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The cosmological memory effect is a permanent change in the relative separation of test particles located
in a Friedmann-Lemaítre-Robertson-Walker (FLRW) spacetime due to the passage of gravitational waves.
In the case of a spatially flat FLRW spacetime filled with a perfect fluid in general relativity, it is known that
only tensor perturbations contribute to the memory effect while scalar and vector perturbations do not.
In this paper, we show that in the context of scalar-tensor theories, the scalar perturbations associated to the
scalar graviton contribute to the memory effect as well. We find that, depending on the mass and coupling,
the influence of cosmic expansion on the memory effect due to the scalar perturbations can be either
stronger or weaker than the one induced by the tensor perturbations. As a byproduct, in an appendix, we
develop a general framework which can be used to study coupled wave equations in any curved spacetime
region which admits a foliation by time slices.
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I. INTRODUCTION

The recent detection of gravitational waves (GWs) has
opened up a new window to probe different aspects of
gravitational interaction that otherwise are impossible to be
explored [1,2]. As one of the observable byproduct of the
GWs, the so-called memory effect, which is a permanent
and sudden change of the relative distance between two
observers through the passage of GWs, has received a lots
of attention in recent years. This effect was first indicated
by Zel’dovich and Polnarev [3] and later completed by
Christodoulou by taking into account nonlinear effects [4]
(see also [5,6]).
In combination with the soft theorem and the asymptotic

symmetry, the memory effect constitutes the so-called
“infrared triangle” [7]. The soft theorem was first discov-
ered in the context of QED [8] and a few years later
generalized by Weinberg to theories involving particles
with arbitrary spins including gravitons [9]. In QED, it is
implemented to cancel infrared divergences to preserve the
consistency of the field theory [10]. On the other hand, the
known asymptotic symmetry for gravity is the so-called
Bondi, van der Burg, Metzner, and Sachs (BMS) symmetry

which is the symmetry group of diffeomorphism trans-
formations that do not break asymptotic flatness at con-
formal infinities [11,12]. The three corners of the infrared
triangle are expected to be equivalent to each other:
(i) equivalence of BMS symmetry with the soft graviton
theorem can be shown by Ward-Takahashi identity [13],
(ii) the permanent change of the distance between observers
caused by the memory effect can be realized through a step
functional change of the spacetime metric and this change
is indeed the same as the one generated by the BMS
transformations [7], and (iii) the change in an asymptotic
metric due to the memory effect has the same form as the
coefficient of the scattering amplitude due to the addition of
soft gravitons in the soft theorem [13]. It is worth
mentioning that these three subjects have been developed
independently and these equivalences are quite nontrivial.
Moreover, this triangle equivalence is not restricted to the
gravitational theory and similar equivalences also show up
in some gauge theories [14,15]. Therefore, infrared triangle
may have a deeper origin arising from the infrared con-
sistency of a theory under consideration.
In order to better understand the infrared structure of

gravity, it is then quite important to further study each
corner of the infrared triangle. The memory effect, which is
the subject of this paper, is originally found in Minkowski
spacetime and later studied in asymptotically flat space-
time. In these cases, the radiation part of the gravitational
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field, which includes the memory effect, can be distin-
guished from the other tidal gravitational effects by looking
at the fall off of the gravitational field near the spatial and
null infinities. In the case of the cosmological spacetime,
which is not asymptotically flat, characterizing the memory
effect is more subtle. This issue was studied by different
groups with different approaches [16–22] and we will focus
on the approach adopted by Tolish and Wald [23]. Indeed,
using the fact that the spatially flat Friedmann-Lemaítre-
Robertson-Walker (FLRW) spacetime is conformally flat,
they have developed a general setup to study memory effect
which is applicable as far as an idealized particlelike source
for GWs is considered. Apart from the fact that we need to
clarify the notion of memory in a cosmological background
to study the Universe, their setup provides a framework to
better understand the infrared regime of gravity at cosmo-
logical scales. Their analysis of cosmological memory
effect is based on general relativity and it will be interesting
to explore what happens in modified theories of gravity. In
this paper, we focus on scalar-tensor theories. According to
the results of Ref. [23] for the linear perturbations, only
tensor perturbations contribute to the cosmological
memory effect in general relativity. We will show that,
in scalar-tensor theories, scalar perturbations also contrib-
ute to the cosmological memory.
The rest of the paper is organized as follows. In Sec. II,

we present our scalar-tensor model which is coupled to a
perfect fluid and particlelike sources, as a source of GWs.
We then study the background equations and linear
perturbations around a spatially flat FLRW spacetime. In
Sec. III, we focus on the scalar perturbations and we find
the direct part of the corresponding retarded Green’s
function. Using this result, in Sec. IV, we show that the
scalar perturbations contribute to the cosmological memory
effect in scalar-tensor theories. Section V is devoted to the
summary of the paper. Moreover, we present our model in
the Jordan and the Einstein frames in Appendix A and we
present relation between the energy-momentum tensors in
different frames in Appendix B. In Appendix C, we show
explicit forms of the mass and source matrices for the sake
of completeness. In Appendix D, we present scalar per-
turbations in terms of the gauge-invariant counterpart of the
scalar field perturbation to make the minimal coupling and
constant scalar background limit of the theory manifest.
Finally, in Appendix E, we develop a general framework
which can be used to study coupled wave equations in any
curved spacetime region which admits a foliation by time
slices. The cosmological spacetime, which we deal with in
this paper, can be considered as a special subset.

II. THE SCALAR-TENSOR THEORY

We consider a scalar-tensor theory with a linear kinetic
term and without higher derivative terms. The action of the
system in the Jordan frame, in which matter fields directly
couple to the metric, is given by

SJ½g̃;ϕ;ψ � ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

Pl

2
FðϕÞR̃

−
1

2
K̃ðϕÞg̃μν∂μϕ∂νϕ− ṼðϕÞ

�
þSm½g̃;ψ �; ð1Þ

where MPl ¼ ð8πGÞ−1=2 is the reduced Planck mass, R̃ is
the Ricci scalar in the Jordan frame, F, K̃, and Ṽ are
functions of the scalar field, and Sm is the matter action in
which ψ collectively represents all matter fields and
particles which are present in the system under consid-
eration. The gravitational part of the action (1) is con-
structed out of the metric in the Jordan frame g̃μν and scalar
field ϕ. Performing the conformal transformation

g̃μν ¼ FðϕÞ−1gμν; ð2Þ

where gμν is the metric in the Einstein frame, the action in
the Einstein frame takes the form (see Appendix A)

SE½g;φ;ψ � ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R

−
1

2
gμν∂μφ∂νφ − VðφÞ

�
þ Sm½g̃;ψ �; ð3Þ

where we have defined

φ≡
Z ffiffiffiffiffiffiffiffiffiffiffi

KðϕÞ
p

dϕ; K≡ K̃
F
þ3

2
M2

Pl

�
F;ϕ

F

�
2

; V≡ Ṽ
F2

; ð4Þ

and it is understood that g̃ in (3) is given by (2) and that ϕ is
considered as a function of φ.
Comparing the equivalent actions (1) and (3), we find

that the form of the action for gμν is different from that for
g̃μν. This difference is compensated by the fact that the
coupling to the matter sources is different; the matter
couples only to g̃μν in the Jordan frame while it couples
to both gμν and φ in the Einstein frame. As it is well known,
this is the reason why we consider the scalar-tensor theories
as modified gravity theories, despite the fact that gμν is
described by the Einstein-Hilbert action as in general
relativity.
As it is easier, we perform all calculations in the Einstein

frame and translate only the final results in terms of the
Jordan frame quantities. The details of the transformation
between the Jordan frame and the Einstein frame are
presented in Appendix A. From now on (throughout this
and next sections), all calculations are presented in the
Einstein frame. The Einstein equations can be deduced by
taking the variation of the action (3) with respect to the
metric gμν

M2
PlGμν ¼ TðφÞ

μν þ TðmÞ
μν ; TðmÞ

μν ¼ −2ffiffiffiffiffiffi−gp δSm
δgμν

; ð5Þ
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where Gμν is the Einstein tensor and TðmÞ
μν is the energy-

momentum tensor of the matter (see Appendix B) while
energy-momentum tensor of the scalar field is given by

TðφÞ
μν ¼ ∂μφ∂νφ − gμν

�
1

2
gαβ∂αφ∂βφþ VðφÞ

�
: ð6Þ

Taking variation of the action (3) with respect to the scalar
field φ, we find

□φ − V;φ ¼ F;φ

2F
TðmÞ; TðmÞ ¼ gαβTðmÞ

αβ : ð7Þ

We consider two types of sources for the matter sector:
perfect fluid which is responsible for the energy density of
the universe and particlelike sources as idealized sources
for GWs production. The matter energy-momentum tensor
then can be separated to two parts

TðmÞ
μν ¼ TðFÞ

μν þ TðPÞ
μν : ð8Þ

The conservation equations for the matter [see
Eq. (A16)] imply

∇μTðFÞμ
ν ¼ −

F;φ

2F
TðFÞ∇νφ; ð9Þ

∇μTðPÞμ
ν ¼ −

F;φ

2F
TðPÞ∇νφ: ð10Þ

The energy-momentum tensor for the perfect fluid is
given by

TðFÞ
μν ¼ ðρþ pÞUμUν þ pgμν; ð11Þ

where ρ and p are the energy density and pressure in the
Einstein frame while Uμ is the four-velocity normalized
with respect to the Einstein frame metric gμνUμUν ¼ −1.
For the particle energy-momentum tensor we have

TðPÞ
μν ¼

X
l;in

TðM;lÞ
μν þ

X
n;in

TðN;nÞ
μν þ

X
l0;out

TðM;l0Þ
μν þ

X
n0;out

TðN;n0Þ
μν ;

ð12Þ

in which the upper indices M and N indicate massive and
massless particles respectively with

TðM;inÞ
μν ¼ muμuνδð3Þðx − zðtÞÞ 1ffiffiffiffiffiffi−gp dτ

dt
Θð−tÞ; ð13Þ

TðN;inÞ
μν ¼ kμkνδð3Þðx − yðtÞÞ 1ffiffiffiffiffiffi−gp edλ

dt
Θð−tÞ; ð14Þ

where uμ ¼ dxμ
dτ is the four-velocity of the massive particles

and kμ ¼ dxμ
edλ is the four-momentum of the massless

particles. Notice that τ is the proper time while t is the
local time coordinate for the particles. The label “in” shows
that the particles come from the past light cone for t < 0
while the label “out” corresponds to the particles in the
future light cone with t > 0. Therefore, the energy-momen-
tum tensor for the outgoing massive and massless particles
have the same forms as Eqs. (13) and (14) with the
replacement of Θð−tÞ with ΘðtÞ.

A. Background equations

For the background configuration of the gravity part of
the system (3), we consider a spatially flat FLRW metric
and a homogeneous profile of the scalar field

ds2 ¼ ḡμνdxμdxν

¼ −N̄ðτÞ2dτ2 þ aðτÞ2δijdxidxj; φ̄ ¼ φ̄ðτÞ; ð15Þ
where N̄ and a are the lapse function and the scale factor.
All quantities with bar denote the corresponding back-
ground values which only depend on τ.
For the perfect fluid in the matter sector, we consider the

homogeneous and isotropic configuration

T̄ðFÞ
μν ¼ðρ̄þ p̄ÞŪμŪνþ p̄ḡμν; Ū0¼−N̄; Ūi ¼ 0: ð16Þ

Note that the particle-like sources in the matter sector do
not have nonvanishing background values and will show up
only at the level of perturbations.
The Einstein Eqs. (5) for the background configuration

give the Friedmann equations

3M2
PlH

2 ¼ ρ̄þ ρ̄φ; ð17Þ

−M2
Plð2 _H þ 3H2Þ ¼ p̄þ p̄φ; ð18Þ

where a dot denotes derivative with respect to the cosmic
time d=ðN̄dτÞ and H ¼ _a=a is the Hubble expansion rate.
The energy density and pressure of the scalar field at the
background level are

ρ̄φ ¼ 1

2
_̄φ2 þ V̄; p̄φ ¼ 1

2
_̄φ2 − V̄: ð19Þ

The equation of motion for the scalar field (7) gives

̈φ̄þ 3H _̄φþ V̄;φ ¼ F̄;φ

2F̄
ð1 − 3wÞρ̄; ð20Þ

while the conservation equation for the perfect fluid (9)
implies

_̄ρþ 3Hð1þ wÞρ̄ ¼ −
F̄;φ

2F̄
ð1 − 3wÞρ̄ _̄φ; ð21Þ

where we have defined the equation of state parameter
w≡ p̄=ρ̄. The conservation equation for the particlelike
sources (10) trivially holds at the background level.

COSMOLOGICAL MEMORY EFFECT IN SCALAR-TENSOR … PHYS. REV. D 106, 024013 (2022)

024013-3



B. Linear perturbations

For the perturbations in the gravity sector, we consider1

δφ; δg00 ¼ −2N̄2α; δg0i ¼ N̄ð∂iβ þ βiÞ;

δgij ¼ a2
�
2ψδij þ 2

�
∂i∂j −

1

3
δij∂

2

�
Eþ 2∂ðiCjÞ þ hij

�
;

ð22Þ

where fα; β;ψ ; E; δφg are scalar perturbations, fβi; Cig
are vector perturbations which are divergence-free
∂
iβi¼0¼∂

iCi, andhij are tensor perturbationswhich satisfy
the traceless and transverse conditions hii ¼ 0 ¼ ∂

ihij.
As we already mentioned, the particle energy-momen-

tum tensor does not contribute to the background and it
starts to contribute at the level of perturbations. Thus, we
decompose it similarly to the metric perturbations as
follows:

TðPÞ
00 ¼ −2N̄2αðPÞ; TðPÞ

0i ¼ N̄ð∂iβðPÞ þ βðPÞi Þ;

TðPÞ
ij ¼ a2

�
2ψ ðPÞδij þ 2

�
∂i∂j −

1

3
δij∂

2

�
EðPÞ

þ 2∂ðiC
ðPÞ
jÞ þ T ij

�
; ð23Þ

where fαðPÞ; βðPÞ;ψ ðPÞ; EðPÞg are scalar perturbations,

fβðPÞi ; CðPÞ
i g are divergence-free vector perturbations, and

T ij are traceless and transverse tensor perturbations.
For the perfect fluid, we define perturbations in the

energy density and four-velocity as follows:

δT0
0 ¼ −δρ; δUi ¼ −∂iU þ UT

i ; ð24Þ

where ðδρ; UÞ are scalar perturbations while UT
i are

divergence-free vector perturbations. Perturbations in the
pressure and temporal component of the four-velocity are
not independent quantities

δp ¼ c2sδρ; δU0 ¼ −N̄α; c2s ≡ dp̄
dρ̄

; ð25Þ

where cs is the speed of sound for the scalar perturbations.
Note that the vector and tensor perturbations are not

affected by the scalar field φ and, therefore, the results will
be completely the same as those already studied in the
context of general relativity [23]; the vector perturbations
do not contribute to the memory effect while the tensor
perturbations do contribute. Then, we do not consider the
vector perturbations. We focus on the scalar perturbations
while we briefly present the results for the tensor
perturbations.

The tensor perturbations are gauge-invariant and all
perturbations in the particle energy-momentum tensor
are gauge-invariant as well since the particlelike sources
do not contribute to the background. The linearized
Einstein Eqs. (5) for the tensor perturbations hij and T ij
give

M2
Pl

2

�
ḧij þ 3H _hij −

1

a2
∂
2hij

�
¼ T ij: ð26Þ

As the scalar perturbations are not gauge-invariant, we
introduce the following gauge-invariant scalar perturbation
in the gravity sector

ζ ≡ ψ −
H
_̄φ
δφ; ð27Þ

and we then work in the unitary gauge

δφ ¼ 0; E ¼ 0; ψ ¼ ζ: ð28Þ

In order to simplify the calculations, we perform the
following transformation from δρ to δχ in the fluid sector2

δρ

ρ̄
¼ 1þ w

c2s

�
_δχ

v
− α

�
; ð29Þ

where the background quantity v is a solution of the
following first-order differential equation3

_vþ 3Hc2sv ¼
_̄φF̄φ

2F̄
ð3c2s − 1Þ: ð30Þ

For an explicitly given background configuration, we can
solve the above equation to find an explicit form of v.
The linearized Einstein Eqs. (5) for the scalar perturba-

tions ζ; δχ; α; β then give

2M2
Pl

�
3Hð_ζ − αHÞ − 1

a2
∂
2ðζ þHβÞ

�

¼ −α _̄φ2 þ 1þ w
c2s

ρ̄

�
_δχ

v
− α

�
− 2αðPÞ; ð31Þ

1We have adopted the notation AðiBjÞ ¼ ðAiBj þ AjBiÞ=2.

2The transformation (29) is not a point transformation as it
includes time derivative of the new field δχ. One way to perform
it is to implement Hamiltonian formalism where (29) can be
considered as a canonical transformation. There is, however, a
simpler way to perform (29) at the level of Lagrangian which
is explained in Appendix B of Ref. [24].

3As it is known, scalar field models without higher derivative
terms can be modeled into a perfect fluid. If one considers a shift-
symmetric scalar field χ instead of the perfect fluid and performs
the usual background/perturbation decomposition χ ¼ χ̄ þ δχ, δχ
coincides with δχ in Eqs. (29) and (30) is the background
equation for χ̄ with v ¼ _̄χ.
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2M2
Pl∂ið_ζ −HαÞ ¼ −∂i

�
δχ

v
ð1þ wÞρ̄þ βðPÞ

�
; ð32Þ

1

a2
M2

Pl∂
i
∂jðζþαþ _βþHβÞ¼−2∂i∂jEðPÞ; for i≠ j; ð33Þ

2M2
Pl

�
ζ̈þHð3_ζ− _αÞ− ð2 _Hþ 3H2Þα

−
1

3a2
∂
2ðζþαþ _βþHβÞ

�

¼ α _̄φ2− ð1þwÞρ̄
�

_δχ

v
−α

�
− 2ψ ðPÞ; for i¼ j: ð34Þ

Linearizing the temporal component of Eq. (9), we find

δ̈χ

v
þ 3H

2

�
ð1 − c2sÞ

_δχ

v
þ ð3c2s − 1Þα

�

þ 3c2s _ζ − _α −
c2s
a2

∂
2

�
δχ

v
þ β

�

¼ −
_̄φF̄φ

4F̄
ð3c2s − 1Þ

�
_δχ

v
− 3α

�
; ð35Þ

where we have used Eq. (30) to remove _v. The spatial
components of Eq. (9) are automatically satisfied after
substituting _v from Eq. (30). The linearized equation for the
scalar field (7) also gives

3_ζ− _αþ2V̄φ

_̄φ
α−

1

a2
∂
2β

¼−
F̄φ

_̄φF̄

�
αðPÞþ3ψ ðPÞ

þð1þwÞ ρ̄

2c2s

��
1−

5−3w
1þw

c2s

�
α−ð1−3c2sÞ

_δχ

v

��
; ð36Þ

where we have used (20) to remove ̈φ̄. Finally, linearizing
equations for the conservation of particle energy-momen-
tum tensor (10), we find

_αðPÞ þ 3HðαðPÞ − ψ ðPÞÞ þ 1

2a2
∂
2βðPÞ

¼ −
_̄φF̄φ

2F̄
ðαðPÞ þ 3ψ ðPÞÞ; ð37Þ

_βðPÞ þ 3HβðPÞ − 2ψ ðPÞ −
4

3
∂
2EðPÞ ¼ 0: ð38Þ

Now, our task is to remove the nondynamical fields α
and β. First, we find α and β from Eqs. (31) and (32). Using
these results in Eqs. (33) and (36) we find solutions for _α
and _β. Substituting _α, _β, α, and β in Eqs. (34) and (35) we
find

L:ξ ¼ −4πμðPÞ;

L≡ −
�
1

d
N̄dτ

�
d

N̄dτ

�
þN

d
N̄dτ

−C
1

a2
∂
2 þM

�
; ð39Þ

where we have defined the 2 × 1 matrices

ξ ≐
�

ζ

δQ

�
≡

�
ζ

δχ þ v
H ζ

�
; μðPÞ ≐

� μðPÞζ

μðPÞδQ

�
; ð40Þ

and the 2 × 2 matrices N and C whose nonzero compo-
nents are

N11 ¼ −
2V̄φ

_̄φ
− 3H −

2 _H
H

− ð3w − 1Þρ̄ F̄φ

_̄φ F̄
;

N12 ¼ −
1þ w
c2s

ρ̄H
2v

�ð1 − c2sÞ
HM2

Pl

þ ð3c2s − 1Þ F̄φ

_̄φ F̄

�

¼ −
�
1þ w
c2s

ρ̄H2

_̄φ2v2

�
N21;

N22 ¼
_̄φ2

4

�
6H
_̄φ2

ð1 − c2sÞ þ ð3c2s − 1Þ F̄φ

_̄φ F̄

�
; ð41Þ

C11 ¼ 1; C22 ¼ c2s : ð42Þ

All components of the 2 × 2 matrix M are nonzero;
M11 ≠ 0,M12 ≠ 0,M21 ≠ 0, andM22 ≠ 0which are shown
in Appendix C. The explicit values of the components of

the particle source matrix μðPÞ, which are given by μðPÞζ and

μðPÞδQ , are also shown in Appendix C. We will see that we do
not need their explicit values to study the cosmological
effects on the gravitational memory.

III. THE RETARDED GRAVITATIONAL FIELD

Working with the conformal time η ¼ R ½N̄ðτÞ=aðτÞ�dτ,
the background line element (15) takes the following
conformally flat form

ds2 ¼ aðηÞ2ð−dη2 þ δijdxidxjÞ: ð43Þ

For the tensor perturbations, Eq. (26) gives

�
∂
2
η þ

2

a
da
dη

∂η − ∂
2

�
hij ¼ 4πa2μij; ð44Þ

where we have defined normalized source μij ≡ 1
2πM2

Pl
T ij.

For the scalar perturbations, Eq. (39) in the component
form yields
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�
∂
2
η þ

�
aN11 −

1

a
da
dη

�
∂η − ∂

2 þ a2M11

�
ζ

þ ½aN12∂η þ a2M12�δQ ¼ 4πa2μðPÞζ ; ð45Þ
�
∂
2
η þ

�
aN22 −

1

a
da
dη

c2s

�
∂η − c2s∂2 þ a2M22

�
δQ

þ ½aN21∂η þ a2M21�ζ ¼ 4πa2μðPÞδQ : ð46Þ

As we have already mentioned, the memory effect for
tensor perturbations hij is studied in Ref. [23]. Moreover, it
is shown that the field δQ, which corresponds to the scalar
degree of freedom of the perfect fluid, does not develop any
memory effect in general relativity [23]. Therefore, we only
need to focus on the scalar graviton field ζ. More precisely,
it is expected that we only need to obtain the direct part of
the retarded Green’s function for ζ which is the subject of
this section and Appendix E. In Appendix E, starting from
the first principle and working out the fundamental sol-
utions for the scalar modes ζ and δQ in the scalar-tensor
theory, we prove that δQ does not develop any singularity
along the light cone of the mode ζ [Eq. (E46)] while it
changes the evolution of ζ inside the light cone
[Eqs. (E47)]. Therefore, δQ does not contribute to the
direct part of the mode ζ. Then, we have systematically
calculated the direct part of the corresponding retarded
Green’s function in Eq. (E68). Thus we can simply use the
result Eq. (E68) and move to the next section.
Here in this section we obtain the same result by

implementing a less rigorous but more intuitive approach
which we believe is easier for the readers to follow. The
readers who are only interested in the final result may
simply move to the next section. On the other hand, the
readers who are interested in the rigorous treatment are
directed to Appendix E.
As it is shown in Appendix E, the retarded Green’s

function for δQ does not develop any singularities along the
lightcone of ζ. We thus treat the term proportional to δQ in
Eq. (45) as a source for ζ and we rewrite it in the following
form

�
∂
2
η þ

2

Aζ

dAζ

dη
∂η − ∂

2 þ a2M11

�
ζ ¼ 4πa2μζ; ð47Þ

where we have defined

μζ ≡ μðPÞζ −
1

4π

�
1

a
N12∂η þM12

�
δQ; ð48Þ

AζðηÞ≡ aðηÞ exp
�
1

2

Z
η

�
aN11 −

3

a
da
dη̄

�
dη̄

�
: ð49Þ

The corresponding Green’s function then satisfies

�
∂
2
η þ

2

Aζ

dAζ

dη
∂η − ∂

2 þ a2M11

�
Gret

ζ ðx; x0Þ

¼ 4π

a2
δð4Þðx − x0Þ: ð50Þ

In general, the retarded solution for the above equation has
the Hadamard representation [25,26]

Gret
ζ ðx; x0Þ ¼ ½Uζðx; x0ÞδðσζÞ þ Vζðx; x0ÞΘð−σζÞ�Θðt − t0Þ;

ð51Þ

where Uζ and Vζ characterize the direct and tail parts
respectively and σζðx; x0Þ is the geodetic interval (squared
of the geodesic distance) between x and x0 which satisfies

ḡμν∇̄μσζ∇̄νσζ ¼ 2σζ; ð52Þ

where a bar denotes that the covariant derivatives are
defined in the spirit of the background metric ḡμν.
Following the approach implemented in Refs. [27–29],
by substituting

Gret
ζ ðx; x0Þ ¼ Aζðη0Þ

AζðηÞaðη0Þ2
gretζ ðx; x0Þ; ð53Þ

in Eq. (50), we find

�
∂
2
η − ∂

2 þ
�
a2M11 −

1

Aζ

d2Aζ

dη2

��
gretζ ðx; x0Þ

¼ 4πδð4Þðx − x0Þ: ð54Þ

The above equation is similar to the equation for the
Green’s function in flat spacetime. Indeed the first two
terms on the left-hand side of (54) correspond to the flat
spacetime operator and they determine the direct part.
Therefore, considering the relation between Gret

ζ and gretζ in
Eq. (53), from Eq. (51) we find

Uζðx; x0Þ ¼
�
Aζðη0Þ
AζðηÞ

�
Ūðx; x0Þ; ð55Þ

where Ū is the corresponding quantity in the flat spacetime.
Using the fact that Ū ¼ 1, we find the direct part of the
Green’s function (51) as follows:

Uζðη; η0Þ ¼
Aζðη0Þ
AζðηÞ

: ð56Þ

The above result coincides with the result (E68) which is
obtained from a more rigorous approach.
Apart from the mass term, Eqs. (44) and (47) have the

same forms so that Aζ plays the role of an effective scale
factor for the scalar mode ζ. Therefore, with the same
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approach, we can easily find the direct part for the tensor
perturbations hij as Uhðη; η0Þ ¼ aðη0Þ=aðηÞ [23].

IV. COSMOLOGICAL SCALAR
MEMORY EFFECT

In our idealized case in which GWs are produced due to
the particlelike sources with energy-momentum tensor
(12), the memory effect is characterized by the “existence
of first derivative of the delta functions” in the components
of the Riemann tensor [23]. The electric components of the
Riemann tensor up to the linear order in tensor and scalar
perturbations (22) are given by

δ1Ri00
j ¼ 1

2
ð∂2ηhik þ ∂ηhikÞδkj þ

�
∂i∂

j −
1

3
δi

j
∂
2

�
Φ

þ
�
∂
2
ηΨþ 1

a
da
dη

ð∂ηΨ − ∂ηΦÞ
�
δi

j; ð57Þ

where we have defined the Bardeen potentials [30]

Φ≡ αþ 1

a
∂ηβ; Ψ≡ ζ þ 1

a2
da
dη

β: ð58Þ

For the tensor perturbations, the electric components of the
Riemann tensor (57) obviously include ∂

2
ηhij which pro-

vides first derivative of the delta function and, therefore,
tensor memory effect shows up [23]. For the scalar
perturbations, (57) include ∂

2
ηζ while they do not include

∂
2
ηδQ. The later does not provide any first derivative of the
delta function and our aim is here to show that, similarly to
∂
2
ηhij, the former ∂2ηζ does include first derivative of the
delta function.
Up to here, we have presented all results in the Einstein

frame while to interpret the results we need to go back to
the Jordan frame. In the unitary gauge δφ ¼ 0, which we
have implemented in (28), based on (2), we can simply use
conformal transformation g̃μν ¼ F̄−1gμν where only back-
ground value of conformal factor F̄ is considered. The line
element for the background (43) takes the following form

d̃s2 ¼ ˜̄gμνdxμdxν ¼ ãðηÞ2ðdτ2 þ δijdxidxjÞ;
ãðηÞ≡ aðηÞ=

ffiffiffiffiffiffiffiffiffiffi
F̄ðηÞ

q
; ð59Þ

where ã denotes the scale factor in the Jordan frame. Taking
into account the change in the scale factor, we find that ζ
defined by (22) and (28) does not change by the conformal
transformation (see Refs. [31–35] for the conformal invari-
ance of the scalar perturbations in scalar-tensor theories).
More precisely, the linear scalar perturbations do not
change as the nondynamical fields like β can be simply
redefined. Therefore, in the unitary gauge (28), in order to
go back from the Einstein frame to the Jordan frame, we
only need to rewrite all results in terms of the scalar factor ã

in the Jordan frame defined in (59). The equation of motion
for ζ presented in Eq. (47) takes the following form in the
Jordan frame

�
∂
2
η þ

2

Aζ

dAζ

dη
∂η − ∂

2 þ ã2M̃11

�
ζ ¼ 4πã2μ̃ζ; ð60Þ

where M̃11 ≡ F̄M11, μ̃ζ ≡ F̄μζ, and also

Aζ ¼ ð
ffiffiffiffi
F̄

p
ãÞ3 dφ̄

dη
exp

�
3

2

Z �
wρ̄þ p̄φ

ρ̄þ ρ̄φ
− 1

�
d lnð

ffiffiffiffi
F̄

p
ãÞ
�
;

ð61Þ

in which we have used Eqs. (17) and (20) when we
substitute the value of N11 defined in (41). In the absence
of the fluid ρ̄ ¼ 0, the mass term vanishes M̃11 ¼ 0 as it can
be seen from Eq. (C1). We thus find the well-known result
Aζ ∝ ã for the minimally coupled F ¼ 1 massless scalar
field with p̄φ ¼ ρ̄φ and dφ̄=dη ∝ ã−2. There is also an
apparent subtlety: for the minimal coupling and constant
scalar background limit F ¼ 1 and _̄φ ¼ 0, as it can be seen
from Eq. (C2), the source does not vanish μ̃ζ ¼ μζ ≠ 0.
This is simply an artifact of the unitary gauge (28) that we
have implemented. From Eq. (27), we see that ζ ¼ ψ in the
unitary gauge (28) when δφ ¼ 0while ζ ¼ H

_̄φ
δφ if we work

in the spatially flat gauge with ψ ¼ 0 and E ¼ 0. As it is
shown in Appendix D, there will be no source if we work
with the gauge-invariant counterpart of δφ, which is given
by δφþ _̄φβ for E ¼ 0, in the limit F ¼ 1 and _̄φ ¼ 0.
Although the _̄φ ¼ 0 limit is not manifest in the unitary
gauge, the results away from this limit are much simpler in
this gauge and that is why we have implemented this gauge.
The retarded solution for ζ is given by

ζðxÞ ¼
Z

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðx0Þ

p
Gret

ζ ðx; x0Þμ̃ζðx0Þ; ð62Þ

where the retarded Green’s function Gret
ζ is given by

Eq. (51). Substituting Eq. (51) in solution (62) and taking
into account the fact that Uζ and Vζ are regular functions, it
can be shown that the tail part including Vζ can at most
provide singularity proportional to the delta function while
the direct part including Uζ can indeed provide singularity
at the level of derivative of the delta function. Therefore,
only the direct part Uζ contributes to the memory effect.
This result is completely independent of the explicit func-
tional forms of Uζ and Vζ. We do not repeat the corre-
sponding analysis here, as we only need the final result in
our upcoming analysis and we refer the readers to Ref. [23]
for the details.
Instead of performing the integral directly in the retarded

solution (62), the fact that the memory effect is encoded
only in the direct part and the spatially flat FLRW
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spacetime is conformally flat, makes it possible to find a
universal explicit relation between the memory effect in
the FLRW spacetime and its counterpart in Minkowski
spacetime. In order to do so, we first note that Eq. (55)
immediately implies

ζdirðxÞ ¼
�
AζðηsÞ
AζðηoÞ

�
ζ̄dirðxÞ; ð63Þ

where ηs is the conformal time at the source, ηo is the
conformal time at which the detector observes the signal,
and ζ̄dirðxÞ is the flat spacetime counterpart of ζdirðxÞ, i.e.,
scalar mode characterizing the scalar field perturbations in
the absence of cosmic expansion. From Eq. (57) we have
δ1Ri00

j ⊃ ∂
2
ηζ. Taking into account the fact that the time

derivatives of Aζ do not contribute to the direct part, we find

δ1Rdir
ðSÞi00

j ¼
�
AζðηsÞ
AζðηoÞ

�
δ1R

dir
ðSÞi00

j; ð64Þ

where subscript S shows that only scalar perturbations are
taken into account.
The geodesic deviation equation for the deviation vector

Dμ, which characterizes the displacement in the detector
due to the passage of the GWs, satisfies

d2Dμ

ds2
¼ Rαβγ

μDαnβnγ;
d
ds

≡ nμ∇μ; ð65Þ

where nμ is a timelike vector tangent to the geodesic
trajectory which is normalized as nμnμ ¼ −1. The direc-
tional covariant derivative d=ds characterizes changes
along the geodesic parametrized by the affine parameter s.
Approximating the tangent vector with its dominant back-
ground value as nμ ≈ ãðηÞ−1δμ0 or d=ds ≈ ðã−1Þd=dη and
taking into account the fact that the time derivatives of the
scale factor are negligible at the time scale of interest, we
find the following result at the leading order

d2Dj

dη2
¼ Ri00

jDi: ð66Þ

Then, the displacement due to the scalar memory effect,
characterized by the changes in Riemann tensor given by
(64), will be

ΔDi
ðSÞ ¼

�
AζðηsÞ
AζðηoÞ

�
ΔDi

ðSÞ; ð67Þ

where ΔDi
ðSÞ is the displacement due to the scalar memory

effect in flat spacetime, i.e., in the absence of cosmic
expansion.
Following the same steps, as it is already shown in

Ref. [23], the displacement due to the tensor memory effect
is given by

ΔDi
ðTÞ ¼

�
aðηsÞ
aðηoÞ

�
ΔDi

ðTÞ; ð68Þ

where ΔDi
ðTÞ is the displacement due to the tensor memory

effect in flat spacetime.
As it can be seen from the results (67) and (68), the

effects of the cosmic expansion are characterized by the
values of the effective scale factor Aζ and scale factor a at
the two times ηs and ηo for the scalar and tensor memory
effects respectively. Therefore, similarly to the tensor
memory effect (68), the scalar memory effect (67) does
not depend on the expansion history of the Universe.
However, depending on the coupling and mass, the value
of the effective scale factor Aζ, given by Eq. (61), can be
different from the scale factor a. Thus, the detector will
receive two types of scalar (67) and universal tensor (68)
memory effects and, depending on the coupling and mass,
the effect of the scalar memory effect can be either
dominant or subleading.
The result (67) provides a relation between scalar

memory effect in a spatially flat FLRW spacetime and
its counterpart in flat spacetime for the scalar-tensor
theories described by the action (1). The memory effect
in flat spacetime in the context of the Brans-Dicke theory is
already studied in Refs. [36–41]. As the action of our model
Eq. (1) includes Brans-Dicke theory as a special case, it is
straightforward to take into account the effects of cosmo-
logical expansion in the results of Refs. [36–41] and also
any other scalar-tensor theory which can be modeled by the
action (1).

V. SUMMARY

The memory effect is a permanent change in the relative
separation of test particles due to the passage of GWs. In an
asymptotically flat spacetime, the GWs effects can be
discriminated from the gravitational tidal effects, i.e.,
through their different scaling near the spatial or null
infinity. In the case of cosmological FLRW spacetime,
which is not asymptotically flat, the situation is more
subtle. In Ref. [23], using the fact that the spatially flat
FLRW spacetime is conformally flat, Tolish and Wald
studied the memory effect in a universe which is filled only
with a perfect fluid in general relativity. They concluded
that only tensor perturbations contribute to the memory
effect while scalar and vector perturbations do not. The
memory effect associated to the tensor perturbations only
depends on the values of the scale factor at the moment of
emission from the source and at the moment of passaging
the detector. In this paper, we have shown that in the
context of scalar-tensor theories, the scalar perturbations
associated to the scalar graviton contribute to the memory
effect in the flat FLRWuniverse as well. The corresponding
memory effect depends on the values of the “effective scale
factor for scalar graviton” at the moment of emission from
the source and at the moment of passaging the detector.
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The effective scale factor for the scalar graviton is given by
Eq. (61) which reduces to the standard scale factor for the
massless scalar graviton that is minimally coupled to
gravity so that F ¼ constant and Ṽ ¼ constant but which
is in general different from the standard scale factor. Thus,
depending on the coupling and mass, the influence of the
cosmic expansion on the memory effect due to the scalar
perturbations can be either stronger or weaker than the one
induced by the tensor perturbations.
Moreover, as a byproduct, in Appendix E, we have

developed a general framework which can be used to study
coupled wave equations in any curved spacetime which
admits a time foliation. This will be useful not only for the
studies of the cosmological memory effect but also for
other scenarios which deal with solving coupled wave
equations in a curved spacetime.
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APPENDIX A: JORDAN FRAME
VS EINSTEIN FRAME

In this appendix we start with the action of a scalar-
tensor theory in the Jordan frame, in which the matter is
directly coupled to the metric. Performing a conformal
transformation, we find the corresponding action in the
Einstein frame which we use for concrete calculations in
this paper. This is a quite well-known subject (see for
instance Refs. [35,42–45] and references therein) and we
present it here only to keep the paper self-contained.

1. Jordan frame

The total action of a scalar-tensor theory in the Jordan
frame, in which the matter couples directly to the metric, is
as follows:

SJ½g̃;ϕ;ψ � ¼ Sg½g̃;ϕ� þ Sm½g̃;ψ �;
Sg½g̃;ϕ� ¼ SF;R̃½g̃;ϕ� þ Sϕ½g̃;ϕ�: ðA1Þ

Here, g̃μν and ϕ are the metric in the Jordan frame and a
scalar field which are the dynamical variables in the gravity
sector, while ψ collectively represents all fields and
particles which are present in the system under consid-
eration. The gravitational part of the action is defined by

SF;R̃½g̃;ϕ� ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
FðϕÞR̃;

Sϕ½g̃;ϕ� ¼ −
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2
K̃ðϕÞg̃μν∂μϕ∂νϕþ ṼðϕÞ

�
;

ðA2Þ

where MPl ¼ ð8πGÞ−1=2 is the reduced Planck mass, R̃ is
the Ricci scalar in the Jordan frame, F, K̃, and Ṽ are
functions of the scalar field. The matter action is given by

Sm½g̃;ψ � ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lmðg̃αβ;ψÞ; ðA3Þ

in which Lm is the Lagrangian density of the matter sector.
Taking variation of the action (A1) with respect to the

metric and using the relation

δg̃SF;R̃½g̃;ϕ� ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
½FðϕÞG̃μν

þ g̃μν□̃F − ∇̃μ∇̃νF�δg̃μν;

we find the Einstein equations

M2
PlFðϕÞG̃μν ¼ T̃ðϕÞ

μν þM2
Pl∇̃μ∇̃νF −M2

Plg̃μν□̃F þ T̃ðmÞ
μν ;

where

T̃ðϕÞ
μν ¼ −2ffiffiffiffiffiffi

−g̃
p δSϕ

δg̃μν

¼ K̃ðϕÞ∂μϕ∂νϕ − g̃μν

�
1

2
K̃ðϕÞg̃αβ∂αϕ∂βϕþ ṼðϕÞ

�
;

ðA4Þ

T̃ðmÞ
μν ¼ −2ffiffiffiffiffiffi

−g̃
p δSm

δg̃μν
: ðA5Þ

Taking variation of the action (A1) with respect to ϕ,
we find

δϕSJ½g̃;ϕ;ψ � ¼ δϕSg½g̃;ϕ�

¼
�
K̃ðϕÞ□̃ϕþ K̃;ϕ

2
g̃αβ∂αϕ∂βϕ

− Ṽ;ϕ þ
M2

Pl

2
F;ϕR̃

�
δϕ ¼ 0; ðA6Þ

where we have used the fact that the matter action is
independent of the scalar field in the Jordan frame. We also
have the conservation of the matter field

∇̃μT̃ðmÞμ
ν ¼ 0: ðA7Þ
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2. Einstein frame

In order to go to the Einstein frame, we perform the
following conformal transformation

g̃μν ¼ FðϕÞ−1gμν; ðA8Þ

where gμν is the metric in the Einstein frame. We thus have

g̃μν ¼ Fgμν;
ffiffiffiffiffiffi
−g̃

p
¼ F−2 ffiffiffiffiffiffi

−g
p

;

R̃ ¼ F

�
Rþ 3

F;ϕ

F
g̃μν∇μ∇νϕ

þ 3g̃μν∂μϕ∂νϕ

�
F;ϕϕ

F
−
3

2

F2
;ϕ

F2

��
;

where R is the Ricci scalar associated to gμν.
Then, the gravitational action in the Einstein frame takes

the form

Sg½g;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

2
KðϕÞgμν∂μϕ∂νϕ−VðϕÞ

�
;

where we have defined

K ≡ K̃
F
þ 3

2
M2

Pl

�
F;ϕ

F

�
2

; V ≡ Ṽ
F2

: ðA9Þ

Redefining the scalar field as

φ ¼
Z ffiffiffiffiffiffiffiffiffiffiffi

KðϕÞ
p

dϕ; ðA10Þ

the kinetic term of the scalar field takes the canonical form
and we find the following total action in the Einstein frame

SE½g;φ;ψ � ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
gμν∂μφ∂νφ − VðφÞ

�
þ Sm½g̃;ψ �; ðA11Þ

where it is understood that g̃ in (A11) is given by (A8) and
that ϕ is considered as a function of φ.
In the absence of matter, actions (A1) and (A11) are

completely equivalent at the classical level. As we see, the
matter action depends on the field in the Einstein frame
while it was independent of the scalar field in the Jordan
frame. That is why the scalar-tensor theories are treated as
modified gravity theories and they are not simply general
relativity plus a minimally coupled scalar field.
Varying the action (A11) with respect to gμν, we find the

Einstein equations in the Einstein frame

M2
PlGμν ¼ TðφÞ

μν þ TðmÞ
μν ; ðA12Þ

where

TðφÞ
μν ¼ ∂μφ∂νφ − gμν

�
1

2
gμν∂μφ∂νφþ VðφÞ

�
; ðA13Þ

TðmÞ
μν ¼ −2ffiffiffiffiffiffi−gp δSm

δgμν
: ðA14Þ

We need to take into account the dependence of Sm on
the scalar field when we take the variation with respect to
the scalar field. We, however, note that the dependence
on the scalar field only comes through the conformal
transformation (A8) and we can simply use the chain rule
to take the variation. Then, taking variation of the action
(A11) with respect to the scalar field φ we find the equation
of motion for the scalar field as follows:

□φ − V;φ ¼ F;φ

2F
TðmÞ; ðA15Þ

where TðmÞ ¼ gαβTðmÞ
αβ is the trace of the matter energy-

momentum tensor in the Einstein frame.
Moreover, from the Bianchi identity we know∇μGμ

ν¼0

which implies ∇μðTðφÞμ
ν þ TðmÞμ

νÞ ¼ 0. Using the explicit
form of the scalar field energy-momentum tensor (A13),
we find ∇μTðφÞμ

ν ¼ −ð□φ − V;φÞ∇νφ which after using
Eq. (A15) leads to the following conservation equation for
the matter

∇μTðmÞμ
ν ¼ −

F;φ

2F
TðmÞ∇νφ: ðA16Þ

Note that we did not assume any form for the matter and
all results found in this appendix can be applied to any type
of matter. Note also that if there are different contributions
to the matter energy-momentum tensor, energy-momentum
of each type of matter are separately conserved.

APPENDIX B: MATTER ENERGY-MOMENTUM
TENSOR IN DIFFERENT FRAMES

We have considered a general matter field in the previous
appendix. Here we study in detail two types of matter
sources with which we deal in our setup: perfect fluids and
relativistic particles. We find relations between physical
quantities in the Jordan and Einstein frames for these two
types of matter sources.
Using Eq. (A8), we can rewrite the energy-momentum

tensor in the Einstein frame TðmÞ
μν , defined in Eq. (A14), as

follows:

TðmÞ
μν ðg;φ;ψÞ ¼ 1

FðφÞ T̃
ðmÞ
μν ðg̃;ψÞ;

T̃ðmÞ
μν ¼ −

2ffiffiffiffiffiffi
−g̃

p δð ffiffiffiffiffiffi
−g̃

p
LmÞ

δg̃μν
; ðB1Þ

where T̃ðmÞ
μν is the energy-momentum tensor in the Jordan

frame defined in Eq. (A5). This relation is true for any type
of matter.
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In the following subsections, we separately study the
special cases of perfect fluid and particlelike sources.

1. Perfect fluid

In the Jordan frame, the perfect fluid energy-momentum
tensor T̃ðFÞ

μν is given by

T̃ðFÞ
μν ðg̃; ŨÞ ¼ ðρ̃þ p̃ÞŨμŨν þ p̃g̃μν;

g̃μνŨμŨν ¼ −1; ðB2Þ

where Ũμ, ρ̃, and p̃ are four-velocity, energy density, and
pressure in the Jordan frame respectively.
In the Einstein frame, we also have

TðFÞ
μν ðg; UÞ ¼ ðρþ pÞUμUν þ pgμν;

gμνUμUν ¼ −1; ðB3Þ

where Uμ, ρ, and p are the four-velocity, energy density,
and pressure in the Einstein frame, respectively.
In order to find the relation between the quantities in two

frames, we first note that the normalization of the four-
velocities in Eqs. (B2) and (B3) implies

Uμ ≡
ffiffiffiffi
F

p
Ũμ: ðB4Þ

Using the above result and the relation (B1), we find

ρ ¼ F−2ρ̃; p ¼ F−2p̃: ðB5Þ

The above results for the perfect fluid are already
well known and we just presented them for the sake of
completeness.

2. Massive and massless particles

For the particle energy-momentum tensor, as far as we
know, the relations between the physical quantities in the
Jordan and Einstein frames are not completely derived yet.
We, thus, present them here in some details. We start with
the action of relativistic particles which is invariant under a
conformal transformation. We, therefore, can systemati-
cally find relations between physical quantities before and
after the conformal transformation.
In the Jordan frame, the action for a relativistic particle is

given by

SðPÞJ ¼ 1

2

Z
dλ̃
�
1

ẽ

�
g̃αβ

dxα

dλ̃

dxβ

dλ̃

�
− ẽm̃2

�
; ðB6Þ

where m̃ is the mass of the particle, λ̃ is an arbitrary curve
parameter, and ẽ is an auxiliary field.
Let us first focus on the case of a massive particle with

m̃ ≠ 0. In this case, the solution for the auxiliary field ẽ can
be obtained from its equation of motion as follows:

ẽ ¼ 1

m̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃αβ

dxα

dλ̃

dxβ

dλ̃

s
: ðB7Þ

Substituting the above result in the action (B6), we find the
following action for the massive particles

SðMÞ
J ¼ −m̃

Z
dλ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃αβ

dxα

dλ̃

dxβ

dλ̃

s
: ðB8Þ

For the massive particles the curve parameter can be simply
chosen as the proper time λ̃ ¼ τ̃.
In the case of a massless (null) particle with m̃ ¼ 0, the

action (B6) reduces to

SðNÞ
J ¼ 1

2

Z
dλ̃

1

ẽ

�
g̃αβ

dxα

dλ̃

dxβ

dλ̃

�
: ðB9Þ

Contrary to the case of the massive particle, the auxiliary
field ẽ cannot be fixed by its equation of motion. Instead,
the equation of motion of ẽ gives the Hamiltonian con-
straint

g̃αβ
dxα

dλ̃

dxβ

dλ̃
¼ 0: ðB10Þ

The curve parameter λ̃ then can be chosen as an affine
parameter. However, one can keep ẽ and work with ẽdλ̃ as
an affine parameter. In this case, freedom in ẽ allows us to
keep the setup invariant under reparametrization of ẽdλ̃.
In the Einstein frame, the action takes the form

SðPÞE ¼ 1

2

Z
dλ

�
1

e

�
gαβ

dxα

dλ
dxβ

dλ

�
− em2

�
; ðB11Þ

where m denotes the mass of the relativistic particle in the
Einstein frame.
Looking at the first terms in the right-hand sides of the

actions (B6) and (B11), from conformal transformation
(A8) we find the following relation

ẽdλ̃ ¼ F−1edλ: ðB12Þ

Using the above result and comparing the second terms on
the right-hand sides of the actions (B6) and (B11), we find
the following relation between the mass of the particles
in the Jordan and Einstein frames

m̃ ¼
ffiffiffiffi
F

p
m: ðB13Þ

In the case of the massive particle, when ẽ is fixed by its
equation of motion (B7), we choose the curve parameter to
be the proper time of the massive particle as λ̃ ¼ τ̃. Then,
from Eqs. (B7) and (B12) we find the following results
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ẽ ¼ effiffiffiffi
F

p ; dτ̃ ¼ dτffiffiffiffi
F

p ; e ¼ 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dλ
dxβ

dλ

r
: ðB14Þ

Finally, taking variation of the actions (B8) and (B9)
with respect to the metric g̃μν we find

T̃ðMÞ
μν ¼ m̃ũμũν

1ffiffiffiffiffiffi
−g̃

p dτ̃
dt

δð3Þðx − zðtÞÞ; ðB15Þ

T̃ðNÞ
μν ¼ k̃μk̃ν

1ffiffiffiffiffiffi
−g̃

p ẽdλ̃
dt

δð3Þðx − yðtÞÞ; ðB16Þ

where ũμ ¼ dxμ
dτ̃ is the four-velocity of the massive par-

ticles and k̃μ ¼ dxμ

ẽdλ̃
is the four-momentum of the massless

particles in the Jordan frame. In the Einstein frame,
we have

TðMÞ
μν ¼ muμuν

1ffiffiffiffiffiffi−gp dτ
dt

δð3Þðx − zðtÞÞ; ðB17Þ

TðNÞ
μν ¼ kμkν

1ffiffiffiffiffiffi−gp edλ
dt

δð3Þðx − yðtÞÞ; ðB18Þ

where uμ ¼ dxμ
dτ is the four-velocity of the massive particles

and kμ ¼ dxμ
edλ is the four-momentum of the massless particle

in the Einstein frame.

For the massive particle, using the results (B14), we find

ũμ ¼
ffiffiffiffi
F

p
uμ; ũμ ¼

uμffiffiffiffi
F

p ; ðB19Þ

while for massless particle we find

k̃μ ¼ Fkμ; k̃μ ¼ kμ: ðB20Þ

Here, we started from the first principle and we worked
with the action. However, looking at the geodesic equation,
it is also possible to find relation between affine parameters
ẽdλ̃ and edλ at the level of equation of motion [46]. Indeed,
it is straightforward to show that if a massless particle
with four-momentum k̃μ satisfies the geodesic equation

k̃α∇̃αk̃μ ¼ 0 with affine parameter ẽdλ̃ in the Jordan frame,
it also satisfies geodesic equation kα∇αkμ ¼ 0 with the
affine parameter edλ in the Einstein frame.

APPENDIX C: EXPLICIT VALUES OF MASS
MATRIX AND SOURCE VECTOR

We present explicit forms of the components of the mass
and source matrices defined in Eq. (39). Indeed, we do not
need these explicit results for our purpose in this paper and
we only present them here for the sake of completeness.
The components of the mass matrix M are given by

M11 ¼
ðwþ 1Þρ̄
4M2

Plc
2
s

�
2ϵð3c2s − 1Þ − 6c2sð1þ c2sÞ þ

ð1þ wÞρ̄ð1 − c2sÞ
H2M2

Pl

−
4c2s V̄φ

H _̄φ
þ ð3c2s − 1Þ2M2

PlF̄
2
φ

F̄2

þ ½ _̄φ2ð3c4s − 4c2s þ 1Þ − ρ̄ðð3w − 5Þc2s þ wþ 1Þ − 2H2M2
Plð3c2s − 1Þðϵ − 3c2sÞ�

F̄φ

H _̄φ F̄

�
;

M12 ¼
ðwþ 1Þρ̄
4M2

Pl

�
3ð1 − 3c2sÞ

_̄φF̄φ

2HF̄
−

_̄φ2ðc2s − 1Þ
H2M2

Pl

þ 15c2s − 4ϵþ 3

�
;

M21 ¼
1

2v

�
ϵHð3þ 4ϵ − 9c2sÞ −

ðwþ 1Þρ̄ _̄φ2ðc2s − 1Þ
2H3M4

Pl

−
ðwþ 1Þρ̄ð−9c2s þ 4ϵþ 3Þ þ 12 _̄φ2

2HM2
Pl

þ
�
ð1 − 3c2sÞ

F̄φ

HF̄
−

2 _̄φ

H2M2
Pl

�
V̄φ − ð3c2s − 1Þð7 _̄φ2 þ 2ð3w − 1Þρ̄Þ F̄2

φ

2HF̄2

þ
�
ð5ϵ − 3Þð3c2s − 1Þ − ρ̄ð3ðwþ 1Þc2s þ 11w − 5Þ

2H2M2
Pl

�
_̄φF̄φ

2F̄
þ ð3c2s − 1Þ

_̄φ2F̄φφ

HF̄

�
;

M22 ¼
ðwþ 1Þρ̄
4M2

Pl

�
3 − 4ϵþ 15c2s þ ð1 − c2sÞ

_̄φ2

H2M2
Pl

þ 3ð1 − 3c2sÞ
_̄φF̄φ

2HF̄

�
; ðC1Þ

where we have defined ϵ≡ − _H=H2.
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The components of the particle source matrix μðPÞ are also given by

μðPÞζ ¼ −
1

4πM2
Pl

�
αðPÞ þ ψ ðPÞ þ 2

3
∂
2EðPÞ −

�
ð3 − ϵÞH þ V̄φ

_̄φ
−
ð1þ wÞρ̄
4HM2

Plc
2
s
ð1 − c2sÞ

�
βðPÞ

�

þ HF̄φ

4π _̄φ F̄

�
αðPÞ þ 3ψ ðPÞ þ ð1þ wÞρ̄

4HM2
Plc

2
s

�
1 −

5 − 3w
1þ w

c2s

�
βðPÞ

�
;

μðPÞδQ ¼ v
4πHM2

Pl

�
c2sαðPÞ þ ψ ðPÞ þ 2

3
∂
2EðPÞ −

1

4

�
ð3 − 4ϵþ 15c2sÞH þ _̄φ2

�ð1 − c2sÞ
HM2

Pl

−
3

2
ð3c2s − 1Þ F̄φ

_̄φ F̄

��
βðPÞ

�
: ðC2Þ

APPENDIX D: THE MINIMAL COUPLING AND
CONSTANT SCALAR BACKGROUND LIMIT

From Eq. (7), we see that for the case of minimally
coupled scalar field with F ¼ constant and the constant
scalar field background _̄φ ¼ 0, there should be no source
for the scalar field φ and, therefore, there should be no
scalar memory effect in this case. On the other hand, if we
take the limit F ¼ constant and _̄φ ¼ 0 in Eq. (C2), we find

μðPÞζ ≠ 0 for the mode ζ. One may concern that there would
be a scalar memory effect in this limit which is apparently
not consistent with Eq. (7) that holds at the fully nonlinear
level. In this appendix, we clarify that this is simply a gauge
artifact and, using a gauge-invariant counterpart of the
scalar field perturbation, we show that the limit is indeed
consistent. The reason why we used the unitary gauge (28)
in the paper is that the results away from the constant scalar
background become very simple in this gauge.
For the gravity and fluid sectors, we deal with scalar

perturbations fα; β;ψ ; E; δϕg and fδρ; Ug, respectively.
We have worked with variable ζ defined in Eq. (27)

ζ ¼ ψ −
H
_̄φ
δφ: ðD1Þ

The quantity ζ is a combination of ψ and δφ which
becomes ζ ¼ ψ in the unitary gauge (28) when δφ ¼ 0

while ζ ¼ H
_̄φ
δφ if we fix the gauge as ψ ¼ 0. In order to

make the minimal coupling and constant scalar background
limit F ¼ constant and _̄φ ¼ 0manifest in the equations, we
need to work with δφ. In order to avoid any gauge artifact,
let us look at the following gauge-invariant variables4

Φ ¼ αþ ðβ − a2 _EÞ_; Ψ ¼ ψ þHðβ − a2 _EÞ; ðD2Þ

δφN ¼ δφþ _̄φðβ − a2 _EÞ; ðD3Þ

δρN¼ δρþ _̄ρðβ−a2 _EÞ; UN ¼Uþðβ−a2 _EÞ: ðD4Þ

In terms of the gauge-invariant variables, ζ becomes

ζ ¼ Ψ −
H
_̄φ
δφN; ðD5Þ

which shows that, independent of the gauge, ζ always
includes metric perturbations. This clarifies the apparent
discrepancy that we mentioned in the beginning of this
appendix. Therefore, we need to work with δφN to make the
minimal coupling and constant scalar background limit
F ¼ constant and _̄φ ¼ 0 manifest in the equations.
After defining gauge-invariant variables, in any gauge we

will deal with δφN in terms of which the limit F ¼ constant
and _̄φ ¼ 0 will be manifest. So, let us fix the gauge for the
sake of simplicity and work in the longitudinal gauge

β ¼ 0; E ¼ 0: ðD6Þ

We thus find the following gauge-fixed quantities

Φ ¼ α; Ψ ¼ ψ ; δφN ¼ δφ; ðD7Þ

δρN ¼ δρ; UN ¼ U: ðD8Þ

As it is clear, in this gauge, δφ, δρ, U are gauge-invariant
and, from now on, we will drop the subscript and show δφN,
δρN, UN by δφ; δρ; U.
The line element for the scalar perturbations in this

gauge takes the form

ds2 ¼ −N̄2ð1þ 2ΦÞdt2 þ a2ð1þ 2ΨÞδijdxidxj: ðD9Þ

The linearized Einstein Eqs. (5) give

2M2
Pl

�
3Hð _Ψ −HΦÞ − 1

a2
∂
2Ψ

�

¼ − _̄φ2Φþ _̄φ _δφþV̄φδφþ δρþ 2αðPÞ; ðD10Þ

−2M2
Plð _Ψ −HΦÞ ¼ _̄φδφþ ð1þ wÞρ̄U þ βðPÞ; ðD11Þ

1

a2
M2

Pl∂
i
∂jðΦþΨÞ ¼ −2∂i∂jEðPÞ; i ≠ j ðD12Þ4Remember that all perturbations in the particle energy-

momentum tensor are gauge-invariant.
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2M2
Pl½Ψ̈þHð3 _Ψ− _ΦÞ−ð2 _Hþ3H2ÞΦ�−2

3
M2

Pl
1

a2
∂
2ðΦþΨÞ

¼ _̄φ2Φ− _̄φ _δφþV̄φδφ−c2sδρþ2ψ ðPÞ; i¼ j ðD13Þ

Linearizing equations for the conservation of perfect
fluid (9), we find

_δρ

ρ̄
þ3Hð1þc2sÞ

δρ

ρ̄
þð1þwÞ

�
3 _Ψ−

1

a2
∂
2U

�

¼−
_̄φF̄φ

2F̄
ð1−3c2sÞ

δρ

ρ̄
−
1

2
ð1−3wÞ d

N̄dt

�
F̄φ

F̄
δφ

�
; ðD14Þ

_U þ 3HU −
�
_̄ρ

ρ̄
þ _w
1þ w

�
U

¼ c2s
ð1þ wÞ

δρ

ρ̄
þΦ −

F̄φ

2F̄
1 − 3w
1þ w

δφ: ðD15Þ

Linearizing equations for the conservation of particle
energy-momentum tensor (10), we find the same Eqs. as
(37) and (38).
Linearized equation for the scalar field (7) gives

δ̈φþ 3H _δφþ
�
−

1

a2
∂
2 þ V̄φφ

�
δφþ 2V̄φΦþ _̄φð3 _Ψ − _ΦÞ

¼ F̄φ

2F̄
½ð1 − 3c2sÞδρþ 2ðαðPÞ þ 3ψ ðPÞÞ�

þ 1

2
ð1 − 3wÞρ̄

�
2
F̄φ

F̄
Φþ d

N̄dt

�
F̄φ

F̄

�
δφ

�
: ðD16Þ

As it can be seen from the above equation, the minimal
coupling and constant scalar background limit F ¼
constant and _̄φ ¼ 0 is manifest; there is no source for
the gauge-invariant variables δφ in this limit. Therefore, as
expected, there is no scalar memory effect in this limit.

APPENDIX E: THE COUPLED WAVE
EQUATIONS ON A CURVED SPACETIME

In this appendix, our primary aim is to find Green’s
functions corresponding to Eq. (39) starting from first
principles. However, we consider a general setup, which is
applicable for other purposes as well. We thus apply our
general results in this appendix to the particular case of
Eq. (39) only in the last subsection.
We start with a set of coupled wave equations propa-

gating on a background spacetime with metric gμν as
follows:

L0:ξ0 ¼−4πμ0; L0 ¼G0μν∇μ∇ν−N 0μ∇μ−M0; ðE1Þ

where ∇ denotes the covariant derivatives compatible with
gμν, G0μν, N 0μ and M0 are 2 × 2 matrices while ξ0 and μ0

are 2 × 1 matrices. The matrices G0μν characterize the light
cone structures of the modes ξ0, the matrices N 0μ encode
the friction terms, the matrix M0 is the mass matrix while
μ0 is the source matrix.
Performing field redefinition ξ ¼ P:ξ0 and defining

μ≡ P⊺:μ0, Eq. (E1) becomes

L:ξ ¼ −4πμ; L ¼ Gμν∇μ∇ν −N μ∇μ −M; ðE2Þ

where we have defined

Gμν ≡ P⊺:G0μν:P; ðE3Þ

N μ ≡ P⊺:N 0μ:P − 2P⊺:G0μν:∇νP; ðE4Þ

M≡ P⊺:M0:Pþ P⊺:N 0μ:∇μP − P⊺:G0μν:∇μ∇νP: ðE5Þ

This transformation will allow us to bring matrix Gμν into a
simple form by appropriately choosing P. This is essential
when we study the light cone structures of the modes ξ
later. Considering the following component forms

ξ ≐
�
ξ1

ξ2

�
; μ ≐

�
μ1

μ2

�
; ðE6Þ

Eq. (E2) yields

L11ξ1 þL12ξ2 ¼ −4πμ1; ðE7Þ

L21ξ1 þL22ξ2 ¼ −4πμ2; ðE8Þ

and the corresponding Green’s functions satisfy

L11GS
1ðx; x0Þ þL12GS

2ðx; x0Þ ¼ −4πδð4Þðx; x0Þ; ðE9Þ

L21GS
1ðx; x0Þ þL22GS

2ðx; x0Þ ¼ −4πδð4Þðx; x0Þ; ðE10Þ

where δð4Þðx; x0Þ ¼ δð4Þðx − x0Þ= ffiffiffiffiffiffi−gp
. The solutions for ξ1

and ξ2 are given by

ξ1ðxÞ ¼
Z

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
GS

1ðx; x0Þμ1ðx0Þ; ðE11Þ

ξ2ðxÞ ¼
Z

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
GS

2ðx; x0Þμ2ðx0Þ: ðE12Þ

1. Foliation of the spacetime

The setup in the previous subsection was very general
as we did not impose any conditions on the background
metric gμν. In this subsection we simplify the setup by
assuming that the background metric allows for a foliation
to time slices. This is a reasonable assumption in the sense
that we need a notion of time as far as we are interested in
wave equations. For example, this is the case for the
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cosmological spacetime, spherically symmetric, and black
hole solutions.
Foliating the spacetime region of interest by time slices,

the corresponding unit vector normal to the spacelike
constant-time hypersurfaces is given by

nμ ¼ −
δ0μffiffiffiffiffiffiffiffiffiffi
−g00

p ; gμνnμnν ¼ −1: ðE13Þ

As usual, we define the induced metric on the spatial
hypersurfaces as follows:

hμν ≡ gμν þ nμnν; ðE14Þ

which satisfies hμαnα ¼ 0 and hμαhαν ¼ hμν. Based on the
existence of the time slices, we assume the following form
of the matrices G0μν and N 0μ,

G0μν ¼ C0 hμν −K0 nμnν; ðE15Þ

N 0μ ¼ Θ0nμ − κ0μ; nμκ0μ ¼ 0; ðE16Þ

where C0, K0, Θ0, and κ0μ are general 2 × 2 matrices and
their components are spacetime functions. From (E3) and
(E4) we find5

Gμν ¼ Chμν −Knμnν; ðE17Þ

N μ ¼ Θnμ − κμ; nμκμ ¼ 0; ðE18Þ

where we have defined

C≡ P⊺:C0:P;

K≡ P⊺:K0:P;

Θ≡ P⊺:Θ0:P − 2P⊺:K0:nν∇νP;

κμ ≡ P⊺:κ0μ:Pþ 2P⊺:C0:hμν∇νP:

The decomposition (E18) is the most general one for N μ

while (E17) is not the most general one for Gμν. However,
first, this special form is invariant under the general
transformation characterized by the matrix P as we can
see from Eqs. (E15) and (E17). Second, it is general enough
to include many interesting cases, e.g., cosmological,
spherically symmetric, and many black hole solutions.
ThematricesC andK characterize the gradient and kinetic

terms for the modes ξ1 and ξ2 and, therefore, we assume that
they are both positive definite to avoid gradient and ghost
instabilities.Moreover, as the tangential and orthogonal parts
are independent pieces, two components of P are enough to

make both C ¼ P⊺:C0:P andK ¼ P⊺:K0:P diagonal. We use
the remaining two components of P to impose the normali-
zation conditionK ¼ 1. Therefore, by appropriately choos-
ing P, we can always simplify Eq. (E17) as follows:

Gμν ¼ C hμν − 1nμnν; ðE19Þ

where now C is a diagonal 2 × 2 matrix. Note also that
nμnνGμν ¼ −1which shows that choiceK ¼ 1, that we have
made, corresponds to the normalization conditions for nμ

with respect to both diagonal components of the metric
matrices Gμν. It is also worth mentioning that we are not
interested in the trivial case of C ∝ 1, or equivalently
Gμν ∝ 1gμν, when both modes propagate with the same
speeds. The assumption that C and K are positive definite
guaranties the existence of an inverse matrixGμαGαν ¼ 1δμν
which is given by

Gμν ¼ C−1hμν − 1nμnν: ðE20Þ

Now, let us present our results in the component forms
which is more useful for some practical purposes. We
introduce diagonal components of Gμν and C as

Gμν ≡ diagðGμν
1 ;Gμν

2 Þ; C ¼ diagðc21; c22Þ: ðE21Þ

Equations (E19) and (E20) then give

Gμν
1 ¼ c21h

μν − nμnν; Gμν
2 ¼ c22h

μν − nμnν; ðE22Þ

G1μν ¼ c−21 hμν − nμnν; G2μν ¼ c−22 hμν − nμnν: ðE23Þ

The positivity of C together with the condition of excluding
the trivial case that both modes propagate at the same
speeds, read as

c1 ≠ 0; c2 ≠ 0; c1 ≠ c2: ðE24Þ

Using (E18) and (E19) in Eqs. (E7) and (E8) and then using
the component forms (E21), we find

�
d2

ds2
þ ðc21θ þ Θ11Þ

d
ds

− c21D
2 − ðaμ þ κμ11ÞDμ þM11

�
ξ1

þ
�
Θ12

d
ds

þ κμ12Dμ þM12

�
ξ2 ¼ 4πμ1; ðE25Þ

�
d2

ds2
þ ðc22θ þ Θ22Þ

d
ds

− c22D
2 − ðaμ þ κμ22ÞDμ þM22

�
ξ2

þ
�
Θ21

d
ds

þ κμ21Dμ þM21

�
ξ1 ¼ 4πμ2; ðE26Þ

5We can also rewrite the metric matrices in the disformal form
Gμν ¼ Cgμν þDnμnν where D≡ C −K. However, the form
(E15) is more appropriate for our purposes.
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where we have defined the parameter s and the expansion
scalar6

d
ds

≡ nμ∇μ; θ≡∇μnμ; ðE27Þ

and also the spatial derivative and the acceleration

Dμ ≡ hμα∇α; aμ ≡ nν∇νnμ: ðE28Þ

From Eqs. (E25) and (E26) we see that c1 and c2 are the
sound speeds for the modes ξ1 and ξ2 respectively. This is
the advantage of the decomposition based on the time
slices.

2. Geodetic intervals and van Vleck-Morette
determinants

As usual, in order to solve the wave equations (E7) and
(E8) or equivalently Eqs. (E25) and (E26), we define
timelike geodetic intervals s1ðx; x0Þ and s2ðx; x0Þ as follows:

Gμν
1 ∇μs1∇νs1 ¼ −1; Gμν

2 ∇μs2∇νs2 ¼ −1: ðE29Þ

The geodetic intervals s1ðx; x0Þ and s2ðx; x0Þ are biscalars
which depend on two different spacetime points x and x0.
They determine the distance between points x and x0 as
measured by means of the corresponding metrics along
the geodesic joining them. The properties of the biscalars
are vastly studied in the literature (see for instance
Refs. [29,47]). We also define other geodetic intervals

σ1ðx; x0Þ ¼ −
1

2
s1ðx; x0Þ2;

σ2ðx; x0Þ ¼ −
1

2
s2ðx; x0Þ2; ðE30Þ

which correspond to the geodesic squared distances and
satisfy

Gμν
1 ∇μσ1∇νσ1 ¼ 2σ1; Gμν

2 ∇μσ2∇νσ2 ¼ 2σ2: ðE31Þ

It is also useful to express the second covariant derivative
of the geodetic intervals σ1 and σ2 in terms of the so-called
van Vleck-Morette determinants

Δ1ðx; x0Þ ¼
D1ðx; x0Þffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þp ;

D1ðx; x0Þ ¼ − det½−∇μ∇μ0σ1ðx; x0Þ�; ðE32Þ

Δ2ðx; x0Þ ¼
D2ðx; x0Þffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þp ;

D2ðx; x0Þ ¼ − det½−∇μ∇μ0σ2ðx; x0Þ�; ðE33Þ

where ∇μ0 denotes the covariant derivative with respect to
x0. Taking covariant derivative of Eqs. (E31) with respect to
x and taking again covariant derivative with respect to x0,
after manipulating the results in appropriate way [47], it is
straightforward to show that the van Vleck-Morette deter-
minants satisfy the following relations

Δ−1
1 ∇μðΔ1G

μν
1 ∇νσ1Þ ¼ 4; ðE34Þ

Δ−1
2 ∇μðΔ2G

μν
2 ∇νσ2Þ ¼ 4: ðE35Þ

Note that neither metric G1μν nor G2μν are compatible with
the covariant derivative and, therefore, the following non-
trivial contributions arise7

∇μG
μν
1 ¼ 2c21D

ν ln c1 þ ðc21 − 1Þðθnν þ aνÞ; ðE36Þ

∇μG
μν
2 ¼ 2c22D

ν ln c2 þ ðc22 − 1Þðθnν þ aνÞ: ðE37Þ

Let us define the timelike vectors

t1μ ≡ −∇μs1 ¼ α1nμ þ q1μ;

t2μ ≡ −∇μs2 ¼ α2nμ þ q2μ; ðE38Þ

which are unit vectors Gμν
1 t1μt1ν ¼ −1 and Gμν

2 t2μt2ν ¼ −1
by definitions Eqs. (E29). In the above relations, we have
decomposed the unit vectors into the orthogonal and
tangential pieces which are proportional to nμ and the
spatial vectors q1;2μ, which satisfies nμq1;2μ ¼ 0, respec-
tively. The components of t1μ and t2μ are spacetime
functions which are subject to the normalization conditions

c21q
2
1 − α21 ¼ −1; c22q

2
2 − α22 ¼ −1; ðE39Þ

where q21;2 ¼ gμνq1;2μq1;2ν. Taking derivative of (E30) with
respect to the coordinate x, we find

∇μσ1 ¼ s1t1μ; ∇μσ2 ¼ s2t2μ: ðE40Þ

Substituting the above result in Eqs. (E34) and (E35) and
then using Eqs. (E22) and (E38), after some simplifica-
tions, it is straightforward to find the following equations

6Indeed, differentiation with respect to the parameter s is
nothing but the Lie derivative along the vector nμ, d=ds ¼ £n,
which determines the time direction. In the special case when the
acceleration vanishes aμ ¼ 0, parameter s becomes the affine
parameter of the geodesic equation nν∇νnμ ¼ 0.

7Indeed, we could define new covariant derivatives compatible
with G1μν and G2μν. In that case, the van Vleck-Morette deter-
minants (E32) and (E33) could be defined completely in terms of
G1μν and G2μν and their determinants. The final result of course
does not change and here we found it more convenient to work
with the standard covariant derivative compatible with the
background metric gμν.
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d
ds1

logðα1Δ1Þ − qμ1½ð1 − c21ÞDμ logΔ1 þDμ log α1�

þDμðc21qμ1Þ ¼
3

s1
− α1θ; ðE41Þ

d
ds2

logðα2Δ2Þ − qμ2½ð1 − c22ÞDμ logΔ2 þDμ log α2�

þDμðc22qμ2Þ ¼
3

s2
− α2θ; ðE42Þ

where

d
ds1

≡ tμ1∇μ ¼ α1
d
ds

þ qμ1Dμ;

d
ds2

≡ tμ2∇μ ¼ α2
d
ds

þ qμ2Dμ; ðE43Þ

are the Lie derivatives along the timelike vectors tμ1 and tμ2.

3. Fundamental solutions

Having geodetic intervals in hand, we consider the
following Hadamard representation for the fundamental
solutions of Eqs. (E7) and (E8) or equivalently Eqs. (E25)
and (E26) [25,26,47]

G1 ¼
1

π

�
U1

σ1
−V1 log jσ1jþW1þ

Û2

σ2
− V̂2 log jσ2j

�
; ðE44Þ

G2 ¼
1

π

�
U2

σ2
−V2 log jσ2jþW2þ

Û1

σ1
− V̂1 log jσ1j

�
; ðE45Þ

where U1;2, V1;2, W1;2, Û1;2, and V̂1;2 are biscalars which
are regular functions of x and x0. The biscalars Û2 and V̂2

are introduced to take into account the possibility that ξ2
may induce singularities on the solution of ξ1 through their
interaction and the biscalars Û1 and V̂1 are introduced for
the similar reason respectively. The biscalars U1, V1, and
W1 characterize the direct, tail, and regular parts of the
mode ξ1 along the light cone defined by σ1 while the
biscalars Û2 and V̂2 characterize direct and tail parts of
the mode ξ1 along the light cone defined by σ2.
Substituting the ansatz (E44) in Eq. (E7), the left hand

side can be classified into the terms proportional to σ−21 ,
σ−11 , log jσ1j, and also σ−32 , σ−22 , σ−12 , log jσ2j. Note that the
term which is apparently proportional to σ−31 gives a
contribution of the order of σ−21 after substituting the result
(E31). Note also that the terms which are singular in σ2
appear due to the interaction between ξ1 and ξ2. Similarly,
substituting ansatz (E45) in Eq. (E8), the left hand side can
be classified into the terms proportional to σ−22 , σ−12 ,
log jσ2j, and also σ−31 , σ−21 , σ−11 , log jσ1j. Demanding that
the coefficients of the terms with the highest degree of

singularity, i.e., σ−32 and σ−31 , vanish, we immediately
conclude

Û1 ¼ 0; Û2 ¼ 0: ðE46Þ

Going to the next order and demanding that the coefficients
of the terms which are proportional to σ−22 and σ−21 in
Eqs. (E7) and (E8) vanish, we find

V̂1 ¼ −
�

c21
c22 − c21

��
dσ1
ds

�
−1
Θ21U1;

V̂2 ¼
�

c22
c22 − c21

��
dσ2
ds

�
−1
Θ12U2; ðE47Þ

where we have used (E46). Note that the denominators
become singular when c1 ¼ c2 which is the case that we
have excluded in our analysis from the beginning in
Eq. (E24). The results (E46) and (E47) show that the
mode ξ2 does not contribute to the direct part of the solution
G1 since Û2 ¼ 0. However, the direct part of ξ2 contributes
to the tail of the mode ξ1 since V̂2 ∝ U2.
Now, we look at the coefficients of the terms which are

proportional to σ−21 and σ−22 in Eqs. (E7) and (E8) and by
demanding that they vanish, we find the following equa-
tions for the direct parts

fGμν
1 ½2∇μU1 − ð∇μ logΔ1ÞU1�
− ðΘ11nν − κν11 þ∇μG

μν
1 ÞU1g∇νσ1 ¼ 0; ðE48Þ

fGμν
2 ½2∇μU2 − ð∇μ logΔ2ÞU2�
− ðΘ22nν − κν22 þ∇μG

μν
2 ÞU2g∇νσ2 ¼ 0; ðE49Þ

which are subject to the initial conditions

lim
x→x0

U1ðx; x0Þ ¼ 1; lim
x→x0

U2ðx; x0Þ ¼ 1: ðE50Þ

In principle, we can always solve the first order
equations (E48) and (E49) to find U1 and U2 in terms
of the van Vleck-Morette determinants Δ1 and Δ2.
However, we can further simplify these results. Using
the explicit forms of the metrics (E22) and also the results
(E36) and (E37) in Eqs. (E48) and (E49), and then
contracting the results with nμ, we find

d
ds

�
log

�
U1ffiffiffiffiffiffi
Δ1

p
��

¼ −
1

2
½Θ11 − ð1 − c21Þθ�; ðE51Þ

d
ds

�
log

�
U2ffiffiffiffiffiffi
Δ2

p
��

¼ −
1

2
½Θ22 − ð1 − c22Þθ�; ðE52Þ

and contracting with hμν, we find
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c21Dμ

�
log

�
U1

c1
ffiffiffiffiffiffi
Δ1

p
��

¼ −
1

2
½κμ11 þ ð1 − c21Þaμ�; ðE53Þ

c22Dμ

�
log

�
U2

c2
ffiffiffiffiffiffi
Δ2

p
��

¼ −
1

2
½κμ22 þ ð1 − c22Þaμ�: ðE54Þ

The set of equations (E51)–(E54) admits a solution at least
locally, provided that they satisfy integrability conditions.

4. Green’s functions

Having the fundamental solutions (E44) and (E45) in
hand, we can easily find the Green’s functions by going to
the complex plane and performing the so-called iϵ pre-
scription. In this regard, we introduce the Feynman
propagators as follows:

GF
1 ¼

1

π

�
U1

σ1þ iϵ
−V1 log jσ1þ iϵjþW1− V̂2 log jσ2þ iϵj

�
;

ðE55Þ

GF
2 ¼

1

π

�
U2

σ2þ iϵ
−V2 log jσ2þ iϵjþW2− V̂1 log jσ1þ iϵj

�
;

ðE56Þ

where we have used the result (E46). Separating the
Feynman propagators into the real and imaginary parts as

GF
1 ¼ G1 − iGS

1; GF
2 ¼ G2 − iGS

2; ðE57Þ

and using the identities

1

σ þ iϵ
¼ P

�
1

σ

�
− iπδðσÞ;

logðσ þ iϵÞ ¼ log jσj þ iπΘð−σÞ;

where P denotes principal value, we find the following
expressions for the Green’s functions

GS
1ðx; x0Þ ¼ U1ðx; x0Þδðσ1Þ þ V1ðx; x0ÞΘð−σ1Þ

þ V̂2ðx; x0ÞΘð−σ2Þ; ðE58Þ

GS
2ðx; x0Þ ¼ U2ðx; x0Þδðσ2Þ þ V2ðx; x0ÞΘð−σ2Þ

þ V̂1ðx; x0ÞΘð−σ1Þ: ðE59Þ

Equations (E58) and (E59) are our final results for the
Green’s functions of the two modes ξ1 and ξ2 which satisfy
the wave equations (E7) and (E8). Having the Green’s
functions in hand, one can find solutions of ξ1 and ξ2 for
any sources μ1 and μ2 through the Eqs. (E11) and (E12) as
usual. We have found explicit equations for the direct parts
which are generally given by Eqs. (E51), (E52) and (E53),
(E54). It is also straightforward to find the tail and regular

parts following the same strategy that we have found
Eqs. (E46), (E47), (E48), and (E49). We, however, do
not need them for our purpose of studying the memory
effect and we do not present them here.

5. Application: Scalar perturbations
in scalar-tensor theory

Let us now turn back to the system studied in the main
text which is a particular subset of the general setup
investigated in the previous subsections. Equation (39)
can be rewritten in the form of Eq. (E2) through the
identifications

ξ1 ¼ ζ; ξ2 ¼ δQ; ðE60Þ
and considering the subset

Θ¼N−3HC; C¼C; M¼M; μ¼ μðPÞ; ðE61Þ
where the explicit forms of the matrices N, C, M, and μðPÞ
are given in Eqs. (41), (42), (C1), and (C2). Using (42) in
(E61) and then substituting in (E19), we find

Gμν
ζ ¼ h̄μν − n̄μn̄ν ¼ ḡμν; Gμν

δQ ¼ c2s h̄μν − n̄μn̄ν; ðE62Þ
where the background metric gμν ¼ ḡμν is considered. We
see that metrics become diagonal when we work with δQ
instead of δχ in Eq. (39). Had weworked with δχ, we had to
start from (E1) and then finding an appropriate form for
matrix P which makes G0μν diagonal through Eq. (E3).
From Eqs. (E58) and (E59) we find the following

expressions for the corresponding retardedGreen’s functions

Ĝret
ζ ðx; x0Þ ¼ ½Uζðx; x0ÞδðσζÞ þ Vζðx; x0ÞΘð−σζÞ

þ V̂δQðx; x0ÞΘð−σδQÞ�Θðt − t0Þ; ðE63Þ

Ĝret
δQðx; x0Þ ¼ ½UδQðx; x0ÞδðσδQÞ þ VδQðx; x0ÞΘð−σδQÞ

þ V̂ζðx; x0ÞΘð−σζÞ�Θðt − t0Þ; ðE64Þ

where the geodetic intervals satisfy

Gμν
ζ ∇̄μσζ∇̄νσζ ¼ 2σζ; Gμν

δQ∇̄μσδQ∇̄νσδQ¼ 2σδQ; ðE65Þ
in which bars indicate that the covariant derivatives are
defined in the spirit of background metric ḡμν.
Finding an explicit solution for the direct part of ζ with

c1 ¼ 1 and aμ ¼ 0 is easy. In this case, Eq. (E41) signifi-
cantly simplifies and the van Vleck-Morette determinant
can be written as follows [48,49]:

Δ1ðx; x0Þ ¼ exp

�Z
sðxÞ

sðx0Þ

�
3

s
− θ

�
ds

�
; ðE66Þ

where the initial condition (E50) is imposed. Integrating
Eq. (E51) from x0 to x, after using (E66), we find
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U1ðx; x0Þ ¼ sðx; x0Þ32 exp
�
−
1

2

Z
sðxÞ

sðx0Þ
ðΘ11 þ θÞds

�
: ðE67Þ

The explicit form of the spatially flat FLRW background
metric is given by Eq. (15). Working with conformal
time η defined in Eq. (43), we have ds ¼ adη and
θðηÞ ¼ 3a−2da=dη. The direct part then can be obtained
from Eq. (E67) as follows:

Uζðη; η0Þ ¼
Aζðη0Þ
AζðηÞ

;

AζðηÞ≡ aðηÞ exp
�
1

2

Z
η

�
aN11 −

3

a
da
dη̄

�
dη̄

�
; ðE68Þ

which coincides with the result (56) that is found by
another approach.
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