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The gravitational wave signal from a binary neutron star merger carries the imprint of the deformability
properties of the coalescing bodies, and then of the equation of state of neutron stars. In current models of the
waveforms emitted in these events, the contribution of tidal deformation is encoded in a set of parameters, the
tidal Love numbers. More refined models include tidal-rotation couplings, described by an additional set of
parameters, the rotational tidal Love numbers, which appear in thewaveform at 6.5 post-Newtonian order. For
neutron stars with spins as large as ∼0.1, we show that neglecting tidal-rotation couplings may lead to a
significant error in the parameter estimation by third-generation gravitational wave detectors. By performing a
Fisher matrix analysis we assess the measurability of rotational tidal Love numbers, showing that their
contribution in thewaveform could bemeasured by third-generation detectors. Our results suggest that current
models of tidal deformation in late inspiral should be improved in order to avoid waveform systematics and
extract reliable information from gravitational wave signals observed by next generation detectors.
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I. INTRODUCTION AND SUMMARY

The gravitational-wave (GW) signal emitted during the
latest stages of a neutron-star (NS) coalescence before the
merger significantly depends on how a NS gets deformed
by the gravitational field of its companion. This effect is
quantified by a set of parameters called tidal Love numbers
(TLNs) [1,2], which encode the tidal deformability proper-
ties of the star, and depend on the NS equation of state
(EOS) [3,4]. Extracting the TLNs from GW detections
provides a way to measure the NS EOS [5–24] (see
Refs. [25,26] for some reviews), to constrain alternative
theories of gravity in an EOS-independent fashion [27,28]
(see Ref. [29] for a review), and to test the nature of
dark compact objects other than black holes [30] (see
Refs. [31,32] for some reviews).
As current GW detectors approach design sensitivity, it is

reasonable to expect that the GWevent catalog [33] will be
enlarged with several binary NSs and mixed black hole-NS
binaries, possibly with higher signal-to-noise ratio (SNR)
than the prototypical signal GW170817 [17]. This will
certainly be the case in the era of third-generation (3G) GW
detectors [34], such as Cosmic Explorer [35] and the
Einstein Telescope (ET) [36,37]. Indeed, even just a single
detection of a binary NS coalescence by a 3G detector will
constrain the properties of nuclear matter, through the
measurements of the TLNs, to unprecedented levels [38].

However, the high SNR expected in the 3G era also urges
us to reduce possible waveform systematics [39,40] by
improving current waveform models, including all possible
effects related to the tidal deformability of NSs. For this
reason, current models of the late inspiral of coalescing
NS binaries, in which the effect of tidal deformation is
described in terms of a single parameter [41,42]—namely, a
combination of the quadrupolar electric TLNs of the two
bodies—should be extended to account for higher post-
Newtonian (PN) effects. The latter possibly include higher-
order and magnetic TLNs [43–48], the so-called rotational
TLNs (RTLNs), which arise from the coupling between the
object’s angular momentum and the external tidal field
[45,49–54], as well as the effects of time dependence of the
tidal field and dynamical tides [43,55–62].
In this article we quantify the impact of spin-tidal

couplings, and in particular of the RTLNs, in the parameter
estimation from a binary NS waveform. We extend the
analysis of [53] in two main directions: (i) Using the recent
computation of the RTLNs for static fluids and the associated
hidden symmetry unveiled in [45,54], we employ an inspiral
waveform approximant that coherently includes all static
tidal effects up to 6.5-PN order. (ii) We perform a statistical
analysis based on the Fisher-information matrix (FIM),
which accounts for correlations among the parameters.
The rest of the paper is organized as follows. In Sec. II,

we summarize the theory of tidal deformations of rotating
compact stars, introducing the TLNs and RTLNs, and the
PN waveform up to 6.5 order. In Sec. III, we briefly*goncalo.castro@uniroma1.it
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describe the statistical analysis based on the FIM. In
Sec. IV, we discuss our results on the impact of spin-tidal
couplings on the waveform, and on the measurability of the
RTLNs. Finally, in Sec. V, we draw our conclusions.

II. TIDAL INTERACTION OF ROTATING
COMPACT STARS

Here we briefly discuss the tidal deformations of rotating
compact bodies, describing the TLNs and the RTLNs and
showing how the coupling between rotation and tidal
interaction affects the gravitational waveform emitted by
a binary NS. We use units with G ¼ 1. Greek letters denote
spacetime indices (μ; ν ¼ 0;…; 3), while Latin letters
denote space indices (a; b ¼ 1;…; 3). We shall follow
the notation of [45,53].

A. Tidal deformations of rotating compact stars

The general relativistic theory of tidal deformations of
nonrotating compact objects has been developed in
[3,4,63,64], where it was shown that when a static, spheri-
cally symmetric compact star is perturbed by a (static)
external tidal field, it acquires mass and current multipole
moments (Qa1���al , Sa1���al , respectively [65,66]) given by

Qa1���al ¼ λlGa1���al ;

Sa1���al ¼ σlHa1���al ; ð1Þ

where l ≥ 2, Ga1���al , Ha1���al are the electric and magnetic
components of the tidal field, and λl, σl are the electric
and magnetic TLNs, respectively. The TLNs of a NS
depend on the EOS of the star and on its mass, and can be
computed using perturbation theory [67]. The two above
equations are also called adiabatic relations, because
they can be applied to the inspiral of a binary NS, when
each star is tidally deformed by the companion, as long
as the adiabatic approximation is satisfied, i.e., the tidal
field is approximately constant over the timescale of the
stellar response.
If rotation is included in the model [49,50,68–70], it

introduces couplings between tidal field components and
multipole moments having different parities (electric vs
magnetic) and with different values of l. Neglecting
the contributions with l > 3, the adiabatic relations (1)
generalize to

Qab ¼ λ2Gab þ λ23
c2

JcHabc;

Qabc ¼ λ3Gabc þ λ32
c2

JhcHabi;

Sab ¼ σ2
c2

Hab þ σ23JcGabc;

Sabc ¼ σ3
c2

Habc þ σ32JhcGabi; ð2Þ

where Ja is the spin vector, λll0 , σll0 are the RTLNs with
electric and magnetic parity, respectively, and h� � �i denotes
trace-free symmetrization.
In the above derivation the spacetime is assumed to be

stationary, gμν;t ¼ 0, while the fluid four-velocity can only
have a nonvanishing azimuthal component uφ, where φ is
the azimuthal angle associated with rotation. In [49] it was
also assumed that the fluid perturbations induced by the
tidal field are static, i.e., that δuφ ¼ 0. More recently, is
was noted that in actual binary NS systems, the stationary
limit of a time-dependent compact star has arguably
irrotational perturbations [43,46], in which δuφ is deter-
mined by imposing the vanishing of the vorticity tensor
(see also [54] for further details).
Like the TLNs, also the RTLNs depend on the mass of

the star and on its EOS, and can be determined using
perturbation theory. This computation is rather involved: it
requires solving a large system of coupled ordinary differ-
ential equations, describing the gravitational and fluid
perturbations with different parities and different values
of the harmonic index l. A preliminary computation in [49]
turned out to be affected by some errors in the numerical
implementation; finally, in [54] we have computed the
RTLNs associated to static perturbations of NSs. The
explicit computation of [54] also allowed us to confirm
the existence of a “hidden symmetry”—which had been
first proposed in [45]—between (static) electric and mag-
netic RTLNs:

σ32 ¼ 4λ23; λ32 ¼ 2σ23: ð3Þ

The above relations effectively halve the number of
RTLNs that should be computed to fully characterize the
tidal contribution in a NS waveform model, as summa-
rized below.

B. Gravitational waveform from tidally
deformed compact binaries

Let M1, M2 be the masses of the two compact bodies
in circular orbit, and J1, J2 their angular momenta. Be
M ¼ M1 þM2, ηA ¼ MA=M (A ¼ 1, 2), χA ¼ cJA=M2

A

their dimensionless spin parameters, λðAÞl , σðAÞl , λðAÞll0 , σ
ðAÞ
ll0

their TLNs and RTLNs. Moreover, let ν ¼ η1η2 be the
symmetric mass ratio, ω the orbital angular velocity of the
binary, and x ¼ ðMωÞ2=3=c2.
We model the GW signal emitted by the compact binary

system using the TaylorF2 approximant in the frequency
domain [71–73]. The GW phase can be written as the
sum of a point-particle contribution and of a tidal term,
ψðxÞ ¼ ψppðxÞ þ ψTðxÞ. The former depends on the mass
and spin components and includes up to Oðx7=2Þ, namely,
3.5-PN, corrections. For brevity, we show here its form up
to 1.5-PN order:
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ψppðxÞ ¼
3

128νx5=2
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�
: ð4Þ

The explicit expression of ψppðxÞ to 3.5-PN order can be
found in the Appendix.
The leading-order contribution describing tidal inter-

actions, ψT, enters at the 5-PN order,1 and depends on a

linear combination of the quadrupolar, electric TLNs λðAÞ2 of
the two bodies. Electric TLNs with l > 2 and magnetic
TLNs contribute to higher PN order in the waveform. We
consider the tidal phase including up to Oðx6.5Þ [45,74]

ψTðxÞ ¼
3

128νx5=2

�
−
39

2
Λ̃x5
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�
−
3115

64
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364
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�
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�
; ð5Þ

where ΛA ¼ λðAÞ2 =M5
A, ΣA ¼ σðAÞ2 =M5

A are the dimension-
less TLNs,
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�
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K̂ ¼ 39
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πΛ̃; ð11Þ

Γ̂ ¼ χ1
M4

�
ð856η1 − 816η21Þλð1Þ23 −

�
833η1
3

− 278η21

�
σð1Þ23

− νð272λð1Þ32 − 204σð1Þ32 Þ
�
þ ð1 ↔ 2Þ: ð12Þ

For the 6-PN term in Eq. (5) we follow the conventions
of [75], which splits the quadrupolar, electric tidal param-
eters into Λ̃ and δΛ̃. This choice improves the measurability
of the tidal deformability because Λ̃ appears both in the
5-PN and in the 6-PN terms. Note that δΛ̃ identically
vanishes for equal-mass binaries.
The spin-tidal couplings appear in the GW phase through

the 6.5-PN terms Λ̂, Σ̂, Γ̂. While Λ̂, Σ̂ (also studied in [53])
depend on the TLNs λ2, σ2, Γ̂ is proportional to the RTLNs
λ23, σ23, λ32, σ32 of the two bodies. Due to the hidden
symmetry (3), this term only depends on two independent
RTLNs (for each object).
We remark that Eq. (12) builds on the assumption that

fluid perturbations are static. The contribution of the
RTLNs to the tidal GW phase has not been derived in
the case of irrotational perturbations, since the computation
is much more involved than for static perturbations.2

Arguably, the amplitude of such effect is comparable with
the one considered in this work, and thus our analysis
provides a reliable order-of-magnitude estimate of the
impact on the GW signal of irrotational RTLNs as well.

III. STATISTICAL ANALYSIS

The output in time dðtÞ of a GW interferometer is
given by

dðtÞ ¼ hðt; θ⃗; γ⃗Þ þ nðtÞ; ð13Þ

where h is the GW signal, and n is a given realization of the
detector noise. The former is fully specified by the intrinsic
(or physical) parameters γ⃗, such as the binary masses, spins,
and Love numbers, and by the extrinsic parameters θ,
which define the source distance, sky orientation, and
polarization with respect to the detector. Assuming statio-
narity, stochasticity, and Gaussianity, nðtÞ can be described
in terms of a frequency dependent noise spectral density
SnðfÞ [76]. Assessing the presence of a GW signal within

1Note that the tidal contribution to the GW phase is much
larger than a naive counting of their PN order could suggest,
being magnified by the dimensionless quantity ðc2R=MÞ5 that
appears in the TLNs.

2As argued in [54], the irrotational case seems to require the
derivation of the field equations starting from a time-dependent
interaction Lagrangian.
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the detector stream requires a proper figure of merit, such as
the matched-filter SNR ρ, defined as

ρ2 ¼ ðdjhTÞ ¼ ðhjhTÞ þ ðnjhTÞ: ð14Þ

Here, hTðθ⃗T; γ⃗TÞ corresponds to a specific waveform of a
template bank, identified by the set of intrinsic and extrinsic
parameters ðγ⃗T; θ⃗TÞ. The inner product is defined as

ðhjhTÞ ¼ 4R
Z

fmax

fmin

df
h̃ðfÞh̃�TðfÞ
SnðfÞ

; ð15Þ

with fmin and fmax cutoff frequencies, characteristic of each
detector.
Once the GW signal has been correctly identified,

Bayesian information theory can be applied to determine
the posterior probability distribution of the waveform
parameters

pðγ⃗T jdÞ ∝ p0ðγ⃗TÞe−1
2
ðd−hT jd−hT Þ; ð16Þ

where p0ðγTÞ is the prior probability distribution. Under the
assumptions of high SNR and flat priors, this expression
can be rewritten as [77]

pðγ⃗TÞ ∝ exp ½−ρ2ð1 −MðhjhTÞÞ�; ð17Þ

in terms of the match MðhjhTÞ between the signal h and a
template waveform hT . The match is defined as a normal-
ized inner product maximized over the waveform extrinsic
parameters,

Mðhðγ⃗0Þ; hTðγ⃗TÞÞ ¼ max
θ⃗0;θ⃗T

ðhjhTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhjhÞðhT jhTÞ
p ; ð18Þ

which serves as a measure of the metric distance between
two waveform representations. Because of this property,
Eq. (17) is useful to study the bias induced on the recovered
parameters by our choice of template waveform, and
therefore to study the possibility of systematic errors.
Equation (16) also provides the basic ingredient to

compute statistical uncertainties on the source parameters.
Working again in the limit of large SNR, one can rewrite
the posterior distribution as [78]

pðγ⃗T jdÞ ∝ p0ðγ⃗TÞe−1
2
ΓijΔγiΔγj ; ð19Þ

where Δγi ¼ γiT − γi0 is the deviation of the estimated
parameters from their true values, and Γij ¼ ð∂ihj∂jhÞ is
the FIM, which corresponds to the inverse of the (like-
lihood) covariance matrix among the waveform parameters.
For flat priors, statistical errors are simply given by

σγi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
: ð20Þ

As discussed in Sec. IV, we use general priors, for which
parameter errors are no longer given by the direct inversion
of the FIM. In order to properly incorporate our prescrip-
tion for p0ðγ⃗TÞ, we have devised the following strategy. We
have built the semi-analytic posterior distribution (19)
using the FIM to define the likelihood function for γ⃗T,
and multiplying afterward by the two priors we have
imposed on χ and δΛ̃. Values from the joint posterior on
the source parameters are then obtained by sampling
pðγ⃗T jdÞ with a Monte Carlo Markov Chain algorithm.
We sample the posterior distribution using the emcee
algorithm with stretch move [79]. For each set of data,
we run 20 walkers of 105 samples. This simple procedure
avoids in general the direct inversion of Γij, and allows
computing the covariance matrix of γ⃗T for any choice of the
prior functions.3

IV. RESULTS

Based on the methods summarized in Sec. III, we study
both the impact of the spin-tidal couplings on the system-
atics errors on the tidal deformability, and the measurability
of the RTLNs appearing in the 6.5-PN order tidal term in
the GW phase. For simplicity, we assume high SNR and
Gaussian noise.
Our reference for this study is the first binary NS

event detected by the LIGO-Virgo Collaboration,
GW170817 [17], and for simplicity we assume equal
masses M1 ¼ M2 ¼ 1.4 M⊙. We also assume small spins
χ1 and χ2 throughout. As for the (R)TLNs, we compute
them for different EOSs that are realistic in terms of both
their predicted maximum masses and tidal deformabilities.
We further consider the internal fluid of the stars to be
static, and compute the tidal quantities accordingly. As
discussed in Sec. II, we expect irrotational RTLNs to have
a comparable impact on the gravitational waveform. In that
case, our results should be considered as an order-of-
magnitude estimate.
We perform our computation for two possible detectors,

LIGO-Virgo and ET. We consider the former for a network
of three detectors with the same design sensitivity [80], in a
frequency range of [9, 2048] Hz, and the latter in its ET-D
configuration [36] assuming a single detector in a triangular
configuration4 in the frequency range [3, 2048] Hz.
The SNR of all considered events is computed to be
consistent with a source distance of 40 Mpc, similar to
that of GW170817.

3We have checked that our method reproduces the parameter’s
errors by direct inversion of the FIM, when no priors are imposed.

4In practice, we multiply the ET-D sensitivity curve [36] by a
factor 2=

ffiffiffi
3

p
to account for a triangular geometry.
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A. Impact of the RTLNs on the waveform

GWparameter estimation is affected by systematic errors
due to partial knowledge of waveform modeling. This leads
to a bias on the estimated parameters, whose relevance will
increase for high-SNR events, especially those expected in
the 3G era.
The first step of our analysis is to study the impact of

the 6.5-PN tidal terms on the waveform [Eqs. (9) to (12)],
and the bias they may produce on the measurement of
the standard, leading-order tidal term Λ̃. In particular, we
extend the work done in [53], which focused only on the
impact of the spin-tidal terms Λ̂ and Σ̂ [Eqs. (9) and (10)].
Here, we also include in the analysis the tidal tail term
K̂ (11) and the term Γ̂ (12), which depends on the RTLNs of
the binary components.
We compute the probability distributions for the tidal

deformability through Eq. (17). We consider the following
waveforms:

(i) h6-PN: TaylorF2 waveform5 truncated at 6-PN order,
including the magnetic TLNs computed for a
static fluid;

(ii) htail: TaylorF2 waveform up to 6-PN, also including
the 6.5-PN tidal tail term K̂;

(iii) hspin-tidal: TaylorF2 waveform up to 6-PN plus the
tidal tail term K̂ and spin-tidal terms Λ̂ and Σ̂;

(iv) h6.5PN: TaylorF2 waveform including, besides K̂, Λ̂,
and Σ̂, also the static RTLN term Γ̂. This case
includes all static tidal terms up to 6.5-PN order.

All these waveforms depend on the intrinsic parameters
introduced in Sec. II B: the binary’s component masses,
spins, and tidal parameters Λ̃, δΛ̃ and, when including the
RTLNs terms, the parameter Γ̂. To compute the match in
Eq. (17) we take one waveform to be the true signal, with all
parameters given by their corresponding injected values, and
the other to be the template we use to model the signal. For
the latter, all parameters are given by their injected value
except for Λ̃, which we vary in an interval around its injected
value, thereby computing its probability distribution.
This analysis is performed assuming spins χ1¼ χ2¼0.1,

for two typical cases of soft and stiff EOS: APR4 [81]
and SLy4 [82], respectively. For these EOSs we obtain
Λ ¼ 246, 293, respectively, consistent with current LIGO-
Virgo observations [83]. These values apply for both NSs,
since we assume they are described by the same EOS and
have the same mass. Likewise, for those masses we have
computed the RTLNs to be λ23 ¼ 183, λ32 ¼ −247 for
APR4 and λ23 ¼ 220, λ32 ¼ −159 for SLy4. The magnetic
TLNs are computed in terms of the electric TLNs via their
universal relations [29], while the magnetic-led RTLNs are
computed through the hidden symmetry (3) in terms of the

electric-led ones. The optimal SNR is ρ ¼ 140 and
ρ ¼ 1106 for the LIGO-Virgo network and for ET,
respectively.
We computed the resulting probability distributions in

three different setups. Setup I (Fig. 1) takes hspin-tidal and
htail as trigger and template, respectively, replicating Fig. 8
of [53] for realistic equations of state. This shows that, in
our current setup, the bias induced in the measurement of Λ̃
by the Λ̂ and Σ̂ terms alone is negligible for detections
by LIGO-Virgo even at design sensitivity, while it is of
the same order of magnitude as the uncertainty for ET
detections. This motivates the study of further contributions
at 6.5-PN order.
Setup II (Fig. 2) takes h6.5-PN and h6-PN as trigger and

template, respectively, thereby assessing the bias induced
by all 6.5-PN terms in the waveform. We see that the bias is
large enough to affect the measurements of Λ̃ by both the
LIGO-Virgo and ET detectors. The largest contributor to
this bias is the tidal tail term K̂. This can be seen by
comparison with setup III (Fig. 3), where h6.5-PN and htail
were used as trigger and template, respectively. This
includes K̂ in the template, hence considering the bias
due to the spin-tidal terms alone (including Γ̂). We see that,
while the inclusion of the RTLNs term does not change the
irrelevance of the induced bias for LIGO-Virgo detections
in comparison with setup I, for ET detections the bias can
be larger than the expected uncertainty of the measurement
of Λ̃. However, this result is EOS-dependent: while it
occurs for APR4, for SLy4 the spin-TLNs terms and the
RTLNs term give opposite sign contributions to the phase
of the waveform, canceling each other out.
Our results suggest that, while the largest bias is

associated to the tidal tail K̂ (which is effectively included
is the most up-to-date waveform templates [41,42]), all
6.5PN tidal terms should be included in the modeling of the
waveform phase in the data analysis with 3G detectors.
Given the PN order at which the spin-tidal contributions

appear,we do not expect them to have any relevant impact on
parameters like the masses and spins, which enter at much
lower PN order. However, we have further studied the
possibility of correlations between Λ̃ and δΛ̃ having a
significant effect on the expected bias. We did so by vary-
ing both parameters simultaneously, thus obtaining a
two-dimensional distribution analogous to the ones of
Figs. 1–3. We found that our conclusions do not change,
i.e., the impact on the measurement of δΛ̃ and the correla-
tions between the latter and Λ̃ are negligible for our study.

B. Measurability of the RTLNs

Given the prospect of RTLNs having a non-negligible
effect on parameter estimation in the 3G era, the natural
follow-up question is whether the RTLNs themselves will
be measurable. To study this problem we have applied
the FIM analysis introduced in Sec. III, computing the

5Since we are comparing waveforms which differ only in the
tidal part of the GW phase, the specific order of the point-particle
part is irrelevant for the analysis presented in this section.
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FIG. 2. Same as Fig. 1 but for setup II (h6.5PN vs h6-PN), i.e., quantifying the bias introduced by the entire 6.5-PN term in the waveform.

FIG. 1. Probability distribution on Λ̃ inferred from the match for setup I (hspin-tidal vs htail), i.e., quantifying the bias introduced by the
spin-tidal terms in the waveform. Top and bottom rows refer to APR and SLy4 EOS, respectively, while left and right columns
correspond to parameter estimation performed for LIGO-Virgo and ET. The solid and dashed vertical lines identify the mean value of
each distribution. The vertical short-dashed line in each panel provides the injected value of Λ̃. The white area between shaded regions
correspond to the 90% probability distribution for PðΛ̃Þ.
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probability distribution of the parameters through Eq. (19),
and extracting the associated uncertainty. We did so for the
set of parameters ftc;ϕc; logM; log ν; χ1; χ2; Λ̃; δΛ̃; log Γ̂g,
where tc and ϕc are the time and phase at coalescence,M is
the chirp mass, and ν is the symmetric mass ratio.
We consider binary NS systems with M1 ¼ 1.5 M⊙,

M2 ¼ 1 M⊙; we choose unequal mass binaries (with
mass ratio compatible with those of observed systems)
because this improves the measurability of the TLNs. We
consider NSs described by the APR4 and SLy4 EoSs.
We choose two different values of (small) equal spins
χ1¼ χ2¼ χ¼0.05, 0.1.
As far as the priors are concerned, we assume that spins

are normally distributed around zero with variance
σ0ðχÞ ¼ 1. For the priors on δΛ̃, from Eq. (7) and our

assumption that M1 > M2, we see that δΛ̃ > 0. Thus, we
impose a uniform prior U½0; δΛ̃max�, with δΛ̃max ¼ 1000.
This prevents the computation of uncertainties that allow for
δΛ̃ < 0, which would be unphysical under our assumptions.
We have checked that the upper bound δΛ̃max is large enough
to contain the full posterior, and that increasing it does not
affect significantly our results. For all other parameters,
physically motivated wide flat priors were assumed. Given
the small statistical errors and the fact that the marginal
likelihood for all other parameters is well peaked around the
true values and contained within the prior domain, changing
these priors does not affect our results.
The uncertainties computed with this setup are shown in

Table I. These were extracted from a posterior distribution
computed through a Monte Carlo algorithm (see Sec. III).

FIG. 3. Same as Fig. 2 but for setup III (h6.5PN vs htail), i.e., assessing the bias introduced by all the spin-tidal terms, RTLN term
included.

TABLE I. Errors on the source parameters assuming an ET detection of a nearly symmetric NS binary with two different small values
for the spins, and for two tabulated EOS. For each parameter we show the 90% interval around the median.

EOS MðM⊙Þ ν χ1 χ2 Λ̃ δΛ̃ Γ̂

χ ¼ 0.1 APR4 1.06þ1.9×10−6

−1.6×10−6
0.24þ0.0009

−0.0012 0.1þ0.09
−0.15 0.1þ0.24

−0.15 550þ120
−110 140þ930

−100 7.7þ2.4
−2.2 × 104

SLy4 1.06þ1.9×10−6

−1.7×10−6
0.24þ0.001

−0.001 0.1þ0.10
−0.14 0.1þ0.23

−0.15 690þ120
−110 190þ880

−160 8.4þ2.5
−2.3 × 104

χ ¼ 0.05 APR4 1.06þ1.7×10−6

−1.7×10−6
0.24þ0.001

−0.001 0.05þ0.13
−0.16 0.05þ0.26

−0.22 550þ120
−120 140þ930

−110 3.9þ2.6
−2.0 × 104

SLy4 1.06þ1.7×10−6

−1.7×10−6
0.24þ0.001

−0.001 0.05þ0.13
−0.15 0.05þ0.24

−0.21 690þ120
−110 190þ870

−160 4.2þ2.5
−1.9 × 104
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First of all, we note that the expected uncertainties on the
individual spins are quite large, with the posterior distri-
bution always having support on χ ¼ 0 even for χ ¼ 0.1.
We refer the reader to [84], where this issue will be studied
in detail using a more refined statistical analysis based on
Monte Carlo Markov chain approaches.
The probability distribution of the RTLN term Γ̂ is nearly

symmetrical around the injected value, and we find that the
relative 90% symmetric confidence interval is approxi-
mately 30% for χ ¼ 0.1, and 55% for χ ¼ 0.05. The errors
are larger, of course, for lower values of the spin, or for
larger values of the mass ratio (see the discussion below).
Thus, the RTLN term will be marginally measurable by a
3G detector like ET, for NS spins as large as ∼0.05–0.1.
The relatively large uncertainty of the parameter δΛ̃

shown in Table I motivated us to perform a further analysis,
in which we neglect δΛ̃ as a waveform parameter in the
FIM. We find that the uncertainties of all parameters are
similar to those obtained with the previous analysis.
Therefore, for the high SNR values expected in the 3G
era, δΛ̃ is predicted to be both unmeasurable and irrelevant
for the estimation of the measurement uncertainty of the
other parameters, and as such can be neglected in the
parameter estimation, although it should be included in
the templates for the detection.
Finally, we have studied how the binary mass ratio

q ¼ M2=M1 affects the measurability of Γ̂. We did so for a
system with χ1 ¼ χ2 ¼ 0.1, fixed mass M2 ¼ 1 M⊙, and
APR4 EOS. We present the associated uncertainties in
Fig. 4, finding that they mildly decrease for smaller
values of q.
From this analysis, we see that there is a realistic

prospect of constraining the 6.5-PN tidal term Γ̂ with
3G ground-based detectors. We note, however, that this
does not necessarily mean that we can estimate the
associated (EOS-dependent) RTLNs. The term Γ̂ [explicit
in Eq. (12)] depends not only on the RTLNs, but also on the
spins χ1 and χ2 of the binary components. As discussed
above (see also [84]), these quantities may not be
accurately measured even with 3G detectors. Therefore,

measuring Γ̂ would not lead to a further constraint on the
EOS, because the measurement errors on the RTLNs
coming from the measurement of the 6.5-PN term would
be dominated by the errors on the individual spins.

V. CONCLUSIONS

We have estimated the impact of the 6.5-PN tidal terms
on the GW parameter estimation of the tidal deformability
Λ̃ for a NS binary system. We have done so for an event
consistent with GW170817, considering realistic EoSs
(APR4 and SLy4) and an optimal sky orientation.
We have found that in order to reduce systematic errors,

due to incomplete modeling of the tidal effects, in future
parameter estimation with 3G detectors all 6.5-PN tidal
terms should be accounted for in the modeling of the signal.
In particular, if the NSs have spins as large as∼0.05–0.1 the
impact of the RTLNs will be relevant in the 3G era.
We have also found that, for these values of the spins, the

RTLN terms in the waveform will be measurable by 3G
detectors, even though the measurement of the RTLNs
themselves may be impossible due to the uncertainties in
the individual spins. A more detailed study on the meas-
urability of the individual spins with 3G detectors is
forthcoming [84].
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APPENDIX: PN EXPANSION OF THE GW PHASE

We here show the explicit expression of the TaylorF2
waveform. It is

h̃ðfÞ ¼ Af−7=6eið2πftc−ϕc−π=4þψðfÞÞ; ðA1Þ

where A ¼ 1
2d

ffiffiffiffiffiffiffiffiffiffiffi
5νM5=3

6π4=3

q
is the Newtonian amplitude, f ¼ ω

π

the frequency of the wave [i.e., x ¼ ðπMfÞ2=3=c2], d is the
luminosity distance from the source, and ψðfÞ is the
PN expansion of the GW phase. The GW phase can be
written as

FIG. 4. 90% confidence interval around the recovered median
value of Γ̂ as a function of the binary mass ratio q.
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ψ ¼ ψ3.5-PN
pp þ ψ spin;4-PN

pp þ ψ Q̄ þ ψT: ðA2Þ

ψ3.5-PN
pp is the nonspinning point-particle contribution to the phase up to 3.5-PN order, given by [72]

ψ3.5-PN
pp ¼ 1þ

�
3715

756
þ 55

9
ν

�
x − 16πx

3
2 þ 10

�
3058673

1016064
þ 5429

1008
νþ 617

144
ν2
�
x2

þ π

�
38645

756
−
65

9
ν

��
1þ 3 log

� ffiffiffiffiffiffiffiffiffi
x

xLSO

r ��
x
5
2 þ

�
11583231236531

4694215680
−
640

3
π2 −

6848

21
e −

6848

21
log ð4 ffiffiffi

x
p Þ

þ
�
−
15737765635

3048192
þ 2255

12
π2
�
νþ 76055

1728
ν2 −

127825

1296
ν3
�
x3 þ π

�
77096675

254016
þ 378515

1512
ν −

74045

756
ν2
�
x
7
2;

ðA3Þ

where xLSO ¼ 6−
3
2 refers to the frequency at the last stable

orbit. ψ4-PN
pp is the spinning part of the point-particle

contribution to the phase up to 4-PN order,

ψ spin;4-PN
pp ¼ 4β1.5x

3
2 − 10σx2 þ

�
40

9
β2.5

− β1.5

�
3715

189
þ 220

9
ν

��
logðx3

2Þx5
2

þ P6x3 þ P7x
3
2 þ P8x4: ðA4Þ

The 1.5-PN [85–87], 2-PN [88,89], and 2.5-PN [90]
coefficients, assuming aligned spins, are given by

β1.5 ¼
�
113

12
η21 þ

25

4
ν

�
χ1 þ

�
113

12
η22 þ

25

4
ν

�
χ2; ðA5Þ

σ ¼ 79

8
νχ1χ2 þ

81

16
ðη21χ21 þ η22χ

2
2Þ; ðA6Þ

β2.5 ¼
��

−
31319

1008
þ 1159

24
ν

�
η21 þ

�
−
809

84
þ 281

8
ν

��
χ1

þ ð1 ↔ 2Þ: ðA7Þ

The subsequent 3-PN, 3.5-PN and 4-PN order terms can be
found in [73]

P6 ¼ π

�
2270

3
δχa þ

�
2270

3
− 520ν

�
χs

�
þ
�
75515

144
−
8225

18
ν

�
δχaχs ðA8Þ

þ
�
75515

288
−
263245

252
ν − 480ν2

�
χ2a þ

�
75515

288
−
232415

504
νþ 1255

9
ν2
�
χ2s ; ðA9Þ

P7 ¼
�
−
25150083775

3048192
þ 26804935

6048
ν −

1985

48
ν2
�
δχa ðA10Þ

þ
�
−
25150083775

3048192
þ 10566655595

762048
ν −

1042165

3024
ν2 þ 5345

36
ν3
�
χs þ

�
14585

24
− 2380ν

�
δχ3a ðA11Þ

þ
�
14585

24
−
475

6
νþ 100

3
ν2
�
χ3s þ

�
14585

8
−
215

2
ν

�
δχaχ

2
s þ

�
14585

8
− 7270νþ 80ν2

�
χ2aχs; ðA12Þ

P8 ¼ π

��
233915

168
−
99185

252
ν

�
δχa þ

�
233915

168
−
3970375

2268
νþ 19655

189
ν2
�
χs

�
ð1 − 3 logð ffiffiffi

x
p ÞÞ; ðA13Þ

with δ ¼ η1 − η2, χs ¼ χ1þχ2
2

, χa ¼ χ1−χ2
2

defined for the sake of readability. ψ Q̄ is the correction of the point-particle phase to
include the quadrupole moment of a NS,

ψ Q̄ ¼ −50ððη21χ21 þ η22χ
2
2ÞðQ̄s − 1Þ þ ðη21χ21 − η22χ

2
2ÞQ̄aÞ; ðA14Þ
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where Q̄s ¼ Q̄1þQ̄2

2
and Q̄a ¼ Q̄1−Q̄2

2
, with Q̄A ¼ QA

M3
Aχ

2
A
normalized mass quadrupole of body A. In this article, the

quadrupole moment has been computed through the I-Love-Q relations derived in [27]. Finally, the tidal phase ψT is
defined in Eq. (5).
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