the time evolution generated by
Eq. (3). This conservation law holds exactly (i.e., regardless
of the quadrupole approximation) and at every perturbation
order [11].
The evolution parameter s is so far arbitrary. Let uμ be

the unit vector in the direction of pμ, so that pμ ¼ muμ with
pμpμ ¼ −m2. The mass m may vary with time when the
body is extended; also, uμ ≠ vμ in general. Usual choices
for the evolution parameter s are the time τ̃ as measured by
an observer momentarily at rest with respect to pμ, so that
vμuμ ¼ −1 [5], and the proper time τ along the center-of-
mass trajectory [12], so that vμvμ ¼ −1. From now on we
choose to take s ¼ τ.
We are concerned here with the motion of an extended

body in a Schwarzschild black hole spacetime, with metric

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð7Þ

where fðrÞ ¼ 1–2M=r andM is the mass of the black hole.
Since this spacetime is static and spherically symmetric,
it possesses four independent Killing vectors, which give
rise to four conserved quantities according to Eq. (6).
It will also be useful in what follows to define the

tetrad fet̂; er̂; eθ̂; eϕ̂g constructed from the coordinate basis
f∂μg as

et̂ ¼
1ffiffiffiffiffiffiffiffiffi
fðrÞp ∂t; er̂ ¼

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
∂r;

eθ̂ ¼
1

r
∂θ; eϕ̂ ¼ 1

r sin θ
∂ϕ: ð8Þ

III. DYNAMICS OF AN AXISYMMETRIC BODY
IN THE SCHWARZSCHILD SPACETIME

It is a well-established fact that spinning particles in
Schwarzschild spacetime may have chaotic behavior if
their initial spin is not aligned with the equatorial plane, see
for instance Ref. [13]. Here we are interested in another
kind of phenomenon and, to emphasize this, we study only
spinless bodies in what follows.
We consider an extended test body which controls its

shape in such a way that it is always axisymmetric and
has reflection symmetry with respect to the equatorial
plane. This is implemented by choosing an appropriate
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prescription for the quadrupole moment of the body,
JαβγδðτÞ, as discussed below. Assume that the body starts
with Sμν ¼ 0. Then it will remain spinless at all times by
symmetry. As a result, Eq. (3a) simplifies to

Dpμ

dτ
¼ Fμ; ð9Þ

for μ ¼ t, r and ϕ (three equations), since the motion is
restricted to a plane (chosen as the equatorial plane
θ ¼ π=2). Equation (3b) is identically satisfied with
Sμν ≡ 0 by symmetry (this, of course, can always be
checked later).1

We note that Eq. (9) is linear in _tðτÞ, _rðτÞ and _ϕðτÞ and so
can be easily rewritten in the form

_tðτÞ ¼ h1ðr; pr; _pr; τÞ; ð10aÞ

_rðτÞ ¼ h2ðr; pr; _pr; τÞ; ð10bÞ

_ϕðτÞ ¼ h3ðr; pr; _pr; τÞ; ð10cÞ

where the dot represents d=dτ. These equations depend
explicitly on τ only via the quadrupole tensor JαβγδðτÞ. Note
that pt and pϕ are constants of motion due to Eq. (6) (with ξ
equal to ∂t and ∂ϕ, respectively) and therefore only appear
in the above equations parametrically. Moreover, also by
symmetry, none of the functions hi depend on t and ϕ (this
too can of course be explicitly checked). Equation (10),
together with the constraint vμvμ ¼ −1, provides four
ODEs to determine the unknown functions tðτÞ, rðτÞ,
ϕðτÞ and prðτÞ.
By substituting Eq. (10) into the constraint vμvμ ¼ −1

we get an equation of the form _pr ¼ h4ðr; pr; τÞ. This can
be substituted in Eq. (10b) to get an equation of the form
_r ¼ h5ðr; pr; τÞ. As a result, we end up with a nonauton-
omous dynamical system of effectively 1 degree of free-
dom, defined by

_pr ¼ h4ðr; pr; τÞ; ð11aÞ

_r ¼ h5ðr; pr; τÞ: ð11bÞ

A. Symmetries of the body

What complicates matters in the procedure just outlined
is that, to implement the conditions that the body is
axisymmetric and has reflection symmetry with respect
to the equatorial plane, we must first go to a moving frame
fēag that moves along with the center of the mass of the

body. It is in this frame that the expression of the quadru-
pole moment has axial and reflection symmetry.
Following Dixon, we take this moving frame by choos-

ing ē0 as the unit vector in the direction of p (i.e., ē0 ¼ u)
and fē1; ē2; ē3g a nonrotating orthonormal triad in the rest
space of ē0. The choice of ē0 in the direction of p instead
of v is due to the fact that it is p that defines the surfaces of
integration Στ of the multipoles (v and u may be thought of
as the kinematical an dynamical velocities, respectively).
Also, by “nonrotating” we mean that the vectors ēa are
M-transported along the center-of-mass curve [7], so that
they are four-vectors Aμ which satisfy the equation of
motion2

DAκ

dτ
−
�
uκ

Duλ
dτ

−
Duκ

dτ
uλ

�
Aλ ¼ 0:

If the worldline is restricted to lie on the equatorial plane
of Schwarzschild spacetime, one may take from start
ē0 ¼ u, ē3 ¼ −eθ̂, so that only ē1 and ē2 need to be
determined. The assumption that the body is axisymmetric
and has reflection symmetry with respect to the equatorial
plane then implies that only six independent components
of the quadrupole tensor may be nonzero in this
(M-transported) frame: J̄0101 ¼ J̄0202, J̄0303, J̄2323 ¼ J̄1313,
and J̄1212 (terms like J̄0123 would be allowed by rotation
symmetry but not by the reflection symmetry).
From a more practical point of view, it is easier to

construct another moving frame feag along the center-
of-mass worldline zμðτÞ, one that is not M-transported
but also satisfies e0 ¼ u and e3 ¼ −eθ̂. Any frame of
this kind can only differ from fēag by a rotation in the
plane of ē1 and ē2, so that ē1 ¼ cosðβÞe1 þ sinðβÞe2,
ē2 ¼ − sinðβÞe1 þ cosðβÞe2, with β ¼ βðτÞ. It immediately
follows that, also with respect to the basis feag, the only
nonzero independent components of the quadrupole tensor
(Jabcd) are again J0101 ¼ J0202, J0303, J2323 ¼ J1313, and
J1212, and that they are the same as those relative to fēag,
i.e., Jabcd ¼ J̄abcd. A frame of this kind which is well suited
for doing calculations is constructed in the Appendix,
which provides a practical way of obtaining the equations
of motion by going to feag first and then returning to the
coordinate basis.
As we also show in the Appendix, the components J̄abcd

of the quadrupole moment enter the equations of motion
only via the combination

q ≔ J̄0101 − J̄0303 − J̄2323 þ J̄1212: ð12Þ

1This does not mean that the body is torque free, as observed
in [5]. In fact, the “electric part” N0i of the torque still contributes
to the hidden momentum of the body.

2Physically speaking, an arbitrary body subjected to a zero
torque (Nμν ¼ 0) would have its spacelike spin vector Sμ ¼
1
2

ffiffiffiffiffiffi−gp
ϵμνγδuνSγδ satisfying the M-transport equation. In this way,

an M-transported fēag provides a physical standard of (absence
of) rotation.
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The components J0i0i and Jijij, i ¼ 1, 2, 3, are, respec-
tively, the mass and stress quadrupole moments of the
body [11]. In this way, q measures the imbalance of the
mass or stress components of Tμν between the z direction
and the xy directions of the axisymmetric body under
consideration. One might think of the body, then, as a
prolate (oblate) ellipsoid when q < 0 (q > 0).3 For a
spherically symmetric body we obviously have q ¼ 0 (this
is also the case for a point particle, for which all the Jabcd
are zero). This implies that a spinless, spherically sym-
metric test body follows geodesics in Schwarzschild
spacetime, just as in the point-particle limit.

B. Equations of motion

Following the procedure outlined above we obtain the
following equations of motion, valid up to quadrupole
order (see the Appendix):

dr
dτ

¼ f1ðr; prÞ þ qðτÞg1ðr; prÞ; ð13aÞ

dpr

dτ
¼ f2ðr; prÞ þ qðτÞg2ðr; prÞ; ð13bÞ

in which f1, f2, g1, and g2 are given by Eq. (A4), where
E ¼ −pt and L ¼ pϕ.
A direct calculation shows that the following relations

hold:

∂f1
∂r

þ ∂f2
∂pr

¼ 0 and
∂g1
∂r

þ ∂g2
∂pr

¼ 0; ð14Þ

so that this dynamical system is Hamiltonian at each order,
with canonical variables ðr; prÞ. This allows us to use the
simplest version of Melnikov’s method to study the onset
of chaos due to a periodic changing of the quadrupole
moments of the body. Since Melnikov’s method searches
for chaos near unperturbed homoclinic orbits of the system,
as explained below, we now look for them.

C. Point-particle case and homoclinic orbit

From the relationship pμpμ ¼ −m2 we can write pr in
terms of r and m:

p2
r ¼

1

fðrÞ
�

E2

fðrÞ −
L2

r2
−m2

�
; ð15Þ

where m may (and usually does) vary with time when the
body is extended. For a point particle, m is constant,
m ¼ m0, and the above equation can be used, in this case,

to write pr as a function of r. Substituting this in (13b),
which in the point-particle case reads

dr
dτ

¼ f1ðr; prÞ;

we obtain

_r2

2
þ 1

2

�
1 −

2M
r

��
l2

r2
þ 1

�
¼ e2

2
; ð16Þ

where the specific energy and angular momentum,

e ¼ E=m0 and l ¼ L=m0;

are also constants.4

Equation (16) is the usual conservation equation for
the orbits of massive particles in Schwarzschild spacetime
when written in terms of an “effective potential”

Veff ¼
1

2
−
M
r
þ l2

2r2
−
Ml2

r3

and with “energy” e2=2. For a certain range of values
of energy and angular momentum, Veff has a local
maximum which corresponds to an unstable circular orbit
at a certain r ¼ run with 3M < run < 6M [see Fig. 1(a)].

(a)

(b)

FIG. 1. (a) Effective potential for the point-particle case. The
orbit with energy e2=2 ¼ VeffðrunÞ is a homoclinic orbit. (b) Plot
of rðτÞ for a homoclinic orbit.

3This is not strictly so since part of q comes from the stress
components of Jabcd, but it helps in making a mental image of
the problem.

4If the body is extended this is no longer true since in that
case m is not constant.
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If we consider only bounded energy level sets (e < 1), then
we must restrict this range to 4M < run < 6M.
The radius run is determined by the (constant) angular

momentum l. This relation can be inverted to parametrize
the unstable circular orbit by run, whose energy and angular
momentum are given by

e ¼ run − 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
runðrun − 3MÞp and l ¼

ffiffiffiffiffi
M

p
runffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

run − 3M
p :

In the phase space ðr; prÞ, the curve that starts and ends at
run corresponds to the homoclinic orbit that we want to
determine. The turning point for this orbit occurs at

rm ¼ 2Mrun
run − 4M

:

We note that the turning point radius rm is larger the closer
run is to 4M. Equation (16) yields

r3=2 _r
ðr − runÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

rm − r
p ¼ �ν; ð17Þ

with

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðrun − 4MÞ
runðrun − 3MÞ

s
:

This leads to

�ντ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrm − rÞ

p
þ ðrm þ 2runÞ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rm − r

r

r

þ 2r3=2unffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm − run

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
runðrm − rÞ
rðrm − runÞ

s
; ð18Þ

in which the integration constant was chosen in such a way
that τðr ¼ rmÞ ¼ 0. Figure 1(b) shows a typical plot of
r versus τ. We note that rðτÞ tends asymptotically to the
unstable equilibrium point run.

D. Extended body and quadrupolar oscillations

We now go back to the case of an extended body which is
axisymmetric and has reflection symmetry with respect
to the equatorial plane. We saw that in the quadrupolar
approximation the finite-size corrections enter the equa-
tions of motion (13) through the parameter q ¼ qðτÞ
of Eq. (12).
In order to analyze the effects of a changing-shape

configuration of the test body on its own translational
dynamics, Eqs. (13), we consider a time-dependent q with
frequency Ω,

qðτÞ ¼ q0 sinðΩτÞ; ð19Þ

oscillating between an oblate (q > 0) and a prolate (q < 0)
spheroid. We show next that this leads to homoclinic chaos
for the extended body if the nonperturbed orbit (in the
point-particle limit) is taken as a homoclinic orbit.

IV. HOMOCLINIC INTERSECTIONS DUE
TO FINITE-SIZE EFFECTS

We start by briefly reviewing Melnikov’s method, an
analytical tool that allows us to search for homoclinic
intersections in the perturbed system’s phase space.
Consider a two-dimensional system subjected to a time
periodic perturbation, for which the equations of motion
can be written in the form

_x ¼ f ðxÞ þ ϵλðx; τÞ; ð20Þ

where x ¼ ðr; prÞ, f ¼ ðf1ðr; prÞ; f2ðr; prÞÞ, λ ¼ ðλ1ðr;
pr; τÞ; λ2ðr; pr; τÞÞ, a dot represents differentiation with
respect to τ, and ϵ ≪ 1. Assume that f and λ are smooth and
bounded and that λ is periodic in τ. Also assume that the
unperturbed system (ϵ ¼ 0) is Hamiltonian (therefore
integrable) and that ðr; prÞ are canonical variables. Then

∂f1
∂r

þ ∂f2
∂pr

¼ 0: ð21Þ

Now suppose that the unperturbed system has an unstable
equilibrium point P0 and an associated homoclinic orbit in
phase space. Since the system is integrable, the system’s
phase portrait will present continuous curves in the
ðr; prÞ space.
Also, consider that the perturbation is Hamiltonian. Then

we can construct a two-dimensional stroboscopic Poincaré
map by plotting in the ðr; prÞ plane, for each orbit, the
events tn ¼ 2nπ=Ω associated with a fixed numerical value
of the Hamiltonian (so that the map is symplectic). For
sufficiently small ϵ, the fixed point in the map is displaced
but still exists. The homoclinic orbit generally splits into
a stable and an unstable manifold of the fixed point
according to the map; if they present transverse intersec-
tions in the ðr; prÞ plane, then the integrability of the
system is broken [14,15].
One way to search for these homoclinic intersections

between the stable and unstable manifolds is by means of
Melnikov’s integral, which gives us the first-order term in
the transverse distance (with respect to the τ ¼ τ0 point of
the unperturbed homoclinic orbit), in phase space, between
these two sets. A complete derivation of Melnikov’s
integral can be found in Ref. [16]. For our purpose, it is
important to know that since Eq. (21) holds, Melnikov’s
integral is given by [15]

Mðτ0Þ ¼
Z

∞

−∞
ðf1λ2 − f2λ1ÞðrðτÞ; prðτÞ; τ þ τ0Þdτ; ð22Þ
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in which ðrðτÞ; prðτÞÞ is evaluated along the unperturbed
homoclinic orbit. Therefore ifMðτ0Þ has isolated zeros then
the unstable and stable manifolds of the perturbed fixed
point cross transversely, generating a homoclinic tangle in
phase space [14].
In our case, f1 and f2 are given by Eqs. (A4a) and (A4c),

and ϵλ1 ¼ qðτÞg1, ϵλ2 ¼ qðτÞg2, with qðτÞ given by
Eq. (19) and g1, g2 given by Eqs. (A4b) and (A4d).
Here, q0 plays the role of the small perturbation parameter
ϵ in Eq. (20). Then the system is Hamiltonian [Eq. (14) is
satisfied] and Melnikov’s method can be applied to the
system, whose unperturbed homoclinic orbit is given
by Eq. (18). After a lengthy calculation, the Melnikov
integral (22) can be written as

Mðτ0Þ ¼ 2 cos ðΩτ0ÞKðΩÞ; ð23Þ

where

KðΩÞ ¼
Z

rm

run

kðrÞ sin ½ΩτðrÞ�dr; ð24Þ

with

kðrÞ ¼ 2Mð−3Mr2 þ 5Mr2un þ r2runÞ
r6ðrun − 3MÞ : ð25Þ

If Ω is such that KðΩÞ ≠ 0, the Melnikov integral will
have only isolated simple roots, which will be located at
Ωτ0 ¼ ðn − 1=2Þπ, with n integer. The behavior of K as a
function of Ω for two different values of run can be seen in
Fig. 2, which shows that KðΩÞ ¼ 0 solely at a discrete set
of values of Ω. This implies the existence of a homoclinic
tangle for arbitrarily small values of the perturbation q0. We
note that both the amplitude and the number of oscillations
increase as run decreases, i.e., as the unperturbed unstable
circular orbit gets closer to the black hole.
The behavior of K can also be illustrated by its K ¼ 0

contour plot in the ðrun;ΩÞ plane, Fig. 3. This shows the
generic appearance of homoclinic intersections, no matter
how small the quadrupole perturbation to the point-particle
dynamics is.
A question which arises is whether these homoclinic

intersections generate chaotic behavior for infinite proper
time. For Hamiltonian systems with bounded unperturbed
energy level sets, homoclinic chaos is guaranteed once
homoclinic intersections are detected [14–16]. In our case,
on the other hand, the Hamiltonian system can be seen as a
system with an escape (or exit, see Ref. [17]), the escape
being the infall of the body into the black hole. Therefore
the system exhibits transient chaos [18,19], since trajecto-
ries will either be regular and bounded or will eventually
fall into the black hole (except from sets of measure zero,
which do not fall into the black hole, as for instance those

with initial conditions lying at the homoclinic tangle
associated with the unstable fixed point [18–20]).
It is implicit in our assumptions about the controllability

of the body’s internal distribution that, no matter how
strong the tidal forces acting on it are, the internal
mechanisms will be able to balance them and maintain

FIG. 2. The function KðΩÞ for run ¼ 4.5M (top) and run ¼ 5M
(bottom); units are such that M ¼ 1. We see that KðΩÞ ≠ 0
almost everywhere in both plots.

FIG. 3. Contour curves corresponding to K ¼ 0 in the ðrun;ΩÞ
plane; units are such that M ¼ 1. We see that K ≠ 0 almost
everywhere in this domain.
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the prescribed oscillations. Also, higher order multipole
terms were neglected in our analysis. These considerations
would have to be taken into account in a more realistic
treatment of the problem.

V. CONCLUSION

It has been recently shown that periodic oscillations in
the mass distribution of a nonrelativistic test body may
generate homoclinic chaos in its otherwise integrable
translational dynamics [6]. Here we took advantage of
the homoclinic orbit associated with an unstable circular
orbit in Schwarzschild spacetime to show that a similar
effect appears in general relativity (notice that such orbits
have no analog in the corresponding nonrelativistic
Kepler’s problem).
Specifically, we considered a spinless axisymmetric

spheroid aligned with the equatorial plane of the spacetime
and allowed it to change its shape periodically between
oblate and prolate configurations. We then showed that this
breaks the system’s integrability via homoclinic crossings
of the stable and unstable manifolds associated with the
unstable circular orbit. These crossings are identified via
Melnikov’s method and give rise to transient chaos in the
system. All of this was done at quadrupolar order using
Dixon’s formalism for extended bodies in general relativity.
It is interesting to note that several authors studied

homoclinic chaos for test-particle motion on black-hole
spacetimes in the past decades (see, for instance,
Refs. [21,22]). Our approach is conceptually different from
theirs as they consider point particles subjected to a
spacetime with an externally perturbed metric. In the present
work, the spacetime is the pure, unperturbed Schwarzschild
spacetime, and the perturbation to test-particle motion comes
from the finite-size structure of the test body.
We therefore believe that the present approach opens

new windows to the study of the dynamics of extended
bodies in standard spacetimes of general relativity. The
present model is applicable to any object with time-varying
internal structure, once the quadrupole approximation
for the body is valid. Although the perturbation assumed
in this work is sinusoidal, any time-dependent quadrupole
perturbation qðτÞ is encompassed by the formalism. This
is the case, for instance, of the long-term behavior of
astronomical bodies with varying internal structure, such
as the orbital motion of variable stars with nonradial
pulsating patterns and satellite motion with prescribed
(time-dependent) shape-changing variations.
Regarding the orbital motion of pulsating stars, although

the typical period of revolution of a star in the MilkyWay is
of the order of 100 Myr, this period becomes very short
near a supermassive black hole as the object approaches the
light ring, r ¼ 3M. Therefore it is possible, in principle, to
have imprints of the chaotic nature of the orbital motion of
such bodies in the time series of the brightness variability of
these stars.
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APPENDIX: OBTAINING THE EQUATIONS
OF MOTION

Here we construct a moving frame feag along the center-
of-mass worldline zμðτÞ which is more amenable to
calculations than the M-transported frame, fēag, but still
has the property Jabcd ¼ J̄abcd (see main text).
We first take e0 ¼ u and e3 ¼ −eθ̂ and choose e1 and e2

as follows. Let ν̂u be the unit vector along the projection of
u on the rest space of et̂, so that ν̂u¼ cosðαuÞer̂þsinðαuÞeϕ̂,
for some angle αu. Then u ¼ γuðet̂ þ νuν̂uÞ, with νu a three-
(dynamical velocity) and γu ¼ ð1 − ν2uÞ−1=2. We may then
define e1 ¼ sinðαuÞer̂ − cosðαuÞeϕ̂ and e2 ¼ γuðνuet̂ þ ν̂uÞ.
The M-transported frame fēag must then differ from feag
only by a rotation in the plane of e1 and e2, so that
ē1¼ cosðβÞe1þsinðβÞe2, ē2¼−sinðβÞe1þcosðβÞe2, with
β ¼ βðτÞ. It immediately follows, also in the basis feag,
that the only nonzero independent components of the
quadrupole tensor (Jαβγδ) are J0101 ¼ J0202, J0303, J2323 ¼
J1313 and J1212, and, for all of these, we get Jabcd ¼ J̄abcd.

5

One can write νu, αu and m in terms of pt, pr and pϕ as
follows. By definition of the frame feag, we have that
ðpaÞ ¼ ð−m; 0; 0; 0Þ. On the other hand, pa ¼ ðeaÞμpμ.
From this equality between the two forms of writing pa
we get

νu cosðαuÞ ¼ −
pr

pt
fðrÞ; ðA1aÞ

νu sinðαuÞ ¼ −
pϕ

pt

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

; ðA1bÞ

along with the already known relation m2 ¼ −pμpμ ¼
fðrÞ−1p2

t − fðrÞp2
r − r−2p2

ϕ. Calculating the force in
Eq. (9) in the moving frame (wherein J is simplest) and
transforming it back to the coordinate basis we obtain the
following nonzero components of Fμ:

5It is worth noting that the quadrupole moments also depend
on the choice of the evolution parameter s. If Jαβγδ (J̃αβγδ) is given
as if the evolution parameter s was chosen as τ (τ̃), we have that
JðτÞ ¼ dτ̃

dτ J̃ðτ̃Þ. The factor in front of J̃αβγδ is anyway unimportant
if one is interested in working up to octupole order, since in that
case dτ̃

dτ J̃ ¼ vμuμJ̃ may be simply replaced by J̃ [23].
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Fr ¼
2Mq
r4

�
3p2

ϕ

�
1 −

2M
r

�
A − 1

�
; ðA2aÞ

Fϕ ¼ 4Mq
r2

prpϕ

�
1 −

2M
r

�
2

A; ðA2bÞ

with A ¼ 1
ð1−2M

r Þðp2
rr2ð1−2M

r Þþp2
ϕÞ−p2

t r
2. Substituting this in Eq. (9) allows us to find the right-hand sides of Eq. (10):

dt
dτ

¼ Eðr − 2MÞðL2ðr − 2MÞð8Mq − r4 _prÞ þ rð2Mqþ r4 _prÞðE2r2 − ðr − 2MÞ2p2
rÞÞ

ðr − 2MÞ3ðMrp2
r − L2ÞðL2 þ rðr − 2MÞp2

rÞ − E2L2r3ðM − rÞðr − 2MÞ − E4Mr6
; ðA3aÞ

dr
dτ

¼ ðr − 2MÞ3prðL2ðr − 2MÞð8Mq − r4 _prÞ − rð2Mqþ r4 _prÞððr − 2MÞ2p2
r − E2r2ÞÞ

r2ðr − 2MÞ3ðMrp2
r − L2ÞðL2 þ rðr − 2MÞp2

rÞ þ E2L2r5ðr −MÞðr − 2MÞ − E4Mr8
; ðA3bÞ

dϕ
dτ

¼ Lðr− 2MÞððr− 2MÞ2ð−ðr4 _prðL2 þ rðr− 2MÞp2
rÞÞ þ 4L2Mqþ 2Mqrð4M − rÞp2

rÞ þE2r4ðr3ðr− 2MÞ _pr þ 2MqÞÞ
r3ðr− 2MÞ3ðL2 þ rðr− 2MÞp2

rÞðMrp2
r −L2Þ þE2L2r6ðr−MÞðr− 2MÞ−E4Mr9

;

ðA3cÞ

where E ¼ −pt and L ¼ pϕ. Noticed that none of these expressions have t or ϕ on their right-hand side, as anticipated
in the main text. They do depend on τ though, via q ¼ qðτÞ.
Finally, following the procedure of the main text we obtain, up to quadrupole order, the dynamical system (13) with

f1 ¼
ðr − 2MÞ3=2prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2r3 − ðr − 2MÞðL2 þ rðr − 2MÞp2
rÞ

p ; ðA4aÞ

g1 ¼ −
4L2Mðr − 2MÞ3pr

ðrðr − 2MÞðL2 þ rðr − 2MÞp2
rÞ − E2r4Þ2 ; ðA4bÞ

f2 ¼
ðr − 2MÞ2ðL2 −Mrp2

rÞ − E2Mr3

r2ðr − 2MÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2r3 − ðr − 2MÞðL2 þ rðr − 2MÞp2

rÞ
p ; ðA4cÞ

g2 ¼
2Mð2L4ðr − 2MÞ2 þ L2rððr − 2MÞ2ð3r − 4MÞp2

r þ E2r2ð8M − 3rÞÞ − ðrðr − 2MÞ2p2
r − E2r3Þ2Þ

r4ððr − 2MÞðL2 þ rðr − 2MÞp2
rÞ − E2r3Þ2 : ðA4dÞ
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[15] P. J. Holmes, Poincaré, celestial mechanics, dynamical-
systems theory and “chaos”, Phys. Rep. 193, 137 (1990).

[16] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields,
Applied Mathematical Sciences Vol. 42 (Springer,
New York, 1983).

[17] S. Bleher, C. Grebogi, E. Ott, and R. Brown, Fractal
boundaries for exit in Hamiltonian dynamics, Phys. Rev.
A 38, 930 (1988).

[18] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, England, 2002).

[19] E. C. da Silva, I. L. Caldas, R. L. Viana, and M. A. F.
Sanjuán, Escape patterns, magnetic footprints, and homo-
clinic tangles due to ergodic magnetic limiters, Phys.
Plasmas 9, 4917 (2002).

[20] A. P. S. de Moura and P. S. Letelier, Chaos and fractals in
geodesic motions around a nonrotating black hole with
halos, Phys. Rev. E 61, 6506 (2000).

[21] L. Bombelli and E. Calzetta, Chaos around a black hole,
Classical Quantum Gravity 9, 2573 (1992).

[22] P. Letelier and W. Vieira, Chaos in black holes surrounded
by gravitational waves, Classical Quantum Gravity 14, 1249
(1997).

[23] R. A. Silva, Swimming in curved spacetime: A fully
covariant approach, Master’s thesis, Instituto de Física
Teórica, 2017.

CHAOTIC DYNAMICS OF A SPINLESS AXISYMMETRIC … PHYS. REV. D 106, 024016 (2022)

024016-9

https://doi.org/10.1007/BF00763547
https://doi.org/10.1103/PhysRevD.94.121502
https://doi.org/10.1103/PhysRevD.94.121502
https://doi.org/10.1103/PhysRevD.55.4848
https://doi.org/10.1103/PhysRevD.55.4848
https://doi.org/10.1016/0370-1573(90)90012-Q
https://doi.org/10.1103/PhysRevA.38.930
https://doi.org/10.1103/PhysRevA.38.930
https://doi.org/10.1063/1.1518681
https://doi.org/10.1063/1.1518681
https://doi.org/10.1103/PhysRevE.61.6506
https://doi.org/10.1088/0264-9381/9/12/004
https://doi.org/10.1088/0264-9381/14/5/026
https://doi.org/10.1088/0264-9381/14/5/026

