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We study the quantum dynamics of the Lemaître-Tolman-Bondi space-times using a polymer
quantization prescription based on loop quantum cosmology that incorporates fundamental discreteness.
By solving an effective equation derived from this quantization, we find analytical solutions for the
Oppenheimer-Snyder and thin-shell collapse models, and numerical solutions for a variety of asymptoti-
cally flat collapsing dust profiles. Our study (i) tracks the formation, evolution, and disappearance of
dynamical horizons, (ii) shows that matter undergoes a nonsingular bounce that results in an outgoing
shock wave, (iii) determines black hole lifetime to be proportional to the square of its mass, and
(iv) provides a conformal diagram that substantially modifies the standard “information loss” picture by
resolving the singularity and replacing the event horizon by transient apparent horizons.
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I. INTRODUCTION

In general relativity, collapsing matter may form a black
hole depending on the initial conditions [1,2]. The simplest
black hole in classical general relativity is spherically
symmetric, singular, and stable. In the semiclassical theory
where quantum fields propagate on classical space-times,
black holes are unstable due to Hawking radiation [3]. The
endpoint of the process of Hawking evaporation remains
unknown—it is expected that a theory of quantum gravity
will answer this question by resolving the singularity and
providing dynamics past the classically singular region.
One approach to quantum gravity is loop quantum gra-

vity (LQG), a nonperturbative attempt to quantize general
relativity using a background-independent Hilbert space
where the inner product does not utilize the space-time
metric [4–6]. Solving the full quantum dynamics in LQG
currently remains out of reach, but there is a substantial
body of work on symmetry-reduced models, including
applications to homogeneous cosmological space-times
known as loop quantum cosmology (LQC) [7], and to
inhomogeneous spherically symmetric models including
black hole space-times [8].
There are two main inputs from LQG in studying these

simpler systems, the holonomy and inverse triad operators.
These arise due to the quantization procedure used: (i) the
connection and its curvature do not exist as operators and
must be defined using the holonomy operators, and (ii) a

well-defined inverse triad operator is required for con-
structing the constraint operators. These two features lead
to what are respectively called “holonomy” and “inverse
triad” corrections.
In symmetry-reduced models these features arise

through polymer quantization. Denoting the phase space
configuration variables qj (corresponding to the connec-
tion) and pj (corresponding to spatial metric degrees of
freedom), the polymer quantization prescription is based on
elementary operators corresponding to the (nondifferen-

tiable) complex exponential ÛμðqjÞ ¼ dexpðiμqjÞ and the

operator p̂j (the inverse momentum operators dp−1
j corre-

sponding to the inverse triad operator of LQG is defined
using these elementary operators). The parameter μ in the
operator ÛμðqjÞ corresponds to the coordinate length of a
holonomy segment. This parameter is chosen by requiring
that the holonomies appearing in curvature operators must
have a physical length of the order of the Planck length lPl.
This requirement is implemented by relating the coordinate
length μ to a physical length using the spatial metric. Since
the spatial metric can be reconstructed from pj it follows
that μ ¼ μðpjÞ; this prescription is known in the literature
(for historical reasons) as the μ̄ scheme or “improved
dynamics.”
In LQC, these methods have successfully led to the

resolution of the big-bang singularity in classical general
relativity, replacing it with a nonsingular bounce in homo-
geneous cosmological space-times [7,9].
The application of LQG techniques to black hole

space-times falls into three main categories. Works in the
first category use the classical isometry between the black
hole interior and the Kantowski-Sachs homogeneous
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space-time. This suggests a description of the black hole
interior where LQC methods can be applied directly
[10–28]. Although simple, this approach has several draw-
backs: the isometry between the Schwarzschild interior and
the Kantowski-Sachs space-time may not hold in full
quantum gravity (it is known to fail for some modified
gravity theories [29]); the isometry requires the presence of
an outer horizon and assumes there is no inner horizon; and
the standard improved dynamics scheme as applied in [12]
fails near the horizon (likely due to the spatial coordinates
becoming null).
In the second category are works that use coordinates in

spherical symmetry where the radial coordinate remains
spacelike throughout the entire space-time, making it
possible to treat the interior and exterior of the black hole
on an equal footing for quantization [30–38]. Building on
earlier works [12,39], the improved dynamics scheme was
recently applied to vacuum spherically symmetric space-
times [40–42]. These works provide a framework that can
be used to study the entire black hole space-time (not just
the interior). It has the advantage that the correct classical
limit is recovered where the space-time curvature is small
compared to the Planck scale.
There is also work in a third category which aims for a

full LQG treatment of states potentially corresponding to
black holes in canonical LQG [43–45], in the covariant spin
foam approach [46–51], and in the group field theory
reformulation of LQG [52]. Although it is challenging to
include inhomogeneous matter fields and make contact
with semiclassical physics, these works provide some
guidance for recovering low curvature classical black hole
space-times from full quantum gravity.
To determine the fate of a black hole in quantum gravity, it

is important to include matter so that the entire process from
gravitational collapse to black hole formation to its entire
subsequent evolution is captured. Initial steps in this direction
used Oppenheimer-Snyder type models where the interior is
an FLRW (Friedmann-Lemaitre-Robertson-Walker) cosmo-
logy [53–58] and thin shells [59–61]. Beyond this there is
work on inhomogeneous models including a scalar field with
holonomy corrections [62] or with inverse triad corrections
[63–65], a dust field with inverse triad corrections [66,67],
and Wheeler-DeWitt canonical quantization [68].
A generic feature of these works is that, as in cosmology,

the singularity is resolved and matter bounces when space-
time curvature reaches the Planck scale. This is seen in LQG
[53–58] and in other approaches [69–75]; a model-
independent view is studied in [76], and a recent review
is [77].
It may also be possible to understand the bounce

generated by quantum gravity effects as a transition from
a black hole to a white hole [78,79], with potential
observational consequences [80–82]. However, since white
holes are known to be unstable [83,84] this scenario
requires further study. An additional feature of nonsingular
black holes in classical gravity is mass inflation at inner

horizons [85–87]. We will see that the model we consider
here is free of these two problems.
Building on earlier work on the vacuum Schwarzschild

space-time [41], the improved dynamics scheme was
applied to the entire space-time of a spherically symmetric
inhomogeneous dust model, and used to study the quan-
tization of the Oppenheimer-Snyder model [88]. It was
found that quantum gravity effects halt the collapse, resolve
the singularity, and cause a bounce; the dust then expands
outwards until the outer horizon disappears. This led to
an estimate of M2=mPl for the lifetime of this quantum
black hole.
In this paper, and the companion Letter [89], we revisit

this inhomogeneous dust model to define the quantum
theory in full. We then derive the effective equations with
quantum corrections for the theory; these are two coupled
partial differential equations. We numerically solve the
effective equations to a high degree of accuracy for a
variety of initial conditions. Our solutions extend all
previous works by describing evolution from initial col-
lapse to the formation of apparent horizons, to their
subsequent disappearance following a bounce and reex-
pansion of matter. This provides a complete lifetime
scenario of black holes with matter. As further develop-
ments to the companion Letter [89], this paper contains
(i) significant calculations concerning the quantum theory
and the derivation of the effective dynamics, (ii) analytic
results for Oppenheimer-Snyder and thin shell solutions,
(iii) an in-depth description of the main features in the
conformal diagram, and (iv) a discussion on some impli-
cations for the information loss problem and possible
astrophysical consequences.
An important feature and common point of concern for

dust collapse models in classical gravity is the formation of
caustics, also referred to as “shell-crossing singularities.”
This feature is often viewed as undesirable; it can be avoided
in the classical theory by restricting the initial data so the
central singularity is reached before caustic formation
[90–93]. The same restriction may also be imposed in
quantized models [61]; however, such restrictions are unde-
sirable as they limit the exploration of possible solutions.
In a quantized theory that has the potential to resolve

singularities, caustics are unavoidable: ingoing matter tra-
jectories will inevitably cross outgoing ones during matter
evolution past a bounce. For this reason it is essential to avoid
excising potential caustics “by hand” and instead permit so-
called “weak solutions” [94,95]. Such solutions are an
essential part of nonlinear wave dynamics. A common
feature of weak solutions is a shock wave, corresponding
to a discontinuity in the field. In the gravitational case, the
shock wave corresponds to a discontinuity in the metric, and
therefore in the geometry of space-time.
The effective equation we derive and solve numerically

is a nonlinear 1þ 1 dimensional continuity equation. We
solve this equation numerically using the well-known
Godunov method [96]; this is one of a class of so-called
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“finite volume” methods for solving nonlinear continuity
equations. This method generates weak numerical sol-
utions past the points of characteristic crossing, resulting
in shock wave formation. Using this scheme we simulate
the collapse of initial matter configurations where no
horizon is initially present. We find generically that as the
dust profile falls inward, a pair of apparent horizons form
when the Schwarzschild radius is reached. The collapse
continues until the space-time curvature reaches the
Planck scale, and matter bounces outward as a shock
wave; the shock is a discontinuity in the metric. The
shock wave moves outward together with the inner
apparent horizon until they reach the outer horizon
located at the Schwarzschild radius; at this point both
apparent horizons merge and disappear. To an outside
observer this would appear as a spherical shock wave
emanating from a horizon.
Our numerical procedure allows a calculation of the

black hole lifetime, defined as the time between the
formation and disappearance of the outermost apparent
horizon as measured by a distant observer. After evolutions
spanning 2 orders of magnitude in data mass M, we find
that this lifetime is T ∼M2=mPl. This extends and reinfor-
ces the estimate obtained for Oppenheimer-Snyder collapse
that yielded the same result [88]. Furthermore, from the
evolution of double peaked Gaussian data, we demonstrate
that a collapsing pulse followed by another does not result
in recollapse, and does not cause mass inflation at the inner
horizons; in all cases the final state is a single outgoing
shock wave.
The structure of the paper is as follows: in Sec. II, we

review the classical theory of Lemaître-Tolman-Bondi
space-times; in Sec. III, we define the quantum theory;
in Sec. IV, we derive the effective dynamics from the
quantum theory, consider some simple cases and determine
the conformal diagram for dust collapse in this model; in
Sec. V, we summarize the numerical method we use and
present our results; in Sec. VI, we discuss potential
implications of our work including some consequences
for the information loss problem; and we conclude in
Sec. VII with a summary and outlook.

II. CLASSICAL THEORY

In this section we review the class of Lemaître-Tolman-
Bondi (LTB) metrics and its Hamiltonian theory in the
connection-triad variables as a prelude to studying the
quantum theory.

A. Hamiltonian Lemaître-Tolman-Bondi dynamics

LTB space-times are spherically symmetric solutions of
Einstein gravity with a pressureless dust field that provide
simple models for stellar collapse and nonlinear cosmo-
logical perturbations. The metric is often written in the
diagonal form [97]

ds2 ¼ −dt2 þ ð∂rRðr; tÞÞ2
1þ EðrÞ dr2 þ Rðr; tÞ2dΩ2; ð2:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2. The dust stress-energy ten-
sor is Tμν ¼ ρðx; tÞuμuν, where uμ ¼ ∂μT is the 4-velocity
of the dust field and T is the dust field variable.
Although the coordinate system (2.1) is commonly used,

a different set of coordinates based on a generalization of
the Painlevé-Gullstrand coordinates of the Schwarzschild
space-time is better suited for a Hamiltonian description of
the dynamics [95]. Introducing the coordinate x ¼ Rðr; tÞ,
the metric becomes

ds2 ¼ −dt2 þ 1

1þ Eðx; tÞ ðdxþ NxdtÞ2 þ x2dΩ2; ð2:2Þ

with Nx ¼ −∂tR. The Schwarzschild solution in Painlevé-
Gullstrand coordinates is recovered in the vacuum Tμν ¼ 0

case [95].
For the quantum theory it is convenient to use the

connection-triadHamiltonian formulationminimally coupled
to dust. In spherical symmetry, the densitized triads have
two independent components corresponding to the radial and
angular directions,

Ex
1 ¼ Ea sin θ; Eθ

2 ¼ Eb sin θ; Eϕ
3 ¼ Eb: ð2:3Þ

The canonically conjugate Ashtekar-Barbero connection
Ai
a ¼ Γi

a þ γKi
a is defined in terms of the spin-connection

Γi
a and the extrinsic curvature Ki

a, and γ is the Barbero-
Immirzi parameter [98,99] (note that the classical theory is
independent of the value of γ, but not the quantum theory). In
spherical symmetry, the Ashtekar-Barbero connection can be
parametrized as

Ai
aτidxa ¼ aτ1dxþ

�
bτ2 −

∂xEa

2Eb τ3

�
dθ

þ
�
− cot θτ1 þ

∂xEa

2Eb τ2 þ bτ3

�
sin θdϕ: ð2:4Þ

As a function of densitized triads, the spherically
symmetric metrics take the form

ds2 ¼ −N2dτ2 þ ðEbÞ2
Ea ðdxþ NxdtÞ2 þ EadΩ2; ð2:5Þ

where Nðx; tÞ and Nxðx; tÞ are the lapse function and radial
shift vector.
In the general case Ea, Eb, a, b, N, and Nx, as well as T

and its momentum pT , are all functions of x and t. To make
contact with the metric (2.2) we impose the radial gauge
fixing Ea ¼ x2, which sets Nx ¼ −b=γ to ensure the gauge
is preserved by the dynamics [41]. Additionally it is
convenient to fix the dust time gauge T ¼ t which requires
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N ¼ 1 as the gauge-fixing condition [100]. With these
gauge choices that fix a, Ea, T, pT , there remains only a
two-dimensional phase space parametrized by ðb; EbÞ, and
the metric (2.5) exactly matches the form given in (2.2),

ds2 ¼ −dt2 þ ðEbÞ2
x2

�
dx −

b
γ
dt

�
2

þ x2dΩ2; ð2:6Þ

with ðEbÞ2=x2 ¼ 1=ð1þ EÞ.
Since all gauge freedom is fixed at this stage, the

constraints have been solved and there only remains the
physical canonical action [41,88]

SGF ¼
Z

dt
Z

dx

�
_bEb

Gγ
−Hphys

�
; ð2:7Þ

where

Hphys¼−
1

2Gγ

�jEbj
γx

∂xðxb2Þþ
γjEbj
x

þ 2γx2

ðEbÞ2 ∂xjE
bj− 3γx

jEbj
�
;

ð2:8Þ
is the physical Hamiltonian that generates evolution with
respect to physical time T (which has been gauge-fixed to
T ¼ t). The third and fourth terms can be combined by
integrating by parts the third term, keeping the total
derivative the result is

Hphys¼−
1

2Gγ

�jEbj
γx

∂xðxb2Þþ
γjEbj
x

þ γx
jEbj−2γ∂x

�
x2

jEbj
��

:

ð2:9Þ

The total derivative does not affect the equations of motion,
but it is important when calculating the energy density of
the dust through Hphys, see below.
The gauge-fixed action (2.7) also determines the sym-

plectic structure for the remaining phase space variables,

fbðx1Þ; Ebðx2Þg ¼ Gγδðx1 − x2Þ: ð2:10Þ

The dust energy density is related to the physical
Hamiltonian by [88]

ρ ¼ −
Hphys

4πxjEbj ; ð2:11Þ

and the total mass contained within a radius x is

mðx; tÞ ¼ 4π

Z
x

0

dx̃ x̃ jEbjρðx̃; tÞ ¼ −
Z

x

0

dx̃Hphysðx̃; tÞ:

ð2:12Þ

The equations of motion follow from _f ¼ ff; R dxHphysg;
assuming Eb > 0 they are

_Eb ¼ bEb

γx
−
b
γ
∂xEb; ð2:13Þ

_b ¼ γx
2ðEbÞ2 −

1

2γx
ð2xb∂xbþ b2 þ γ2Þ: ð2:14Þ

B. Marginally trapped solutions

A particularly simple family of LTB metrics are those
with E ¼ 0 in the metric (2.2), referred to in the literature as
marginally trapped solutions. Physically these correspond
to solutions where the energy of all dust particles is zero
(with their positive kinetic energy cancelled by their
negative gravitational potential energy, and both going to
zero at infinity). There are many other interesting families
of LTB metrics with E ≠ 0, but as a first step in studying
LTB space-times in effective LQG we focus here on the
marginally trapped class of solutions. In triad variables
these correspond to Eb ¼ x, which is readily seen as a
solution to the Eb equation of motion, and the remaining
canonical equation for bðx; tÞ simplifies to

_bþ 1

2γx
∂xðxb2Þ ¼ 0: ð2:15Þ

The dust energy density for this class of solutions is

ρðx; tÞ ¼ 1

8πGγ2x2
∂xðxb2Þ; ð2:16Þ

and the mass function is

mðx; tÞ ¼ 4π

Z
x

0

dx̃x̃2ρðx̃; tÞ: ð2:17Þ

As an aside, note that the equation of motion for bmay also
be rewritten in terms of the mass function [95]

_mþ
ffiffiffiffiffiffiffiffiffiffi
2Gm
x

r
∂xm ¼ 0: ð2:18Þ

The dynamics for this system can be solved by the
method of characteristics by writing b ¼ bðxðλÞ; tðλÞÞ to
transform (2.15) into the equations

dt
dλ

¼ 1;
dx
dλ

¼ bðλÞ
γ

;
db
dλ

¼ −
b2ðλÞ
2γxðλÞ : ð2:19Þ

The first two equations determine the characteristic curves in
the ðx; tÞ plane, while the third gives the value of b along
these curves. These may be solved with the initial conditions

tðλ ¼ 0Þ ¼ 0; xðλ ¼ 0Þ ¼ x0; bðλ ¼ 0Þ ¼ b0ðx0Þ;
ð2:20Þ
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where b0ðxÞ ¼ bðx; 0Þ is the initial data for b; it may be
determined from an initial profile for the dust energy density
ρ0ðxÞ by inverting (2.16).
It is straightforward to solve these coupled ODEs: the

first gives λ ¼ t, while the equation for dðx−1bÞ=dλ is
separable, leaving a final ODE which is also separable once
b=x is known. The solution for xðλÞ and bðλÞ is

xðλÞ ¼ x0

�
1þ 3b0ðx0Þ

2γx0
λ

�
2=3

; bðλÞ ¼ b0ðx0Þ
ð1þ 3b0ðx0Þ

2γx0
λÞ1=3

:

ð2:21Þ

By following different characteristic curves (each curve
labeled by its initial radial position x0), it is possible to
determine bðx; tÞ by inverting xðλ; x0Þ—for this system
inverting tðλ; x0Þ is trivial.
Depending on the initial conditions, characteristic curves

starting at different radial points x0 can intersect; if this
happens the solution for b becomes multivalued at these
points since the value of b on different curves will typically
differ. The space-time points where characteristic curves
intersect are known as shell-crossings. Shell-crossings are
characterized by the condition ∂x0xðλ; x0Þ ¼ 0; these are
points where the determinant of the Jacobian associated to
the transformation ðλ; x0Þ → ðt; xÞ becomes zero, and
xðλ; x0Þ ceases to be invertible.
The time it takes before a shell-crossing develops

depends on the initial profile b0ðxÞ, and is given by

tS ¼
−2γx0

b0 þ 2x0∂x0b0
: ð2:22Þ

It is possible to choose initial conditions to ensure shell-
crossings never occur [91], but another approach is to
extend the equations of motion to allow for weak solutions
[94]. This is commonly required for nonlinear wave
equations like (2.15) and leads to the observable phenom-
ena of shock waves. For this system, the shock wave will
form in the gravitational field, i.e., the metric.

C. Weak solutions and shock waves

Weak solutions arise in many contexts, and consist
of solutions to an integrated form of the equations of
motion that cannot satisfy the original nth-order differ-
ential equations since they are not n times differentiable.
Some examples in general relativity are the Israel junction
conditions for distributional matter sources such as thin
shells [101], and the Dray-’t Hooft shock wave [102].
In general, for systems described by flow equations with

velocities that depend on the field, it is common for
characteristic curves to intersect, leading to a breakdown
of the evolution generated by the differential equations
beyond the intersection point. The solution to this problem

is to seek “weak solutions” that solve an integrated form of
the differential equation.
It can often happen that a weak solution is discontinuous,

and then the discontinuity is known as a shock wave.
Typically, shock waves propagate dynamically; a simple
example is a sonic boom. Many physical phenomena
exhibit shock waves, which commonly arise as weak
solutions to nonlinear wave equations.
To review and illustrate the basic idea, consider the

nonlinear conservation equation

_uþ ∂xfðu; xÞ ¼ 0; ð2:23Þ

where fðu; xÞ is a nonlinear function of u, and potentially
depends on x as well.
If uðx; tÞ satisfies the integral equationZ

∞

0

dt
Z

∞

−∞
dx½ð∂tφÞuþ ð∂xφÞfðu; xÞ�

¼ −
Z

∞

−∞
dxφðx; 0Þuðx; 0Þ; ð2:24Þ

for any test function φðx; tÞ of compact support that is
continuously differentiable, then u is called a weak solution
of this conservation equation. If discontinuities in u only
arise along the x axis (as would be expected for a physical
system with a well-posed initial value problem), it is
sufficient to consider the integral equation

d
dt

Z
x2

x1

dx uþ
Z

x2

x1

dx ∂xfðu; xÞ ¼
d
dt

Z
x2

x1

dx u

þ fðuðx2Þ; x2Þ − fðuðx1Þ; x1Þ ¼ 0; ð2:25Þ

for any interval ½x1; x2� of interest.
A discontinuity in uðxÞ propagates as a shock wave with

a speed determined by the integral equation. To see this,
consider (2.25) when there is a discontinuity at x ¼ LðtÞ in
the interval ½x1; x2�. Then the integral splits into two parts to
give

d
dt

Z
L

x1

dxuþ d
dt

Z
x2

L
dxuþfðuðx2Þ; x2Þ−fðuðx1Þ; x1Þ ¼ 0;

ð2:26Þ

expanding the first term gives

dL
dt

· lim
x→L−

uþ
Z

L

x1

dx∂tuþ
dL
dt

· lim
x→Lþ

u

þ
Z

x2

L
dx∂tuþ fðuðx2Þ; x2Þ−fðuðx1Þ;x1Þ ¼ 0; ð2:27Þ

where x → Lþ and x → L− denote the limits from above
and below the discontinuity at x ¼ L respectively. Taking
the limits x1 → L− and x2 → Lþ, the contributions from
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the integrals go to 0, and solving for dL=dt gives the
Rankine-Hugoniot condition

dL
dt

¼ ½fðu; xÞ�
½u� ; ð2:28Þ

where ½g� ¼ limx→Lþ gðxÞ − limx→L− gðxÞ denotes the ampli-
tude of the discontinuity in the function gðxÞ at x ¼ L.
Returning now to LTB space-times, we are interested

in weak solutions that permit discontinuities in the metric
due to shell-crossings [94,95]. The equation of motion
(2.15) can be rewritten in the form of a conservation
equation with u ¼ xb and fðu; xÞ ¼ u2=2γx. It gives the
integral equation

d
dt

Z
x2

x1

dx xbðx; tÞ þ x2bðx2; tÞ2
2γ

−
x1bðx1; tÞ2

2γ
¼ 0; ð2:29Þ

and the Rankine-Hugoniot condition gives the propagation
speed of a dust shock wave:

dL
dt

¼ L½b2�
2γL½b� ¼

bðLþÞ þ bðL−Þ
2γ

: ð2:30Þ

In general, numerics are necessary to solve the dynamics
of a nonlinear wave equation of the general form (2.23); we
discuss the Godunov numerical scheme in Sec. V.
Finally, we note that different prescriptions to find

weak solutions are not guaranteed to be equivalent, since
there are (for functions with discontinuities) many
inequivalent integral forms for any given differential
equation that can be obtained by nonlinear field redefi-
nitions. In particular, the weak solutions derived from
(2.29) are inequivalent to the Israel junction conditions—
although in both cases the induced three-dimensional
metric across the discontinuous surface will be continu-
ous, the Israel junction conditions impose an additional
relation on the trace-free extrinsic curvature, while on the
other hand it is a relation on b that is implicitly imposed
by (2.29). We leave a more detailed exploration of weak
solutions in classical general relativity for future work;
in the remainder of this paper we consider weak solu-
tions to (2.29) (and its equivalent for the LQC effective
equations).

D. Discretization

To pass to the quantum theory, it is convenient to start
from a discretization of the classical theory. There are of
course many discretizations that are possible and equivalent
in the limit that the discretization parameter becomes
infinitesimally small. Here, for the sake of simplicity we
will choose a rather direct discretization.
First, we introduce a lattice in the radial direction

denoted by xn, with x0 ¼ 0 and the width of each interval
given by wn ¼ xnþ1 − xn > 0. It is possible to set wn to be

the same for all n, but that is not necessary here; we will
however assume that wn is fixed for each n and does not
evolve dynamically.
Given this discretization, we further assume that all fields

are constant in each interval ½xn; xnþ1Þ, and approximate
derivatives by

∂xfðxÞ →
fðxnþ1Þ − fðxnÞ

wn
: ð2:31Þ

With these choices, the action for the discretized theory
becomes

SdiscGF ¼
Z

dt
X
n

�
wn

_bnEb
n

Gγ
−Hdisc

n

�
; ð2:32Þ

where bn ¼ bðxnÞ; Eb
n ¼ EbðxnÞ and (for n ≠ 0)

Hdisc
n ¼ −

wn

2Gγ

�jEb
nj

γxn
·
xnþ1b2nþ1 − xnb2n

wn
þ γjEb

nj
xn

þ γxn
jEb

nj
�
;

ð2:33Þ

dropping the boundary term.
Note that the same general expression cannot be used

for Hdisc
0 due to the presence of x0 ¼ 0 in some

denominators. Various regularizations to address this
difficulty are possible; looking ahead to the quantum
theory where there are inverse triad operators, we simply
set Hdisc

0 ¼ 0.
The Poisson brackets for the discretized variables are

now

fbm; Eb
ng ¼ Gγ

wn
δmn; ð2:34Þ

and the equations of motion (for n ≥ 2 and assuming
Eb > 0) are

_Eb
n ¼ −

xnbn
γ

·

�
Eb
n

wnxn
−

Eb
n−1

wn−1xn−1

�
; ð2:35Þ

_bn ¼ −
xnþ1b2nþ1 − xnb2n

2γwnxn
−

γ

2xn
þ γxn
2ðEb

nÞ2
: ð2:36Þ

In the equations of motion for n ¼ 1, there are no contri-
butions from n ¼ 0, while the equations of motion for n ¼ 0

are trivial, _Eb
0 ¼ 0 and _b0 ¼ 0, at least for the choice

Hdisc
0 ¼ 0.
Finally, the energy density is given by

ρn ¼ −
Hdisc

n

4πwnxnjEb
nj
−

1

4πwnxnjEb
nj
·

1

Gwn

�
x2nþ1

jEb
nþ1j

−
x2n
jEb

nj
�
;

ð2:37Þ
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[the second term is the total derivative that was dropped in
(2.33) but is necessary to calculate ρn], while the total mass
within a radius xn is

mn ¼ 4π
Xn
p¼0

wpxpjEb
pjρp: ð2:38Þ

III. QUANTUM THEORY

The quantum theory for LTB space-times defined here is
based upon themethods of loopquantumcosmology. Starting
from the discretized classical theory given in Sec. II D, an
LQC Hilbert space is defined at each point xn in the radial
lattice; the total Hilbert space for LTB space-times is given by
their tensor product. (Note that due to the gauge-fixing which
gives a physicalHamiltonian, there is nodistinctionbetweena
kinematical and physical Hilbert space in this case.) Then, the
dynamics are generated by the Hamiltonian operator.

A. Hilbert space

LQC techniques were first developed for cosmological
space-times that are homogeneous and therefore have a finite
number of degrees of freedom. This is not the case for LTB
space-times, which allow fields that can depend on the radial
coordinate. This adds a certain degree of complexity that is not
present in the treatment of Friedman-Lemaître-Robertson-
Walker (FLRW), Bianchi, or Kantowski-Sachs space-times.
To address this problem, we introduce an arbitrary

discretization of the radial coordinate x as explained in
Sec. II D. At each node n, we can define a Hilbert space Hn
following the standard methods of LQC, and then the full
Hilbert space H for LTB space-times will be given by the
tensor product H ¼⊗ Hn.
As usual in LQC, the elementary operators for each

Hilbert space Hn correspond to densitized triads and
complex exponentials of components of the Ashtekar-
Barbero connection, from which it is possible to construct
holonomies along coordinate edges.
To understand the relation between complex exponen-

tials of b and holonomies, recall that after the gauge-fixing
imposed on the classical theory, it is the angular component
of Ai

a that has not been gauge-fixed and therefore we are
interested in holonomies along paths tangent to, for
example, ð∂=∂θÞa along the equator ϕ ¼ π=2; in general
the paths of interest are portions of a great circle at different
radii xn. We use the “K” loop quantization [103,104] that is
based on the “extrinsic curvature holonomy,”

hn;θðμÞ ¼ exp

�Z
μ

0

γKi
θðxnÞτidθ

�
¼ exp

�Z
μ

0

bnτ2dθ

�
¼ cos

�
μbn
2

�
I

þ 2 sin

�
μbn
2

�
τ2; ð3:1Þ

where μ is the coordinate length of the holonomy’s path (in
this case μ is the angle covered by the portion of the great
circle). To be concrete, here we consider the great circle
ϕ ¼ π=2, but the result would be similar for any other path
along a portion of a great circle. The τi are a basis in the
fundamental representation of the suð2Þ Lie algebra with
τiτj ¼ 1

2
ϵijkτ

k − 1
4
δijI, and I is the 2 × 2 identity matrix.

Importantly, due to spherical symmetry the path integral
along θ is trivial and easily evaluated—this would not be
true for paths in the radial direction, but these are not
needed in this case due to the gauge-fixing that has been
imposed before quantization.
This definition of the holonomy operator uses the

fundamental representation of suð2Þ, also commonly
utilized in LQC. Other choices are in principle possible
and have been explored in LQC [105–107]. But the key
physical feature of singularity avoidance that is central to
our results is not affected by this choice: the curvature
operator constructed from the holonomy is a bounded
operator regardless of the representation of suð2Þ.
The nontrivial dependence on bn in (3.1) is fully

captured by the complex exponentials

N nðμÞ ¼ expðiμbnÞ; ð3:2Þ
of the component b of the Ashtekar-Barbero connection.
Given this result, we can choose the fundamental operators
(at each node n) in the quantum theory to correspond to the
densitized triad Eb and complex exponentials of b.
It is convenient to express the Hilbert space Hn using the

Eb representation where the states jEbi form an orthonor-
mal basis

nhEbjẼbin ¼ δEbẼb ; ð3:3Þ

and are eigenkets of the triad operator

Êb
njEbin ¼ EbjEbin: ð3:4Þ

As usual in LQC, the operators corresponding toN nðμÞ act
as shift operators in this representation,

N̂ nðμÞjEbin ¼
����Eb þ 1

wn
ℏGγμ

�
n
: ð3:5Þ

A direct calculation confirms that the commutator of these
elementary operators matches the Poisson bracket of the
equivalent observables on the classical phase space, up to
the required factor of iℏ,

fN nðμÞ; Eb
ng ¼ iGγμ

wn
N nðμÞ → ½N̂ nðμÞ; Êb

n�

¼ −
ℏGγμ
wn

N̂ nðμÞ: ð3:6Þ

Since Êb
n has a discrete spectrum, it is also necessary to

define an inverse triad operator for each Hn. There is
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considerable ambiguity in the possible choices here (see
[104] for a discussion); we take the simplest choice
possible [108]:

1̂

Eb
n
jEbin ¼

	
0 if Êb

njEbin ¼ 0;

ðEb
nÞ−1jEbin otherwise:

ð3:7Þ

In addition, note that x−1n appears in the Hamiltonian,
a term which could be problematic at the origin. Since
these terms appear due to the gauge-fixing of Ea ¼ x2,
there would normally be an inverse triad operator for
ðEaÞ−1 that vanishes for Ea ¼ 0, so we add the requirement
that all terms in the Hamiltonian containing x−1n vanish
when xn ¼ 0.
Any state jΨin ∈ Hn has the general form of a countable

sum

jΨin ¼
X
Eb

ψðEbÞjEbin; ð3:8Þ

with finite norm

nhΨjΨin ¼
X
Eb

jψðEbÞj2: ð3:9Þ

As already mentioned, the full Hilbert space H is given
by the tensor product of the Hilbert spaces Hn located at
each node, H ¼⊗ Hn, and the elementary operators
Eb
n;N n;μ acting at different nodes n ≠ m commute.
Finally, if the orientation of the densitized triad Eb

i is
flipped, Eb

i ðxÞ → −Eb
i ðxÞ (and also b → −b), the space-

time geometry remains the same. Therefore, we require that
the parity transformation

Π̂ΨðEb
0; E

b
1;…; Eb

n;…Þ ¼ Ψð−Eb
0;−Eb

1;…;−Eb
n;…Þ

ð3:10Þ
leaves the wave function invariant, namely

Π̂Ψ ¼ Ψ: ð3:11Þ

As an aside, we note that it is possible to define a parity
transformation at a given node which changes the sign of
the Eb

n argument of Ψ. However, this is not natural from a
physical point of view since parity transformations are
global operations and cannot act locally; therefore, we do
not introduce such an operator.

B. Quantum dynamics

In order to define an operator corresponding to the
physicalHamiltonian inLQC, it is first necessary to construct
a nonlocal operator corresponding to b̂n, which captures one
of the components of the field strength through

F̂θϕ
1ðxnÞ ¼ b̂2n sin θ: ð3:12Þ

Note that this operator is nonlocal since it is constructed
from holonomies along edges of finite, not infinitesimal,
length. Following the usual LQC procedure for the “K”
quantization [103,104], we use a holonomy of minimal
physical length ∼lPl,

b̂n ¼ −2Tr
�
ĥn;θð2μ̄nÞ − ĥn;θð−2μ̄nÞ

2μ̄n
τ2

�
¼ sin μ̄nbn

μ̄n
;

ð3:13Þ
where μ̄n is a coordinate length chosen so that the
physical length of the path is

ffiffiffiffi
Δ

p
, where Δ ∼ l2

Pl is
the smallest nonzero eigenvalue of the area operator in
LQG. Of course, sin μ̄nbn can be expressed in terms of

N̂ nðμ̄Þ and N̂ nð−μ̄Þ ¼ N̂ nðμ̄Þ†.
As the holonomy (3.1) follows a path where only the

coordinate θ varies, it is straightforward to relate the
coordinate length in the θ direction to the physical length
through the metric (2.6), jdsj ¼ xjdθj. Requiring that the
physical length be given by

ffiffiffiffi
Δ

p
sets

μ̄n ¼
ffiffiffiffi
Δ

p

xn
; ð3:14Þ

which implies that the operator b̂n acts on basis states as

b̂njEbin ¼
xnffiffiffiffi
Δ

p
�����Eb þ 1

wnxn
Gℏγ

ffiffiffiffi
Δ

p �
−
����Eb −

1

wnxn
Gℏγ

ffiffiffiffi
Δ

p ��
: ð3:15Þ

Interestingly, in this case μ̄n is independent of phase-space
variables, unlike in the LQC of homogeneous space-times.
This is ultimately due to the gauge-fixing of Ea ¼ x2

in Sec. II A.
With this definition, it is now possible to express the

operator for the (discretized) physical Hamiltonian (2.33) in
terms of the elementary operators. As in the classical
theory, the total physical Hamiltonian operator is given
by a sum of operators, each corresponding to the physical
Hamiltonian on one node of the lattice,

Ĥ ¼
X
n

Ĥn; ð3:16Þ

and using the elementary operators defined above, together
with the definition for b̂n that captures the nonlocal
curvature along angular directions, gives

Ĥn ¼ −
wn

2Gγ

�
1

γxn

dffiffiffiffiffiffiffiffi
jEb

nj
q

1

wn

�
x3nþ1

Δ
sin2
� ffiffiffiffi

Δ
p

bnþ1

xnþ1

�
−
x3n
Δ
sin2
� ffiffiffiffi

Δ
p

bn
xn

�� dffiffiffiffiffiffiffiffi
jEb

nj
q

þ γxn

���� 1̂Eb
n

����þ γ

xn
jÊb

nj
�
:

ð3:17Þ
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The only factor-ordering choice to be made is in the first
term, where we chose a symmetric factor-ordering between
Êb
n and b̂2n.
Note that given the definition of the inverse triad opera-

tors and the requirement that terms in the Hamiltonian
containing x−1n also vanish for n ¼ 0 (due to inverse triad
corrections for Ea which has been gauge-fixed to x2n, see the
discussion following the definition of the inverse triad

operator in Sec. III A), it follows that Ĥ0 ¼ 0. So although
Ĥ0 is well defined, it is trivial. For all other n, Ĥn is
nontrivial and acts on Hn ⊗ Hnþ1, given the discretization
scheme we chose for derivatives in Sec. II D. Assuming
Eb
n ≠ 0, the inverse triad operators give the second line in

(3.7) and the action of Ĥn (for n ≥ 1) on basis states
jEbin ⊗ jEbinþ1 ¼ jEb

n; Eb
nþ1i is

ĤnjEb
n; Eb

nþ1i ¼
x3nþ1jEb

nj
8Gγ2Δxn

ðjEb
n; Eb

nþ1 þ lnþ1i þ jEb
n; Eb

nþ1 − lnþ1iÞ

−
x2n

ffiffiffiffiffiffiffiffi
jEb

nj
p

8Gγ2Δ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEb

n þ lnj
q

jEb
n þ ln; Eb

nþ1i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEb

n − lnj
q

jEb
n − ln; Eb

nþ1i
�

−
�ðx3nþ1 − x3nÞjEb

nj
4Gγ2Δxn

þ wnjEb
nj

2Gxn
þ wnxn
2GjEb

nj
�
jEb

n; Eb
nþ1i; ð3:18Þ

where

ln ¼
2Gℏγ

ffiffiffiffi
Δ

p

wnxn
: ð3:19Þ

Note that if Eb
n ¼ 0, then all terms vanish exactly (the last term is zero due to the inverse triad operator).

Also, recall that Ĥ is a true Hamiltonian (not a constraint) due to the dust-time gauge-fixing, and the Hamiltonian
operator is related to the dust energy density operator,

ρ̂n ¼ −
1

4πwnxn

���� 1̂Eb
n

����1=2�Ĥn þ
1

Gwn

�
x2nþ1

���� 1̂

Eb
nþ1

���� − x2n

���� 1̂Eb
n

���������� 1̂Eb
n

����1=2; ð3:20Þ

while the mass operator is given by

m̂n ¼ 4π
Xn
p¼0

wpxp

ffiffiffiffiffiffiffiffiffi
jÊb

pj
q

ρ̂p

ffiffiffiffiffiffiffiffiffi
jÊb

pj
q

; ð3:21Þ

where we have again used a symmetric factor-ordering for
both operators.
Finally, to reconstruct all of the components in the metric

(2.6), it is also necessary to define an operator correspond-
ing to Nx. Recall that the flat FLRW space-time (minimally
coupled to dust) is a particular solution of the LTB space-
time; starting from the standard flat FLRW line element in
spherical coordinates ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ
where aðtÞ is the scale factor, the coordinate transformation
x ¼ aðtÞ · r gives a line element that has precisely the form
(2.6) with Eb ¼ x and Nx ¼ −xH, where H is the Hubble
rate. In LQC the Hubble rate in terms of the phase space
variables is H ¼ ðγ ffiffiffiffi

Δ
p Þ−1 sinðμ̄bÞ cosðμ̄bÞ, see, e.g., [109]

(where we have simplified the notation by removing hats,
and denoted the nonzero component of the Ashtekar-
Barbero connection for the flat FLRW space-time by b).

This suggests that the appropriate operator for Nx in LTB
space-times is

N̂x
n ¼ −

xn
γ
ffiffiffiffi
Δ

p sin

� ffiffiffiffi
Δ

p
bn

xn

�
cos

� ffiffiffiffi
Δ

p
bn

xn

�
: ð3:22Þ

This choice has the correct classical limit, and it also agrees
with earlier work [40,41] (although it differs from the
choice proposed in [110]). This operator is not obtained by
simply replacing the classical bn in Nx by the operator b̂n
defined in (3.13); nonetheless, this is a natural choice for
the operator as it ensures that the homogeneous sector of
(marginally trapped) LTB space-times agrees with earlier
results obtained for flat FLRW space-times in LQC. (Note
that there is a priori no guarantee that ðNxÞ2 ∼ b2 and the
field strength Fθϕ

1 ∼ b2 will be represented by the same
operator in the quantum theory; it is possible for ℏ
corrections to modify these terms differently.)
As an aside, we mention two points concerning the

operator N̂x
n. First, even though as argued above we find

(3.22) to be the most strongly motivated definition for N̂x
n, it
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is nonetheless possible to make other choices, see, e.g.,
[110] for an alternate choice in vacuum space-times.
A different choice affects quantitative results, but our
numerical evidence suggests that the key qualitative proper-
ties of the (effective) LQC dynamics for LTB space-times,
such as the nonsingular bounce, shock wave formation,
and black hole lifetime are not significantly modified by
different choices for Nx—this is due in large part to fact
that the evolution of b and Eb does not depend on the
reconstruction of the metric via (3.22). A second technical
point is the following. Although this has so far not been
done, it should be possible to define a consistent quantum
theory for LTB space-times without first imposing any
gauges before quantization, and instead impose appropriate
gauges only after the theory has been quantized. Gauge
fixing after quantization would require introducing oper-
ators corresponding to gauge-fixing conditions that ensure
the gauge choices are preserved dynamically, and these
gauge-fixing conditions will fix the Lagrange multipliers,
here corresponding to the lapse and shift. The classical
gauge-fixing conditions for the dust-time and areal gauges
in LTB space-times are known, and it would be interesting
to determine their form as operators in LQC; in particular, it
will be necessary to express the components of the
Ashtekar-Barbero connection in terms of holonomies.
Although deriving the specific form of such gauge-fixing
conditions for LQC lies beyond the scope of this paper, it
can be shown that since the operator for Nx is not related to
the classical one by a simple “polymerization” where each
bn term is replaced by b̂n, similarly the LQC gauge-fixing
conditions cannot be obtained simply by taking the
classical expressions and performing a direct polymeriza-
tion [111]. This is not surprising for two reasons: first, the
LQC shift vector is not given by the direct polymerization
of the classical expression, and second, the nongauge-fixed
LQC scalar and diffeomorphism constraints for the LTB
space-times are not related to the classical expressions
through a direct polymerization, since this would result
in a quantum constraint algebra which does not close and
hence would give an inconsistent theory. A more careful
and sophisticated treatment is needed to construct the
nongauge-fixed LQC theory for LTB space-times; this
presumably requires following LQG more closely and
avoiding shortcuts like polymerization which appear to
work only in the simplest contexts.
This completes the definition of the loop quantization of

LTB space-times. We next derive effective equations which
capture important quantum gravity effects, and are signifi-
cantly easier to solve than the full quantum dynamics.

IV. EFFECTIVE THEORY

Loop quantum cosmology effective equations are func-
tions on the classical phase space that include some
quantum corrections in the form of terms containing ℏ
that arise from, e.g., holonomy corrections. It would of

course be preferable to solve the full quantum dynamics,
but this is a technically challenging problem—deriving
semiclassical physics would require constructing the
unitary evolution operator for the Hamiltonian and calcu-
lating its action on semiclassical states. Instead, as a first
step, we extract and solve the effective equations with
holonomy corrections from the LTB quantum theory
defined in Sec. III.
For homogeneous cosmological space-times, it has been

shown that the quantum dynamics of sharply peaked states
is well approximated by a set of effective equations, and
that these effective equations remain a good approximation
to the quantum dynamics for sharply peaked states even
when the space-time curvature becomes Planckian, so long
as the relevant length scales remain large compared to lPl
[9,109,112,113]. The main approximation underlying the
effective equations is that they assume quantum fluctua-
tions are negligible, but include important effects like the
fundamental quantum discreteness encoded by the nonlocal
curvature operator in the Hamiltonian.
In addition to results in cosmology, some early work on

black holes suggests that effective dynamics are also
reliable for black hole space-times with a large mass, at
least for (i) states that are sharply peaked and (ii) so long as
one only probes length scales l ≫ lPl [114]. If these two
conditions are satisfied, then the effective dynamics are
expected to provide a good approximation to the full
quantum dynamics, even when the curvature is Planckian.
In this section, we define the LQC effective Hamiltonian

for LTB space-times in the dust-time and areal gauges,
derive the LQC effective dynamics, and find analytic weak
solutions for some simple configurations.

A. Effective dynamics

The effective equations for LTB space-times can be
derived from the quantum theory by expressing the
Hamiltonian operator (3.17) as a function on the classical
phase space. For the LTB space-time, this gives an effective
Hamiltonian (for the discretized theory) composed of the
sum over n of

Heff
n ¼−

1

2Gγ

�
Eb
n

γwnxn

�
x3nþ1

Δ
sin2

ffiffiffiffi
Δ

p
bnþ1

xnþ1

−
x3n
Δ
sin2

ffiffiffiffi
Δ

p
bn

xn

�
þ γxn

Eb
n
þ γEb

n

xn

�
; ð4:1Þ

assuming Eb > 0 for the sake of simplicity. The continuum
limit is easily taken; the resulting Hamiltonian isZ

dxHeff
phys ¼ −

1

2Gγ

Z
dx

�
Eb

γΔx
∂x

�
x3sin2

ffiffiffiffi
Δ

p
b

x

�
þ γx
Eb þ

γEb

x

�
: ð4:2Þ
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The transition from the Hamiltonian operator to this
effective expression requires taking the expectation of
the former in a semiclassical Gaussian state peaked on a
phase space point (see, e.g., [115]), and then taking the
continuum limit. This is the same process used to obtain the
effective LQC dynamics, where the Hamiltonian operator
with matter is also unbounded. A shortcut that is known to
work in LQC, and one we use here, is to replace the
quantum operators with the appropriate phase space func-
tions. Note that the effective dynamics do not take into
account dispersion effects of the Hamiltonian operator
captured by expressions as such ΔðHnÞ2 ≡ hĤ2

ni − hĤni2
for expectation values in semiclassical states, which are of
higher order in ℏ.
The Poisson bracket is the same as in the classical theory,

fbðx1Þ; Ebðx2Þg ¼ Gγδðx1 − x2Þ; ð4:3Þ

and the effective equations of motion are generated, as
usual, by taking the Poisson brackets of the dynamical
variables with the effective Hamiltonian,

R
dxHeff

phys, giving

_b¼ γx
2ðEbÞ2 −

γ

2x
−

x
γΔ

sin

ffiffiffiffi
Δ

p

x
b

�
3

2
sin

ffiffiffiffi
Δ

p

x
bþ x∂x sin

ffiffiffiffi
Δ

p

x
b

�
;

ð4:4Þ

_Eb ¼ −
x2

γ
ffiffiffiffi
Δ

p ∂x

�
Eb

x

�
sin

ffiffiffiffi
Δ

p

x
b cos

ffiffiffiffi
Δ

p

x
b: ð4:5Þ

As in the classical theory, b and Eb determine the metric,

ds2 ¼ −dt2 þ E2
b

x2
ðdxþ NxdtÞ2 þ x2dΩ2; ð4:6Þ

where the shift vector is related to b by

Nx ¼ −
x

γ
ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p

x
b cos

ffiffiffiffi
Δ

p

x
b; ð4:7Þ

taking the prescription (3.22) used for the quantum theory.
Finally, the energy density in the effective theory follows

from (3.20),

ρ ¼ 1

8πGγxEb

�
Eb

γΔx
∂x

�
x3 sin2

ffiffiffiffi
Δ

p
b

x

�
þ γx
Eb þ

γEb

x

− 2γ∂x

�
x2

Eb

��
: ð4:8Þ

We note that the area gap Δ and the Barbero-Immirzi
parameter γ often combine in the form γ2Δ, and many
observables of physical interest depend only on this
combination. This also occurs in LQC and seems to be
a general feature of loop quantized symmetry-reduced

systems. In contrast, in LQG the quantities γ and Δ are
distinct (although related, since Δ is proportional to γ), and
can be distinguished for example by measuring the spec-
trum of the LQG area operator.

B. Marginally trapped solutions

As in the classical theory, Eb ¼ x corresponds to the
effective version of the marginally trapped solutions. For
this family of solutions, b is the only dynamical degree of
freedom left, satisfying the equation of motion

_bþ 1

2γΔx
∂x

�
x3 sin2

ffiffiffiffi
Δ

p
b

x

�
¼ 0: ð4:9Þ

The energy density is closely related to b through

ρ ¼ 1

8πGγ2Δx2
∂x

�
x3 sin2

ffiffiffiffi
Δ

p
b

x

�
; ð4:10Þ

which can also be expressed in terms of _b, although this
relation will not be necessary for us here. Expanding the
derivative,

ρ ¼ 1

8πGγ2Δ

�
3 sin2

ffiffiffiffi
Δ

p
b

x
þ 2

ffiffiffiffi
Δ

p
sin

ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x

×

�
∂xb −

b
x

��
: ð4:11Þ

In the homogeneous limit of ∂xb ¼ 0, the energy density is
bounded above by ρc ¼ 3=8πGγ2Δ, the critical energy
density for spatially flat FLRW space-times in LQC.
It is simpler and more intuitive to give initial conditions

in terms of the density ρðx; t0Þ; these can be translated into
initial conditions for b through

bðx; t0Þ ¼ −
xffiffiffiffi
Δ

p arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGγ2Δ

x3

Z
x

0

dx̃x̃2ρðx̃; t0Þ
s !

:

ð4:12Þ

When taking the square root, we chose an overall negative
sign; this choice means that the initial data corresponds to a
collapse scenario. On the other hand, taking the positive
root would correspond to an LTB space-time with dust
initially moving outwards.
For collapse models, an important quantity is the out-

going null expansion θþ, which is used to locate marginal
apparent horizons via θþ ¼ 0. For the LTB metric (4.6),
with Eb ¼ x, the outgoing null expansion is

θþ ¼ 2

x
ð1 − NxÞ ¼ 2

x
þ 1

γ
ffiffiffiffi
Δ

p sin
2
ffiffiffiffi
Δ

p
b

x
: ð4:13Þ
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Similarly, the in-going null expansion is θ− ¼ −ð2=xÞ ·
ð1þ NxÞ.
It is possible to find implicit solutions for b by using the

method of characteristics, namely by finding curves in the
ðx; tÞ plane parametrized by λ such that along these curves
the partial differential equation (4.9) becomes a set of
coupled ordinary differential equations. Solving the set of
coupled ordinary differential equations along each of these
curves gives the full solution, although in implicit form in
terms of the parameter λ.
It is convenient to first introduce the variable β ¼ ffiffiffiffi

Δ
p

b=x,
in which case the equation of motion becomes

_β þ 1

2γ
ffiffiffiffi
Δ

p
x2

∂xðx3 sin2 βÞ ¼ 0: ð4:14Þ

As an aside, note that this equation can be rewritten as

_β ¼ −4πGγ
ffiffiffiffi
Δ

p
ρ; ð4:15Þ

and since ρ ≥ 0, it follows that β is monotonically
decreasing.
Taking a parametrized curve ðxðλÞ; tðλÞÞ and evaluating

βðλÞ at points along this curve gives

dβ
dλ

¼ ∂β

∂t
dt
dλ

þ ∂β

∂x
dx
dλ

: ð4:16Þ

By choosing a curve such that

dβ
dλ

¼ −
3

2
sin2 β; ð4:17Þ

the equation of motion for β implies that

dx
dλ

¼ x sin β cos β;
dt
dλ

¼ γ
ffiffiffiffi
Δ

p
: ð4:18Þ

Solving these ODEs first gives λ ¼ t=γ
ffiffiffiffi
Δ

p
[setting

λðt ¼ 0Þ ¼ 0], and

cotðβðλÞÞ ¼ cot β0 þ
3λ

2
;

�
x
x0

�
3

¼ sin2β0
sin2β

: ð4:19Þ

For each curve, the initial conditions are tðλ ¼ 0Þ ¼ 0 and
xðλ ¼ 0Þ ¼ x0. For such a curve, βðλ ¼ 0Þ ¼ β0ðx0Þ, and
we have the exact implicit solutions for βðx; tÞ. These can
be inverted numerically everywhere, except where charac-
teristics cross—at these points the method of characteristics
fails, and it is necessary to search for weak solutions to the
equation of motion. As mentioned previously, it is always
possible in the classical theory to restrict initial data such
that caustics do not form [91,92,94], but as we explain next
this is not possible in the effective quantum theory due to
the singularity avoidance and bounce: shock waves are a
general feature of quantum dust collapse.

As in the classical case, shock formation occurs when the
Jacobian for the transformation ðλ; x0Þ → ðt; xÞ vanishes.
Since ∂λt ¼ γ

ffiffiffiffi
Δ

p
and ∂x0t ¼ 0, the Jacobian vanishes if and

only if ∂x0x ¼ 0. Rewriting

x ¼
�
x30sin

2β0

�
1þ

�
cot β0 þ

3

2
λ

�
2
��

1=3
; ð4:20Þ

a numerical investigation finds that the derivative

∂x0x ¼ 1

3

�
sin2β0
sin2β

�
1=3
�
3þ 2x0β00

�
cot β0 −

1

sin2β0

·
3
2
λþ cot β0

1þ ð3
2
λþ cot β0Þ2

��
; ð4:21Þ

generically vanishes for initial data with infalling dust that
satisfies the two following properties: the initial density ρ0
is not zero everywhere, and there is an exterior vacuum
region x ≥ xe where ρ0 ¼ 0. Physically, this can be under-
stood by following characteristics in the interior and
exterior regions. In the interior, the characteristics for
dust particles will eventually bounce due to LQC effects
and move outwards, while in the vacuum exterior region
characteristic curves will always move inwards. As a result,
these two families of characteristic curves must eventually
cross; see also the discussion in [72]. (Note that character-
istic curves where ρ ≠ 0 may also cross, but this depends
quite sensitively on the initial configuration of ρ0 and will
not always occur, while characteristic curves for the interior
matter region and the exterior vacuum region will cross
after the bounce.) Therefore, for this large class of initial
data, characteristics will cross, showing that it is necessary
to allow for weak solutions to the effective dynamics.

C. Weak solutions

As characteristic curves will cross, weak solutions to the
dynamics must be considered. As reviewed in Sec. II C, it is
helpful to write the dynamics in the form of a conservation
law _uþ ∂x½fðu; xÞ� ¼ 0, which can in turn be expressed as
an integral equation. Then, the speed of a shock wave
located at x ¼ LðtÞ is given by dL=dt ¼ ½fðu; xÞ�=½u�,
where ½gðxÞ� ¼ limx→Lþ gðxÞ − limx→L− gðxÞ.
To rewrite the equation of motion (4.9) as a conservation

law, it is useful to introduce the variable B ¼ ffiffiffiffi
Δ

p
xb, whose

dynamics are given by

_Bþ ∂x

�
x3

2γ
ffiffiffiffi
Δ

p sin2
B
x2

�
¼ 0: ð4:22Þ

Then, the speed of any shock waves that may form is
given by
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dL
dt

¼ L3

2γ
ffiffiffiffi
Δ

p ·
½sin2 B

x2�
½B� ¼ L

2γ
ffiffiffiffi
Δ

p ·
½sin2 β�
½β� : ð4:23Þ

Here we give the expression in terms of both of the
variables B and β ¼ B=x2; depending on the calculation,
one variable may be more convenient than the other.
The Oppenheimer-Snyder model and the thin shell

solution can be solved analytically; the general case for
arbitrary initial data profiles requires a numerical solution.

1. Oppenheimer-Snyder solution

The Oppenheimer-Snyder collapse model has two
regions: a “star” interior region x < LðtÞ where the energy
density ρ is radially constant (but grows with time as the
star collapses and becomes denser), and a vacuum exterior
region x > LðtÞ where ρ ¼ 0. We will denote the interior
region with the index i and the exterior region with the
index e.
The solution for the ρe ¼ 0 vacuum exterior region

follows from (4.10),

sin βe ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ΔRS

x3

s
; ð4:24Þ

where the minus sign is due to the attractive nature of the
gravitational field generated by the dust field in the interior,
and the constant of integration is chosen to match the
classical solution. As usual, RS ¼ 2GM is the classical
Schwarzschild radius and M is the total mass of the star
(which is a constant of the motion). Also, note that _βe ¼ 0.
Similarly, for the interior region (4.10) shows that if

∂xρ ¼ 0, then ∂xβ ¼ 0 also, and (4.14) becomes

_βi ¼ −
3 sin2 βi
2γ

ffiffiffiffi
Δ

p ; ð4:25Þ

with the solution

− cot βi ¼
3ðt − t0Þ
2γ

ffiffiffiffi
Δ

p ⇒ sin βi ¼
−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 9t2=4γ2Δ
p : ð4:26Þ

The minus sign indicates that the Oppenheimer-Snyder star
is collapsing, rather than expanding, and in the second
relation we have fixed the constant of integration t0 ¼ 0.
Since βi is monotonically decreasing, as seen in (4.15), it
follows that for t < 0, then −π=2 < βi < 0, while −π <
βi < −π=2 for t > 0. As a result, βi itself is given by

βi ¼
8<:

− arcsin 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ9t2=4γ2Δ

p ; for t < 0;

−π þ arcsin 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ9t2=4γ2Δ

p ; for t > 0;
ð4:27Þ

keeping in mind that −π=2 < arcsin x < π=2.

In terms of the gauge-fixed metric (4.6), the interior is a
flat FLRW space-time with a dust field whose energy
density evolves as

ρi ¼
3

2πGð9t2 þ 4γ2ΔÞ : ð4:28Þ

During the t < 0 contracting phase of the star, β is
continuous across the boundary between the interior and
exterior solutions (although not differentiable), so there is
no shock wave and the location of the boundary x ¼ LðtÞ
can be determined by requiring that β be continuous across
the boundary, giving [88]

L ¼
�
9RSt2

4
þ γ2ΔRS

�
1=3

: ð4:29Þ

Using this expression to rewrite the energy density of the
interior, it is clear that LðtÞ plays the role of the scale factor
for the FLRW-like interior, with

ρi ¼
3M
4πL3

; ð4:30Þ

and the effective Friedman equation that L satisfies during
the collapse phase is�

_L
L

�2

¼ 8πG
3

ρ

�
1 −

ρ

ρc

�
; ð4:31Þ

which is exactly identical to the LQC effective Friedman
equation for flat FLRW space-times.
A bounce occurs at t ¼ 0 when βi ¼ −π=2. The bounce

occurs both in the radius L of the collapsing star, which
reaches a minimum and begins to increase, and also in the
energy density ρ, which reaches a maximum precisely
equal to ρc ¼ 3=8πGγ2Δ, the critical energy density in
LQC, and then decreases after the bounce.
The postbounce dynamics are significantly different

from the collapse, because after the bounce βi < −π=2
while βe > −π=2, showing that a discontinuity in β has
formed: there is now a shock in the gravitational field.
Since there is a shock, L no longer follows the dynamics
given by (4.31) which holds only when the solution is
continuous; instead the motion of the front of the shock
wave during the expanding phase is determined by the
Rankine-Hugoniot condition (4.23),

dL
dt

¼ γ
ffiffiffiffi
Δ

p
=2

π − arcsin
ffiffiffiffiffiffiffiffiffiffi
γ2ΔRS

L3

q
− arcsin

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2Δ

9
4
t2þγ2Δ

q
·

�
RS

L2
−

L
9
4
t2 þ γ2Δ

�
: ð4:32Þ

In the interior, away from the shock, the energy density
after the bounce decreases following (4.28), but L moves
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more slowly after the bounce, as compared to before, and
the outside region remains vacuum. The combination of
these effects implies that a growing fraction of the dust field
becomes trapped at the boundary x ¼ LðtÞ in the expand-
ing phase,

ρint ¼
3

2πGð9t2 þ 4γ2ΔÞΘðLðtÞ − xÞ

þ
�
M −

2L3

Gð9t2 þ 4γ2ΔÞ
�
δðLðtÞ − xÞ; ð4:33Þ

where ΘðxÞ is the Heaviside function.
Since the energy density of dust in the interior quickly

decays, soon after the bounce it is reasonable to approxi-
mate the interior by a flat Minkowski space-time where
β ¼ −π and sin β ¼ 0. Further, soon after the bounce
L ≫ Lbounce ¼ ðγ2ΔRSÞ1=3 and it is possible to neglect
terms of the order Lbounce=L. With these two approxima-
tions, the speed of the shock (4.32) reduces to

dL
dt

≈
γ
ffiffiffiffi
Δ

p
RS

2πL2
; ð4:34Þ

which can be solved to give

LðtÞ ≈
�
3γ

ffiffiffiffi
Δ

p
RSt

2π

�1=3

; ð4:35Þ

although this result is a good approximation only for
t ≫ tPl. At the bounce Lð0Þ does not vanish, rather
Lð0Þ ¼ Lbounce ¼ γ2ΔRS.
With these results, it is straightforward to determine the

space-time metric; putting Eb ¼ x into (4.6),

ds2 ¼ −dt2 þ ðdxþ NxdtÞ2 þ x2dΩ2; ð4:36Þ

the lapse Nx ¼ −ðx=γ ffiffiffiffi
Δ

p Þ · sin β cos β is [88]

Nx ¼

8>><>>:
− 6xt

9t2þ4γ2Δ if x ≤ LðtÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS
x



1 − γ2ΔRS

x3

�r
if x > LðtÞ;

ð4:37Þ

where LðtÞ is given by (4.29) for the collapse t < 0 portion
of the space-time, while L expands more slowly following
(4.32) for t > 0 after the bounce. For more details on the
exterior vacuum solution see [41], and for the interior
solution see [88].
In addition, it is possible to calculate the lifetime of an

Oppenheimer-Snyder black hole solution, defined as the
(proper) time interval between the formation of the outer
apparent horizon, and its eventual disappearance when the
outgoing shock wave reaches it, as measured by a distant
observer. Assuming the distant observer detects lightlike

signals emitted from the surface L just before the formation
of the black hole and just after the emergence of the shock
from the outer apparent horizon, this observer’s proper
time interval is simply given by the coordinate interval
T ¼ t2 − t1 between these two events [88]. For this
calculation, we make the approximation that the apparent
horizon is located at RS, neglecting corrections to the
location of the horizon of the order ∼l2

Pl=RS that are
negligible for black holes with M ≫ mPl.
The black hole forms at t ¼ t1 when L ¼ RS during the

collapse phase, so by inverting (4.29) we find

t1 ¼ −
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
S − γ2Δ

q
≈ −

2RS

3
; ð4:38Þ

showing that the collapse time of the Oppenheimer-Snyder
star is of the order of ∼M.
On the other hand, the apparent horizon vanishes once

the outgoing shock wave reaches L ¼ RS, and the solution
(4.35) gives

t2 ≈
2πR2

S

3γ
ffiffiffiffi
Δ

p : ð4:39Þ

As an aside, we mention that it is also possible to
numerically integrate the exact equation

t2 ¼
Z

RS

Lbounce

�
dL
dt

�
−1
dL; ð4:40Þ

with dL=dt given by (4.32), and the result of this calcu-
lation is in excellent agreement with the approximate
solution (4.39). This shows that the time between the
bounce and the disappearance of the outer apparent horizon
scales as ∼M2=mPl, in agreement with an earlier esti-
mate [88].
Combining these two results and keeping only the

dominant term (assuming M ≫ mPl), the lifetime of an
Oppenheimer-Snyder black hole is predicted to be

T ≈
2πR2

S

3γ
ffiffiffiffi
Δ

p : ð4:41Þ

As we shall discuss in more detail in Sec. VI, this prediction
for the lifetime of a black hole is shorter than the Page time
and has important implications for the information loss
problem.

2. Thin shell solution

Another interesting solution to consider is a thin shell,
where the interior is Minkowski with sin βi ¼ 0, and the
exterior is Schwarzschild with sin βe ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ΔRS=x3

p
;

these two solutions are separated by a thin shell of total
mass M located at x ¼ LðtÞ,
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ρ ¼ M
4πx2

δðx − LðtÞÞ: ð4:42Þ

There are two cases of interest, the contracting case when
βi ¼ 0, and the expanding case βi ¼ −π.
Before studying the dynamics, it is important to note

that although there is a bounce, a contracting thin shell
solution does not immediately become an expanding
thin shell solution when the bounce occurs. The key point
is that a thin shell of mass M can reach a minimal radius
Lmin ¼ ðγ2ΔRSÞ1=3. When the shell reaches this minimal
radius, the thin shell splits, with a portion continuing to fall
inwards and another portion being scattered outwards. The
scattering process is continuous, with a broad distribution
of dust being scattered backwards until there is a bounce at
the origin (the total mass remains M throughout). This
process can be seen in more detail using the numerical
methods described in Sec. V. For this reason, the ingoing
and outgoing shell solutions must be treated separately.
(Another way to see that the ingoing thin shell does not
immediately become an outgoing shell after reaching Lmin
is that an ingoing shell has βi ¼ 0, while an outgoing shell
has βi ¼ −π, so the first cannot just bounce at Lmin and
become the second without any changes to the interior.)
For the case of an ingoing thin shell, the shock speed

relation (4.23) gives

dL
dt

¼ −
2γ

ffiffiffiffi
Δ

p
RS

L2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ΔRS=L3

p ; ð4:43Þ

this can be integrated to give an analytic implicit solution
for LðtÞ, although it is not especially transparent or useful.
Instead, the collapse time tin can be obtained by integrating
(dL=dtÞ−1 from L ¼ RS (again neglecting small Planckian
corrections to the location of the outer apparent horizon) to
Lmin ¼ ðγ2ΔRSÞ1=3; the result is

tin ¼ −
Z

Lmin

RS

2L2

γ
ffiffiffiffi
Δ

p
RS

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ΔRS

L3

r
dL ≈

2RS

3
; ð4:44Þ

dropping subleading corrections of order ℏ. As expected,
the time for collapse is tin ∼M, as is the case for the
Oppenheimer-Snyder collapse (in this particular case, even
the prefactors of the leading order term match for the thin
shell and Oppenheimer-Snyder solutions).
Switching now to the outgoing case, the shock speed

(4.23) becomes

dL
dt

¼ γ
ffiffiffiffi
Δ

p
RS

2L2ðπ − arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ΔRS=L3

p
Þ
; ð4:45Þ

so the time for the shell to travel from Lmin to RS is

tout ¼
Z

RS

Lmin

2L2

γ
ffiffiffiffi
Δ

p
RS

�
π − arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ΔRS

L3

r �
dL ≈

2πR2
S

3γ
ffiffiffiffi
Δ

p ;

ð4:46Þ

again only keeping the leading order term when evaluating
the integral.
In general, the lifetime of a black hole can be split into

three parts: a collapse time, a bounce time, and an outgoing
time. (The bounce time may be zero in some cases where
the bounce occurs simultaneously everywhere, like in the
Oppenheimer-Snyder model, but this will not necessarily
always be true.) The lifetime of a black hole will be
dominated by the outgoing time tout,

T ≈ tout ≈
2πR2

S

3γ
ffiffiffiffi
Δ

p : ð4:47Þ

Note that the leading order contribution to T is identical
for the thin shell and Oppenheimer-Snyder solutions. This
is not surprising because after the bounce, the dust energy
density ρ in the Oppenheimer-Snyder interior rapidly
decays to the point where the interior is well approximated
by Minkowski space and all of the matter is located at
the shock. In other words, soon after the bounce the
Oppenheimer-Snyder solution becomes (to an excellent
approximation) an outgoing thin shell. Further, as shall be
seen in Sec. V, numerics show that this occurs quite
generally: for a large class of initial density profiles for
the collapse, after the bounce the outgoing shock wave
rapidly tends to the outgoing thin shell solution. For this
reason, the lifetime of a black hole appears to be universal
to leading order with T ¼ 2πR2

S=ð3γ
ffiffiffiffi
Δ

p Þ þOðMÞ.

3. Conformal diagram

The conformal diagram for the effective vacuum solution
has already been studied in considerable detail [116], but
there are some important differences in the conformal
diagram once matter (in this case dust) is included.
For concreteness, we will sketch the conformal diagram
for the Oppenheimer-Snyder collapse model derived in
Sec. IV C 1, but we expect a qualitatively similar diagram
for most of the main features for other solutions to the LQC
effective dynamics for LTB space-times that start from a
collapse that leads to the formation of a black hole—this
expectation is met for the numerical solutions we obtain
in Sec. V.
In the Oppenheimer-Snyder model, during collapse the

radius LðtÞ of the dust sphere is given by (4.29), while after
the bounce the shock wave moves outwards following
(4.32), whose solution is approximated by (4.35) for
times t ≫ tPl.
In broad strokes, the conformal diagram shows the

following events and processes. First, a pair of apparent
horizons appears when L ¼ RS during the collapse, the
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outer horizon is null and remains at the radius x ¼ RS,
while the inner horizon lies inside L for almost all of the
collapse. Second, the inner horizon crosses outside L only a
short (Planckian) time before the bounce, at this point the
inner horizon becomes null and remains at the same radius
xinner until the fourth stage. Third, after the inner horizon
stops at xinner the entire spherical region bounded by L no
longer lies within a trapped region and the dust sphere
bounces (this meets general expectations described in [76]).
Fourth, a shock wave forms after the bounce, the shock-
wave front briefly moves beyond the inner horizon and then
the inner horizon rapidly moves outwards and catches up,
at which point the shock and the inner horizon move
outwards together. Finally, the shock wave eventually
reaches the outer apparent horizon located at x ¼ RS, at
this time the inner and outer horizons meet and annihilate,
and the black hole disappears.
An important point is that due to the gravitational shock

wave that forms after the bounce, there is a discontinuity in
the gravitational field, namely in the space-time metric.
This means that the x ¼ L surface has different properties
with respect to the inner and outer metrics. In particular,
during most of the fourth stage mentioned above, the x ¼ L
surface is timelike according to the inner space-time metric,
but spacelike according to the outer metric. Further, when
constructing the conformal diagram, different coordinate
transformations will be required for the interior and exterior
regions for stages four and five after the bounce (and these
are discontinuous across the boundary); as a result the
location of the boundary surface x ¼ L in the conformal
diagram will not be the samewith respect to the interior and
exterior metrics. Due to this, we identify the two locations
of the boundary surface and excise the region in the
conformal diagram that lies between the location of the
boundary with respect to the inner and outer metrics.
With the overview complete, we now revisit each of the

stages described above in more detail, first determining
the location of the apparent horizons, and then describing
the trajectory of LðtÞ. We do not construct the conformal
diagram rigourously through coordinate transformations of
the metric, but rather provide a sketch by determining
which horizons and trajectories are null, spacelike, or
timelike.
In spherical symmetry, the location of the apparent

horizons is given by the zeros of Θþ ¼ j∇xj2 [117], which
for the Painlevé-Gullstrand form of the metric (with
Eb ¼ x) gives

Θþ ¼ j∇xj2 ¼ 1 − ðNxÞ2; ð4:48Þ

and recall that in the effective theory Nx ¼ −ðx=γ ffiffiffiffi
Δ

p Þ ·
sin β cos β.
During collapse, the shift vector in the interior (x ≤ L) is

given by the upper relation in (4.37), so for the interior
region the zeros xh;i of Θþ are located at

xh;iðtÞ ¼
3jtj
2

þ 2γ2Δ
3jtj : ð4:49Þ

Of course, there is only an apparent horizon in the interior
if the location of this xh;i lies within L ¼ ð9

4
RSt2 þ

γ2ΔRSÞ1=3. Neglecting quantum gravity corrections, it is
easy to verify that an apparent horizon appears at t ¼
−2RS=3 at the location xh;i ¼ RS, and then moves inwards
as xh;i ¼ −3t=2; this is a faster rate than L.
Once quantum gravity corrections become important

close to the bounce time t ¼ 0, the apparent horizon in the
interior will cross over xh;i ¼ L and enter the exterior
region. The time this occurs can be approximated by
assuming the quantum gravity corrections dominate, so
the location of the apparent horizon is xh;i ≈ 2γ2Δ=ð6tÞ
while L ≈ Lbounce ¼ ðγ2ΔRSÞ1=3, implying a crossover time
of tc ≈ −ð8γ4Δ2=27RSÞ1=3. Substituting this back into LðtÞ
gives LðtcÞ ≈ Lbounce þ ðγ4Δ2=27RSÞ1=3.
Also note that the minimum radius of the apparent

horizon in the interior is xh;i ¼ 2γ
ffiffiffiffi
Δ

p
, which is reached

at t ¼ −2γ
ffiffiffiffi
Δ

p
=3.

To recap, there is an apparent horizon inside the dust
sphere during the collapse, between the times when L
reaches the radii L ≈ RS and L≈Lbounceþðγ4Δ2=27RSÞ1=3.
Importantly, note that Θþ > 0 for x < xh;iðtÞ, so it is the
region x > xh;i that is trapped, while the region x < xh;iðtÞ
is not trapped; this shows that this apparent horizon is an
inner horizon.
For the exterior, the shift vector during collapse is given

by the lower relation in (4.37), so the zeros of Θþ for the
vacuum exterior region are located at the solutions of the
following implicit equation for xh;e:

xh;e ¼ RS

�
1 −

γ2ΔRS

x3h;e

�
: ð4:50Þ

Once again, these apparent horizons are only present if
xh;e > LðtÞ. It is immediately clear that there will be an
apparent horizon at xouter ¼ RS, neglecting quantum gravity
corrections, once LðtÞ passes the Schwarzschild radius. As
expected, this is an outer horizon since Θþ < 0 for x < RS.
There is another solution to (4.50) that gives a second

apparent horizon at xinner ≈ Lbounce þ ðγ4Δ2=27RSÞ1=3,
whose location matches the radius where the interior
horizon xh;i exits the surface L of the dust sphere as
described above. This is an inner horizon whereΘþ > 0 for
x < xinner, again as expected.
In summary, during the collapse phase a pair of apparent

horizons forms when L reaches the radius x ≈ RS (up to
small Planckian corrections), with the outer horizon
remaining at RS in the vacuum exterior, while the radius
of the inner horizon decreases faster than L (staying within
the dust sphere) until it reaches xinner, at which time the
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inner horizon crosses outside the trajectory of L, enters the
vacuum exterior region and stays at xinner.
After the bounce, a shock wave forms and moves

outwards, as described in Sec. IV C 1. The outer horizon
at RS will stay there until the outgoing shock L reaches it a
time ∼M2=mPl later, at which point it will disappear. On the
other hand, the inner horizon will follow (4.49) and
contract back to its minimum radius of xh;i ¼ 2γ

ffiffiffiffi
Δ

p
at

t ¼ 2γ
ffiffiffiffi
Δ

p
=3 before expanding once more. For the short

period of time that L > xh;i, the dust located inside this
region is moving outwards in a trapped region—this does
not indicate a violation of the dominant energy condition,
but rather is due to quantum gravity effects being large
and significantly modifying the dynamics from what
could be expected from classical general relativity. After
t ¼ 2γ

ffiffiffiffi
Δ

p
=3, the inner apparent horizon will rapidly move

outward until it reaches the shock, at which point it will
move in lockstep with the shock until they reach the outer
apparent horizon (a time ∼M2=mPl later) and then the two
apparent horizons will disappear. After this, even though
the black hole is now gone the shock will continue to move
outwards forever.
We note also that the dust is not superluminal as it

emerges from the horizon. This may be seen by recalling
that for the Oppenheimer-Snyder collapse model consid-
ered here, the dust ball is isomorphic to (a portion of)
the FLRW space-time. As in the FLRW space-time, the
dust is not superluminal—it is just comoving with
the region of space-time that is rapidly expanding after
the bounce.
The trajectory of the two (outer and inner) apparent

horizons, as described, is shown in the conformal diagram
in Fig. 1, the two apparent horizons are shown as red lines.
The other trajectory of interest in the conformal diagram

is the path followed by LðtÞ, denoting the surface of the
dust sphere during collapse, and the location of the shock
wave after the bounce. The normal vector to the surface
x ¼ LðtÞ is

nμ ¼ −
�
dL
dt

�
ðdtÞμ þ ðdxÞμ; ð4:51Þ

and the sign of

gμνnμnν ¼ 1 −
�
dL
dt

�
2

− 2Nx

�
dL
dt

�
− ðNxÞ2; ð4:52Þ

will determine whether the trajectory of L is timelike or
spacelike.
During the collapse, using the solution (4.29) for LðtÞ

and the metric (4.6) with the shift vector (4.37) evaluated at
x ¼ L, a direct calculation gives nμnμ ¼ 1 at all times—
independently of whether the interior or exterior metric is
used—showing that LðtÞ follows a timelike trajectory
during the collapse.

After the bounce, the norm of nμ will depend on the
metric that is used; due to the discontinuity in the
gravitational field, using the interior metric or the exterior
metric will give a different answer.
With respect to the interior metric,

ðnμnμÞi ¼ 1 −
�
dL
dt

�
2

þ 12tLðtÞ
9t2 þ 4γ2Δ

·

�
dL
dt

�
−

36t2LðtÞ2
ð9t2 þ 4γ2ΔÞ2 ; ð4:53Þ

while with respect to the exterior metric,

ðnμnμÞe ¼ 1 −
�
dL
dt

�
2

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

LðtÞ −
γ2ΔR2

S

LðtÞ4

s
·

�
dL
dt

�
−

RS

LðtÞ þ
γ2ΔR2

S

LðtÞ4 : ð4:54Þ

Note that in both cases LðtÞ is given by the same solution to
the differential equation (4.32). Clearly, if nμnμ > 0, then
the trajectory of LðtÞ is timelike, while if nμnμ < 0, then
LðtÞ is moving in a spacelike manner.
By numerically solving (4.32) for LðtÞ, it can be verified

that, according to the interior metric, LðtÞ follows a

FIG. 1. Conformal diagram for the Oppenheimer-Snyder model
showing the radius of the collapsing dust sphere (dashed line), the
inner and outer apparent horizons (red lines), and the outgoing
shock wave as seen from the exterior (dark blue line) and as seen
from the interior (light blue line). The outgoing trajectories of the
shock wave are identified, and the region in between (horizontal
hatching) is excised from the conformal diagram.

FATE OF QUANTUM BLACK HOLES PHYS. REV. D 106, 024014 (2022)

024014-17



trajectory that is almost always timelike, except for the brief
interval after the bounce when L > xh;i. On the other hand,
the postbounce trajectory of L with respect to the outer
metric is spacelike until L reaches the outer apparent
horizon at x ¼ RS, at which instant it is null and then
immediately after becomes timelike.
This is shown in the conformal diagram in Fig. 1, where

the trajectory of LðtÞ during collapse is given by the dashed
blue line, while after the bounce the trajectory of LðtÞ with
respect to the interior and exterior metrics is shown in pale
blue and dark blue respectively. As discussed above, there
are two trajectories for LðtÞ in the conformal diagram after
the bounce, this is due to the discontinuity in the metric
across the shock wave located at LðtÞ after the bounce:
different coordinate transformations are required for the
interior and exterior regions to construct the conformal
diagram, so the common boundary of the interior and
exterior does not have the same location in the conformal
diagram. The conformal diagram is made whole by
identifying the two locations of the boundary, and excising
the portion of the conformal diagram in between (marked
with a horizontal hatching).
To understand this identification in the conformal

diagram, consider an infalling particle that reaches the
dark blue solid line in Fig. 1 corresponding to the
location of the shock as seen from the exterior. When
the particle reaches a point on the dark blue line, it also
lies on a point on the light blue line since these lines are
physically the same and therefore identified (recall that
the hatched region is excised from the conformal dia-
gram). The particle would then continue to move
inwards, above the light blue line in the region inside
the shock wave.
In summary, the qualitative picture combining the

locations of the apparent horizons and also LðtÞ is depicted
in the conformal diagram shown in Fig. 1: the star surface
collapses to form a black hole with the formation of an
outer null horizon at x ¼ RS (neglecting tiny Planckian
corrections to the location of the outer apparent horizon),
together with an inner dynamical horizon; a bounce occurs
when LðtÞ ¼ Lbounce ¼ ðγ2ΔRSÞ1=3 and an outgoing gravi-
tational shock wave forms; the shock wave slowly moves
outward, and when the inner and outer horizons meet and
annihilate the black hole ceases to exist.
We note that the conformal diagram constructed here is

specifically for Oppenheimer-Snyder collapse. In Sec. V,
we present the conformal diagram inferred from numerical
solutions for a different family of initial data corresponding
to the collapse of dust with a Gaussian radial density
profile, see Fig. 6. Although the conformal diagrams have
some differences, the important qualitative features are
similar: there is a nonsingular bounce, a gravitational shock
wave, and the eventual disappearance of the black hole
when the inner and outer apparent horizons meet and
annihilate after a time ∼M2=mPl.

V. NUMERICAL SOLUTIONS

As discussed in the previous section, shell crossings are a
feature of the effective dynamics, and evolution beyond the
point where characteristic curves cross requires finding
weak solutions; a numerical approach is generally needed
for this. In this section we review and apply the well-known
Godunov method to this problem; this is one of a family of
numerical techniques available for solving nonlinear flow
equations.

A. Godunov method

The Godunov method is a numerical approach for
solving differential equations that are nonlinear conserva-
tion laws of the form ∂tρðx; tÞ þ ∂xjðρÞ ¼ 0; see, e.g., [96]
for an in-depth discussion of this and related algorithms.
To use this method we first write the evolution equa-

tion (4.9) by defining

Bðx; tÞ ¼ xbðx; tÞ and mðx;BÞ ¼ x3

2γ2Δ
sin2
�
B
x2

�
: ð5:1Þ

This gives the desired form of a conservation law

∂tBðx; tÞ þ ∂xmðx; BÞ ¼ 0; ð5:2Þ

the current in this equation is the mass function mðx; tÞ,
which is related to the dust density (4.10):

mðx; tÞ ¼ 4π

Z
x

0

dx̃r2ρðx̃; tÞ: ð5:3Þ

It is also evident from (5.1) that the current has an explicit x
dependence.
Integrating (5.2) over a spatial interval xL ≤ x ≤ xR and

time interval t1 ≤ t ≤ t2 gives the integral form of the
conservation equation (5.2),Z

xR

xL

dxBðt2; xÞ ¼
Z

xR

xL

dxBðt1; xÞ −
Z

t2

t1

dt½mðx; BÞ�xRxL :

ð5:4Þ
In either form the conservation equation is nonlinear and

cannot be solved analytically (except for a few especially
simple configurations like thin shells and the Oppenheimer-
Snyder model). Finite-volume methods like the Godunov
scheme are based on the approximation that at each time
step, the field is piecewise constant in every spatial cell j of
width δx; that is, the field at the point ðx; tnÞ is defined by
the spatial average over the cell

Bn
j ¼

1

δx

Z
xjþ1

2
δx

xj−1
2
δx

dxBðx; tnÞ; ð5:5Þ

and this average value is then assigned to each point in the
interval,
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Bðx; tnÞ ¼ Bn
j ; x ∈

�
xj −

1

2
δx; xj þ

1

2
δx

�
: ð5:6Þ

In this way, the field Bðx; tÞ is taken to be piecewise
constant.
This discretization makes a numerical integration of the

equation (5.4) possible on a space-time lattice of spacings
δt and δx,

Bnþ1
j ¼ Bn

j −
1

δx

Z
tnþ1

tn

dt½mðx; BÞ�xjþ1
2
δx

xj−1
2
δx
: ð5:7Þ

This form of the equation shows that Bnþ1
j can be calculated

by adding the flux mðx; BÞ across the boundaries xj þ 1
2
δx

and xj − 1
2
δx to the initial value Bn

j . However the fact that
the time integral is from tn to tnþ1 means that the method is
implicit and the net flux in the integrand requires careful
construction. This is accomplished by the Godunov
method.
The key insight underlying the Godunov method is that,

given the initial conditions of a piecewise constant field B,
it is possible to solve exactly for the flux functions mðxj þ
1
2
δx; BÞ and mðxj − 1

2
δx; BÞ, at least for a short period

of time.
The basic idea is illustrated by focusing on the flux

through the boundary xbd ¼ xj þ 1
2
δx: if B is moving

outwards, the flux across the boundary is given by
mðxbd; Bn

j Þ; if the field is moving inwards the flux is given
by mðxbd; Bn

jþ1Þ. These simple forms are due to the
piecewise constant prescription for B within the cell
½xj − 1

2
δx; xj þ 1

2
δx�. A similar consideration applies to

the cell boundary at xj − 1
2
δx.

It remains to determine the direction in which the flux
moves. This requires the velocity of B, given by the
derivative of the current function m in (5.2) with respect
to B,

v ¼ ∂Bm ¼ x
γ2Δ

sin

�
B
x2

�
cos

�
B
x2

�
; ð5:8Þ

v depends on both the position x and the value of the
field B.
There are four possible types of B-field velocity con-

figurations at each boundary xbd between two lattice cells.
Denoting quantities on the left and right of the boundary by
the subscripts L and R respectively, the possibilities are the
following:

(i) vL ≥ 0 and vR ≥ 0: field moving right/outwards;
(ii) vL ≤ 0 and vR ≤ 0: field moving left/inwards;
(iii) vL ≥ 0 ≥ vR: shock wave;
(iv) vL < 0 < vR: rarefaction wave.

The first two cases are simple as they have velocities in the
same direction. The third case corresponds to a shock wave
with speed vs ¼ ½m�=½B� (2.28), with its sign determining

whether the shock moves outwards (positive vs) or inwards
(negative vs), and flux mðxbd; Bn

j Þ or mðxbd; Bn
jþ1Þ respec-

tively. The fourth case is a rarefaction wave, the corre-
sponding flux is obtained by taking mðxbd; BsÞ where Bs is
the stationary value of Bwhere v ¼ 0. From (5.2) and (5.8),
v ¼ 0 for B ¼ πx2=2, for which mðxbd; BsÞ ¼ x3bd=ð2γ2ΔÞ.
By looking at the explicit forms in terms of B of the

current mðx; BÞ in (5.1) and the velocity vðx; BÞ in (5.8),
the flux for these four cases are summarized by

FðBn
j ; B

n
jþ1; xbdÞ

¼
	minBn

j≤B≤B
n
jþ1
ðmðxbd; BÞÞ for Bn

j ≤ Bn
jþ1;

maxBn
jþ1

≤B≤Bn
j
ðmðxbd; BÞÞ for Bn

j > Bn
jþ1:

ð5:9Þ

The min and max refer the minimum/maximum value
attained bymðxbd; BÞ for B in the given interval. This is the
general Godunov scheme for the flux; it holds also for a
nonconvex flux function (m in this case); i.e., for either sign
of ∂

2
Bm. Here, due to the relatively simple (although

nonconvex) form of m, for the interval B ∈ ½−πx2bd; 0�
the minimum is always one of the two endpoints, while the
maximum is either one of the two endpoints or the
stationary point mðxbd; BsÞ ¼ x3bd=ð2γ2ΔÞ if the stationary
point Bs lies between BL and BR.
With this prescription of the flux function, discrete

evolution equation takes the explicit form

Bnþ1
j ¼ Bn

j −
δt
δx

�
F

�
Bn
jþ1; B

n
j ; xj þ

1

2
δx

�
− F

�
Bn
j ; B

n
j−1; xj −

1

2
δx

��
: ð5:10Þ

For boundary conditions, since B ¼ xb we impose that
Bðx ¼ 0Þ ¼ 0, and we also assume that there is no infalling
matter coming from beyond the outermost lattice point xlast
by assuming that _BðxlastÞ ¼ 0, recall that _B ¼ 0 in vacuum
as seen in (4.15).
Lastly, the discrete evolution scheme is stable provided

δt is chosen small enough to satisfy the Courant-Friedrich-
Lewy condition that δt < δx=jvmaxj where jvmaxj is the
maximal speed v at any boundary xbd for the given time
step. In the numerical code, we determine δt dynamically
by finding the maximum characteristic speed vmax at each
time step and using this to fix δt to an appropriate value.
The MATLAB code we used is available online [118].

B. Results

We used the algorithm described above to generate
numerical solutions for Gaussian and hyperbolic tangent
initial density profiles given by

ρG0 ðxÞ ¼ expð−ðx − x0Þ2=σ2Þ; ð5:11Þ
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ρT0 ðxÞ ¼ 1þ tanhð−ðx − x0Þ=σÞ; ð5:12Þ

that we use to construct an initial mass function

mðx; t ¼ 0Þ ¼ M

R
x
0 dx̃ ρ0ðx̃ÞR∞
0 dx̃ ρ0ðx̃Þ

; ð5:13Þ

where M denotes the total mass. We considered M ranging
from 5mPl to ∼200mPl. Inverting (5.1) gives the initial
profile for B,

Bðx; t ¼ 0Þ ¼ −x2 arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2Δmðx; t ¼ 0Þ

x3

s !
; ð5:14Þ

and we evolve B using the Godunov method described
above. The negative sign of the square root corresponds to a
density profile that is initially contracting, this is the case of
interest for gravitational collapse.
Time frames from a typical simulation of Gaussian data

forM ¼ 5mPl are shown in Fig. 2. The left column displays
the evolving density profile at the displayed times, and the
right column is the function

Θþðx; tÞ ¼ j∇xj2 ¼ 1− ðNxÞ2 ¼ 1−
x2

4
sin2
�
2B
x2

�
; ð5:15Þ

the roots of Θþ give the locations of the evolving apparent
horizons [117]. A number of features are apparent in Fig. 2:
as the density profile moves inward, it compresses to
become a sharp pulse; the outer horizon forms at the

FIG. 2. Frames from a numerical simulation of black hole formation and evolution for the Gaussian initial density profile with
M ¼ 5mPl; the left column is the energy density ρ; the right column is the function Θþ; its zeros give the locations of apparent horizons.
The middle frame shows part of the bounce. Axes are in Planck units and γ2Δ ¼ 1.
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Schwarzschild radius RS ¼ 2GM ¼ 10lPl as the pulse
crosses this radial location; the inner horizon moves inward
until the matter bounces, and then moves outward; finally
in the last frame the inner and outer horizons merge and
disappear as the outgoing shock wave exits the horizon.
These general features can be seen for all choices of M
(except very small M < 8γ

ffiffiffiffi
Δ

p
=
ffiffiffiffiffi
27

p
G for which a horizon

never forms [41], although the bounce and shock formation
still occur).
The collapse for hyperbolic tangent initial data is some-

what different, but there is also a bounce and an outgoing
shock, this is shown in Fig. 3. The outgoing evolution is
quite similar to that for Gaussian initial data: the density
becomes sharply peaked at the shock, and the inner
horizon moves outwards until it meets the outer horizon.

These general features occur for all hyperbolic tangent
initial data with M > 8γ

ffiffiffiffi
Δ

p
=
ffiffiffiffiffi
27

p
G.

The evolution of two Gaussian profiles is shown in
Fig. 4. Again the main features are qualitatively similar:
horizon formation, nonsingular bounce, shock formation,
and eventual disappearance of the horizons. There are two
notable points for the double pulse results: the second
ingoing profile does not cause the outgoing shock wave to
recollapse, and the mass function remains bounded at the
inner horizon. These features show a robustness of the
results to perturbations.
We also calculated the black hole lifetime T from

numerical simulations. This is the time between the
formation and disappearance of its outer apparent horizon.
It is natural to calculate this using the proper time of a

FIG. 3. Frames from a numerical simulation of black hole formation and evolution for the Gaussian initial density profile with
M ¼ 5mPl; the left column is the energy density ρ; the right column is the function Θþ; its zeros give the locations of apparent horizons.
The middle frame shows part of the bounce. Axes are in Planck units and γ2Δ ¼ 1.
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distant observer who observes a light ray emitted shortly
before the collapse forming the black hole (for example,
from a supernova of a collapsing star), and another light ray
emitted by the shock wave once it has exited the outer
apparent horizon. A short calculation shows that this proper
time interval, as measured by a distant observer, equals the
Painlevé-Gullstrand coordinate time between the formation
and disappearance of the outer apparent horizon [88].
In our simulations, we numerically record the times at

which the outer horizon appears and disappears, the results
are shown in Fig. 5. The best fit is shown in each of the
plots, in both cases the leading order behavior is

T ≈
8π

3
M2 þOðMÞ; ð5:16Þ

in units where G ¼ ℏ ¼ c ¼ 1, and having set γ2Δ ¼ 1 for
the numerics.
This result is in good agreement with the expectation

from analytic calculations in the Oppenheimer-Snyder and
thin shell models (4.41) and (4.47). This is not surprising:
numerical simulations show that soon after the bounce, the
dust density can be approximated by a thin shell, so the thin
shell calculation gives the correct leading order contribu-
tion to T.
The predicted black hole lifetime T ∼M2=mPl is very

long in astrophysical terms, but short compared to the
lifetime of a black hole as predicted by standard Hawking
evaporation calculations. We comment below in Sec. VI on
the implications of this result for the information loss
problem.

FIG. 4. Frames from a numerical simulation of black hole formation and evolution for the initial density profile ρ0ðxÞ ¼ exp½−2ðx −
7.5Þ2�=5þ exp½−4ðx − 17.5Þ2�=10 in (5.13) withM ¼ 5mPl; the left column is the energy density ρ; the right column is the functionΘþ;
its zeros give the locations of apparent horizons. The middle frame shows part of the bounce. Axes are in Planck units and γ2Δ ¼ 1.
These frames are also shown in the companion Letter [89].

HUSAIN, KELLY, SANTACRUZ, and WILSON-EWING PHYS. REV. D 106, 024014 (2022)

024014-22



This completes our description of numerical results. We
now provide several comments and describe the conformal
diagram suggested by our simulations.
The outgoing shock wave may be viewed in some ways

as a “white hole.” Indeed, it has been argued that quantum
gravity might generate a transition from a black hole to a
white hole [79]. But white holes are known to be unstable
to infalling matter in general relativity; under small

perturbations they recollapse and subsequently form a
black hole [83,84]. Our results are similar in spirit in that
a singularity is replaced by a bounce, but different in the
important detail that a shock wave is not a white hole. Our
simulation of the double Gaussian provides numerical
evidence that the outgoing shock wave is stable to an
ingoing perturbation. This distinguishes our result from the
black to white hole transition ideas.

FIG. 5. Black hole lifetime T as a function of data massM for Gaussian (left) and hyperbolic tangent (right) initial density profiles. The
leading order dependence is T ¼ 8πM2=3þOðMÞ to an excellent approximation. Axes are in Planck units with γ2Δ ¼ 1. These plots
are also shown in the companion Letter [89].

FIG. 6. The conformal diagram is shown in three frames. The left frame shows the apparent horizons in red; the outer horizon is null.
The middle frame also includes the location of the collapsing Gaussian wave packet with the dashed blue line, and the solid blue gives
the outgoing shock wave as seen by an outside observer; the shock wave exits at the point where the inner and outer horizons meet. The
third frame illustrates the discontinuity in the metric at the shock wave—its trajectory is timelike from the perspective of the interior
(shown in cyan), while it is spacelike with respect to the exterior metric until it exits the outer horizon at which time it becomes timelike;
the hatched region is excised and the inner and outer shock wave trajectories are identified. The rightmost conformal diagram is also
shown in the companion Letter [89].
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Another instability in classical general relativity is mass
inflation [85–87]. This is the observation that the mass
function grows without bound at an inner Cauchy horizon
under time-dependent perturbations. On this horizon,
infalling radiation is infinitely blueshifted. Therefore, in
generic collapse the expectation is that backreaction would
produce a curvature singularity at an inner horizon. This
effect has also been observed in some nonsingular black
hole models in loop quantum gravity [119].
There is no mass inflation evident in our simulations.

While the curvature is not well defined at the shock due to
the jump discontinuity, the density remains finite at all
times and the total mass in the space-time is dynamically
conserved.
To summarize these points, our numerical simulations

show that there is no recollapse of the shock wave, and
there is no mass inflation.
Our last observation is the determination of a conformal

diagram. The diagram corresponding to our numerical
solutions is qualitatively similar to that for the effective
Oppenheimer-Snyder model described in Sec. IV C 3. The
main difference is during the collapse phase, where some
features of the conformal diagram depend on the initial
density profile. For the hyperbolic tangent data, the
conformal diagram is essentially identical to the one
derived analytically for the Oppenheimer-Snyder collapse
model shown in Fig. 1.
For Gaussian initial data, the conformal diagram is

shown in Fig. 6. It is slightly different in two ways.
Firstly, the trajectory of the star surface is replaced by a
packet of dust trajectories, and there may be multiple
dynamical inner horizons depending on the type of initial
data chosen (for example, if there are multiple Gaussian
packets in the initial dust profile). Secondly, the inner
horizon moves differently during the collapse phase: it
moves inwards more slowly, following the Gaussian dust
density. Despite these two points of difference, the main
features remain the same: a collapse during which inner and
outer horizons are formed, a nonsingular bounce, formation
and outward evolution of a shock wave, and the eventual
disappearance of the inner and outer horizons when
they meet.
As for the conformal diagram for the Oppenheimer-

Snyder model, the trajectory of the shock wave can be
calculated with respect to the inner space-time metric, or
the outer one, with different results. This is why two
trajectories are shown for the shock wave; these curves are
identified in the conformal diagram and the hatched region
in between is excised.

VI. IMPLICATIONS FOR BLACK HOLE PHYSICS

We discuss here potential consequences of shock wave
formation, and the implications of the predicted black hole
lifetime for the information loss problem.

A. Shock wave formation and quantum
geometry domain walls

All our simulations show shock wave formation; this
appears to be a generic feature of any initial data profile.
For some initial profiles, a shock wave may form during the
collapse phase; these are the cases that may be artificially
avoided by imposing restrictions on initial data as in
[61,90–93]. No matter the initial conditions, characteristic
curves from the ρ ≠ 0 region and the exterior vacuum
region cross after the bounce.
Thus, in every case, including the double-peaked

Gaussian profiles, an outgoing shock wave eventually
emerges from the Schwarzschild radius signaling the end
of the black hole phase. Although our simulations were
limited to masses up to ∼200mPl, the shock wave is
expected to emerge from the outer horizon for data of
any mass since there is no mechanism in the effective
equation for the current to change sign during the outgoing
phase. (Although the shock wave solutions we find may be
viewed in some respects to be similar to a white hole
solution, their properties are quite different: the shock wave
solution is stable to infalling matter whereas a white hole
solution is not [83].)
The occurrence of a shock wave has not been noticed in

previous work, likely because many of the earlier studies
focused on vacuum solutions or only included simple
models for matter with a finite number of degrees of
freedom (as opposed to a field theory with local degrees of
freedom like the LTB space-time). Still, it is important to
ask whether the shock wave is a robust prediction, or
merely the consequence of some restriction, for example a
gauge choice that may fail. As such, it would be useful to
extend this work by relaxing the gauge conditions (namely
the areal and dust-time gauges), but this generalization lies
beyond the scope of this paper and is left for future work.
Instead, we present some general arguments supporting the
formation of a shock wave in a nonsingular bouncing black
hole in LQG.
Firstly, the bounce of the dust ball is not surprising—the

region inside the collapsing dust sphere is locally similar to a
contracting cosmological space-time (in fact, for the
Oppenheimer-Snyder model this is an exact isomorphism),
and these are known to bounce in loop quantum cosmology
[7]. Secondly, the vacuum region outside the dust sphere has
no local degrees of freedom (at least in the spherically
symmetric case we consider here) and therefore cannot
evolve in the absence of matter; for example, in the margin-
ally trapped LTB space-times we consider here, by combin-
ing (4.9) and (4.10) it is easy to show that _b ¼ 0when ρ ¼ 0.
With these two ingredients, we expect a bounce inside the
collapsing dust ball, but not outside. This causes a disconti-
nuity to form, and it is the source of the shock wave.
Another way to see this is to consider an initial

configuration with a dense core and a more dilute outer
region; the core will bounce first and collide with the outer
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region which is still collapsing; this causes a shell-crossing
and thereby the formation of a shock wave. More generally,
if there is an effective description of the space-time, it will
presumably be governed by a wave equation that can
reasonably be expected to be nonlinear; solutions to non-
linear wave equations are typically weak solutions, often
including shock waves (especially solutions corresponding
to highly energetic phenomena). Given this general expect-
ation, it has been argued that it is necessary to allow weak
solutions for LTB space-times even in classical general
relativity [94,95]. It is therefore not surprising that weak
solutions are important also for effective metrics with
quantum gravity corrections, as we find here. These argu-
ments suggest that shock waves are a robust feature of
quantum black holes formed from matter collapse, at least
in LQG and possibly in other approaches to quantum
gravity that resolve the black hole singularity.
There are different perspectives one can take when

studying the shock waves found here. The simplest is to
view the shock as a weak solution of the nonlinear wave
equation, as we have done. Another complementary per-
spective that may be valuable is to view the shock wave as a
domain wall in space-time.
The late-time postbounce effective solution has two

regions, the inside region (lying within the shock wave)
and the outside region. Since the shock wave is slowly
moving outwards, the boundary between the two regions is
also dynamical. Each region is separately well described by
an effective line element, with a discontinuity across the
shock. Taking seriously the perspective of LQG that a
classical geometry should emerge from the coarse-grained
description of many microscopic Planck-scale quanta of
geometry, we propose the interpretation that the two regions
are in different phases of the underlying quanta of geometry,
with the shock wave being a domain wall separating the two
(and carrying a nonzero energy density). From this perspec-
tive, the effective dynamics may have a thermodynamic
interpretation, and thebounce can beunderstood as creating a
domain wall separating two geometric phases.
At late times after the bounce, nearly all the dust

accumulates on the shock wave, with the result that the
interior region is nearlyMinkowski and the exterior is nearly
classical Schwarzschild. These are two vacuum solutions of
classical general relativity, presumably corresponding to
different microscopic configurations of the fundamental
quanta of geometry. As the shock wave (or domain wall)
moves outwards, the outside Schwarzschild vacuum geom-
etry slowly relaxes to the Minkowski vacuum geometry.
From a quantum geometry perspective, the shock wave is a
domain wall that separates two different phases of vacuum
quantum gravity.

B. Observable consequences

It is natural to expect that a shock wave emerging from
what was a black hole could have significant observational

consequences. The black hole lifetime result T ∼M2=mPl

suggests that (dust) black holes of ∼10−8 solar masses have
a lifetime of approximately the current age of the universe.
If formed in the very early universe, such black holes would
be on the verge of disappearing via shock wave emission at
the present time.
A more realistic collapse model will include several

matter fields, not just dust. If the general picture obtained
here continues to be applicable, then photons (for example)
would be part of the shock wave, and be unable at first to
move outward any faster due to the outer apparent horizon.
After the shock wave exits the horizon, photons would no
longer be trapped and could move outwards faster than the
shock, and ultimately be detected by distant observers. The
same scenario holds for other types of particles, so a shock
wave would release a variety of astroparticles. For a
discussion of possible observational consequences in a
related (but not identical) scenario, see [80–82].
Another possibility that we mention is that the shock

wave might also generate significant gravitationally
induced particle production that might be detectable.
However, the prospect for such potential phenomeno-

logical consequences could be suppressed (perhaps sig-
nificantly) by the gravitational redshift of the exterior
Schwarzschild geometry: if a photon escapes from the
shock wave after the shock has emerged a short distance δ
outside its Schwarzschild radius RS, the photon’s frequency
would be red-shifted by a factor ∼δ=RS (assuming
δ ≪ RS); this redshift could make observations challenging
even if the photon is initially highly energetic.

C. Information loss problem

The prediction that the black hole lifetime is of the order
T ∼M2=mPl has important implications for the black hole
information loss problem.
It is well known that a black hole emits thermal radiation

at the Hawking temperature TH ¼ ℏ=8πGkBM. Assuming
a quasistatic evaporation process, if black hole evaporation
is the only quantum effect, its lifetime would be ∼M3=m2

Pl
[3]. This leads to the black hole information loss problem:
an initially pure state of matter on a black hole background
evolves into a thermal state with nonzero entropy.
This problem with unitarity arises well before a black

hole has completely evaporated. Assuming that the entropy
of black hole thermodynamics S ¼ A=4Gℏ represents (the
logarithm of) the number of microscopic degrees of free-
dom constituting a black hole, if the initial state is pure and
the evolution is unitary, then any Hawking radiation
(although it may appear to be thermal) must be entangled
with geometric degrees of freedom in the black hole. As the
black hole evaporates, the number of Hawking quanta
increases while the number of black hole geometric degrees
of freedom decreases. The increase in the number of
Hawking quanta indicates that the required entanglement
between Hawking radiation and the black hole degrees of
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freedom must also increase. But this is in tension with the
decreasing number of black hole degrees of freedom. The
Page time is when expðA=4GℏÞ, the number of degrees of
freedom in the (evaporating) black hole, is no longer
sufficient for the Hawking quanta to be entangled with
the black hole [120,121]. It is at the Page time that the
information loss problem truly denotes a potential loss of
unitarity in the dynamics; before the Page time it is (at least
in principle) possible for all Hawking radiation to be
entangled with the black hole and for the total system
(black hole and Hawking radiation) to remain in a pure
state. The Page time is approximately half the evaporation
lifetime of a black hole, and therefore is of order ∼M3=m2

Pl.
There are several differences between the features

derived here as compared to the standard treatment. Two
particularly important differences are the absence of a
singularity and the absence of an eternal event horizon. In
the standard semiclassical treatment of Hawking evapora-
tion, the background space-time is assumed to be the
classical Schwarzschild geometry, with a singularity and
event horizon. These features make it difficult to see how
information could escape a black hole: firstly, any infor-
mation inside the horizon would eventually hit the singu-
larity and be destroyed there, and (assuming energy
conditions hold) information would not be able to travel
in a spacelike fashion to escape the event horizon. In
contrast, in the scenario we study, quantum gravity effects
resolve the singularity and replace the eternal event horizon
by a long-lived but temporary apparent horizon. As a result,
the two obvious obstructions to information recovery are
removed by quantum gravity effects, which also signifi-
cantly change the causal structure of the space-time. This is
exhibited in the conformal diagram in Fig. 6.
This result is in agreement with earlier work in LQG,

which similarly suggests that quantum gravity effects will
resolve the singularity, thereby enlarging the space-time
and also replacing the event horizon by an apparent horizon
which eventually vanishes [8,11,50,122]. However, there
are some important differences in the specific way this
occurs in comparison to earlier proposals, in large part due
to the presence of matter. During the collapse process, an
inner horizon forms inside the dust ball, and eventually
exits the dust ball just before the bounce. (As a concrete
example, in the Oppenheimer-Snyder collapse model the
location of the inner horizon is at its “Hubble radius”
rH ¼ L= _L, and it exits the star when rH ¼ L.) Continuity
requires that this inner horizon extend into the vacuum
region outside the dust ball, and this modifies in some
important aspects the general scenario proposed in
Refs. [11,50,122].
Specifically, with an inner horizon, the radial coordinate

x (of the areal gauge) is spacelike (and therefore x ¼
constant surfaces are timelike) in the region between the
origin and the inner horizon, including a neighborhood
outside the dust sphere at the bounce. Due to this fact, it is

impossible to glue a white hole solution to the future of a
black hole solution, a scenario that requires x ¼ constant
surfaces be spacelike. Hence, instead of a black hole to
white hole transition, the future of the black hole in this
scenario is an outgoing shock wave, as described in detail
here with the conformal diagram in Fig. 1.
In addition to the absence of a singularity and the

absence of an eternal event horizon, Hawking radiation
can continue only while the black hole outer horizon
exists—this is the black hole lifetime T ∼M2=mPl before
the shock wave reaches this horizon. (This feature is
another important difference with earlier studies of
black holes in LQG, which typically assume that the
black hole will eventually fully evaporate after a lifetime
of T ∼M3=m2

Pl [11,50,122], although see [78,79] for a
discussion on different possible lifetimes, including
T ∼M2=mPl.) Due to the shorter lifetime of the outer
horizon that we find, Hawking evaporation would end well
before the Page time (assuming the initial black hole mass
satisfies M ≫ mPl). As a result, the amount of Hawking
radiation would be relatively small (compared to what is
predicted by the standard semiclassical calculations based
on the assumption that the black hole completely evapo-
rates due to Hawking radiation). Therefore, this limited
amount of Hawking radiation could remain entangled with
the degrees of freedom of the black hole without loss of
unitarity, and information could escape with the shock
wave, in gravitational and matter degrees of freedom, as the
shock wave exits the horizon.
To summarize, quantum gravity effects captured by our

model (i) remove the singularity, (ii) remove the event
horizon, and (iii) predict the lifetime of a quantum black
hole to be ∼M2=mPl. The combination of these three
ingredients suggests that Hawking radiation lasts for the
duration of the black hole’s lifetime T ∼M2=mPl. As a
consequence, Hawking radiation can remain entangled
with black hole degrees of freedom (or perhaps with
Planckian geometric or pregeometric degrees of freedom
[122]), and information can be recovered (at least in
principle) by an outside observer once the shock wave
exits the outer apparent horizon at the end of the black
hole’s lifetime.
We leave for future work an extension of this model to

include Hawking radiation, and develop further the reso-
lution of the information loss problem suggested here.

VII. SUMMARY

This work provides a model for black hole formation and
subsequent evolution based on a loop quantization of
Lemaître-Tolman-Bondi space-times. Using the effective
equations derived from the quantum theory, the singularity
is replaced by a nonsingular bounce, and a shock forms
after the bounce in the gravitational field, with a disconti-
nuity in the metric. We find weak solutions to the effec-
tive dynamics; these include analytic solutions for the
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Oppenheimer-Snyder and thin shell models, and numerical
solutions for a variety of initial dust energy density profiles.
The black hole lifetime, predicted to be T ∼M2=mPl,
together with the absence of a singularity or an event
horizon, suggests that the information loss problem is
avoided; Hawking radiation remains entangled with the
black hole degrees of freedom, and ends as the shock wave
exits the outer apparent horizon in a time much less than the
Page time.
Our results provide a step towards providing an all-

encompassing view of black hole physics—an effective
quantum dynamics problem in a field theoretic setting that
describes gravitational collapse to black hole formation to
postbounce dynamics. This field-theoretic description goes
beyond “quantizing the Schwarzschild metric” or the
Oppenheimer-Snyder model, which are both systems with
only a finite number of degrees of freedom.
Spherically symmetric systems with matter provide

useful field theory models, and dust is the simplest form
of matter. A next step would be to extend this model to
include other types of matter that have nonvanishing
pressure; for example, it would be interesting to consider
a massless scalar field in spherical symmetry, a system that
has been well studied classically. For some recent work in
this direction (although it does not use the improved
dynamics), see [62].
A number of questions remains within the dust model.

First, it would also be interesting to revisit the model
without imposing any gauges before quantization. Second,

the weak solutions we described are for the subset of LTB
space-times with Eb ¼ x; it would be interesting to see
whether the main features we report here remain unaltered
for the more general case without this condition. The
physical argument that characteristics inevitably cross
when a bounce occurs suggests that an outgoing shock
wave will remain.
Another question concerns the effective equations them-

selves. The quantum gravity corrections they contain
capture the fundamental discreteness that comes from
the discrete spectrum of the area operator in loop quantum
gravity, but they neglect quantum fluctuations. It would be
interesting to look for solutions to the quantum dynamics
that include quantum fluctuations as well, especially in the
high-curvature regime.
Beyond the specific model proposed here, our results

suggest a new perspective that a shock wave following a
bounce may be a ubiquitous feature of singularity avoid-
ance in black holes for any approach to quantum gravity,
and raise the possibility that a lifetime of the order of
∼M2=mPl provides a means for solving the black hole
information loss problem.
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