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General relativity (GR) exists in different formulations. They are equivalent in pure gravity but
generically lead to distinct predictions once matter is included. After a brief overview of various versions of
GR, we focus on metric-affine gravity, which avoids any assumption about the vanishing of curvature,
torsion, or nonmetricity. We use it to construct an action of a scalar field coupled nonminimally to gravity.
It encompasses as special cases numerous previously studied models. Eliminating nonpropagating degrees
of freedom, we derive an equivalent theory in the metric formulation of GR. Finally, we give a brief outlook
of implications for Higgs inflation.
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I. INTRODUCTION

A. The ambiguities of general relativity

Einstein’s theory of general relativity (GR) describes
gravity in terms of the geometry of spacetime. In its original
version [1], it is solely based on curvature—the rotation of
vectors along closed curves. Correspondingly, the metric
gμν is the unique fundamental variable, i.e., there are only
equations of motion for gμν. The affine connection is
determined a priori as a function of gμν. Its Christoffel

symbols are defined by the conditions Γ
∘ α

βγ ¼ Γ
∘ α

γβ and

∇∘ αgμν ¼ 0, which leads to the unique Levi-Civita con-
nection. One can call this approach the metric formulation
of GR.
It was soon realized that there is another possibility: One

can treat the metric gμν and the Christoffel symbols Γα
βγ as

independent and regard both of them as fundamental
variables [2–12].1 In this case, the Christoffel symbols

Γα
βγ can deviate from the Levi-Civita connection Γ

∘ α
βγ and

are determined by their own equations of motions. This
leads to the emergence of two additional geometrical
concepts. The first one, proposed by Cartan [6–9], is

torsion Tα
βγ ∝ Γα

βγ − Γα
γβ, which corresponds to the non-

closure of infinitesimal parallelograms. The second one
was put forward by Weyl [2,4] and consists of nonmetricity
Qαμν ∝ ∇αgμν. It causes the nonconservation of vector
norms in parallel transport.
The metric formulation of GR is based on the assumption

that both torsion and nonmetricity vanish, i.e., that gravity
is solely characterized by the curvature of spacetime. It is
possible, however, to relax these conditions. Already in
1918, Weyl proposed a theory that features nonmetricity in
addition to curvature [2] (see also [4,5]). If, in contrast, solely
torsion is included on top of curvature, this leads to the
Einstein-Cartan formulation of gravity [6–9,11,12]. If all
three geometric properties—curvature, torsion, and non-
metricity—are included, one obtains a general metric-affine
theory of gravity [17–20]. The list of possible formulations
does not end here. For example, one can consider different
teleparallel equivalents of GR [11,12,21–27], in which
curvature is assumed to vanish, or purely affine gravity
[5,10,28,29], where Γα

βγ is the only dynamical field.
At first sight, these various versions of GR appear to be

very different. However, all of them are fully equivalent to
the metric variant as long as no other fields are coupled
to gravity and the action of the theory is chosen to be
sufficiently simple. In metric-affine formulations, which
encompass Weyl and Einstein-Cartan gravity as special
cases, this can, e.g., be achieved with the usual Einstein-
Hilbert action

R
d4x

ffiffiffiffiffiffi−gp
R, where R is the Ricci scalar.

Then the equivalence to metric GR comes about as follows:
If there is no matter, the equations of motion for Γα

βγ

determine that torsion and nonmetricity vanish. This means
that the Levi-Civita connection emerges dynamically as
their solution. Thus, the different formulations are indis-
tinguishable in a theory of pure gravity, i.e., they represent
an inherent ambiguity of GR.
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1A historical discussion can be found in [13]. Translations
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There are conceptual advantages of gravitational theories
in which gμν and Γα

βγ are treated as independent. First,
boundary terms can be defined without any need for an
infinite counterterm [30]. Second, Einstein-Cartan gravity
can be derived as a gauge theory of the Poincaré group
[31–33], which puts gravity on the same footing as the
other fields of the Standard Model. Third, it may be
regarded as more aesthetical to obtain the Levi-Civita
connection not because of an a priori assumption about
the vanishing of any of the geometrical properties but as a
result of extremizing an action. Nevertheless, none of these
arguments constitute an irrefutable reason to prefer one or
the other formulation.

B. Metric-affine gravity and special cases

Among the possible formulations of GR, metric-affine
gravity stands out because it relies on a minimal number
of assumptions. None of the three geometric properties—
curvature, torsion, and nonmetricity—are assumed to
vanish, and instead all of them are fixed dynamically by
their equations of motion. Moreover, metric-affine gravity
encompasses the Weyl, Einstein-Cartan, and metric ver-
sions of GR as special cases. Therefore, we shall focus on
the metric-affine formulation in the following.
As with all formulations, the equivalence of the metric-

affine and metric versions of GR is generically broken once
gravity is coupled to matter. This happens in two ways. On
the one hand, it is possible that matter fields source torsion
and/or nonmetricity even when they are minimally coupled
to gravity. For example, such a phenomenon occurs for
fermions, but the resulting effects are suppressed by powers
of the Planck mass MP [33,34]. On the other hand, one can
extend the Einstein-Hilbert action by additional terms
composed of torsion, nonmetricity, and possibly matter
fields [35–51]. Such contributions come with a priori
undetermined coupling constants. If they are sufficiently
big, resulting effects can be visible already far below the
Planck scale. In the above discussion, we did not mention
termswith quadratic or higher powers of curvature since they
generically lead to additional propagating degrees of free-
dom and therefore break the equivalence to GR even in the
absence of matter [52–57]. Such models, which cannot be
regarded as different formulations but correspond to mod-
ifications of gravity, will not be considered in the following.
A remark is in order concerning naming. Sometimes the

term Einstein-Cartan gravity is reserved for models with a
minimal action, in which no contributions of torsion are
present in addition to the Einstein-Hilbert term (see, e.g.,
[58–61]).2 In contrast, Einstein-Cartan gravity will also

denote torsionful theories with an extended action in the
present paper. Analogously, we will use the term Weyl
gravity for versions of GR with nonmetricity, whether or
not their action is minimal.3 Finally, it remains to define
what we mean by Palatini gravity. As has become con-
vention, we will use this name for models with non-
metricity, in which the purely gravitational part is
minimal and only consists of the Ricci scalar.4 This makes
the Palatini version of GR a special case ofWeyl gravity. As
it turns out, choosing a minimal action in Einstein-Cartan
gravity also leads to equivalence with the Palatini case.
As a particular consequence of the equivalence among

the different versions of GR, their particle spectra are
identical and only consist of the two polarizations of the
massless graviton. In a broad class of models, this is still the
case in the presence of matter fields, i.e., torsion and
nonmetricity are not dynamical but fully determined by
algebraic equations in terms of the other fields. Therefore, it
is possible to solve for Tα

βγ and Qαμν. After plugging the
results back into the original action, one obtains an
equivalent theory in the metric formulation of gravity. In
it the effects of torsion and nonmetricity are replaced by a
specific set of higher-dimensional operators in the matter
sector. Of course, one could have added such higher-
dimensional terms from the very beginning, but then an
effective field theory approach would have dictated to
include all possible operators. In other words, allowing for
generic gravitational geometries that feature torsion and
nonmetricity provides selection rules for singling out
specific higher-dimensional operators in the matter sector.
In the Einstein-Cartan formulation, i.e., only considering

torsion while still excluding nonmetricity, various choices
of matter fields and terms in the action have been
considered and corresponding equivalent metric theories
have been derived [36,39,45–48,62–68]. So far, the most
complete study, taking into account all fields of the
Standard Model, has been performed in [69], which
encompasses all previously cited papers as special cases.
Additionally, criteria were developed and employed in [69]
for systematically constructing an action of matter coupled
to gravity. Their goal was to avoid making assumptions
about the exclusion of possible terms, while still ensuring
that the resulting theory is equivalent to metric GR in the
absence of matter. This was achieved by only allowing
contributions that are at most quadratic in torsion (or
nonmetricity) and at most linear in curvature. We note,
however, that there are certain models with higher power of
curvature which do not feature additional propagating
degrees of freedom (see [69] for an example and a
corresponding discussion). Therefore, the criteria of [69]

2In this case, the name Poincaré gauge theory is employed for
gravitational models that feature torsion and a nonminimal action.
In other cases, however, one only uses the term Poincaré gauge
theory when additional propagating degrees of freedom due to
torsion are present (see, e.g., [40]).

3Weyl’s original goal was to unify gravity and electromag-
netism—correspondingly, what we denote by Weyl gravity
differs from the theory proposed in [2].

4It is interesting to note that nonmetricity does not appear
explicitly in Palatini’s original work [3] (see discussion in [13]).
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are sufficient but not necessary for the absence of additional
propagating degrees of freedom. Phenomenological impli-
cations of including such terms with higher powers of
curvature, which do not bring about new particles, have
been explored in [70–84].
Investigations in metric-affine gravity, where both tor-

sion and nonmetricity are present in addition to curvature,
were mostly performed with a different approach, in which
matter fields are not specified and no equivalent metric
theory is derived. For example, general actions featuring
all three of these geometric properties were proposed in
[38,42,43], where only parity-even terms were taken into
account. In this case, solutions for torsion and nonmetricity
in terms of the energy-momentum and hypermomentum
tensors were obtained in [43]. An action that also contains
generic parity-odd terms was constructed in [49]. Based
on [85], solutions for torsion and nonmetricity in terms of
the energy-momentum and hypermomentum tensors were
derived in this model in [86]. An explicit computation
of the equivalent metric theory was only performed in [50],
where theories of a scalar field coupled to gravity in the
metric-affine formulation were studied, but solely a specific
subset of possible contributions due to torsion and non-
metricity was included. A similar investigation with a
simpler choice of action was performed in [51].5

The different formulations of GR have manifold cos-
mological implications. An incomplete list of relevant
works includes [45,47,48,63,64,67,89–105] for the case
of Einstein-Cartan gravity and [43,51,106–115] for generic
metric-affine theories (see [116] for a guide to the literature
up to 2004).6 The existence and characteristics of these
effects due to torsion and nonmetricity depend on the
choice of gravitational formulation. In a theory of pure
gravity, however, all versions of GR are equivalent and
therefore on the same footing. This can spoil the unique-
ness of observable predictions and makes it necessary to
systematically explore phenomenological consequences of
the different formulations of GR. In this way, we can hope
to ultimately distinguish between them by observations and
experiments. It is important to reiterate that we do not
discuss modifications of gravity, but solely explore the
consequences of the ambiguities that are inevitably con-
tained in GR. If we do not want results to depend on
potentially unjustified assumptions about the formu-
lation of gravity, we have no choice but to investigate
all of them.
The goal of the present paper is to contribute to this

program. We shall consider a scalar field coupled to gravity
in a generic metric-affine formulation of GR, which

includes both torsion and nonmetricity in addition to
curvature. First, we will construct a corresponding action
by employing the criteria developed in [69]. Subsequently,
we will solve for torsion and nonmetricity and plug the
results back in the action. In this way, we obtain an
equivalent metric theory with specific higher-order oper-
ators for the scalar field. Our investigation aims at unifying
several of the investigations described above. First, we
generalize the scalar part of [69] by including nonmetricity
in addition to torsion. Second, we develop further [86]
by making the matter sector explicit—using a scalar field
as example—and then deriving the equivalent metric
theory. Finally, our work generalizes the paper [50], where
only a subset of terms were included in the study of a
scalar field nonminimally coupled to metric-affine gravity.
Throughout, our analysis will be classical.7

C. Connection to Higgs inflation

In order to deal with the ambiguities due to the different
formulations of GR, a possible approach is to exclude any
large coupling constants in the action. In such a case,
effects that are sensitive to the presence of torsion and/or
nonmetricity are suppressed by powers of MP and generi-
cally of limited phenomenological relevance. However, it is
not always possible to adopt such an attitude.
A famous example in which it fails is the proposal that

the Higgs boson of the Standard Model (SM) caused a
period of exponential expansion in the early Universe
[129]. This idea of Higgs inflation stands out among
inflationary scenarios since it does not require the intro-
duction of any propagating degrees of freedom beyond
those that are already present in the SM and GR. Therefore,
it fits well the fact that so far no such additional particles
have been detected experimentally. Moreover, the predic-
tions of Higgs inflation as derived in [129] are in excellent
agreement with recent observations of the cosmic micro-
wave background [130,131].
However, the scenario of Higgs inflation is only phe-

nomenologically viable if a large coupling constant is
introduced in the action—in the original proposal, which
employed the metric formulation of GR, this was a non-
minimal coupling of the Higgs field and the Ricci scalar
[129]. But beyond the special case of metric GR, many
more analogous terms exist for coupling the Higgs field
nonminimally to gravity. As a large coupling constant
is required in any case, there is no reason to exclude
other large parameters in the action. Correspondingly,
the predictions of Higgs inflation strongly depend on
the choice of gravitational formulation and terms in the

5Additionally, recent computations of an equivalent metric
theory in a metric-affine model that includes fermions can be
found in [87,88].

6We remark that in some of the cited works additional
propagating degrees of freedom are included in the gravity sector
on top of the massless graviton.

7It would be very interesting to investigate if the various
formulations of GR have implications for different approaches
to quantum gravity, e.g., in the contexts of asymptotic safety
[117–119], loop quantum gravity [120–122], the swampland
program [123–125], or quantum breaking [126–128].
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action [50,67,101,132,133].8 So far, only specific special
cases have been analyzed and a systematic study of Higgs
inflation in different versions of GR remains to be com-
pleted. By employing a generic metric-affine formulation,
which encompasses as special cases both metric gravity and
the formulations used in [50,67,101,132,133], we intend to
lay the groundwork for such an investigation.
The outline of the paper is as follows. Section II is

devoted to geometric preliminaries and a more detailed
review of possible formulations of GR. Additionally, we
will introduce the criteria developed in [69] for constructing
an action of matter coupled to gravity. In Sec. III, we
present our theory of a scalar field coupled to GR in the
metric-affine formulation. We first solve for torsion and
nonmetricity and derive the equivalent metric theory.
Subsequently, we show how the results of [50,51,69] are
reproduced as special cases. In Sec. IV, we give a brief
outlook of implications for Higgs inflation and we con-
clude in Sec. V. Appendix A contains a few useful
formulas, in Appendix B we show how parallel transport
along a closed curve is affected by torsion and nonme-
tricity, and Appendix C discusses linear dependence of
different torsion contributions.
Remark.—Preliminary results of the present investiga-

tion already appeared in the master thesis by one of
us [136].
Conventions.—We work in natural units MP ¼ ℏ ¼

c ¼ 1, where MP is the reduced Planck mass, and use
the metric signature ð−1;þ1;þ1;þ1Þ. The covariant
derivative of a vector Aν is defined as

∇μAν ¼ ∂μAν þ Γν
μαAα; ð1:1Þ

i.e., the summation is done on the last index of the
Christoffel symbol. Square brackets denote antisymmetri-
zation, T ½μν� ≡ 1

2
ðTμν − TνμÞ, and round brackets indicate

symmetrization, TðμνÞ ≡ 1
2
ðTμν þ TνμÞ.

II. CURVATURE, TORSION,
AND NONMETRICITY

A. Geometric picture

In order to make our presentation self-contained, we
shall begin by reviewing textbook knowledge about cur-
vature, torsion, and nonmetricity. The reader familiar
with this material is invited to proceed to Sec. II B.
More details about the subsequent discussions can be
found in [137–140].
A differentiable manifold is described by two a priori

independent quantities: the metric and the affine connec-
tion. The metric gμν defines distances in the manifold while

the connection—via the corresponding Christoffel symbols
Γα

βγ—determines how parallel transport relates the tangent
spaces at different points. A vector ξα that is parallel
transported along a curve γðsÞ satisfies the following
equation:

dξα

ds
¼ −Γα

βγ
dxβ

ds
ξγ; ð2:1Þ

where s is an affine parameter. If gμν and Γα
βγ are regarded

as independent fundamental fields, then the Christoffel
symbols Γα

βγ encode three distinct geometric properties.

1. Curvature

The first one is curvature. It describes how parallel
transport modifies the orientation of a vector, as illustrated
in Fig. 1. For an infinitesimally small closed curve, the
change of a vector ξα parallel transported along it is
determined by the Christoffel symbols Γα

βγ (see derivation
in Appendix B),

Δξα ¼ 1

2

I
dτ

dxβ

dτ
xνξγð0ÞRα

γβνð0Þ; ð2:2Þ

where the Riemann tensor emerged,

Rρ
σμν ¼ ∂μΓρ

νσ − ∂νΓρ
μσ þ Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ: ð2:3Þ

As is evident, Rρ
σμν only is a function of Γα

βγ and
insensitive to the metric. Correspondingly, a framework
in which gμν and Γα

βγ are independent can be characterized
as first-order formalism since the Riemann tensor only
contains first derivatives.

FIG. 1. Representation of the effect of curvature. By parallel
transporting the vector v⃗1 along a closed path (in red), we obtain
the vector v2. The initial and the parallel transported vector do not
coincide due to curvature.

8Moreover, studies of inflation driven by a nonminimally
coupled scalar field were performed in purely affine and tele-
parallel formulations [134,135].
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2. Torsion

The second geometric property is torsion [6–9]. It is
defined by

Tα
βγ ≡ 2Γα½βγ� ¼ Γα

βγ − Γα
γβ; ð2:4Þ

i.e., it emerges when the Christoffel symbols Γα
βγ are not

symmetric in the two lower indices. If torsion is present,
then the parallelogram formed by the parallel transport of
two vectors may not close, as represented in Fig. 2. Indeed,
if we consider two infinitesimal vectors AμðxνÞ and BμðxνÞ
and we parallel transport them along each other, we obtain
(see, e.g., also [141])

Aμðxν þ BνÞ ¼ AμðxνÞ − Γμ
αβAβBα;

Bμðxν þ AνÞ ¼ BμðxνÞ − Γμ
αβBβAα; ð2:5Þ

where we used Eq. (2.1). Hence the difference between the
two transported vectors is

AμðxνÞ þ Bμðxν þ AνÞ − ðBμðxνÞ þ Aμðxν þ BνÞÞ
¼ Γμ

αβAαBβ − Γμ
αβBαAβ ¼ 2Γμ½αβ�AαBβ ¼ Tμ

αβAαBβ;

ð2:6Þ

i.e., it is determined by the torsion tensor Γμ
αβ.

3. Nonmetricity

Finally, the third geometric property is nonmetricity.
It emerges if the covariant derivative of the metric does not
vanish and is defined by

Qγαβ ≡∇γgαβ: ð2:7Þ

In the presence of nonmetricity, the norm of the vector may
change under parallel transport. Indeed, we can consider
the length of a vector ξα that is parallel transported,

dv2

ds
¼ dðgμνvμvνÞ

ds

¼ dxα

ds
∇αðgμνvμvνÞ

¼ dxα

ds
ð∇αgμνvμvν þ 2∇αvμ|ffl{zffl}

¼0

gμνvνÞ

¼ dxα

ds
Qαμνvμvν ≠ 0: ð2:8Þ

To summarize, a schematic representation of curvature,
torsion, and nonmetricity is shown in Fig. 3.

4. Special case: Riemannian geometry

As a special case, it is possible to consider a connection

Γ
∘ α

βγ with vanishing torsion and nonmetricity,

Qμαβ ¼ ∇∘ μgαβ ¼ 0; Tα
βγ ¼ Γ

∘ α
βγ − Γ

∘ α
γβ ¼ 0; ð2:9Þ

where ∇∘ is the covariant derivative associated with Γ
∘ α

βγ .
Once these conditions are imposed, the connection is
uniquely determined as a function of the metric gμν,

FIG. 2. Representation of the effect of torsion. Two vectors Aμ

and Bμ are parallel transported along each other. The nonclosure
of the resulting parallelogram, which is displayed in red, is
proportional to torsion.

FIG. 3. Schematic representation of the change of a vector under parallel transport due to the presence of (a) curvature, (b) torsion,
(c) nonmetricity. Figure inspired by [142].
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Γ
∘ α

βγ ¼
1

2
gαμð∂βgμγ þ ∂γgμβ − ∂μgβγÞ: ð2:10Þ

The requirements (2.9) lead to a Riemannian geometry and

Γ
∘ α

βγ is the Levi-Civita connection. According to Eq. (2.3),
the corresponding Riemann tensor reads

R
∘ ρ

σμν ¼ ∂μΓ
∘ ρ

νσ − ∂νΓ
∘ ρ

μσ þ Γ
∘ ρ

μλΓ
∘ λ

νσ − Γ
∘ ρ

νλΓ
∘ λ

μσ: ð2:11Þ

Using the Levi-Civita connection Γ
∘ α

βγ leads to the metric
formulation of GR. Since in this case second derivatives of
the metric appear in Eq. (2.11), one can call it a second-
order formalism.
It is worth noting that there is an asymmetry between

curvature on the one side and torsion/nonmetricity on
the other side. Whereas curvature does not influence
torsion/nonmetricity, Eq. (2.2) shows that torsion and
nonmetricity contribute to curvature (see also computation
in Appendix B). Correspondingly, an assumption about
the absence of torsion and/or nonmetricity, displayed in
Eq. (2.9), has different consequences than assuming that
curvature vanishes. We will elaborate on this point in
Sec. II C.

B. Decomposition of torsion and nonmetricity

In full generality, we can decompose the connection into
its Levi-Civita part and deviations from Riemannian
geometry,

Γγ
αβ ¼ Γ

∘ γ
αβðgÞ þ JγαβðQÞ þ Kγ

αβðTÞ: ð2:12Þ

Here Γ
∘ γ
αβðgÞ is the Levi-Civita connection, which only

depends on the metric, Kγ
αβðTÞ corresponds to the con-

torsion tensor depending on the torsion, and JγαβðQÞ is the
disformation tensor depending on the nonmetricity. Since
contorsionKγ

αβ is defined to be insensitive to nonmetricity,
it follows that ∇αgμνjJγαβ¼0 ¼ 0. This condition determines
contorsion as a function of torsion,

Kαβγ ¼
1

2
ðTαβγ þ Tβαγ þ TγαβÞ; ð2:13Þ

where as usual Kαβγ ≡ gασKσ
βγ . Similarly, we find the

expression of disformation in terms of nonmetricity by
imposing that Γγ ½αβ�jJαβγ¼0 ¼ 0. This leads to

Jαμν ¼
1

2
ðQαμν −Qναμ −QμανÞ: ð2:14Þ

Note that Eq. (2.13) is sensitive to the convention (1.1)
for the covariant derivative, whereas Eq. (2.14) is not.
Contorsion is antisymmetric in the first and last indices,

Kαβγ ¼ K½αjβjγ�, while disformation is symmetric in last two
indices, Jαβγ ¼ JαðβγÞ.
We can invert relations (2.13) and (2.14) to express

torsion in terms of contorsion and nonmetricity in terms of
disformation,

Qαβγ ¼ −2JðβjαjγÞ; Tαβγ ¼ 2Kα½βγ�: ð2:15Þ

This shows that contorsion (respectively, disformation)
and torsion (respectively, nonmetricity) encode the same
information, because we can go from one to the other with a
bijective transformation. Therefore, we can either view Γγ

αβ

as fundamental field or Tγ
αβ and Qγ

αβ. Practically, this
means that varying the action with respect to Γγ

αβ is
equivalent to simultaneous variations with respect to
Tγ

αβ and Qγ
αβ.

We can further split torsion and nonmetricity in vector
and tensor parts. For torsion, irreducible representations are
given by [40,43,44]

the trace vector; Tα ¼ gμνTμαν; ð2:16Þ

the pseudotrace axial vector; T̂α ¼ ϵαβμνTβμν; ð2:17Þ

thepure tensor part; tαβγ that satisfiesgμνtμαν ¼ 0¼ ϵαβμνtβμν:

ð2:18Þ

Torsion can be expressed uniquely in terms of these
irreducible pieces as

Tαβγ ¼ −
2

3
gα½βTγ� þ

1

6
ϵαβγνT̂

ν þ tαβγ: ð2:19Þ

Similarly, we can split nonmetricity into three pieces
[40,43],

a first vector; Qγ ¼ gαβQγαβ; ð2:20Þ

a second vector; Q̂γ ¼ gαβQαγβ; ð2:21Þ

thepure tensor partqαβγ that satisfiesgαβqγαβ ¼ 0¼ gαβqαγβ:

ð2:22Þ

Note that this decomposition does not correspond to
irreducible representations since a fully symmetric tensor
can still be separated from the pure tensor part qαβγ [40,43].
In what follows, however, it will not be useful to further
split qαβγ . Nonmetricity can be expressed uniquely in terms
of the components of Eqs. (2.20)–(2.22),

Qαβγ ¼
1

18
½gβγð5Qα − 2Q̂αÞ þ 2gαðβð4Q̂γÞ −QγÞÞ� þ qαβγ:

ð2:23Þ

CLAIRE RIGOUZZO and SEBASTIAN ZELL PHYS. REV. D 106, 024015 (2022)

024015-6



As is evident from (2.16) to (2.19), the mapping of the full
torsion tensor Tαβγ to the irreducible components Tα, T̂α,
and tαβγ is bijective. Equations (2.20)–(2.23) show that an
analogous statement holds for the full nonmetricity tensor
Qαβγ and the contributions Qγ, Q̂γ , and qαβγ . Since also the
mapping between Tγ

αβ and Qγ
αβ on the one hand and the

full connection Γγ
αβ on the other hand is bijective, we

conclude that a variation with respect to Γγ
αβ is equivalent

to a simultaneous variations with respect to the six tensors
Tα, T̂α, tαβγ , Qγ, Q̂γ , and qαβγ. Finally, let us discuss the
number of independent components in each irreducible
piece. First, Tαβγ is antisymmetric in its last two indices,
yielding 4 × 6 ¼ 24 independent components. Because Tα

and T̂α are vectors, they can only have 4 independent terms,
and tαβγ then carries the remaining 16 independent com-
ponents. For nonmetricity, the number is higher because
Qαβγ is symmetric in the last two indices, leading to
4 × 10 ¼ 40 independent components. Following the same
argument, Qα and Q̂α each carry 4 independent compo-
nents, while qαβγ carries 32. Overall, the sum reproduces 64
independent components of the initial affine connection
Γα

βγ , in accordance with bijectivity.
Using the decomposition (2.12) of the connection as well

as formulas (A3)–(A7) from Appendix A, we can split the
Ricci scalar as follows (see also [67]):

R ¼ R
∘ þ∇∘ αðQα − Q̂α þ 2TαÞ − 2

3
TαðTα þQα − Q̂αÞ

þ 1

24
T̂αT̂α þ

1

2
tαβγtαβγ −

11

72
QαQα þ 1

18
Q̂αQ̂

α

þ 2

9
QαQ̂

α þ 1

4
qαβγðqαβγ − 2qγαβÞ þ tαβγqβαγ; ð2:24Þ

where R
∘ ¼ gμνR

∘ α
μαν is the scalar curvature solely computed

from the Levi-Civita connection Γ
∘ α

βγ, as derived from the
Riemann tensor shown in Eq. (2.11).
The scalar curvature R obeys an interesting property: it is

invariant under projective transformation, defined by
[18,28,143–147]

Γγ
αβ → Γγ

αβ þ δγβAα; ð2:25Þ

with Aα ¼ AαðxÞ an arbitrary covariant vector field.
Geometrically, Eq. (2.25) represents the most general
transformation that changes the autoparallel curves by a
reparametrization of their affine parameter (see [148] for
details). Notably, most irreducible components are not
invariant under Eq. (2.25),

Tα → Tα þ 3Aα; T̂α → T̂α;

Qα → Qα − 8Aα; Q̂α → Q̂α − 2Aα; ð2:26Þ

but the combination that enters into the scalar curvature
given in Eq. (2.24), and correspondingly the Einstein-
Hilbert action, are invariant. As long as an action remains
unchanged under projective transformations, the connec-
tion Γγ

αβ cannot be uniquely determined by its equations of
motion [18,28,143–147]. However, a general theory may
not be invariant under the projective transformation, as will
be discussed in Sec. III.

C. Classifying possible theories

We have seen that a generic geometry of spacetime can
be characterized by the three properties: curvature, torsion,
and nonmetricity. When devising a theory of gravity, one
has to decide for each of these three concepts whether they
should be included or excluded. Therefore, up to eight
choices are available to us. Clearly, excluding all nontrivial
geometry leads to a Minkowski spacetime and the absence
of gravity, which leaves us with seven possibilities. As we
shall discuss, all seven indeed lead to viable formulations of
gravity, which are summarized in Table I.
Expanding on the Introduction, we shall discuss them in

the following. In doing so, we will briefly sketch how some
of their properties can be derived. Our goal is to convey to
the reader a rough idea of the underlying calculations in a
manner that is as concise as possible. Therefore, we leave
out many details and equations in the present Sec. II C are
only symbolic. Precise computations for the metric-affine
formulation will be presented in Sec. III. For teleparallel

TABLE I. List of different formulations of gravity. Properties are summarized, with a display of the vanishing of
tensorial quantities. As in the text, T2 stands for an arbitrary invariant composed of torsion Tαβγ , and analogous
statements apply to QT and Q2.

Formulation of gravity Rαβγδ Tαβγ Qαβγ

Equivalent to metric GR for arbitrary
coefficients of T2, QT, Q2

Metric-affine [17–20] Yes
Einstein-Cartan [6–9, 11, 12] ¼ 0 Yes
Weyl [2, 4, 5] ¼ 0 Yes
Metric [1] ¼ 0 ¼ 0 � � �
Generic teleparallel [27] ¼ 0 No
Metric teleparallel [11, 12, 21–25] ¼ 0 ¼ 0 No
Symmetric teleparallel [26] ¼ 0 ¼ 0 No
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theories, we refer the reader to the references displayed
subsequently.

1. Theories with curvature

First, we shall discuss the four possible formulations that
feature curvature. Clearly, excluding a priori both torsion
and nonmetricity results in the most commonly used metric
version of GR [1]. In the absence of matter, its action is
given by

Lmetric ∼ R
∘
; ð2:27Þ

where R
∘
is the curvature determined by the Levi-Civita

connection, as defined in Eq. (2.11). Next, we shall discuss
the effect of including the other two geometric concepts.
As reviewed in the Introduction, adding nonmetricity in
addition to curvature leads to Weyl gravity [2,4], whereas a
theory that features both torsion and curvature corresponds
to the Einstein-Cartan formulation [6–9,11,12]. Including
all three geometric properties—curvature, torsion, and
nonmetricity—results in a general metric-affine theory of
gravity [17–20]; see [40,58–61] for reviews.
Once torsion and/or nonmetricity are included, the

next question is what action one should use. An obvious
choice is

Laffine; specific ∼ R; ð2:28Þ

where the corresponding Riemann tensor is defined in
(2.3). Such a model, in which the purely gravitational
action only consists of the Ricci scalar, leads to the Palatini
version of GR (see discussion in Sec. I). As derived in

Eq. (2.24), we can split R in a part R
∘
that solely depends on

the Levi-Civita connection Γ
∘ α

βγ and quadratic invariants
composed of torsion and/or nonmetricity. We note that we

can leave out contributions of the form∇∘ Tα and ∇∘ Qα since
they only lead to boundary terms. Moreover, the quadratic
contributions of torsion and nonmetricity in Eq. (2.28) have
fixed coefficients [e.g., QαQα comes with a factor of
−11=72; see Eq. (2.24)]. However, we can be more general
and include quadratic invariants with arbitrary coefficients.
We will give the precise form of the resulting action in
Sec. III [see Eq. (3.1)]. For now, we shall content ourselves
with briefly sketching the effect of including torsion and/or
nonmetricity. To this end, it suffices to write symbolically

Laffine ∼ R
∘ þ cTTT2 þ cQQQ2 þ cTQTQ; ð2:29Þ

where T and Q stand for any tensor linear in torsion and
nonmetricity, respectively. (For example, T can represent
Tα, T̂α, and tαβγ). Moreover, cTT , cQQ, and cTQ are arbitrary
coefficients. Now we can determine torsion and/or

nonmetricity by their equations of motion. For the action
(2.29), a solution is given by

T ¼ 0; Q ¼ 0: ð2:30Þ

Thus, the two additional geometric properties vanish
dynamically in the absence of matter. This shows why
in purely gravitational theories of the form (2.29), the
metric-affine formulation as well as its two special cases,
Einstein-Cartan and Weyl gravity, are equivalent to the
most commonly used metric version of GR.
Next, we shall repeat the previous discussion in the

presence of matter, where we use a scalar field h as an
example. Motivated by an analogy to the Higgs field of the
Standard Model in unitary gauge, we shall assume that h
possesses a Z2-symmetry h → −h. Apart from this prop-
erty, however, hwill represent in the present work a generic
scalar field, which can be different from the Higgs field.
In the metric formulation, the action for coupling h to
gravity is given by

Lmetric ∼ R
∘ þ ξh2R

∘ þ Lm; ð2:31Þ

which reduces to Eq. (2.27) in the absence of matter. Here ξ
parametrizes a nonminimal coupling of the scalar field to
gravity and Lm can contain all operators in the matter sector
that are independent of the Christoffel symbols. Once
torsion and/or nonmetricity are included, the generalization
of Eq. (2.28) leads to

Laffine; specific ∼ Rþ ξh2Rþ Lm: ð2:32Þ

Again we can use Eq. (2.24) to split R in a Levi-Civita part

R
∘
and terms involving torsion and/or nonmetricity. Due to

the nonminimal coupling of h to R, now also the terms of

the form ∇∘ αTα and ∇∘ αQα give a nontrivial contribution. As
before, we replace specific by arbitrary coefficients, and so
the generalization of Eq. (2.29) in the presence of matter
yields

Laffine ∼ R
∘ þ ξh2R

∘ þ ðcTT þ c̃TTh2ÞT2

þ ðcQQ þ c̃QQh2ÞQ2 þ ðcTQ þ c̃TQh2ÞTQ
þ ξTh2∇

∘
T þ ξQh2∇

∘
Qþ Lm: ð2:33Þ

It is important to note that the number of coefficients
describing a nonminimal coupling of matter to gravity has
significantly increased. Whereas only one such parameter
exists in metric gravity (ξ), many more analogous con-
tributions emerge in the metric-affine formulation. Once
torsion and/or nonmetricity are present, there is no reason
to exclude the couplings of matter to gravity, which are all
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on the same footing as the single nonminimal coupling term
in metric gravity.
In Eq. (2.33), the equations of motion for J andQ yield a

nontrivial result,

T ∼ ∂h2; Q ∼ ∂h2: ð2:34Þ

The significance of this finding is twofold. First, it shows
how torsion and/or nonmetricity are sourced once appro-
priate couplings to matter, such as a scalar field, are added.
Second, the solution (2.34) is algebraic. Thus, torsion and
nonmetricity do not propagate, and also metric-affine
gravity only features excitations of a massless graviton.
As a particular consequence, we can plug the solution
(2.34) back into the action (2.33),9

Laffine ∼ R
∘ þ ξh2R

∘ þ fðhÞð∂h2Þ2 þ Lm; ð2:35Þ

where fðhÞ is a function of h that is determined by the
parameters appearing in the action (2.33). We can call
Eq. (2.35) the equivalent metric theory, in which the effects
of torsion and/or nonmetricity are replaced by specific
additional operators in the matter sector.
In summary, we have outlined why, in the presence of

matter, the different formulations of gravity that feature
curvature are no longer equivalent. Their difference can be
reduced to specific additional interactions in the matter
sector, which feature a number of a priori unknown
coupling constants. Finally, we note that the limits of
excluding torsion and/or nonmetricity are smooth, i.e., the
following two procedures lead to the same result. On the
one hand, one can assume a priori that torsion and/or
nonmetricity vanish. On the other hand, it is equivalent to
put in the Lagrangian the coefficients of all terms involving
T and/or Q to zero. To obtain the Einstein-Cartan formu-
lation for example, one can simply set in Eq. (2.33) all
coefficients involving Q to zero and arrive at an accord-
ingly simplified equivalent metric theory (2.35). A sum-
mary of the relation between the different theories of
gravity with curvature is given in Fig. 4.

2. Teleparallel theories

Next, we shall turn to three possible teleparallel
formulations of GR, in which curvature is excluded; see
[140,149–152] for reviews. First, a metric teleparallel theory
was proposed, in which only torsion is present and non-
metricity is assumed to vanish [11,12,21–25]. Subsequently,
a symmetric teleparallel formulation was developed that
exclusively features nonmetricity [26]. Only very recently,
a general teleparallel theory was constructed that simu-
ltaneously contains both torsion and nonmetricity [27].

The assumption of vanishing curvature has different impli-
cations than setting to zero torsion and/or nonmetricity.
Assuming that the latter two quantities vanish in a metric-
affine formulation does not have any effects on the Levi-

Civita curvature R
∘
. In contrast, this is not the case for the

assumption of teleparallelism, as one can anticipate from
Eq. (2.24), which shows that curvature is the sum of a Levi-

Civita part R
∘
and contributions of torsion and nonmetricity.

Therefore, setting to zero curvature can constrain R
∘
in terms

of torsion and/or nonmetricity. In the following, we shall
briefly sketch how this comes about, and we refer the reader,
e.g., to [27,140,152–154] for more details.
As in [27], we will include both torsion and nonme-

tricity.10 First, we consider the theory in the absence of
matter, where we follow [152]. In analogy to Eq. (2.28),
we start from the action

Lteleparallel; specific ∼ −T2 −Q2 − TQ

þ λðR∘ þ T2 þQ2 þ TQþ∇∘ T þ∇∘ QÞ;
ð2:36Þ

where the Lagrange multiplier λ ¼ λðxÞ enforces the
constraint of vanishing curvature. Moreover, the coeffi-
cients of the quadratic invariants in torsion and/or non-
metricity are fixed according to Eq. (2.24), up to a sign
change in the first three terms. The motivation for this
specific choice of parameters comes from ensuring
equivalence to metric GR. Namely, we can plug the

constraint −T2 −Q2 − TQ ¼ R
∘ þ∇∘ T þ∇∘ Q back in the

action (2.36) to obtain

Lteleparallel; specific ∼ R
∘ þ∇∘ T þ∇∘ Q: ð2:37Þ

FIG. 4. Diagram of relations between different formulations of
gravity with curvature. Starting from the most general class of
metric-affine theories of gravity in the lower, left corner; one can
obtain specific limits by imposing that torsion or nonmetricity
vanish.

9We remark that Eqs. (2.33)–(2.35) are symbolic versions of
Eqs. (3.1), (3.3), and (3.9), respectively, which will be derived in
the subsequent Sec. III.

10It is straightforward to leave out one of the two quantities,
and analogous statements will apply.
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Up to a boundary term, this coincides with the result (2.27)
of metric gravity. Therefore, Eq. (2.36) is the action of the
general teleparallel equivalent of GR [27]. Leaving out all
terms involving nonmetricity leads to the metric teleparallel
equivalent of GR [11,12,21–25].11 Correspondingly, omit-
ting all contributions of torsion yields the symmetric
teleparallel equivalent of GR [26]. We shall not explicitly
discuss how matter can be coupled to the different tele-
parallel equivalents of GR, but only refer the reader to the
literature. It was noted early on that in torsionful theories an
issue can arise due to fermions [25] but that a consistent
interaction with matter can be achieved with an appropriate
choice of coupling prescription; see [25,150,155–163] for
studies excluding nonmetricity and [153,154,164–167] for
investigations without this restriction. We note that the
symmetric teleparallel equivalent of GRmay evade some of
the ambiguities caused by torsion [153,154,165,167].
Finally, we shall give a brief outlook to generalizations

of the Lagrangian (2.36). First, one can attempt to choose
arbitrary coefficients in Eq. (2.36), in analogy to our
approach in the metric-affine case. For the case of vanish-
ing nonmetricity, this was already suggested in [25] under
the name of new GR and symbolically reads

Lteleparallel; generic ∼ cTTT2 þ λðR∘ þ T2 þ∇∘ TÞ; ð2:38Þ

where we note that the parameters in the constraint remain
fixed. However, issues were discovered in this model
[168–171]. Moreover, it generically contains additional
propagating degrees of freedom [169], and so it differs from
metric GR already in the absence of matter and does not
correspond to an equivalent formulation.12 Analogous
statements, namely that additional propagating degrees
of freedom emerge for generic parameter choices, hold
in the other teleparallel models. For a theory that only
features nonmetricity, this question was studied in
[153,154], where the term “newer GR” was introduced,
and a model with both torsion and nonmetricity was
investigated in [27]. Thus, even though the geometry
of a generic teleparallel theory is simpler than in the
metric-affine case, its particle spectrum is more involved.
Starting from a generic gravitational Lagrangian (2.38),
equivalence with metric GR is only achieved for specific
values of the coefficients. These parameter choices can
arise as a result of symmetries [27,153,154,165]. Applica-
tions of teleparallel gravity to cosmology, e.g., with respect

to inflation and dark energy, can for example be found in
[133,153,154,172–190]; see also [191] for a review.13

A summary of the relation between the different theories
of gravity without curvature is given in Fig. 5.

D. Selection rules

In the preceding section, we have already outlined
schematically the class of models that we shall investigate.
In order to proceed systematically, we will now review the
criteria developed in [69] for constructing an action of matter
coupled to gravity. Only torsion was considered in [69], but
the conditions equally well apply to a metric-affine formu-
lation in which both torsion and nonmetricity are present.
In addition to (implicit) requirements of Lorentz invariance
and locality, the criteria of [69] demand the following:
(1) The purely gravitational part of the action should only

feature operators ofmass dimension not greater than 2.
(2) The matter Lagrangian should be renormalizable in

the flat space limit, i.e., for gμν ¼ ημν and Γα
μλ ¼ 0.

(3) The interaction of gravity and matter should only
happen via operators of mass dimension not greater
than 4.

Subsequently, we shall discuss their motivation and
implications.
Since torsion and nonmetricity havemass dimension 1 and

curvature has mass dimension 2, criterion (1) implies that
terms at most quadratic in torsion/nonmetricity and linear in
curvature can be included. Following the arguments of the
preceding section, one can equivalently say that this condition
arises from the decomposition (2.24) of curvature. Namely,
it amounts to including contributions analogous to those
already contained in curvature but with arbitrary coefficients.
The purpose of criterion (1) is to ensure equivalence with
metric GR in the absence of matter. Correspondingly, it
excludes terms that are quadratic or higher in curvature since
they generically lead to new propagating degrees of freedom.
What is more, some of these additional particles also cause
inconsistencies, in particular since they correspond to ghosts,
i.e., have a kinetic term with a wrong sign. Note that this is

FIG. 5. Diagram of relations between different formulations of
gravity without curvature. Starting from the most general class of
teleparallel theories of gravity on the left, one can obtain specific
limits by imposing that torsion or nonmetricity vanish.

11Since this theory was constructed first, it is often simply
referred to as teleparallel equivalent of GR.

12The fact that a derivative of torsion appears in the constraint

R
∘ þ T2 þ ∇∘ T ¼ 0 is already an indication that the teleparallel
theory (2.38) contains additional propagating degrees of freedom,
unless specific values of the parameters are chosen; we refer the
reader, e.g., to [154] for a detailed computation.

13We remark that problems associated with strong coupling
were reported in some of these models [165,185,192–194].
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already the case in metric gravity [52], and numerous addi-
tional problematic terms arise in the presence of torsion
[53–57]. We must mention, however, that certain combina-
tions of curvature-squared contribution only lead to new
propagating degrees of freedom that are healthy; see
[169,195–207] for studies in the presence of torsion and
[208–214] for extensions to nonmetricity. Moreover, it is
possible to construct theories with terms that are quadratic in
curvature that do not feature at all any additional propagating
degrees of freedom [69]. Therefore, criterion (1) is sufficient
but not strictly necessary for ensuring that the gravitational
theory is equivalent to metric GR in pure gravity.
Criterion (2) implies that the matter sector only contains

operators of mass dimension not greater than 4. This
assumption is crucial for the predictiveness of our setup.
Without it, one could have added from the beginning generic
higher-dimensional operators to our model and the specific
higher-dimensional operators that arise due to torsion and
nonmetricity would be meaningless. Needless to say, the
validity of this approach, in which the matter Lagrangian
solely features those nonrenormalizable operators that result
from torsion and nonmetricity, remains to be checked. At
least in principle, this can be done by systematically
exploring the predictions that result from the specific
higher-dimensional interactions and then comparing them
with observations and experiments. In the present paper, we
lay thegroundwork for such studies by explicitly deriving the
set of predicted operators in the scalar sector.

Criterion (3) can be regarded as an attempt to define the
notion of nonminimal coupling independent of the formu-
lation of GR. In metric gravity, there is a unique operator
for coupling a Z2-symmetric scalar field h nonminimally to

GR, namely h2R
∘

[see Eq. (2.31)]. Since it has mass
dimension 4, criterion (3) aims at generalizing the notion
of nonminimal coupling by selecting all terms that are on
the same footing as the nonminimal coupling in metric GR.
However, criterion (3) is not crucial for our approach. It can
be relaxed, as long as one makes sure that the coupling of
matter and gravity does not lead to any additional propa-
gating degrees of freedom. Correspondingly, we shall keep
our discussion general and not impose criterion (3) in some
parts of the present work. It will only be implemented from
Sec. III C on.

III. SCALAR FIELD COUPLED TO
METRIC-AFFINE GRAVITY

A. The theory

Next, we shall consider a scalar field h coupled to gravity
and write down the most general action obeying selection
rules (1) and (2). Wewill rely on a decomposition of torsion
and nonmetricity into vector and tensor parts, as shown in
Eqs. (2.16)–(2.23). This method, which was introduced
in [43], makes it significantly easier to solve the equations
of motion. We get the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Ω2ðhÞR∘ − 1

2
K̃ðhÞgαβ∂αh∂βh − VðhÞ ð3:1aÞ

þ A1ðhÞ∇
∘
αT̂

α þ A2ðhÞ∇
∘
αTα þ A3ðhÞ∇

∘
αQ̂

α þ A4ðhÞ∇
∘
αQα ð3:1bÞ

þ B1ðhÞQαQα þ B2ðhÞQ̂αQ̂
α þ B3ðhÞQαQ̂

α þ B4ðhÞqαβγqαβγ þ B5ðhÞqαβγqβαγ ð3:1cÞ
þ C1ðhÞTαTα þ C2ðhÞT̂αT̂

α þ C3ðhÞTαT̂
α þ C4ðhÞtαβγtαβγ ð3:1dÞ

þD1ðhÞϵαβγδtαβλtγδλ þD2ðhÞϵαβγδqαβλqγδλ þD3ðhÞϵαβγδqαβλtγδλ ð3:1eÞ

þE1ðhÞTαQα þ E2ðhÞT̂αQα þ E3ðhÞTαQ̂
α þ E4ðhÞT̂αQ̂

α þ E5ðhÞtαβγqβαγ
�
: ð3:1fÞ

Since at this point we have not yet enforced selection rule
(3) of Sec. II D, Ω2ðhÞ, K̃ðhÞ, AiðhÞ, BiðhÞ, CiðhÞ, DiðhÞ,
and EiðhÞ in Eq. (3.1) represent arbitrary functions of h.
Besides, some of the possible nonvanishing terms have not
been included in the action, such as, e.g., tαβγtβαγ . The
reason is that they are linearly dependent on terms that are
already present. For more details, we refer the reader to
Appendix C, where the independence of terms is discussed.
Notice that, for generic choices of coefficient functions,
the action Eq. (3.1) is not invariant under the projective
transformation shown in Eq. (2.25). Thus, the connection
can be uniquely determined by its equations of motion.

Let us briefly comment on related works in metric-affine
gravity. A general action that features all independent
invariants composed of torsion and nonmetricity was already
introduced in [49], where torsion and nonmetricity were not
split into pure vector and tensor parts. The matter sector was
not made explicit in [49], and so the functions Ω2ðhÞ, K̃ðhÞ,
and AiðhÞwere not present. The action proposed in [49] was
further studied in [86] and solutions for torsion and non-
metricity were derived in terms of energy-momentum and
hypermomentum tensors. Unlike in the present work, the
paper [86] employed amethod for finding solutions that does
not require the separation of pure tensor parts [215,216].
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B. Derivation of equivalent metric theory

We can now vary the action given in Eq. (3.1) with respect to the six tensors Tα, T̂α, tαβγ ,Qγ , Q̂γ, and qαβγ, as discussed in
Sec. II B. We obtain the following equations of motion:

2C2ðhÞT̂α þ C3ðhÞTα þ E2ðhÞQα þ E4ðhÞQ̂α ¼ A0
1ðhÞ∂αh;

2C1ðhÞTα þ C3ðhÞT̂α þ E1ðhÞQα þ E3ðhÞQ̂α ¼ A0
2ðhÞ∂αh;

2B2ðhÞQ̂α þ B3ðhÞQα þ E3ðhÞTα þ E4ðhÞT̂α ¼ A0
3ðhÞ∂αh;

2B1ðhÞQα þ B3ðhÞQ̂α þ E1ðhÞTα þ E2ðhÞT̂α ¼ A0
4ðhÞ∂αh;

2B4ðhÞqαβγ þ 2B5ðhÞqðβαÞγ þ 2D2ðhÞϵαλδðβqλδγÞ þD3ðhÞϵαλδðβtλδγÞ − E5ðhÞtðβγÞα ¼ 0;

2C4ðhÞtαβγ þ 2D1ðhÞϵαλδ½βtλδγ� þD3ðhÞϵαλδ½βqλδγ� þ E5ðhÞq½βγ�α ¼ 0; ð3:2Þ
where prime denotes derivative with respect to h. Solutions can be found explicitly as the equations of motion are algebraic.
We first notice that there are no source terms for the pure tensor parts, hence they simply vanish.14 On the contrary, the
vector parts Tα, T̂α, Qα, and Q̂α do not vanish because of the presence of source terms AiðhÞ. We obtain the solutions15

Qα ¼ V
Z
∂
αh; Q̂α ¼ W

Z
∂
αh; Tα ¼ X

Z
∂
αh; T̂α ¼ Y

Z
∂
αh; tαβγ ¼ qαβγ ¼ 0: ð3:3Þ

The common denominator reads

Z ¼ B2
3ð4C1C2 −C2

3Þ þ 4B2C2E2
1 − 4B2C3E1E2 þ 4B2C1E2

2 −E2
2E

2
3 þ 2E1E2E3E4 −E2

1E
2
4

þB3ð−4C2E1E3 þ 2C3E2E3 þ 2C3E1E4 − 4C1E2E4Þ þ 4B1ðB2ð−4C1C2 þC2
3Þ þC2E2

3 −C3E3E4 þC1E2
4Þ; ð3:4Þ

and the numerators are

V ¼ 4A0
2B2C2E1 − 2A0

1B2C3E1 þ 4A0
1B2C1E2 − 2A0

2B2C3E2 − 2A0
2B3C2E3 þ A0

1B3C3E3

− A0
1E2E2

3 − 2A0
1B3C1E4 þ A0

2B3C3E4 þ A0
1E1E3E4 þ A0

2E2E3E4 − A0
2E1E2

4

þ A0
3ð4B3C1C2 − B3C2

3 − 2C2E1E3 þ C3E2E3 þ C3E1E4 − 2C1E2E4Þ
þ 2A0

4ðB2ð−4C1C2 þ C2
3Þ þ C2E2

3 − C3E3E4 þ C1E2
4Þ; ð3:5Þ

W ¼ −2A0
2B3C2E1 þ A0

1B3C3E1 − 2A0
1B3C1E2 þ A0

2B3C3E2 þ 2A0
3ðB1ð−4C1C2 þ C2

3Þ þ C2E2
1 − C3E1E2 þ C1E2

2Þ
þ 4A0

2B1C2E3 − 2A0
1B1C3E3 þ A0

1E1E2E3 − A0
2E

2
2E3 þ 4A0

1B1C1E4 − 2A0
2B1C3E4 − A0

1E
2
1E4 þ A0

2E1E2E4

þ A0
4ð4B3C1C2 − B3C2

3 − 2C2E1E3 þ C3E2E3 þ C3E1E4 − 2C1E2E4Þ; ð3:6Þ

X ¼ 4A0
4B2C2E1 − 2A0

3B3C2E1 − 2A0
4B2C3E2 þ A0

3B3C3E2 þ 4A0
3B1C2E3 − 2A0

4B3C2E3

− A0
3E

2
2E3 − 2A0

3B1C3E4 þ A0
4B3C3E4 þ A0

3E1E2E4 þ A0
4E2E3E4 − A0

4E1E2
4

þ A0
1ð4B1B2C3 − B2

3C3 − 2B2E1E2 þ B3E2E3 þ B3E1E4 − 2B1E3E4Þ
þ 2A0

2ðB2
3C2 þ B2E2

2 − B3E2E4 þ B1ð−4B2C2 þ E2
4ÞÞ; ð3:7Þ

Y ¼ −2A0
4B2C3E1 þ A0

3B3C3E1 þ 4A0
4B2C1E2 − 2A0

3B3C1E2 − 2A0
3B1C3E3 þ A0

4B3C3E3 þ A0
3E1E2E3 − A0

4E2E2
3

þ 2A0
1ðB2

3C1 þ B2E2
1 − B3E1E3 þ B1ð−4B2C1 þ E2

3ÞÞ þ 4A0
3B1C1E4 − 2A0

4B3C1E4 − A0
3E

2
1E4 þ A0

4E1E3E4

þ A0
2ð4B1B2C3 − B2

3C3 − 2B2E1E2 þ B3E2E3 þ B3E1E4 − 2B1E3E4Þ: ð3:8Þ

14This is related to the fact that there is no Lorentz-invariant derivative of a pure tensor part with mass dimension not greater than 2. If
we were to relax the first selection rule imposed in Sec. II D, then it would be possible to write terms like FðhÞTαT̂β∇

∘
γtαβγ which could

act as source terms.
15For simplicity, we removed the explicit dependence on the scalar field h.
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The expressions for the numerators and denominator are
quite long but the overall form of the solution for torsion
and nonmetricity is simple: they are proportional to ∂αh, as
shown in Eq. (3.3).
The fact that the pure tensor parts tαβγ and qαβγ vanish

dynamically has a remarkable consequence. As is evident
from Eq. (3.1), the similarity between terms containing
torsion and terms containing nonmetricity is only broken
because of the pure tensor parts and their different
symmetry properties. Once tαβγ and qαβγ are absent,
however, an exact correspondence emerges between a
theory that only features torsion and a model that solely
contains nonmetricity. Thus, our criteria for the construc-
tion of an action of gravity coupled to matter lead to a full
equivalence of the Einstein-Cartan and Weyl formulations.
We will make this point explicit in Sec. III D.
Summarizing what we did so far, we started from the

most general action (3.1) according to the criteria pre-
sented in Sec. II D. Torsion and nonmetricity are
included, therefore we can write new terms that are
absent in the metric formulation of GR. We then solved
for both torsion and nonmetricity and found that they are
proportional to the derivative of the scalar field. As next
step, we can plug these solutions back into the action
(3.1). Then the new terms will give contributions to the
kinetic term of the scalar field, i.e., we can map the effect
of torsion and nonmetricity to a modification of the
kinetic term. We get

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Ω2ðhÞR∘ − 1

2
K̂ðhÞgαβ∂αh∂βh − VðhÞ

�
;

ð3:9Þ

where the modified kinetic term reads

K̂ ¼ K̃ − 2
1

Z2
½B1V2 þ B2W2 þ B3VW þ C1X2 þ C2Y2

þ C3XY þ E1VX þ E2VY þ E3WX þ E4WY

− ZðA0
1Y þ A0

2X þ A0
3W þ A0

4VÞ�: ð3:10Þ

Since our result only features the torsion- and non-

metricity-free curvature R
∘
, which is fully determined in

terms of the metric gμν, we can call Eq. (3.9) the
“equivalent metric theory”: We are back to a situation
where the metric gμν is the only degree of freedom in the
gravity sector.
At this point we are still in the Jordan frame where

the Ricci scalar R
∘
is multiplied by Ω2ðhÞ, meaning that

the scalar field is nonminimally coupled to gravity. One
may perform a conformal transformation in order to go to
the Einstein frame, where the coupling to gravity is
minimal [139],

gαβ → Ω−2gαβ;

gαβ → Ω2gαβ;ffiffiffiffiffiffi
−g

p
→ Ω−4 ffiffiffiffiffiffi

−g
p

;

gαβR
∘
αβ → Ω2½gαβR∘ αβ þ 6gαβð∇∘ α∇

∘
β lnðΩÞ

−∇∘ α lnðΩÞ∇
∘
β lnðΩÞÞ�: ð3:11Þ

Notice that the scalar curvature R
∘
transforms inhomoge-

neously due to the dependence of the Levi-Civita con-

nection Γ
∘ γ

αβ on the metric gμν. This inhomogeneous
contribution leads to another modification of the kinetic
term of the scalar field h.16 After the conformal trans-
formation, the action takes the form

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R
∘
−
1

2
KðhÞgαβ∂αh∂βh−

VðhÞ
Ω4

�
: ð3:12Þ

The kinetic function in the Einstein frame is

K ¼ K̂
Ω2

þ 6ðΩ0ðhÞÞ2
Ω2

¼ 1

Ω2

�
K̃ − 2

1

Z2
fB1V2 þB2W2 þ B3VW þC1X2

þC2Y2 þC3XY þE1VXþE2VY þE3WXþ E4WY

− ZðA0
1Y þ A0

2Xþ A0
3W þ A0

4VÞg þ 6ðΩ0ðhÞÞ2
�
;

ð3:13Þ
where Ω0ðhÞ denotes the derivative of the function with
respect to h. It is evident from Eq. (3.12) that the effect of

nonminimal coupling to R
∘
is mapped to the kinetic term of

the scalar as well as to a modification of the potential of the
scalar field.

C. Interaction between matter and gravity sectors

Finally, we will impose criterion (3) from Sec. II D. In
this way, we reduce the functional freedom present in
Eq. (3.1) to a finite number of coupling constants.
Moreover, we shall assume that the scalar field h obeys
a Z2 symmetry h → −h. This condition is motivated by the
fact that the Higgs field of the Standard Model exhibits
the same property in unitary gauge. Apart from the
Z2-symmetry, however, the scalar field in the present paper
is generic and does not need to represent the Higgs boson.
We get

16Notice that under the conformal transformation the derivative
of the metric changes, ∇μgαβ → ∇μðΩ−2gαβÞ, which implies that
the nonmetricity tensor Qαβγ transforms inhomogeneously. For
our discussion, this is inessential since Qαβγ does not appear any
more in the action (3.9).
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K̃ðhÞ ¼ k0; Ω2ðhÞ ¼ f0 þ ξh2; DiðhÞ ¼ di0 þ di1h2; i ¼ 1; 2; 3;

AjðhÞ ¼ aj1h2; CjðhÞ ¼ cj0 þ cj1h2; j ¼ 1; 2; 3; 4;

BkðhÞ ¼ bk0 þ bk1h2; EkðhÞ ¼ ek0 þ ek1h2; k ¼ 1; 2; 3; 4; 5: ð3:14Þ

Without loss of generality, one can set f0 ¼ k0 ¼ 1 by a
redefinition of the scalar field and rescalings of the other
parameters of the theory [including those contained in
VðhÞ].17 At this point, we have 39 independent couplings in
the action: 1 for ξ and 38 coming from the terms in the
functions Ai, Bi, Ci, Di, and Ei.
The kinetic term (3.10), i.e., before the conformal

transformation, becomes

K̂ðhÞ ¼ 1þ h2P
4
m¼0 Omh2m

X3
n¼0

Pnh2n; ð3:15Þ

where Om and Pn are polynomials of the constants defined
in Eq. (3.14). Their explicit expressions are lengthy (up to a
few pages) and will not be displayed. After the conformal
transformation, the kinetic function in the Einstein frame
action (3.12) is

KðhÞ ¼ 1

ð1þ ξh2Þ
�
1þ h2P

4
m¼0Omh2m

×
X3
n¼0

Pnh2n þ
6ξ2h2

ð1þ ξh2Þ
�
: ð3:16Þ

Inspecting the second summand in Eq. (3.16), we see that
there are 4 independent polynomials in the numerator and 5
in the denominator. Moreover, we have to take into account
the parameter ξ. Finally, we need to effectively deduce one

coupling constant since we can rescale numerator and
denominator by a common factor. In total, this leads to
4þ 5þ 1 − 1 ¼ 9 independent constants, whereas there
were 39 previously. This shows that, in the case of a single
scalar field, torsion and nonmetricity effects only depend
on a subset of combinations of the initial constants and that
there is redundancy.

D. Known limits as special cases of the general action

Let us show how the action proposed in Eq. (3.1) reduces
to different formulations of gravity. First, we will prove
how we can obtain Einstein-Cartan gravity (where torsion
is present but nonmetricity vanishes) by comparing explic-
itly expressions with [69]. Then we will discuss its
similarities with Weyl formulation of gravity (where
instead torsion vanishes but nonmetricity is present).
Finally, we will compare it to a mixed theory proposed
in [50].

1. Einstein-Cartan gravity

We can obtain Einstein-Cartan gravity from the metric-
affine formulation employed in the present paper by setting
to zero all coefficients of terms that involve nonmetricity,

A3 ¼ A4 ¼ Bi ¼ Ei ¼ D2 ¼ D3 ¼ 0: ð3:17Þ

Then the kinetic term (3.13) becomes

KEC ¼ 1

Ω2

�
K̃ þ 2C1ðA0

1Þ2 þ 2C2ðA0
2Þ2 − 2C3A0

1A
0
2

4C1C2 − C2
3

þ 6ðΩ0Þ2
�
: ð3:18Þ

In this way, we can reproduce the result of [69]. In turn, [69] encompasses numerous previous studies as special cases
such as [45–48,62–68]. The correspondence between Eq. (3.1) and the action in [69] is given by

K̃ ¼ 1; V ¼ U; A1 ¼ −Za; A2 ¼ −Zv; C1 ¼
1

2
Gvv;

C2 ¼
1

2
Gaa; C3 ¼ Gva; C4 ¼

1

2
Gττ; D1 ¼ 2G̃ττ: ð3:19Þ

Plugging this in Eq. (3.18), we obtain

17As becomes apparent in Eq. (3.16), the effects of all parameters except for f0 and k0 are suppressed at small energies. The choice
f0 ¼ k0 ¼ 1 ensures that, in the limit of small field values, the scalar field h and gravitational perturbations hμν, defined by
gμν ¼ ημν þ hμν=MP, are already canonically normalized.
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KEC ¼ 1

Ω2

�
1þ GvvðZa0Þ2 þGaaðZv0Þ2 − 2GvaZv0Za0

GvvGaa − G2
va

þ 6ðΩ0Þ2
�
; ð3:20Þ

matching what is found in [69]. We can expand the functions like in Eq. (3.14) by imposing selection rule (3) and the final
result for the kinetic term in the Einstein frame is

KECðhÞ ¼
1

ð1þ ξh2Þ
�
1þ 8h2P

2
m¼0 Õmh2m

X1
n¼0

H̃nh2n þ
6ξ2h2

ð1þ ξh2Þ
�
; ð3:21Þ

where H̃n and Õm are functions of the coefficient given by

H̃0 ¼ a211c10 þ a221c20 − a11a21c30; H̃1 ¼ a211c11 þ a221c21 − a11a21c31;

Õ0 ¼ 4c10c20 − c230; Õ1 ¼ 4c11c20 þ 4c10c21 − 2c30c31; Õ2 ¼ 4c11c21 − c231: ð3:22Þ

Equation (3.21) shows that there are 2 independent poly-
nomials in the numerator and 3 in the denominator. As
before, we have the additional parameter ξ of the non-

minimal coupling to curvature R;
∘

but it is effectively
canceled since we can rescale numerator and denominator
by a common factor. In total, we obtain 2þ 3þ 1 − 1 ¼ 5
independent parameters. We can contrast this with 9
independent polynomials in the general case shown in
Eq. (3.16). Einstein-Cartan gravity is indeed a very specific
limit of the general metric-affine theory.

2. Comparison of Einstein-Cartan and Weyl gravity

Weyl gravity is the counterpart of Einstein-Cartan
gravity: torsion is assumed to vanish a priori, but non-
metricity is present. This leads to the following simplifi-
cations in action (3.1):

A1 ¼ A2 ¼ Ci ¼ D1 ¼ D3 ¼ Ei ¼ 0: ð3:23Þ

Plugging these constraints into the modified kinetic
term (3.13), we find

KWeyl ¼
1

Ω2

�
K̃ þ 2B1ðA0

3Þ2 þ 2B2ðA0
4Þ2 − 2B3A0

3A
0
4

4B1B2 − B2
3

þ 6ðΩ0Þ2
�
: ð3:24Þ

This result is identical to the kinetic term (3.18) in the Einstein-Cartan case, after the identifications

Ci ↔ Bi; A1 ↔ A3; A2 ↔ A4: ð3:25Þ

As previously discussed, the Einstein-Cartan and Weyl formulations are equivalent for the choice (3.1) of action.

3. Mixed theory with torsion and nonmetricity

Finally, we demonstrate that the action of a mixed theory, as given in [50], also represents a special case of our metric-
affine model. The action is [50]

Smixed ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðhÞR −

1

2
K̃ðhÞgαβ∇αh∇βh − VðhÞ − Ã1ðhÞ∇αhQ̂

α − Ã2ðhÞ∇αhQα

þ B̃1ðhÞQγαβQγαβ þ B̃2ðhÞQγαβQβγα þ B̃3ðhÞQ̂αQ̂
α þ B̃4ðhÞQαQα þ B̃5ðhÞQαQ̂

α

þ C̃ðhÞϵαβγδgϵηQαγϵQβδη

�
: ð3:26Þ

To be able to make the comparison, we need to decompose the scalar curvature R as well as the terms QγαβQγαβ and
QγαβQβγα into contributions of vectors and pure tensors. Using Eqs. (2.24), (A3), and (A4), we obtain the correspondence
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Ω2 ¼ F; A1
0 ¼ 0; A2

0 ¼ F0; A3
0 ¼ Ã1 −

F0

2
; A4

0 ¼ Ã2 þ
F0

2
;

B1 ¼
5

18
B̃1 −

1

18
B̃2 þ B̃4 −

11

144
F; B2 ¼

4

9
B̃1 þ

1

9
B̃2 þ B̃3 þ

1

36
F;

B3 ¼ −
2

9
B̃1 þ

4

9
B̃2 þ B̃5 þ

1

9
F; B4 ¼ B̃1 þ

1

8
F; B5 ¼ B̃2 −

1

4
F; C1 ¼ −

1

3
F;

C2 ¼
F
48

; C3 ¼ 0; C4 ¼
1

4
F; D1 ¼ 0; D2 ¼ −C̃; D3 ¼ 0; D4 ¼ 0;

E1 ¼ −
F
3
; E2 ¼ 0; E3 ¼

F
3
; E4 ¼ 0; E5 ¼

F
2
: ð3:27Þ

Plugging this into the kinetic term (3.13) after the conformal transformation yields

K ¼ K̃
F
þ 1

2FM
ðFðÃ1 þ 4Ã2Þ2 þ 8Ã1

2ð5B̃1 − B̃2 þ 18B̃4Þ
þ 16Ã1 Ã2ð2B̃1 − 4B̃2 − 9B̃5Þ þ 16Ã2

2ð4B̃1 þ B̃2 þ 9B̃3ÞÞ; ð3:28Þ

where we defined (as in [50])

M ¼ 16B̃1
2 − 8B̃2

2 − 36B̃5
2 þ 4B̃1ð2B̃2 þ 10B̃3 þ 16B̃4 þ 4B̃5Þ þ 144B̃3 B̃4

þ B̃2ð−8B̃3 þ 16B̃4 − 32B̃5Þ þ Fð4B̃1 þ B̃2 þ B̃3 þ 16B̃4 þ 4B̃5Þ: ð3:29Þ

This matches the result obtained in [50].18 Finally, impos-
ing selection criterion (3), we obtain

KðhÞ ¼ 1

ð1þ ξ̃h2Þ

�
1þ h2P

2
m¼0 Fmh2m

X1
n¼0

Gnh2n
�
; ð3:30Þ

where we set F ¼ 1þ ξ̃h2. The symbol ξ̃ is used instead of
ξ to indicate that F couples to the full Ricci scalar R and not

only the Levi-Civita part R
∘
. We conclude that we have 2

independent polynomials in the numerator and 3 in the
denominator. Also taking into account ξ̃ and the common
rescaling of numerator and denominator, we arrive at
2þ 3þ 1 − 1 ¼ 5 independent parameters. Comparison
with Eq. (3.21) shows that the kinetic function of a real
scalar field in the model (3.26) has the same number of
independent polynomials as in pure Einstein-Cartan or
pure Weyl gravity.

4. Summary

A summary of the different numbers of independent
couplings is shown in Table II. Let us explain what we
mean by independent couplings and provide an explicit
example for the metric-affine theory of gravity. After
imposing selection criterion (3), our initial action (3.1)
features 39 coupling constants. However the pure tensor
parts of torsion and nonmetricity will vanish. This makes

TABLE II. Summary of the number of independent couplings for different formulations of GR.

Theory of gravity
Independent couplings
in the initial action

Independent couplings after
using tαβγ ¼ qαβγ ¼ 0

Independent parameters
in the final kinetic term

Metric-affine 39 25 9
Einstein-Cartan 13 9 5
Weyl 15 9 5
Mixed theory 15 9 5
Metric gravity 1 1 1

18The kinetic function KðhÞ is displayed in Eq. (29) of [50],
where Eq. (27) needs to be plugged in. As confirmed after
correspondence with Syksy Räsänen, there is a minor typo in
[50]: The very first line of Eq. (25) should read

K → K̃ ¼ K − 3FðΣ2
1 þ Σ2

2 þ Σ2
3 þ 4Σ1Σ2 þ 2Σ2Σ3 þ 4Σ3Σ1Þ:

Accordingly, the second line of Eq. (29) should be modified to

þFð−18Σ2
1Þ − 8½A1 þ ð2B2 þ 2B3 þ 4B5Þω0�ð2Σ1 þ Σ2Þ:
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7 terms vanishing, so the number of independent couplings
reduces to 39 − 7 × 2 ¼ 25. Finally, once we have solved
for torsion and nonmetricity, we obtain an expression for
the modified kinetic term of the scalar field given in
Eq. (3.16). From there we can read off the number of
independent polynomials: 1þ 4þ 5 − 1 ¼ 9. An analo-
gous counting can be performed for the Einstein-Cartan
and Weyl formulations as well as the model of [50].

IV. OUTLOOK: IMPLICATIONS FOR
HIGGS INFLATION

In the following, we will discuss implications of our
result, which is displayed in Eqs. (3.12) and (3.13), for
Higgs inflation [129]. To this end, we need to specify the
potential VðhÞ. At large field values, which are relevant for
inflation, we can neglect the electroweak vacuum expect-
ation value of the Higgs field and approximate

VðhÞ ¼ λ

4
h4; ð4:1Þ

where λ is the four-point coupling of the Higgs field.
Relevant in Eq. (3.12) is the potential after the conformal
transformation

UðhÞ≡ VðhÞ
Ω4

≈
λM4

P

4ξ2

�
1 −

2M2
P

ξh2

�
; ð4:2Þ

where as before [see Eq. (3.14)]

Ω2 ¼ 1þ ξh2

M2
P
; ð4:3Þ

and we restored factors of MP. In the second equality of
Eq. (4.2), we assumed

ξ ≫ 1; h≳MP=
ffiffiffi
ξ

p
; ð4:4Þ

and we shall stick to this approximation in the following.
We observe that UðhÞ develops a plateau for large values of
h, which is suitable for inflation.

A. Review of previous results

To begin with, we will briefly review known results.19

Originally [129], Higgs inflation was proposed in the
metric version of GR. Since both torsion and nonmetricity
are assumed to vanish in this formulation, this corresponds

to setting Ai ¼ Bi ¼ Ci ¼ Di ¼ Ei ¼ 0 and K̃ ¼ 1 in our
result (3.13). We obtain as coefficient for the kinetic term of
the Higgs field

KðhÞmetric ¼
1

Ω2

�
1þ 6ξ2h2

M2
PΩ2

�
≈
6M2

P

h2
; ð4:5Þ

where as before we used in the second step that h is large.
We note that KðhÞ is nontrivial solely because of the
conformal transformation (3.11). The potential (4.2)
together with the kinetic term (4.5) define the model of
metric Higgs inflation. One can test it by deriving observ-
ables in the cosmic microwave background (CMB).
Important are the spectral index ns, where ns − 1 describes
the breaking of scale invariance in the spectrum of scalar
perturbations, and the tensor-to-scalar ratio r, which
determines the amplitude of primordial gravitational waves
relative to scalar perturbations. The parameter ns has been
measured precisely [130] while we only have an upper
bound on r [130,131]. We shall not repeat the analysis of
metric Higgs inflation but simply quote the results of [129],

ðnsÞmetric ¼ 1 −
2

N
; ðrÞmetric ¼

12

N2
; ð4:6Þ

where 50≲ N ≲ 60 sets the number of e-foldings before
the end of inflation at which CMB observables are
generated. Moreover, the observed amplitude of fluctua-
tions determines that the nonminimal coupling ξ lies
between ∼5 × 102 and ∼5 × 103. This uncertainty in ξ is
due to the fact that we do not know the value of the quartic
coupling λ at high energies (see, e.g., [240]). For a given λ,
however, all parameters in the model are uniquely deter-
mined. Since ξ is large, the approximation (4.4) is well
justified [129]. The predictions (4.6) agree excellently with
current observations [130,131].
Soon after the original proposal [129], a second version

of Higgs inflation was developed [132] in the Palatini
formulation of gravity. In the terminology of the present
paper, this corresponds to a special case of Weyl gravity
in which the purely gravitational part of the action only
consists of the Ricci scalar R. Correspondingly, the con-
formal factorΩ2 only couples to R and we obtain the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Ω2ðhÞR −

1

2
gαβ∂αh∂βh − VðhÞ

�
: ð4:7Þ

Using Eq. (2.24), we can decompose R into its Levi-Civita

part R
∘

and contributions due to nonmetricity. In the
action (3.1), this leads to

A3 ¼ −
1

2
Ω2; A4 ¼

1

2
Ω2; B1 ¼ −

11

144
Ω2;

B2 ¼
1

36
Ω2; B3 ¼

1

9
Ω2; ð4:8aÞ

19Detailed reviews of metric and Palatini Higgs inflation
can be found in [217,218], respectively. We remark that we
shall restrict ourselves to a classical analysis in the following.
It is known, however, that in certain cases quantum effects
can significantly alter the predictions of Higgs inflation; see in
particular [219–234] for studies in the metric case and [235–241]
for investigations including the Palatini scenario.
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B4 ¼
1

8
Ω2; B5 ¼ −

1

4
Ω2;

A1 ¼ A2 ¼ Ci ¼ Di ¼ Ei ¼ 0; K̃ ¼ 1; ð4:8bÞ

where we also imposed the vanishing of torsion. Plugging
this in our result shown in Eq. (3.13), we obtain the
kinetic term

KðhÞPalatini ¼
1

Ω2
≈
M2

P

ξh2
; ð4:9Þ

where again we used in the second step that h is large. At
first sight, it may seem surprising that the intricate sub-
stitutions IVA lead to the simple kinetic term (4.9). As is
well known [132], however, there is a simpler way to derive
the result (4.9). Namely, one can immediately perform
the conformal transformation gαβ → Ω−2gαβ in Eq. (4.7).
Since Rμν is independent of gμν in a first-order formalism,
the rescaling of the metric is easy to perform. Afterward, it
becomes evident that nonmetricity vanishes and we obtain
the kinetic term (4.9). Together with the potential (4.2), it
defines the model of Palatini Higgs inflation. Again we
quote the results for the spectral index and the tensor-to-
scalar ratio [132],

ðnsÞPalatini ¼ 1 −
2

N
; ðrÞPalatini ¼

2

ξN2
; ð4:10Þ

where ξ lies in the range between ∼106 and ∼108 in the
Palatini case. Comparing with Eq. (4.6), we observe that
the formula for the spectral index is identical to the metric
scenario but the tensor-to-scalar ratio is significantly
smaller. We remark, however, that the numerical values
of the spectral index do not coincide in the two models.
The reason is that N depends on how inflation ends, i.e.,
the properties of preheating and in particular the prehea-
ting temperature. Since they are different in the two cases
[242–246], N is slightly smaller in the Palatini scenarios
(see [244] for a detailed comparison). Also the predictions
of Palatini Higgs inflation are in excellent agreement with
current observations of the CMB [130,131].
In the metric and Palatini scenarios of Higgs inflation,

uniqueness of predictions—as shown in Eqs. (4.6) and
(4.10)—is achieved since there is only a single free
parameter ξ in the model. It is fixed by the requirement
of matching the amplitude of scalar perturbations observed
in the CMB. In other formulations of GR, however, more
than one a priori unknown coupling constant emerges
when coupling the Higgs field nonminimally to gravity.
Correspondingly, Higgs inflation no longer leads to unique
predictions beyond the special cases of the metric and
Palatini scenarios [50,67,101,133]. In particular, it is also
possible that the spectral index deviates from 1 − 2=N for
some choices of coupling constants [50,67,101,133].

B. Findings in generic metric-affine formulation

Evidently, the space of possible scenarios increases even
more in the generic metric-affine model that we consider,
which features 9 independent parameters [see Eq. (3.16)].
While we leave a more comprehensive study of inflationary
dynamics in thismodel for futurework, we shall briefly point
out that certain regions of parameter space still reproduce the
predictions of metric and Palatini Higgs inflation.
First, we consider the case in which the nonminimal

coupling of theHiggs field and gravity only happens through
the full Ricci scalar R. Thus, we consider the action (4.7) but
now in the metric-affine formulation, in which both torsion
and nonmetricity are present. In Eq. (3.1), this corresponds to

A1 ¼ 0; A2 ¼ Ω2; A3 ¼ −
1

2
Ω2; A4 ¼

1

2
Ω2;

ð4:11aÞ

B1 ¼ −
11

144
Ω2; B2 ¼

1

36
Ω2; B3 ¼

1

9
Ω2;

B4 ¼
1

8
Ω2; B5 ¼ −

1

4
Ω2; ð4:11bÞ

C1 ¼ −
1

3
Ω2; C2 ¼

1

48
Ω2; C3 ¼ 0; C4 ¼

1

4
Ω2;

ð4:11cÞ

E1 ¼ −
1

3
Ω2; E3 ¼

1

3
Ω2; E5 ¼

1

2
Ω2;

Di ¼ E2 ¼ E4 ¼ 0; K̃ ¼ 1: ð4:11dÞ

When we plug this in our result (3.13), we again obtain the
kinetic function (4.9)

KðhÞ ¼ 1

Ω2
: ð4:12Þ

Consequently, only allowing for a nonminimal coupling to
the full Ricci scalar R still leads to the predictions of Palatini
Higgs inflation, which are shown in Eq. (4.10). Evidently,
one arrives at almost identical observables even if the other
coupling constants do not vanish exactly. As long as they
are sufficiently small and the effect of Ω2 still dominates,
Eqs. (4.9) and (4.10) remain good approximations.
Alternatively, one could consider a generic situation in

which all parameters in the kinetic function KðhÞ are large.
Since in general large values of h are relevant for inflation,
we can try to consider the limit h → ∞. Such an approach,
which was already suggested in [50,247], yields in
Eq. (3.16)

KðhÞ ≈M2
P

ξh2

�
P7

O2
4

þ 6ξ

�
: ð4:13Þ
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If we now consider the case jP7j=O2
4 ≲ 6ξ, we reproduce

the kinetic term (4.5) of the metric case, which leads to the
predictions (4.6). Thus, one can reproduce the observables
of metric Higgs inflation even if many large observables
are present in our generic metric-affine theory. We must
remark, however, that in general an argument based on the
limit h → ∞ is not suited for deriving inflationary pre-
dictions. The reason is that CMB observables are generated
at a finite value of h, which corresponds to N e-foldings
before the end of inflation. For example, it was shown
explicitly in [101] that the form of KðhÞ at the time when
CMB perturbations are generated can differ significantly
from its asymptotic form achieved for h → ∞.
Finally, it is interesting to note that the asymptotic

behavior of the kinetic function KðhÞ as shown in
Eq. (4.13) also exists in the Einstein-Cartan formulation
(or, equivalently, Weyl gravity). For h → ∞, the corre-
sponding kinetic function (3.21) yields

KðhÞEC ≈
M2

P

ξh2

�
8H̃1

Õ2

þ 6ξ

�
; ð4:14Þ

which coincides with Eq. (4.13) upon identifying
P7=O2

4 ↔ 8H̃1=Õ2.

V. CONCLUSION

An inherent ambiguity exists in GR because of its
different formulations. They are all equivalent in pure
gravity but can lead to distinct observable predictions once
GR is coupled to matter. Since so far there is no compelling
experimental or observational evidence that would favor
any of the options, one can look for conceptual arguments
to single out a particular version of GR. For example, it is
interesting to ask which formulation can be regarded as the
simplest one. Two possible answers are the following.
First, one can try to minimize the number of fundamental

fields or select the least involved geometry. Arguably, both
conditions are fulfilled by the most commonly used metric
formulation, in which the metric is the only independent
degree of freedom and the connection is uniquely deter-
mined by the requirement that torsion and nonmetricity
vanish. However, there are different possibilities to fulfill
these conditions. In the purely affine version of GR, one
fundamental field is sufficient, namely the connection.
Moreover, teleparallel formulations, in which curvature
is assumed to vanish, lead to simple geometries too.
A second option exists in the quest for simplicity: One

can try to minimize the number of assumptions. This
singles out the metric-affine formulation, in which one
does not require a priori that curvature, torsion, or non-
metricity are absent. Instead, all these three geometric
properties are determined dynamically through the princi-
ple of stationary action. In pure gravity, this leads to
vanishing torsion and nonmetricity so that metric-affine

gravity becomes indistinguishable from the metric formu-
lation of GR. Once matter is included, however, torsion
and nonmetricity can be sourced and this equivalence is
generically broken. In all cases, metric-affine gravity does
not feature additional propagating degrees of freedom
beyond the two polarizations of the massless graviton.
The goal of the present paper was to advance the study

of metric-affine gravity. Specializing to the example of a
scalar field, we first constructed a general action for
coupling GR to matter. In doing so, our guideline was to
include all terms that are on the same footing as the
nonminimal coupling to curvature, which already exists in
metric GR. This led to 39 a priori undetermined coupling
constants. Subsequently, we solved for torsion and non-
metricity. Plugging the results back into the original action,
we derived an equivalent theory in the metric formulation
of GR, in which effects of torsion and nonmetricity are
replaced by a specific set of higher-dimensional operators
in the matter sector. For a scalar field, they can be mapped
to modifications of the kinetic term. Our model encom-
passes the metric, Palatini, Einstein-Cartan, and Weyl
formulations as special cases. Moreover, we pointed out
a new symmetry between the Einstein-Cartan and Weyl
versions of GR.
The presence of additional coupling constants is not

necessarily a desirable feature because it leads to a loss of
predictivity. However, it is forced upon us by the fact that
GR exists in different formulations. Even if we want to stay
as close as possible to metric GR, we have to consider at the
very least all theories that are equivalent in pure gravity.
The presence of undetermined parameters is a direct
consequence of this inherent ambiguity of GR. Of course,
it is possible to assume that these coupling constants
vanish, e.g., by imposing that torsion and nonmetricity
are absent.20 Since the different nonminimal coupling
parameters appear to be on the same footing, the most
obvious choice would be to demand that all of them,
including the nonminimal coupling to the Ricci scalar,
vanish or are sufficiently small.
While such an assumption is certainly worth exploring, it

would lead to severe constraints. As a famous example, it
would be incompatible with the proposal of Higgs inflation
[129], which is only phenomenologically viable if a large
nonminimal coupling to gravity exists. In the original
model [129], which employed the metric formulation, a
coupling to the Ricci scalar was considered, but many more
possibilities exist beyond the special case of metric GR
[50,67,101,132,133]. Generically, this spoils the unique-
ness of predictions and makes it necessary to systematically
investigate how observables depend on the formulation of
gravity. The present paper lays the groundwork for such a
study of Higgs inflation in metric-affine gravity. As an

20Another possibility to fix some of the free coefficients is to
impose a local scale symmetry [248].
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outlook, we have pointed out that the predictions of the
metric [129] and Palatini [132] scenarios are recovered in
certain regions of parameter space.
So far, only the very first steps have been taken in

exploring the phenomenological consequences of metric-
affine GR. First, a more complete study of Higgs inflation
remains to be performed. Second, it would be very
interesting to go beyond the special case of a scalar field
and include other forms of matter. As a particular example,
this can have important consequences for fermions as dark
matter candidates [102]. We hope to report on some of
these points in the future.
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APPENDIX A: USEFUL FORMULAS

In this appendix, we present a few useful formulas.
If we split a general Christoffel symbol as Γγ

αβ ¼
Γ
∘ γ

αβ þ Cγ
αβ, where Γ

∘ γ
αβ corresponds to the Levi-Civita

connection, then we can decompose the Riemann tensor
[see Eq. (2.3)] as follows:

Rα
μρν ¼ R

∘ α
μρν þ∇∘ ρCα

νμ −∇∘ νCα
ρμ þCα

ρλCλ
νμ −Cα

νλCλ
ρμ:

ðA1Þ

Here R
∘ α

μρν is the Riemann tensor defined in terms of Γ
∘ γ

αβ

[see Eq. (2.11)] and analogously ∇∘ ρ is the covariant
derivative of the Levi-Civita connection. Expanding
Rα

μρν explicitly in terms of contorsion and disformation
gives

Rλ
ταβ ¼ R

∘ λ
ταβ þ 2∇∘ ½αKλ

β�τ þ 2∇∘ ½αJλβ�τ þ 2Kλ½αjγKγ
β�τ

þ 2Jλ½αjγJγβ�τ þ 2Kλ½αjγJγβ�τ þ 2Jλ½αjγKγ
β�τ: ðA2Þ

We evaluate quadratic terms composed of the full torsion
and nonmetricity tensors in terms of the vector and tensor
contributions defined in Eqs. (2.16)–(2.23),

QαβγQαβγ ¼ 1

18
ð5QαQα þ 8Q̂αQ̂α − 4Q̂αQαÞ þ qαβγqαβγ;

ðA3Þ

QαβγQγαβ ¼ 1

18
ð−QαQα þ 2Q̂αQ̂α þ 8Q̂αQαÞ þ qαβγqγαβ;

ðA4Þ

TαβγTαβγ ¼ 2

3
TαTα −

1

6
T̂αT̂

α þ tαβγtαβγ; ðA5Þ

TβαγTγβα ¼ −
1

3
TαTα −

1

6
T̂αT̂

α þ tβαγtγαβ; ðA6Þ

QγαβTαγβ ¼
1

3
TαðQα − Q̂αÞ þ qγαβtαγβ: ðA7Þ

APPENDIX B: PARALLEL TRANSPORT
ALONG CLOSED CURVED: EFFECTS
OF TORSION AND NONMETRICITY

In this appendix, we shall explicitly demonstrate how
torsion and/or nonmetricity affect the parallel transport of a
vector vα along an infinitesimal closed path. Using τ as
affine parameter parametrizing the path, we get for the
change Δvα of the vector (see, e.g., [249])

Δvα ¼
I

dτ
dvα

dτ

¼ −
I

dτΓα
βγ
dxβ

dτ
vγ; ðB1Þ

where we used Eq. (2.1). We can Taylor expand the vector
and the connection around the origin

Γα
βγðxÞ ¼ Γα

βγð0Þ þ ∂νΓα
βγj0xν þOðx2Þ; ðB2Þ

vγðxÞ ¼ vγð0Þ þ dvγ

dxν
j0xν þOðx2Þ

¼ vγð0Þ − Γγ
νρvρj0xν þOðx2Þ: ðB3Þ

Plugging this in Eq. (B1) and dropping Oðx3Þ terms,
we obtain

Δvα ¼
I

dτ
dxβ

dτ
ðΓα

βγð0ÞΓγ
νρð0Þvρð0Þ − vγð0Þ∂νΓα

βγj0Þxν;

ðB4Þ
where we left out the linear term because it is a total
derivative. Since it follows by partial integration thatH
dτ dxβ

dτ x
ν ¼ −

H
dτ dxν

dτ x
β, only the antisymmetric part in

β, γ in parenthesis in Eq. (B4) does not vanish, and we are
left with

Δvα ¼ 1

2

I
dτ

dxβ

dτ
xνvγð0ÞRα

γβνð0Þ; ðB5Þ

where Rα
γβν is the full Riemann tensor defined in Eq. (2.3).

Plugging the decomposition (A2) into Eq. (B5), we

conclude that both the Levi-Civita contribution R
∘ α

γβν

and torsion as well as nonmetricity may induce modifica-
tions to a vector being parallel transported along a
closed curve.
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APPENDIX C: ON INDEPENDENCE OF TERMS

In Eq. (3.1), we did not include several nonvanishing
terms involving the pure tensor part tαβγ of torsion. The
reason is that they are proportional to other contributions
already present. In the following, we shall show why this is
the case. By definition [see Eq. (2.18)], tαβγ has no axial
part, ϵαβγδtβγδ ¼ 0. This implies

t½αβγ� ¼ 0 ⇔ tαβγ þ tβγα þ tγαβ ¼ 0; ðC1Þ

where the square brackets denote full antisymmetrization.
Now we can use Eq. (C1) to relate different terms.

We begin with

tαβγtαβγ ¼ tαβγð−tβγα − tγαβÞ ¼ 2tαβγtβαγ: ðC2Þ

Since tαβγtαβγ is already included in Eq. (3.1), we do not
need to consider a contribution of tαβγtβαγ. Next, we turn to
a term involving ϵαβγδ,

ϵαβγδtλαβtγδλ ¼ ϵαβγδð−tβλα − tαβλÞtγδλ ¼ −2ϵαβγδtαβλtγδλ:

ðC3Þ

As we already included ϵαβγδtαβλtγδλ in Eq. (3.1), we do not
need to take into account ϵαβγδtλαβtγδλ. We can reiterate
this argument,

ϵαβγδtλαβtλγδ ¼ ϵαβγδtλαβð−tδλγ − tγδλÞ ¼ −2ϵαβγδtλαβtγδλ;

ðC4Þ

which shows that ϵαβγδtλαβtλγδ is not independent, either.
Finally, we have a term that also involves the pure tensor
part qαβγ of nonmetricity,

ϵαβγδqαβλtλγδ ¼ ϵαβγδqαβλð−tδλγ − tγδλÞ ¼ −2ϵαβγδqαβλtγδλ:

ðC5Þ

As ϵαβγδqαβλtγδλ is already included in Eq. (3.1), we can
omit ϵαβγδqαβλtλγδ. Finally, one can wonder if an analogous
argument can be applied to terms involving only the
nonmetricity tensor qαβγ. The answer is negative and the
reason is that qαβγ does not fulfill any (anti)symmetry
property [see Eq. (2.22)].
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Phys. Rev. D 96, 064031 (2017).

[204] M. Blagojević and B. Cvetković, General Poincaré gauge
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