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In this work, we investigated the motion of spinning test particles around a rotating wormhole,
extending, in this way, the previous work of Benavides-Gallego et al. [Phys. Rev. D 101, 124024 (2020)] to
the general case. Using the Mathisson-Papapetrou-Dixon equations, we study the effective potential,
circular orbits, and the innermost stable circular orbit (ISCO) of spinning test particles. We found that both
the particle and wormhole spins affect the location of the ISCO significantly. On the other hand, similar to
the nonrotating case, we also found two possible configurations in the effective potential: plus and minus.
Furthermore, the minimum value of the effective potential is not at the throat due to its spin a, in contrast to
the motion of the nonspinning test particles in a nonrotating wormhole, where the effective potential is
symmetric, and its minimum value is at the throat of the wormhole. In the case of the ISCO, we found that it
increases as the spin of the wormhole a increases, in contrast to black holes where the presence of spin
decreases the value of the ISCO. Finally, since the dynamical four-momentum and kinematical four-
velocity of the spinning particle are not always parallel, we consider the superluminal bound, finding that
the allowed values of the dimensionless particle’s spin s change as the wormhole’s spin a increases.
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I. INTRODUCTION

In 1935, Einstein and Rosen explored the possibility of an
atomistic theory of matter and electricity without singular-
ities [1]. The main idea behind their work was to consider the
physical space as two identical sheets connected by a bridge.
In this geometrical representation, particles were the very
bridges connecting these sheets. Hence, using the metric
tensor gμν of general relativity and the fields φμ of electro-
magnetism, they modified the gravitational equations,

demonstrating that it is possible to obtain regular spherically
symmetric solutions. These solutions are currently known as
Einstein-Rosen bridges or wormholes.
The representation of particles as bridges could have

been discovered back in 1916. According to Gibbons [2],
previous to the paper of Einstein and Rosen, and a few
months after the Schwarzschild solutions [3,4], Flamm
submitted a manuscript in which he explores some geo-
metrical aspects of both exterior and interior solutions of
Schwarzschild spacetime [5]. In the former case (the
exterior solution), Flamm was able to show that “the planar
section is isometric to a surface of revolution, where the
meridional curve is a parabola.” However, Flamm never
contemplates the possibility of interpreting this result as a
bridge connecting to regions of spacetime. For this reason,
we assume that the work of Einstein and Rosen gave birth
to the modern study of wormholes.
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Initially, the idea of bridges was considered more attrac-
tive than that of black holes until Fuller andWheeler showed
that the Einstein-Rosen bridge1 is unstable. Using a proper
analysis, they discovered that the bridgewould pinch-off in a
finite time [6]. Therefore, Schwarzschild wormholes are not
traversable. Nevertheless, the possibility of traversable
wormholes was considered years later in several works
[7–19]. In particular, in Ref. [9], Morris and Thorne used a
different approach that allowed them to propose a set of
basic wormhole criteria. Thus, by assuming the wormhole
geometry, they used the Einstein field equations to compute
physical quantities, such as the total energy density, the
tension per unit area, and the pressure, in terms of what they
call the redshift and shape functions. Their analysis estab-
lishes three properties to describe a wormhole. First, the
spacetime is assumed to be static and spherically symmetric.
Second, any wormhole solution should contain a throat that
connects two asymptotically flat regions of spacetime. This
property is deeply related to the shape function. Finally, the
solution must be horizonless. Since wormholes causally
connect two different portions of the spacetime by the throat,
the presence of a horizon would prevent the two universes
from being connected causally. This condition is satisfied by
demanding the redshift function to be finite everywhere.
On the other hand, the most relevant conclusion in the

analysis of Morris and Thorne is the necessity of exotic
matter to generate a traversable wormhole. According to
the authors, an observer passing through the throat with a
radial velocity close to the speed of light would perceive
negative energy. Therefore, from the classical point of view,
traversable wormhole solutions violate the well-known
energy conditions, established precisely to avoid negative
energy densities. However, from the quantum point of view,
there are some situations in which such violations may be
physically valid, for example, the quantum mechanical
creation of particles [20]. In this sense, one cannot entirely
rule out the possibility of the existence of the exotic
material required for the throat of a traversable wormhole
to hold.
The idea of wormholes has been considered in different

scenarios, such as Einstein’s gravity [21–30] and alternative
theories of gravity [31–36]. In Ref. [30], Benavides-Gallego
et al. investigated themotion of spinning test particles around
traversable wormholes. Using the Mathisson-Papapetrou-
Dixon (MPD) equations, the authors computed the effective
potential and showed that it is affected by the dimensionless
spin s of the test particle.When s ¼ 0, the particle follows the
geodesic equation, and its effective potential is symmetric:
its behavior is the same in both the lower and the upper
universes. Therefore, the innermost stable circular orbit
(ISCO) is at the same distance from the wormhole’s throat.
On the other hand, when the spin s ≠ 0, there is a

different kind of symmetry that depends on the sign of the

particle’s spin s and of the particle’s dimensionless angular
momentum L. In that case, there are two possible con-
figurations that define two different symmetries: plus and
minus. In this sense, the effective potential has the same
behavior if it has the same configuration. For example, a
particle with negative s and negative L will have the same
behavior as a particle with both s and L positive. In other
words, the effective potential of a particle with s parallel to
the symmetry axis (s > 0) and moving counterclockwise
(L > 0) is the same as that of a particle with s antiparallel to
the symmetry axis (s < 0) and moving clockwise around
the wormhole (L < 0); see Fig. 3 of Ref. [30]. The authors
also found a mirror behavior when the plus and minus
configurations are considered at the same time. To explain
this behavior, the authors consider two spinning particles
moving counterclockwise with the same angular momen-
tum L, one in the lower universe (with s > 0) and the other
in the upper universe (with s < 0). In this case, the effective
potential has the same behavior for each particle, resem-
bling the case of a nonspinning test particle (see the first
panel of Fig. 3 in Ref. [30]).
The existence of two configurations affects the location

of the ISCO. As mentioned before, in the case of non-
spinning test particles, one finds a single value for lISCO
located at the same distance from the wormhole’s throat in
both universes.2 However, the behavior is different when
we consider spinning test particles. If jsj ≥ 1, one finds
only one possible value for the ISCO. On the other hand,
if s belongs to the interval −1 < s < 1, one encounters two
possible values for the ISCO. One of these values is always
closer to the wormhole’s throat.
One significant conclusion from Ref. [30] is the con-

straint obtained for the particle’s spin s. It is well-known
that the dynamical four-momentum pα and the kinematical
four-velocity uα of a spinning test particle are not always
parallel. In this sense, although pαpα ¼ −m2 holds, the
normalization uαuα ¼ −1 does not. Therefore, while the
spinning particle moves closer to the center of symmetry,
uα increases, and eventually, for certain values of the spin s
and radius l, some components of the four-velocity may
diverge. This means that for a certain value of s, the
particle’s trajectory changes from timelike to spacelike,
becoming, in this way, superluminal. From the physical
point of view, the spacelike motion does not have any
meaning because the transition to uαuα > 0 is not allowed
for real particles. Therefore, one must impose an additional
constraint defined by the relation uαuα ¼ 0, the super-
luminal bound. In the case of a nonrotating wormhole,
spinning test particles will always move in the timelike
region as long as jsj < 1.5 [30].
In this paper, we consider the motion of spinning test

particles around a rotating wormhole, generalizing in this

1Also known as the Schwarzschild wormhole.

2l is the radial coordinate in Ref. [30]. The value l ¼ 0
represents the wormhole’s throat.
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way the results obtained by Benavides-Gallego et al. in
Ref. [30]. We organize our work as follows. In Sec. II, we
review the properties of rotating wormholes discussed in
Ref. [37] by Teo and their connection with the ideas of
traversable wormholes described in Ref. [9]. Next, in
Sec. III, we discuss the motion of spinning particles in a
static and axially symmetric spacetime, where we use
the MPD equations to obtain the effective potential and
the superluminal condition. Then, in Sec. IV, we apply the
results of Sec. III to Teo’s wormhole solution. We compute
the effective potential, circular orbits, and the ISCO. We
also use the superluminal bound to find a constraint for
the allowed spin of the particle. Finally, in Sec. V, we
summarize our work and discuss the implications of the
results. Throughout the manuscript, we use geometrized
units setting G ¼ c ¼ 1 and b0 ¼ M ¼ 1.

II. STATIONARY, AXISYMMETRIC
SPACETIMES

In Ref. [37], Teo follows the same paradigm as Morris-
Thorne in Ref. [9]; i.e., he first assumes the spacetime
geometry and then uses the Einstein field equations to
deduce the form of the matter required to maintain the
wormhole. Hence, the author begins by considering a
stationary and axially symmetric spacetime.
It is well-known that spacetimes are said to be stationary

if it possesses a timelike Killing vector field ξα ≡ ð∂=∂tÞα,
which generates invariant time translations. On the other
hand, a spacetime is axisymmetric if it possesses a space-
like killing vector field ψα ≡ ð∂=∂φÞα, related to invariant
rotations with respect to φ. Therefore, a spacetime is
stationary and axisymmetric if it possesses both ξα and
ψα killing vector fields satisfying the following commu-
tation relation [38]:

½ξ;ψ � ¼ 0: ð1Þ

The commutativity of ξα and ψα in Eq. (1) allows us to
choose a coordinate system in such a way that the Killing
vectors represent the directions in which the spacetime has
symmetries [38]. Hence, one can set x0 ¼ t, x1 ¼ φ, x2, and
x3 as a coordinate system. The stationary and axisymmetric
character of the spacetime requires the metric components
to be independent of t and φ. Therefore, the metric takes
the form

ds2 ¼ gμνðx2; x3Þdxμdxν: ð2Þ

From the physical point of view, stationary and axisym-
metric spacetimes have been of considerable interest in the
study of black holes and stars since this kind of geometry
describes the exterior gravitational field of rotating bodies
(see Refs. [39–41] and references therein).
Thorne discusses the properties of static and axisym-

metric spacetimes in Ref. [41]. There, he starts by pointing

out that ðt;φ; x2; x3Þ and ðt;φþ 2π; x2; x3Þ represent the
same point. This behavior is due to the fact that φ is an
angular coordinate about the rotation axis. As a conse-
quence, φ belongs to the interval ½0; 2πÞ.
On the other hand, because the spacetime is axially

symmetric, it must be invariant under a simultaneous
inversion of t and φ; i.e., the spacetime does not change
if t → −t and φ → −φ. As a consequence, the metric
coefficients gt2, gt3, gφ2, and gφ3 must vanish because they
change the sign under simultaneous inversion of φ and t.
Therefore, the line element of Eq. (2) simplifies even more
and reduces to [42,43]

ds2 ¼ g00dt2 þ 2g01dtdφþ g11dφ2 þ gijdxidxj; ð3Þ

with i, j ¼ 2, 3. Here, the presence of the term g01 is related
to the well-known dragging effect.
The coordinates in Eq. (3) are uniquely determined up to

a coordinate transformation of the form [41]

x̄2 ¼ x̄2ðx2; x3Þ and x̄3 ¼ x̄3ðx2; x3Þ: ð4Þ

The freedom in such transformations can be used to
simplify the mathematics in Einstein’s field equations or
adapt the geometry to specific problems. Under trans-
formation of the form given in Eq. (4), the components g00,
g01, and g11 are invariant. Hence, g00 ¼ ξαξ

α, g01 ¼ ψαξ
α,

and g11 ¼ ψαψ
α [38,41].

Finally, the spacetime described in Eq. (3) must be
asymptotically flat. This means that g00 → 1, g01 → 1=r,
and g11 → r2 sin2 θ as r → ∞. The asymptotic flatness of
the line element (3) is important to define the mass and the
angular momentum.3

A. Canonical form of the rotating
wormhole spacetime

In the particular case of the rotating wormhole solution,
by considering g22 ¼ g33 ¼ g11= sin2 x2 and g23 ¼ 0, the
line element of Eq. (3) can be expressed as [37]

ds2¼−N2dt2þeμdr2þr2K2½dθ2þsin2θðdφ−ωdtÞ2�; ð5Þ

where the functions4 N, μ, K, and ω only depend on the
ðx2; x3Þ≡ ðθ; rÞ. Following Ref. [44], it is possible to show
the dragging effect in the spacetime described by the line
element in Eq. (5).
Once the line element of a stationary and axisymmetric

spacetime is defined, Teo discusses some important fea-
tures related to the metric. For example, he points out that
the functionKðr; θÞ is a positive, nondecreasing function of
r, which he uses to define the proper distance R≡ rKðr; θÞ

3Here θ and r are the usual spherical coordinates, but not
necessarily the same as x2 and x3 [41].

4Also known as the four gravitational potentials.
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(with ∂R=∂r > 0) measure at ðr; θÞ from the origin. In this
sense, one can interpret the value 2πR sin θ as the proper
circumference of the circle located at the point with
coordinates ðr; θÞ.
On the other hand, the metric defined in Eq. (5) has the

discriminant5 [37]

D2 ¼ g2tφ − gttgφφ ¼ ðNðr; θÞKðr; θÞ sin θÞ2: ð6Þ

According to Teo, the existence of horizons is determined
by the function Nðr; θÞ, which plays the role of the redshift
function. Whenever N ¼ 0, D2 ¼ 0, implying the presence
of an event horizon. Therefore, to avoid a singular behavior
of the metric (D2 ≠ 0) on the rotation axis θ ¼ 0 and θ ¼ π,
Teo imposes the regularity conditions on the gravitational
potential. These conditions state that the partial derivatives
with respect to θ of Nðr; θÞ, μðr; θÞ, and Kðr; θÞ must
vanish on the rotation axis. The regularity conditions are, in
this sense, crucial to establish the wormhole geometry in
the line element of Eq. (5) since wormholes, according to
Ref. [9], must be horizonless.
In analogy to Morris-Thorne function μ, Teo defines a

similar function by including the dependence on θ.
Therefore, μðr; θÞ is given by [37]

μðr; θÞ ¼ − ln

�
1 −

bðr; θÞ
r

�
; ð7Þ

with bðr; θÞ playing the role of the shape function. In this
sense, the radial coordinate must be constrained to r ≥ b,
where the throat is located at r ¼ b. In this way, Eq. (5)
reduces to the Morris-Thorne case when there is no rotation,
i.e., Nðr; θÞ → eΦðrÞ, bðr; θÞ → bðrÞ, Kðr; θÞ → 1, and
ωðr; θÞ → 0.Moreover, Teo assumes thegravitational poten-
tials to bewell-behaved at thewormhole’s throat. The reason
for such an assumption has to do with the singularity-free
behavior at the throat. If one computes the curvature scalar of
the metric in Eq. (5) (evaluated at the throat), it is possible to
see that it has the form [45]

R¼−
1

r2K2

�
μθθþ

1

2
μ2θ

�
−

μθ
Nr2K2

ðN sinθÞθ
sinθ

−
2

Nr2K2

ðNθ sinθÞθ
sinθ

−
2

r2K3

ðKθ sinθÞθ
sinθ

×e−μμr½lnðNr2K2Þ�rþ
sin2θω2

θ

2N2
þ 2

r2K4
ðK2þK2

θÞ; ð8Þ

where the subscripts denote partial derivativeswith respect to
θ and r. From the last equation, one can see thatR could have
a singular behavior due to terms [37,45]

μθθ þ
1

2
μ2θ ¼

bθθ
r − b

þ 3

2

b2θ
ðr − bÞ2 ;

μθ ¼
bθ

r − b
: ð9Þ

Therefore, to avoid singularities in the curvature scalar at the
throat, it is necessary that bθ ¼ bθθ ¼ 0. Ergo, the throat is at
a constant value of r.
As mentioned before, if one wants the line element in

Eq. (5) to describe a wormhole, it is crucial to satisfy the so-
called flare-out condition at the throat. Following the same
process described in Ref. [9], Teo embeds the spacetime in
a higher-dimensional space by considering a constant value
of θ in a slice of constant t, what Morris and Thorne think
of as a picture of the whole spacetime at a fixed moment t.
After embedding the metric, Teo found the following

flare-out condition at the throat [37]

d2r
dz2

¼ b − brr
2b2

> 0; ð10Þ

which is the same condition as in the Morris-Throne
wormhole [9]. Since bθ ¼ 0, it is possible to define a
new radial coordinate l2 ¼ r2 þ b2 in the vicinity of the
throat, satisfying the relation

dl
dr

≡�
�
1 −

b
r

�
−1=2

: ð11Þ

Hence, in the immediate vicinity of the throat6 the line
element in Eq. (5) reduces to [37]

ds2 ¼ −N2ðl; θÞdt2 þ dl2 þ r2ðlÞK2ðl; θÞ
× ½dθ2 þ sin2 θðdφ − ωðl; θÞdtÞ2�: ð12Þ

The metric expressed in this way smoothly connects two
asymptotic regions of the spacetime across the throat, in
contrast to Eq. (5), where the radial coordinate r is singular.
If the shape function does not depend on θ, Eq. (11) is valid
everywhere and the coordinate l takes the range ð−∞;∞Þ.
As a consequence, the metric in Eq. (11) covers the whole
spacetime, and we can assume the wormhole throat is at
l ¼ 0 and define the upper universe when l > 0, and the
lower universe when l < 0.
According to Morris and Thorne, one can use the

spacetime in Eq. (5) to compute the nonvanishing compo-
nents of the stress-energy tensor. To do so, one needs to
consider a local Lorentz frame, where physical “observa-
tions” are performed by a local observer, who remains
at rest with respect to the coordinate system ðt; θ; r;φÞ.
In this frame, the components are7 TðtÞðtÞ, TðtÞðφÞ, TðφÞðφÞ,

5From now on, we associate the coordinates t, ϕ, r, and θ with
the numbers, 0, 1, 2, and 3, respectively.

6To first order in r − r0, with r0 the location of the throat.
7Here we use the same notation as in Ref. [44].
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and TðiÞðjÞ. These components have the usual physical
meaning. For example, TðtÞðtÞ is the mass-energy density,
while TðtÞðφÞ represents the rotation of the matter distribu-
tion. In Ref. [45], Harko et al. obtained the expressions
evaluated at the throat.
Finally, using the null energy condition [38]

Rαβκ
ακβ ≥ 0; ð13Þ

where Rαβ is the Ricci tensor and κα a null vector given
by [37]

κα ¼
�
1

N
;−e−μ=2; 0;

ω

N

�
; ð14Þ

Teo has found that [37]

Rαβκ
ακβ ¼ e−μμr

ðrKÞr
rK

−
ω2
θ sin

2 θ

2N2
−
1

4

μ2θ
ðrKÞ2

−
1

2

ðμθ sin θÞθ
ðrKÞ2 sin θ þ

ðNθ sin θÞθ
ðrKÞ2N sin θ

< 0: ð15Þ

Nevertheless, he remarks that by choosing N and μ
appropriately, Rαβ could be positive at some point in the
interval ð0; πÞ. Consequently, it is possible to move the
exotic matter that supports the wormhole around the throat
so that an infalling observer would not encounter it. One
example of such spacetime is given by considering [37]

N ¼ K ¼ 1þ ð4J cos θÞ2
r

; b ¼ b20
r
;

μ ¼ − ln

�
1 −

b
r

�
; ω ¼ 2J

r3
: ð16Þ

III. EQUATIONS OF MOTION

In this section, we review the theoretical background
necessary to investigate the motion of spinning test
particles. It is well-known that this problem was considered
for the first time by Mathisson in 1937 when he studied the
problem of extended bodies in general relativity (GR).
According to Mathisson, the motion of spinning test
particles does not follow the usual geodesic equation of
GR due to the coupling between the Riemann curvature
tensor and the spin of the moving particle [46]. Papapetrou
considers the same problem in Refs. [47,48], where he
established a similar approach. Later, Tulczyjew improved
on the methods of Mathisson [49,50] while Moller and
others made improvements in the definition of center of
mass [51–56]. Today, the equations that describe the
motion of extended bodies with spin and mass are known
as the MPD equations. Recently, some authors modified the
MPD equations; see Refs. [57,58].

Mathematically, the MPD equations are given by

Dpα

dλ
¼ −

1

2
Rα

βδσuβSδσ;

DSαβ

dλ
¼ pαuβ − pβuα; ð17Þ

where D=dλ≡ uα∇α is the projection of the covariant
derivative along the particle’s trajectory, uμ ¼ dxμ=dλ is
the 4-velocity of the test particle, pα is the canonical
4-momentum, Rα

βδσ is the Riemann curvature tensor, and λ
is an affine parameter. The second rank tensor Sαβ is
antisymmetric, Sαβ ¼ −Sβα.
Expressed in that form, Eq. (17) shows us the coupling

between the Riemann tensor Rα
βδσ and the spin of the

moving particle. To see this coupling clearly, let us consider
the well-known geodesic equation of GR,

uβ∂βuα þ Γα
σβuσuβ ¼ 0: ð18Þ

In terms of the particle 4-momentum and the projection
of the covariant derivative along the particle’s trajectory,
Eq. (18) reduces to

Dpα

dλ
¼ 0: ð19Þ

Therefore, comparing Eqs. (17) and (19), one can see how
the interaction between the Riemann curvature tensor
and the antisymmetric tensor Sαβ does affect the motion
of spinning test particles in curved spacetimes.
A crucial aspect in the MPD equations is related to the

center of mass of the spinning test particle. In this sense, to
solve the system in Eq. (17), one needs to fix its center of
mass. This is done by including the condition [49,59]

Sαβpα ¼ 0: ð20Þ

This condition is known as the Tulczyjew spin supple-
mentary condition (SSC) [59]. From Eq. (20), the canonical
momentum and the spin of the particle provide two
independent conserved quantities given by the relations

pαpα ¼ −m2;

SαβSαβ ¼ 2S2: ð21Þ

Nevertheless, in contrast to the spinning test particle’s
canonical momentum conservation, it is important to point
out that the squared velocity does not necessarily satisfy
the condition

uαuα ¼ −1; ð22Þ

because the 4-vectors pα and uα are not always parallel. In
this sense, to ensure that the particle’s 4-velocity is always
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smaller than the speed of light, one needs to impose
an additional condition: the superluminal bound (see
Sec. III B).
In addition to the conserved quantities resulting from

the Tulczyjew-SSC condition, one also has the conserved
quantities associated with the spacetime symmetries. As
remarked in Sec. II, the line element in Eq. (5) has
associated two Killing vector fields: one generating invari-
ant time translations (ξα) and the other related to invariant
rotations with respect to φ (ψα). Hence, the conserved
quantities associated with them can be obtained from the
following relation:

pακα −
1

2
Sαβ∇βκα ¼ pακα −

1

2
Sαβ∂βκα ¼ const; ð23Þ

where κα is the Killing vector field. In the last expression,
we used the fact that the term SαβΓγ

βα in the covariant
derivative Sαβ∇βκα vanishes because Sαβ is antisymmetric
while Γγ

βα is symmetric.

A. The effective potential

In the case of static axially symmetric spacetimes,
Toshmatov and Malafarina obtained the most general
expression for Veff in terms of the metric components
gμν and its derivatives

8 g0μν (Ref. [60]). Here, we review and
discuss the most important steps in the calculation.
Let us start by considering the line element of a

stationary and axisymmetric spacetime. As mentioned in
Sec. II, Eq. (3) gives us its general form

ds2¼gttdt2þgrrdr2þ2gtφdtdφþgθθdθ2þgφφdφ2: ð24Þ

As we pointed out above, due to the Killing vectors ξα ¼ δαt
and ψα ¼ δαφ, this spacetime has associated two constants
of motion: the energy E and the angular momentum L.
Hence, after using Eq. (23), we obtain9

−E ¼ pt −
1

2
gtα;βSαβ ¼ pt −

1

2
ðgtt;rStr þ gφt;rSφrÞ; ð25Þ

L ¼ pφ −
1

2
gtα;βSαβ ¼ pφ −

1

2
ðgtφ;rStr þ gφφ;rSϕrÞ: ð26Þ

In the last system of equations, we assume that the
particle’s motion is constrained to the equatorial plane
(θ ¼ π=2). Because of this assumption, the metric func-
tions depend only on the radial coordinate and pθ ¼ 0.
Furthermore, since Sθα ¼ 0, the number of independent

components of the spin tensor is reduced to three, i.e., Str,
Stφ, and Srφ.
To solve the system in Eq. (25), it is necessary to express

the components Stφ and Srφ in terms of Str. To do so, one
uses the Tulczyjew-SSC condition (20), from which one
obtains

Stφ ¼ pr

pt
Sφr ¼ −

pr

pφ
Str;

Srφ ¼ −
pt

pφ
Srt ¼ pt

pφ
Str: ð27Þ

Using these relations, Eq. (25) takes the form

−E ¼ pt −
1

2
ðg0ttpφ − g0φtptÞ

Str

pφ
;

L ¼ pφ −
1

2
ðg0tφpφ − g0φφptÞ

Str

pφ
: ð28Þ

Now, from the spin conservation and the normalization
conditions in Eq. (21), we have that

Str ¼ pφsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tφ − gφφgttÞ

q : ð29Þ

Here, s ¼ S=m represents the specific angular momentum
of the particle, which can be positive or negative with
respect to the direction of pφ. After replacing Eq. (29)
into Eq. (28) and solving the system for pt and pφ,
one obtains [60]

pt ¼
−Eþ sðALþ BEÞ

1 −Ds2
;

pφ ¼ Lþ sðBLþ CEÞ
1 −Ds2

; ð30Þ

with [60]

A ¼ g0tt

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tφ − gφφgttÞ

q ;

B ¼ g0tφ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tφ − gφφgttÞ

q ;

C ¼ g0φφ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tφ − gφφgttÞ

q ;

D ¼ ðg0tφÞ2 − g0ttg0φφ
4grrðg2tφ − gφφgttÞ

: ð31Þ

Now, from the normalization condition in Eq. (21), we
obtain [60]

8Where 0 denotes the derivative with respect to the radial
coordinate.

9There is a typo in the second relation of Eq. (11) of Ref. [60].
It should be Sαβ.
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p2
r ¼ grrð−gttp2

t − gφφp2
φ − 2gtφptpφ −m2Þ: ð32Þ

After substituting Eqs. (30) and (21) into Eq. (32), one
obtains a second-degree polynomial equation for the
energy E,

p2
r ¼

β

α

�
E2 þ δL

β
Eþ σL2

β
−
ρ

β

�
; ð33Þ

which can be expressed as

p2
r ¼

β

α
ðE − Vþ

effÞðE − V−
effÞ; ð34Þ

where

V�
eff ¼ −

δL
2β

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δL
2β

�
2

þ
�
ρ

β
−
σL2

β

�s
: ð35Þ

The expressions for α, β, δ=2, σ, and ρ are given in
Ref. [60]. Nevertheless, it is important to note that we found
some typos in the expressions defining α, δ, and σ. In the
definition of α, it should be grr instead of grr. In the
expression for δ, the second term in the numerator where s2

is the factor should have gtφg0tt instead of gtφgtt. Finally, in
the expression defining σ, the minus sign in the second
term of the numerator, where s is the factor, should
have þgφφg0tφ instead of −gφφg0tφ. Hence, we obtain the
following expressions:

α ¼ grrð1 −Ds2Þ2;

β ¼ −gtt þ sðgtφg0φφ þ gttg0tφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tφ − gφφgttÞ

q −
s2½gttðg0tφÞ2 þ g0φφðgφφg0φφ þ 2gtφg0tφÞ�

4grrðg2tφ − gφφgttÞ
;

δ

2
¼ gtφ þ sðgttg0tt − gφφg0φφÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tφ − gφφgttÞ

q −
s2½g0tφðgttg0tt þ gtφg0tφÞ þ g0φφðgtφg0tt þ gφφg0tφÞ�

4grrðg2tφ − gφφgttÞ
;

σ ¼ −gφφ −
sðgtφg0tt þ gφφg0tφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tφ − gφφgttÞ

q −
s2½gttðg0ttÞ2 þ g0tφðgφφg0tφ þ 2gtφg0ttÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

grrðg2tφ − gφφgttÞ
q ;

ρ ¼ m2ð1 −Ds2Þ2: ð36Þ

B. Superluminal bound

In this section, we focus our attention on the well-known
superluminal bound. This constraint will be crucial to find
the allowed values of s to keep a spinning test particle
moving in a trajectory with physical meaning. In this sense,
we will obtain analytic expressions in the case of static and
axially symmetric spacetimes. Then, in Sec. IV, we will use
these formulas in the particular case of a traversable
rotating wormhole.
As we pointed out above, although pαpα ¼ −m2 is

satisfied, the normalization uαuα ¼ −1 does not necessarily
hold because the four-momentum and the four-velocity are
not always parallel to each other. Therefore, as the spinning
test particle moves closer to the center of symmetry, the
four-velocity uα increases, and for specific values of spin s
and radius, some components of uα may diverge. In this
sense, the motion of the spinning particle crosses the
boundary between timelike and spacelike trajectories,
becoming in this way superluminal.
Particles moving in a spacelike trajectory (superluminal

motion) do not have a physical meaning. Therefore, the
transition to uαuα > 0 is not allowed for real particles. As a
consequence, one must impose a further constraint: the

superluminal bound, defined by the condition uαuα ¼ 0.
Hence, to keep spinning test particles moving in spacelike
trajectories, it is necessary to impose the following con-
straint [60,61]:

uαuα

ðutÞ2¼ gttþgrr

�
dr
dt

�
2

þ2gtφ
dφ
dt

þgφφ

�
dφ
dt

�
2

≤ 0: ð37Þ

To consider the superluminal bound in our investigation,
we need to obtain analytical expressions for dr=dt and
dφ=dt. To do so, we follow a method proposed by Hojman
and Asenjo in Ref. [62].
In Sec. III A, we constrain our calculations to the

equatorial plane (θ ¼ π=2). Ergo, the nonvanishing com-
ponents of Sαβ are Str, Stφ, and Srφ. Hence, from the second
MPD equation in Eq. (17), we obtain the following system
of equations:

DStr

dλ
¼ ptur − utpr;

DStφ

dλ
¼ ptuφ − utpφ;

DSφr

dλ
¼ pφur − uφpr: ð38Þ
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To solve the last system, we note that it is possible to reduce
it into a system of two equations by expressing the first and
second equations in terms of Sφr. To do so, one needs to
consider the Tulczyjew-SSC condition Sαβpα ¼ 0. In the
case of Str, for example, Eq. (20) reduces to

Strpt þ Sφrpφ ¼ 0: ð39Þ

Then, after applying the operator D=dλ, using the second
relation in Eq. (27), solving for DStr=dλ, and replacing in
the first equation of Eq. (38), we obtain [30]

DStr

dλ
¼ Sφr

pt

�
pφ

pt
Dpt

dλ
−
Dpφ

dλ

�
−
pφ

pt

DSφr

dλ

¼ ptur − utpr: ð40Þ

We proceed similarly with DStφ=dλ in Eq. (38),
obtaining [30]

DStφ

dλ
¼ pr

pt

DSφr

dλ
þ Sφr

pt

�
Dpr

dλ
−
pr

pt

Dpt

dλ

�
¼ ptuφ − utpφ: ð41Þ

With the MPD equation for Str and Stφ expressed in
terms of DSφr=dλ, we can now use the MPD for Sφr [third
equation in Eq. (38)] to reduce the system from three to
only two equations. This new system is given by [30]

Sφr

pt

�
pφ

Dpt

dλ
− pt

Dpφ

dλ

�
¼ urðpφpφ þ ptptÞ

− prðpφuφ þ ptutÞ;
Sφr

pt

�
pt

Dpr

dλ
− pr

Dpt

dλ

�
¼ uφðprpr þ ptptÞ

− pφðprur þ ptutÞ: ð42Þ

Now, using the first MPD equation in Eq. (38), we obtain
the following relations (see the Appendix):

Dpt

dλ
¼ Sφr

pt
½ðpφRtrtr − ptRtrφrÞur − prRtφtφuφ�;

Dpr

dλ
¼ ½ðpφRrttr þ ptRrtrφÞut þ ðpφRrφtr þ ptRrφrφÞuφ�

×
Sφr

pt
;

Dpφ

dλ
¼ Sφr

pt
½urðpφRφrtr þ ptRφrrφÞ − prRφttφut�: ð43Þ

After replacing Eq. (43) into Eq. (42), we obtain the
following system:

ur½p2
φAþ 2pφptDþ p2

tB� ¼ uφCpφpr þ utCptpr;

uφ½p2
tB þ ptpφDþ p2

rC� ¼ ur½Dprpt þAprpφ�
þ ut½Aptpφ þ p2

tD�; ð44Þ

where

Â ¼ gφφ þ
�
Sφr

pt

�
2

Rtrrt;

B̂ ¼ gtt þ
�
Sφr

pt

�
2

Rφrrφ;

Ĉ ¼ grr þ
�
Sφr

pt

�
2

Rφttφ;

D̂ ¼ gtφ þ
�
Sφr

pt

�
2

Rtrφr: ð45Þ

Hence, after following the gauge choices and invariant
relations in Ref. [62], we can solve the above system of
equations to obtain

dr
dt

¼ ur

ut
¼ Cpr

Bpt þDpφ
;

dφ
dt

¼ uφ

ut
¼ Dpt þApφ

Bpt þDpφ
: ð46Þ

Note that Eqs. (45) and (46) reduce to Eqs. (42) and (41) of
Ref. [30] when Rtrφr ¼ 0 and gtφ ¼ 0, i.e., when D ¼ 0.

IV. DYNAMICS OF SPINNING TEST PARTICLES
AROUND A ROTATING WORMHOLE

The results of Secs. II and III describe the dynamics of a
spinning test particle in a static and axially symmetric
spacetime. In this section, we apply these results to the
geometry of a rotating wormhole.

A. Effective potential

We begin by considering the canonical form of Eq. (5)
with the following functions:

N ¼ eΦ; Φ ¼ −
b0
r
;

K ¼ 1; ω ¼ 2J
r3

;

b ¼ b20
r
; μ ¼ − ln

�
1 −

b
r

�
: ð47Þ

Hence, the spacetime’s metric takes the form

ds2 ¼ −ðe2Φ − ω2r2sin2θÞdt2 − 2ωr2sin2θdtdφ

þ
�
1 −

b20
r2

�−1
dr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð48Þ
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Here, b0 is the wormhole throat, which is interpreted as
the wormhole mass. When ω ¼ 0, note that the spacetime
reduces to the Morris-Thorne spacetime [9]. Using the
coordinate transformation r2 ¼ l2 þ b20, Eq. (48) reduces to

ds2 ¼ −ðe2Φ − ω2ðl2 þ b20Þsin2θÞdt2
− 2ωðl2 þ b20Þsin2θdtdφ
þ dl2 þ ðl2 þ b20Þðdθ2 þ sin2θdφ2Þ; ð49Þ

with Φ and ω now functions of l. In this new radial
coordinate, the throat of the wormhole is at l ¼ 0 (r0 ¼ b0).
Before computing the effective potential, we want to

express the results in terms of dimensionless variables,
where

l→
l
b0

; s→
s
b0

¼ S
mb0

; L→
L
b0

¼ L
mb0

; a→
J
b20

: ð50Þ

Therefore, the effective potential has the following form:

Veff ¼ −
δL
2β

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δL
2β

�
2

þ
�
ρ

β
−
σL2

β

�s
; ð51Þ

with Veff ¼ Veff=m. From now on, we will restrict our
attention to the case of test particles with positive energy,
and thus we use Veff with þ in Eq. (51). Then, after using
the definitions in Eq. (36), we obtain the following
expressions:

β ¼ e−2Φ −
6ale−3Φ

ðl2 þ 1Þ2 sþ
l2e−4Φð9a2 − ðl2 þ 1Þ2e2ΦÞ

ðl2 þ 1Þ4 s2;

δ → b0δ ¼ −
4ae−2Φ

ðl2 þ 1Þ3=2 þ
2e3Φð12a2lþ ðl2 þ 1Þ2e2Φððl2 þ 1ÞΦ0 − lÞÞ

ðl2 þ 1Þ7=2 s

þ 2ale−4ΦðlÞð−18a2l − ðl2 þ 1Þ2e2Φð3ðl2 þ 1ÞΦ0 þ lÞÞ
ðl2 þ 1Þ11=2 s2;

σ → b20σ ¼ 4a2e−2Φ

ðl2 þ 1Þ3 −
1

l2 þ 1
−
2ae−3Φð12a2lþ ðl2 þ 1Þ2e2Φð2ðl2 þ 1ÞΦ0 þ lÞÞ

ðl2 þ 1Þ5 s

þ a2le−4Φð36a2lþ ðl2 þ 1Þ2e2Φð12ðl2 þ 1ÞΦ0 − lÞÞ þ ðl2 þ 1Þ6Φ02

ðl2 þ 1Þ7 s2;

ρ →
ρ

m2
¼ s2

�
−
18a2l2e−2Φ

ðl2 þ 1Þ4 −
2lΦ0

l2 þ 1

�
þ s4

�
81a4l4e−4Φ

ðl2 þ 1Þ8 þ 18a2l3e−2ΦΦ0

ðl2 þ 1Þ5 þ l2Φ02

ðl2 þ 1Þ2
�
þ 1: ð52Þ

It is straightforward to check that the last expressions
reduce to those in Ref. [30] when a ¼ 0.
From Eqs. (50) and (52), it is possible to see the

symmetries in Veff depending on the signs of s, a, and
L. We call VP

eff the plus configuration10

VP
effðl; s; a;LÞ ¼ VP

effðl;−s;−a;−LÞ; ð53Þ

and VM
eff the minus configuration

VM
effðl;−s; a;LÞ ¼ VM

effðl; s;−a;−LÞ: ð54Þ

The behavior of each configuration is shown in Fig. 1,
where we plot together VP

eff (black curve) and VM
eff (red

curve), as functions of l with jaj ¼ 0.1 and jLj ¼ 2.245.
Note that the change from plus to minus configurations also
changes the location of the ISCO, shown in the figure with
black and red dots. According to Eqs. (53) and (54), we
obtain the following relations:

VP
effðl;þ0.3;0.1;−2.244Þ¼VP

effðl;−0.3;−0.1;2.244Þ;
VM
effðl;−0.3;0.1;−2.244Þ¼VM

effðl;þ0.3;−0.1;2.244Þ: ð55Þ

Hence, from the physical point of view, in the first
configuration (plus), we have a system in which the
particle’s spin s and the wormhole’s spin a align with
the symmetry axis of the spacetime, while the particle’s
angular momentum L is antiparallel. The minus configu-
ration, on the other hand, corresponds to the case where the

10Since Veff depends on the wormhole’s spin a, we also found
the following relations:

VM
effðl;−s; a;LÞ ¼ Veffðl; s;−a;−LÞ ¼ Veffð−l; s; a;LÞ

¼ Veffð−l;−s;−a;−LÞ

and

VP
effðl; s; a;LÞ ¼ Veffðl;−s;−a;−LÞ ¼ Veffð−l;−s; a;LÞ

¼ Veffð−l; s;−a;−LÞ:
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particle’s spin s and its angular momentum L are parallel to
the symmetry axis of the spacetime, while antiparallel to
the wormhole’s angular momentum L. In other words, in
the plus configuration, the particle’s spin and the worm-
hole’s spin are always antiparallel to the particle’s angular
momentumL, in contrast to the minus configuration, where
the particle’s spin s and its angular moment L are always
antiparallel to the wormhole’s spin a.
In Fig. 2, we show the behavior of the effective potential

in different situations as a function of l. In the first panel,

we show the behavior in the simplest case, i.e., when
s ¼ a ¼ 0. In this situation, the effective potential is
symmetric, and the ISCO radius locates at the same
distance from the throat for both the lower and the upper
universes (lISCO ¼ �1.732). In the second panel, we show
the shape of Veff when s ¼ 0.3 and a ¼ 0.0. In this case, as
showed by Benavides-Gallego et al. in Ref. [30], the
effective potential is not symmetric and has two possible
configurations: plus and minus, depending on the sign of
the particle’s spin s. In the plus configuration, the ISCO
situates in the upper universe. When we change to the
minus configuration, the ISCO changes from lISCO ¼
þ2.259 to lISCO ¼ −2.259.
In the third panel, we consider the case in which s ¼ 0.0

and a ¼ 0.1. From the figure, it is possible to see that Veff is
once again symmetric, with the ISCO located at the same
distance from the wormhole’s throat in both universes
(lISCO ¼ �2.994). Also, note that the effective potential has
a minimum value at the throat. In this particular case,
changing the wormhole spin from a ¼ 0.1 to a ¼ −0.1, the
effective potential changes its shape drastically (see Fig. 3).
There is no ISCO in this situation.
In the fourth panel, we show the behavior of Veff in the

most general case, i.e., a spinning test particle moving
around a rotating wormhole. The figure shows a similar
behavior as the case investigated in Ref. [30]: the effective
potential also has two configurations (plus and minus),
which change the position of the ISCO. Nevertheless, it is
possible to see a difference in the shape of Veff . According
to the figure, the minimum value of the effective potential
shifts to the lower or upper universe depending on the
configuration. In contrast to the case shown in the second

FIG. 2. The effective potential in different situations. The plus and minus configurations are shown in black and red colors,
respectively. The values for the ISCO in each configuration are shown using dots. We assume b0 ¼ M ¼ 1 and L ¼ 2.0, 1.898, −2.403,
and −2.469 for the first, second, third, and fourth panels, respectively.

FIG. 1. The plus (black curve) and minus (red curve) configu-
rations for the effective potential. The ISCO for each configu-
ration is shown using dots. We assume b0 ¼ M ¼ 1.
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panel of Fig. 2, the effective potential has a minimum value
at the throat. For example, in the case shown in the fourth
panel of Fig. 2, Vmin is shifted from the lower universe to
the upper universe when we change the configuration from
plus to minus. This effect is mainly due to the wormhole’s
spin a.
In Fig. 4, we plot Veff vs l for different values of a, s, and

L. In the left panel, we show the behavior of the effective

potential for different values of a. The figure shows how the
effective potential decreases as the wormhole’s spin a
increases. In this case, the minimum value for the effective
potential decreases from Vmin ≈ 0.5 to Vmin ≈ −1 as the
wormhole’s spin a changes from 0.1 to 0.4. In the central
panel, we show the behavior of Veff for different values of s.
From the figure, it is possible to see that Veff does not
change significantly as s increases from 0.1 to 0.4. The
figure also shows that Veff in the lower universe is larger
than those in the upper universe for all values of s.
Furthermore, the value of the Veff at the throat is the same
for all values of s, in contrast to the first and third panels,
where its value decreases as a increases and decreases as L
increases, respectively.
In the right panel of Fig. 4, we plot the effective potential

as a function of l for different values of the angular
momentum L while keeping constant a and s. From the
figure, we can see how Veff decreases as the particle’s
angular momentum L increases. The figure also shows that
the effective potential is always larger in the lower universe
than in the upper one.

B. Innermost stable circular orbits

Now, we focus our attention on circular orbits of spinning
test particles in the geometry of a rotatingwormhole given by
Eq. (49). It is well-known that circular orbits occur when
the radius is constant. Therefore, the radial velocity of a
spinning test particle vanishes dl=dλ ¼ 0. In this sense,

FIG. 3. The minus configuration for the third panel in Fig. 2.
We assume b0 ¼ M ¼ 1 and L ¼ −2.403.

FIG. 4. The effective potential in different situations. Left panel: Veff vs l for different values of a. Center: Veff vs l for different values
of s. Right panel: Veff vs l for different values of L. In black color we show the case s ¼ 0.3, a ¼ 0.1, and L ¼ −2.469. We assume
b0 ¼ M ¼ 1.
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according to Eq. (34), E ¼ Veff , where we have defined
the energy of the test particle per unit mass as E ¼ E=m. On
the other hand, the radial acceleration of the particle also
vanishes, i.e.,d2l=dλ2 ¼ 0,which implies thatdVeff=dl ¼ 0.
Nevertheless, these conditions do not guarantee the stabil-
ity of circular orbits. To ensure stability, the second
radial derivative of the effective potential must be positive,
namely,

d2Veff

dl2
≥ 0: ð56Þ

Hence, the marginally stable circular orbit, correspond-
ing to the smallest allowed value of the radial coordinate for
stable circular orbits, also known as ISCO, can be obtained
when d2Veff=dl2 ¼ 0.
Using the conditions E ¼ Veff and dVeff=dl ¼ 0 we

obtain the values of E and L in terms of the circular orbit
radius l and then from d2Veff=dl2 ¼ 0 the value of the
radius of the ISCO for a spinning test particle. Since the
process involves the solution of a nonlinear system of
equations for l and L, we must solve it numerically; see
Table I.
In Fig. 5, we show the first and second derivatives of Veff

as a function of l. The intersection between the curves
corresponds to the innermost stable circular orbit lISCO.
According to the figure, when a ¼ 0.1 and s ¼ 1.3,
there are two possible values for lISCO. One in the lower
universe lLISCO ¼ −3.961, and one in the upper universe
lUISCO ¼ 0.607.11

In Figs. 6 and 7, we plot the behavior of the radius
(top panel left), angular momentum (top panel right), and
energy (lower panel left) at the ISCO for different values of
the wormhole spin a, a > 0, and a < 0, respectively.12 In
Fig. 6, we can see how lISCO increases as a increases. For
example, if we consider the upper universe, the values of
the ISCO for a ¼ 0.9 (orange curves) are larger than those
with a ¼ 0.1. In the lower universe, on the other hand, lISCO
becomes smaller as the spin parameter a increases. See the
dashed lines.
For constant values of a, the figure shows how lUISCO

increases as s increases, reaching a maximum value. Then,
the ISCO radius decreases as s increases; see the continu-
ous lines in the top-left panel of Fig. 6. In the lower
universe, the situation is the opposite: lISCO decreases until
it reaches a minimum value, and then it increases as s
increases. For example, when a ¼ 0.2, the maximum/
minimum value for lISCO is around 5 and −5, respectively.
While for a ¼ 0.9, the maximum/minimum value for lISCO
is around 6 and −6, respectively. The figure also shows that

there is an interval in which there is only one value of lISCO,
and one interval in which there are two values. For
example, in the upper universe, when a ¼ 0.1, the figure
shows only one value of lISCO if −2.5 ≥ s < −1.25. When
jsj ≤ 1.25, the figure shows two values: one in the upper
universe and the other in the lower universe. Then, when
s > 1.25, the figure shows only one value of lISCO located
in the lower universe. One can see a similar behavior for
other values of a with different ranges for s.
In the top-right panel of Fig. 6, we show the behavior of

LISCO as a function of s for different values of a. According
to the figure, the value of LISCO in the upper universe
decreases as s increases. Nevertheless, for values of
a < 0.3, LISCO reaches a minimum value and starts to
increase again [see the blue and red (continuous) lines].
On the other hand, when we consider the lower universe

TABLE I. Values for lISCO, LISCO, and EISCO for different values
of a and s. In the column for lISCO, þ corresponds to lUISCO.

a s lISCO LISCO EISCO lISCO LISCO EISCO

0.1 0.0 ∓2.994 −2.403 0.900 � � � � � � � � �
�0.1 ∓3.155 −2.356 0.904 �2.803 −2.440 0.895
�0.4 ∓3.519 −2.180 0.911 �1.901 −2.436 0.865
�0.8 ∓3.816 −1.893 0.917 �0.895 −1.649 0.682
�1.31 ∓3.962 −1.472 0.919 �0.601 −0.874 0.502
�1.6 ∓3.925 −1.210 0.919 � � � � � � � � �
�2.0 ∓3.663 −0.814 0.915 � � � � � � � � �

0.2 0.0 ∓3.714 −2.635 0.916 � � � � � � � � �
�0.1 ∓3.870 −2.581 0.919 �3.534 −2.682 0.913
�0.55 ∓4.376 −2.289 0.926 �1.209 −2.496 0.840
�1.0 ∓4.675 −1.946 0.930 � � � � � � � � �
�1.5 ∓4.829 −1.526 0.932 � � � � � � � � �
�2.0 ∓4.796 −1.073 0.932 � � � � � � � � �
�2.5 ∓4.482 −0.581 0.929 � � � � � � � � �

0.3 0.0 ∓4.285 −2.813 0.926 � � � � � � � � �
�0.1 ∓4.439 −2.755 0.928 �4.109 −2.865 0.923
�0.52 ∓4.928 −2.476 0.933 �2.639 −2.948 0.900
�1.2 ∓5.388 −1.948 0.938 � � � � � � � � �
�1.8 ∓5.555 −1.435 0.940 � � � � � � � � �
�2.4 ∓5.497 −0.884 0.940 � � � � � � � � �
�3.0 ∓5.076 −0.290 0.937 � � � � � � � � �

0.6 0.0 ∓5.619 −3.204 0.942 � � � � � � � � �
�0.1 ∓5.758 −3.147 0.943 �5.448 −3.264 0.940
�0.61 ∓6.377 −2.782 0.947 �3.826 −3.456 0.925
�1.6 ∓7.055 −1.987 0.952 � � � � � � � � �
�2.4 ∓7.290 −1.289 0.953 � � � � � � � � �
�3.2 ∓7.259 −0.554 0.954 � � � � � � � � �
�4.0 ∓6.818 0.224 0.952 � � � � � � � � �

0.9 0.0 ∓6.684 −3.494 0.951 � � � � � � � � �
�0.1 ∓7.598 −2.961 0.955 �6.515 −3.558 0.950
�0.74 ∓6.839 −3.428 0.951 �4.051 −3.815 0.935
�1.8 ∓8.351 −2.098 0.959 � � � � � � � � �
�2.7 ∓8.677 −1.312 0.961 � � � � � � � � �
�3.6 ∓8.749 −0.492 0.961 � � � � � � � � �
�4.5 ∓8.498 0.362 0.961 � � � � � � � � �

11We use the superscript L and U for lower and upper
universes, respectively.

12The behavior between a > 0 and a < 0 is similar. For this
reason, we focus our discussion on the former case.
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(dashed lines), the behavior is the contrary. For values of
a ≥ 0.3, LISCO decreases as s increases. For values of
a < 0.3, LISCO decreases, reaches a minimum, and starts to
increase again (see the dashed blue and red lines in Fig. 8).
At this point, it is important to point out that LISCO

corresponds to the total angular momentum of the particle,
defined as the particle’s spin s plus the orbital angular
momentum LOrbit, i.e., LISCO ¼ LOrbit þ s. In this sense,

from the first row in Fig. 6, it is possible to identify the
regions where corotating and counterrotating orbits exist.
For example, in the upper universe, when a ¼ 0.1 or 0.2,
we see that the wormhole’s spin (a > 0) and the orbital
angular momentum (LOrbit < 0) are always antiparallel.
Therefore, the spinning test particle only moves in a
counterrotating orbit. On the other hand, when a ¼ 0.3,
0.6, and 0.9, the particle can move in both corotating and

FIG. 6. lISCO, LISCO, EISCO and the function F vs s for different values of a ¼ 0.1 (blue curves), a ¼ 0.2 (red curves), a ¼ 0.3 (black
curves), a ¼ 0.6 (green curves), and a ¼ 0.9 (orange curves) in the upper (continuous line) and lower (dashed line) universes.
We assume b0 ¼ M ¼ 1.

FIG. 5. The first (continuous black line) and second derivatives (dashed black line) of Veff as a function of l. The intersection between
the plots corresponds to lISCO (see the black dot in each panel). Left panel: lISCO in the lower universe. Center: lISCO in the upper
universe. Right panel: Contour plot of the first (black line) and second (green line) derivatives of Veff . lISCO is shown using black dots.
The shape of Veff vs l is shown in the inset panel for the first and second panels in the figure. We assume b0 ¼ M ¼ 1.
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counterrotating orbits. For example, for a ¼ 0.3, the spin-
ning test particle moves in a corotating orbit for s < −3.2,
where a and LOrbit are parallel. For s > −3.2, the spinning
test particle moves in a counterrotating orbit. We can
observe similar behavior for greater values of a.
In the geometry of a Kerr black hole, it is well-known

that the ISCO for nonspinning test particles (s ¼ 0)
decreases/increases as the spin a of the central object
increases for corotating/counterrotating orbits. In this

sense, nonspinning test particles can move closer
to/further from the black hole with less/more energy [44].
On the other hand, in the case of spinning test particles
in a Kerr black hole, Zhang et al. showed that the ISCO
radius and the corresponding orbital angular momentum
also decrease/increase for corotating/counterrotating
orbits as the spin a of the central object increases [63].
Nevertheless, our analysis shows that the ISCO radius
increases as the wormhole’s spin a increases for both
corotating and counterrotating orbits. From the physical
point of view, this behavior arises as a consequence of the
increment in EISCO as the wormhole spin a increases. This
can be seen clearly in Fig. 9, where we plot Veff vs l for
different values of a ¼ 0 (black curve), 0.2, 0.3, 0.6, and
0.9 (purple curve) while keeping constant the particle’s
spin s.
In the bottom-left panel of Fig. 6, we plot the behavior

of the energy at the ISCO for different values of the
wormhole’s spin a. From the figure, for constant values of
the spin s, we see that the energy EISCO increases as a
increases. Moreover, the figure also shows that EISCO is
always lower than E ¼ 1. In the upper universe, while s
increases, EISCO increases. Then, it reaches a maximum
value and decreases until some value of s, the lowest limit
for the particle’s spin. On the other hand, when we consider

FIG. 7. lISCO, LISCO, EISCO and the function F vs s for different values of a ¼ −0.1 (blue curves), a ¼ −0.2 (red curves), a ¼ −0.3
(black curves), a ¼ −0.6 (green curves), and a ¼ −0.9 (orange curves) in the upper (continuous line) and lower (dashed line) universes.
We assume b0 ¼ M ¼ 1.

FIG. 8. LISCO vs s for a ¼ 0.1 (blue curves) and 0.2 (red
curves). We assume b0 ¼ M ¼ 1.
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the lower universe, the behavior is the opposite (as before).
EISCO increases as s increases. Then, it reaches a maximum
value and decreases until some value of s.
As mentioned above, for constant values of a, the figure

shows how lUISCO increases, reaches a maximum value,
and decreases as s increases. Therefore, the radial coor-
dinate of the ISCO is not a monotonic function of s. See
the top-left panel in Fig. 6. To understand this behavior,
note that in the region where lUISCO increases, the energy
also increases (while LISCO decreases). In this sense,
when EISCO reaches its maximum value, so does the
lUISCO. See the bottom-left panel of Fig. 6. This behavior
agrees with the previous conclusion: lISCO increases as
EISCO increases. Therefore, the nonmonotonic behavior
of the ISCO radius is a consequence of its energy
dependence.

C. Superluminal bound

As mentioned before, we can obtain the superluminal
bound using Eq. (37). In this sense, after replacing dr=dt
and dφ=dt [see Eq. (46)], we obtain

F ¼ gttðB̂pt þ D̂pφÞ2 þ grrðĈprÞ2 þ 2gtφðD̂pt þ ÂpφÞ
× ðB̂pt þ D̂pφÞ þ gφφðD̂pt þ ÂpφÞ2 ≤ 0: ð57Þ

Therefore, the limit value of s for which the spinning
test particle’s motion is timelike can be obtained with
the condition F ¼ 0. Then, using Eqs. (32) for pr and
replacing into Eq. (57), we get

F ¼ X1

�
pt

m

�
2

þ 2X2

�
pt

m

��
pφ

m

�
þX3

�
pφ

m

�
2

−X4 ≤ 0;

ð58Þ

with13

X1 ¼ gttB̂
2 þ 2gtφB̂ D̂þgtφD̂

2 − gttg2rrĈ
2;

X2 ¼ gttB̂ D̂þgtφðÂ B̂þD̂2Þ þ gφφÂ D̂−gtφg2rrĈ2;

X3 ¼ gttD̂
2 þ 2gtφÂ D̂þgφφÂ

2 − gφφg2rrĈ
2;

X4 ¼ g2rrĈ
2: ð59Þ

Note that Eq. (58) reduces to Eqs. (45) of Ref. [30] when
we consider the spacetime of a nonrotating wormhole.
In the bottom-left panel of Fig. 6, we plot the behavior of

F as a function of s for different values of a. From the
figure, it is possible to identify an interval for the particle’s
spin s in both the upper and the lower universes. There are
always two limits, one for negative values of the spin s−
and the other for positive values, sþ. For example, in the
upper universe, when the value of a ¼ 0.1, the function F
reaches the superluminal bond at s− ≈ −2.3 and sþ ≈ 1.3
(see the continuous blue line). One can see similar behavior
when a ¼ 0.2. In that case, F reaches the superluminal
bound when s− ≈ −2.8 and sþ ≈ 0.5. Finally, when
a ¼ 0.3, the spinning test particle reaches the superluminal
bound when s− ≈ −3.3. Nevertheless, when s > 0.52, the
system of nonlinear equations

dVeff=dl ¼ 0 and d2Veff=dl2 ¼ 0: ð60Þ

does not have a solution. As a consequence, F does not
reach the superluminal bound F ¼ 0. However, although
F < 0, we can consider s ≈ 0.52 as the positive limit value
for a spinning test particle in the upper universe, sþ.
On the other hand, for large values of a (i.e., 0.9), the

figure shows that F does not reach the superluminal limit
either for negative or for positives values of s. Once again,
although F is always negative in these cases, we can
use these values to set an interval of motion for a spinning
test particle. Hence, when a ¼ 0.9 the limit values are
s− ≈ −5.4 and sþ ≈ 0.74.
When we consider the lower universe (dashed lines in

Fig. 6), the figure shows the same behavior as in the upper
universe. Once again, F gives two limit values for s < 0
and s > 0. Nevertheless, due to symmetries in Veff , these
values are the same and only change in the sign. For
example, in the upper universe, we found that sþ ≈ 1.3 and
s− ≈ −2.3when a ¼ 0.1. Therefore, due to the symmetries,
in the lower universe s− ≈ −1.3 while sþ ≈ 2.3. In Table II,
we show some of the values.

FIG. 9. Veff vs l for different values of a and LISCO while
keeping constant the particle’s spin s ¼ þ0.1. The black dots
represent the ISCO; see Table I.

13Here, we keep the notation of Eq. (24), where r is the radial
coordinate. Nevertheless, in the rotating wormhole, the radial
coordinate changes to l, so r → l in all the equations.
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V. CONCLUSIONS

In this work, we investigated the motion of spinning test
particles around a rotating wormhole, an extension of the
previous work presented by Benavides-Gallego et al. in
Ref. [30], where the authors take into account a spinning test
particle moving around a nonrotating traversable wormhole,
the well-known Morris-Thorne wormhole [9]. There, the
authors showed how the effective potential depends on the
wormhole’s spin a, the particle’s spin s, the proper distance l,
the angular momentum L, and the wormhole’s throat b0.
According to the authors, the effective potential Veff shows
some symmetries in its behavior, represented by two con-
figurations: plus and minus. In the plus configuration,
VP
effðl; s;LÞ ¼ VP

effðl;−s;−LÞ. In the minus configuration,
on the other hand, we have thatVM

effðl;−s;LÞ¼VM
effðl;s;−LÞ.

Therefore, a spinning test particle moving with clockwise
spin and angular momentum is equivalent to a particle
moving with counterclockwise spin and angular momentum
(plus configuration); while a spinning test particle mov-
ing with clockwise spin and counterclockwise angular
momentum is equivalent to a particle moving with counter-
clockwise spin and clockwise angular momentum (minus
configuration).
In the rotating case, we also found that Veff has plus

and minus configurations defined as VP
effðl; s; a;LÞ and

VP
effðl;−s; a;LÞ, respectively. Moreover, since Veff depends

on the wormhole’s spin a, there are more relations of
symmetry; see footnote 10. In each configuration, the ISCO
has the same value. However, if we change the configu-
ration, the ISCO also changes. Hence, if lISCO is in the
upper universe for the plus configuration, it will change to
the lower universe once we change to the minus configu-
ration (see Fig. 1). Furthermore, from the dynamical point
of view, it is important to point out that these symmetries
allow some equivalences in the motion of spinning test
particles regarding the sign of s, L, and a.

On the other hand, the shape of Veff is symmetric only
in two particular cases: s ¼ a ¼ 0 or s ¼ 0 and a ≠ 0.
In these situations, considering the upper and lower
universes, the ISCO is at the same distance from the throat.
Moreover, Veff reaches a minimum value at l ¼ 0. On the
other hand, when a and s are different from zero, Veff is
nonsymmetric and looks like the effective potential
of a spinning test particle in a nonrotating wormhole.
Nevertheless, in contrast with the nonrotating case, where
the effective potential reaches a minimum value at the
throat (l ¼ 0), Veff has a minimum value shifted to the right
or left depending on the configuration (see Fig. 1). It is
important to point out that Vmin decreases in three different
situations: when the wormhole’s spin, the particle’s spin, or
angular momentum increases while keeping constant s and
L, a and L, and a and s, respectively. See Fig. 4.
In the nonrotating case, Ref. [30] shows that there is only

one value for lISCO (in the upper or lower universes) when
jsj ≥ 1 and two values when −1 < s < 1 (one in the upper
universe and the other in the lower universe) (see Fig. 8 in
Ref. [30]). We found a similar behavior for the rotating
case. However, the interval for s in which there are two
values of lISCO changes as the wormhole’s spin a increases.
If we consider the lower universe, the analysis performed

in Ref. [30] shows that lISCO decreases as s increases. Then,
it reaches a minimum value at s ≈ −0.8 and increases again
up to the throat (when s ¼ 1) (see Fig. 8 in Ref. [30]). The
opposite behavior occurs when we consider the upper
universe. In the rotating case, on the other hand, our
analysis shows that lISCO in the lower universe decreases
as s decreases. Then, it reaches a minimum value and
increases again. Nevertheless, in contrast to the nonrotating
case, lISCO does not arrive at the wormhole’s throat. See the
upper-left panel of Fig. 6. This behavior may be a
consequence of the shifting effect on Veff at the minimum.
In Ref. [63], Zhang et al. investigated the ISCO orbit for

a classical spinning test particle in the background of a
Kerr-Newman black hole. There, the authors show that the
motion of the spinning test particle is related to its spin, and
it will be superluminal if its spin is large. According to their
analysis, the authors found that lISCO decreases as the spin
of the particle increases. We also found the same behavior
in the rotating wormhole when the upper universe is
considered (the behavior is the opposite in the lower
universe). Nevertheless, in contrast with the results of
Ref. [63], where a spinning test particle can orbit in a
smaller circular orbit than a nonspinning test particle, we
found that jlISCOj increases as the wormhole’s spin a
increases (while keeping constant the particles’ spin s).
From the physical point of view, this behavior arises as a
consequence of the increment in the energy as the worm-
hole spin a increases. In this sense, a spinning test particle
can move in larger circular orbits than the nonrotating
case. From the geometrical point of view, we want to point
out that the metric (48) belongs to a particular kind of

TABLE II. Superluminal bound for upper and lower universes
in the corotating case (a > 0). In the table sþ and s− are the limits
for positive and negative values of s, respectively.

a Universe sþ s− Fþ F−

0.1 Upper 1.315 −2.303 −4.8 × 10−6 −4.1 × 10−6

Lower 2.303 −1.315 −4.1 × 10−6 −4.8 × 10−6

0.2 Upper 0.559 −2.891 −4.2 × 10−7 −6.3 × 10−6

Lower 2.891 −0.559 −6.3 × 10−6 −4.2 × 10−7

0.3 Upper 0.52 −3.386 −0.931 −4.5 × 10−6

Lower 3.386 −0.52 −4.5 × 10−6 −0.931

0.6 Upper 0.61 −4.604 −0.969 −3.0 × 10−6

Lower 4.604 −0.61 −3.0 × 10−6 −0.969

0.9 Upper 0.74 −5.4 −0.949 −0.749
Lower 5.4 −0.74 −0.749 −0.949
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spacetimes known in the literature as exponential metrics,
which have been proposed to replace black holes. Hence,
although the weak-field behavior matches nicely with
weak-field general relativity (and automatically with the
Newtonian gravity limit), some differences from black
holes may appear in the analysis of particle dynamics
(see Refs. [64,65]).
In this work, we found that the energy of the innermost

stable circular orbit EISCO is always below unity, i.e.,
EISCO < 1. This result agrees with the nonrotating case,
where EISCO < 0.9 [30]. Furthermore, it is important to
remark that the energy increases as the wormhole’s spin a
increases. Hence, EISCO in the nonrotating case is smaller
than the energy in the rotating case, where 0.8<EISCO<0.96.
In Ref. [30], the authors found that EISCO has the same value
for both the lower and the upper universeswhen s ¼ 0. In our
analysis, we found the same behavior, which is a conse-
quence of the mirrorlike symmetric of Veff .
In this work, we also found that the angular momentum

at the ISCO behaves differently from the nonrotating case.
In Ref. [30], the authors showed that the angular momen-
tum reaches the maximum value LISCO ≈ 2.002 when jsj ≈
0.25 [30] and it is always positive, LISCO > 0. Moreover, in
the lower universe, the angular momentum increases as s
increases, reaching its maximum value at s ≈ −0.25. Then,
it decreases for −0.25 < s < 2. See the left-bottom panel of
Fig. 8 in Ref. [30]. The opposite behavior occurs when
we consider the upper universe. In the rotating case, on the
other hand, we found that −4 < LISCO < 1.4. Furthermore,
for small values of s (0.1, 0.2, or 0.3), we show LISCO in the
upper universe decreases as s increases. Then, it reaches a
minimum value and starts to increase again to a certain
value of s. The opposite behavior occurs in the lower
universe. Furthermore, for larger values of s (0.6 or 0.9),
the LISCO in the lower universe decreases as s decreases,
reaching a minimum value.
Finally, we consider the superluminal bound to inves-

tigate the constraints for the particle’s spin s. In the
nonrotating case, Benavides-Gallego et al. showed that
the motion of a spinning test particle has physical meaning
(the trajectory is timelike) if −1.5 < s < 1.5. Nevertheless,
for values of jsj > 1.5, the particle’s trajectory is super-
luminal (spacelike) and it does not have a physical mean-
ing. In the rotating case, the shape of F is similar to the
nonrotating case; but we found some differences. For
example, when one considers small values of a (0.1 or
0.2), F ¼ 0 for two values of the particle’s spin: s− and sþ;
see the right-bottom panel of Fig. 6. Moreover, for jsj < 1
and a ¼ 0.3, the function F stops because the nonlinear
system in Eq. (60) does not have a solution, setting a
constraint value for s which is positive/negative for the
upper/lower universe; see Table II. For larger values of a
(0.9), the function F never reaches the superluminal bound
(F ¼ 0) because the nonlinear system Eq. (60) does not
have a solution. In this sense, the spin is constrained to

those values for which the nonlinear system has a solution;
see Table II.
It is important to remark that our analysis uses the MPD

equations. Therefore, we considered the approximation in
which the mass and size of the spinning test particle are
negligible in relation to themassof the central object andmust
not affect the geometry background. Nevertheless, from
the astrophysical point of view, the motion of spinning test
particles may still determine some features that enable us to
distinguish black holes from wormholes. As we have shown
in this paper, the spin does affect the motion of test particles
around a rotating wormhole. On the other hand, observatio-
nally speaking, the spinning test particles may form the
accretion disk of black holes. These particles could be larger
objects, such as asteroids, planets/exoplanets orbiting stellar-
mass objects, or rapidly rotating black holes and neutron stars
orbiting supermassive candidates. Hence, the spin could be a
crucial parameter to consider when describing the motion of
such objects and both the electromagnetic and gravitational
wave observations that would allow us to conclude if these
objects are black holes or wormholes.
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APPENDIX: CALCULATION OF Dpα=dλ
FOR t, r, AND φ

From the first MPD equation in Eq. (17), we obtain

Dpν

dλ
¼ −

1

2
RνβδσuβSδσ; ðA1Þ

from which one can compute the Dpt=dλ, Dpr=dλ, and
Dpφ=dλ in terms of the components of the Riemann tensor.
In the case of Dpt=dλ, one obtains the following

expression:

Dpt

dλ
¼−

1

2
½2RttδσutSδσþ2RtrδσurSδσþ2RtφδσuφSδσ�: ðA2Þ
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The factor of 2 comes because Rνβδσ and Sδσ are skew-
symmetric tensors. Therefore, we have to count twice in the
sum because RabδσSδσ ¼ RabσδSσδ. Hence, from Eq. (A2),
we obtain

Dpt

dλ
¼ −ðRtttrStr þ RtttφStφ þ RttrφSrφÞut

− ðRtrtrStr þ RtrtφStφ þ RtrrφSrφÞur
− ðRtφtrStr þ RtφtφStφ þ RtφrφSrφÞuφ: ðA3Þ

Then, after using Eq. (27) and considering the nonvanish-
ing components of the Riemann tensor, the last expression
reduces to

Dpt

dλ
¼ Sφr

pt
½ðpφRtrtr − ptRtrφrÞur − prRtφtφuφ�: ðA4Þ

In a similar way, we obtain

Dpr

dλ
¼ −½RrtδσutSδσ þ RrrδσurSδσ þ RrφδσuφSδσ�;

Dpφ

dλ
¼ −½RφtδσutSδσ þ RφrδσurSδσ þ RφφδσuφSδσ�; ðA5Þ

from which, after using Eq. (27) and considering the non-
vanishing components of the Riemann tensor, we obtain

Dpr

dλ
¼Sφr

pt
½ðpφRrttrþptRrtrφÞutþðpφRrφtrþptRrφrφÞuφ�;

Dpφ

dλ
¼Sφr

pt
½urðpφRφrtrþptRφrrφÞ−prRφttφut�: ðA6Þ

Note that in the case of a nonrotating wormhole, Rtrφr ¼ 0.
Therefore, Eqs. (A4) and (A6) reduce to Eqs. (A11)
and (A12) of Ref. [30], respectively.
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