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Chameleon fðRÞ gravity is equivalent to a class of scalar-tensor theories of gravity with the chameleon
screening mechanism allowing the theory to satisfy local tests of gravity. Within the framework of
chameleon fðRÞ, we study the impact of the chameleon mechanism on the orbital evolution of binary
pulsars, and calculate in detail the post-Keplerian (PK) effects (periastron advance, Einstein delay, Shapiro
delay, orbital period decay and eccentricity decay) of binary orbit. The differences in PK effects between
general relativity (GR) and chameleon fðRÞ are elegantly quantified by a combination of star’s
compactness and theory parameter. We use the mass-radius relation to break the degeneracy between
these two parameters, thus allowing us to constrain the theory. We simulate the temporal evolution of the
orbital period and eccentricity of neutron star (NS)-white dwarf (WD) binaries, and the results indicate that
the orbital evolution is typically faster than in GR due to the emission of dipole radiation in chameleon
fðRÞ. We use the observables of PK parameters from the three NS-WD binary pulsars to place constraints
on chameleon fðRÞ and possible deviations from GR by performing Monte-Carlo simulations. We find that
PSR J1738þ 0333 is the most constraining test of chameleon fðRÞ in these systems. Our results show no
solid evidence of the existence of helicity-0 or helicity-1 polarization states inducing dipole radiation,
exclude significant strong-field deviations and confirm that GR is still valid for strong-field asymmetric
systems.

DOI: 10.1103/PhysRevD.106.024010

I. INTRODUCTION

Although Einstein’s theory of general relativity (GR) is
indeed the most successful theory of gravity, it suffers from
the quantization [1,2] as well as dark matter and dark
energy problems [3,4]. Therefore, testing GR still is one of
the key tasks in modern physics [5]. Studies of alternative
theories of gravity play a significant role in testing GR.
A natural alternative theory is fðRÞ gravity [6,7], in

which the Ricci scalar in the Einstein–Hilbert action is
replaced by a general function of the Ricci scalar. The fðRÞ
theories do not seem to introduce any new type of matter
and can drive early inflation [8] or late-time acceleration
of the universe [9,10]. In fact, the fðRÞ theories can be
reformulated in terms of scalar-tensor theories with a strong
coupling of the scalar field to matter [6,7]. The strong
coupling would induce the scalar fifth force in the theory,
which violates all current experimental constraints on
deviations from Newton’s law of gravity. In order to evade
these tight local tests of gravity, the chameleon mechanism
[11–13] is introduced into fðRÞ theories, which imposes
restrictions on the functional form of fðRÞ. The chameleon
scalar field can develop an environment-dependent

mass, which increases as the ambient density increases.
Therefore, the scalar fifth force can be hidden and evade the
tight local tests in high density regions (e.g., the solar
system), in which the force range becomes so short that it is
extremely difficult to detect by local test experiments [13].
Whereas in low density regions (e.g., the galaxy or the
universe), the scalar fifth force becomes the long-range
force, which could affect the galactic dynamics [14,15] and
the evolution of the universe [8–10].
Since the Hulse-Taylor binary pulsar observations led to

the first indirect detection of gravitational waves (GWs)
[16–18], binary pulsars have become the excellent
laboratories for testing gravity in the strong field regime
[19–23]. In this paper, we study the full post-Keplerian
(PK) effects of binary pulsars in the framework of chame-
leon fðRÞ. We calculate the effects of periastron advance,
Einstein delay and Shapiro delay by investigating the
orbital dynamics of binary pulsars, and derive the decay
rates of orbital period and eccentricity caused by GWs
damping by investigating the Noether charges and currents
in the theory. In chameleon fðRÞ, the leading term of tensor
GWs radiation is the quadrupole radiation carrying both
energy and angular momentum, and the leading term of
scalar GWs radiation is the monopole radiation carrying
energy but not angular momentum. However, the monopole*zhxing@nwu.edu.cn
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radiation and the quadrupole radiation are of the same post-
Newtonian (PN) order. Scalar dipole radiation carries both
energy and angular momentum away from the binary
pulsars and dominates the orbital decay, and its intensity
is proportional to the square of the difference in the
compactnesses of binaries. Therefore, the asymmetric
systems like the neutron star (NS)-white dwarf (WD)
binary pulsars are the ideal targets for testing chameleon
fðRÞ gravity. We perform the numerical simulation of the
orbital evolution of binary pulsars, and place constraints on
chameleon fðRÞ with the observables of PK parameters
from three NS-WD PSRs J1141 − 6545, J1738þ 0333 and
J0348þ 0432. It turns out that the dipole radiation in
chameleon fðRÞ further accelerates the orbital evolution of
binary pulsars. The orbital period decay rates from these
three systems impose the tight constraints on dipole
radiation, which can also be thought of as tests of the
existence of helicity-0 or helicity-1 degrees of freedom. The
pulsar constraint from PSRs J1738þ 0333 is the most
stringent test in these three systems. These pulsar tests rule
out the significant deviations from GR in strong-field
asymmetric systems.
The organization of this paper is as follows. In Sec. II, we

review fðRÞ gravity and chameleon mechanism. In Sec. III,
we calculate in detail the PK parameters in chameleon fðRÞ
gravity. In Sec. IV, we place constraints on chameleon fðRÞ
by the observational data of the binary pulsar, and discuss
in detail these results. We conclude in Sec. V. Appendixes
present further mathematical details.

II. f ðRÞ GRAVITY WITH CHAMELEON
SCREENING MECHANISM

The fðRÞ gravity is based on the corrections and
extensions of GR adding higher order terms or nonmini-
mally coupled scalar fields into the dynamics. The
Lagrangian density for fðRÞ gravity takes the form [6,7]

L ¼ M2
Pl

2

ffiffiffiffiffiffi
−g

p
fðRÞ þ Lmðgμν;ψmÞ; ð1Þ

whereMPl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πG

p
, G is the gravitational constant, g is

the determinant of the metric gμν, R is the Ricci scalar,Lm is
the matter Lagrangian density, and ψm denotes all the
matter fields. Here, we set the units to c ¼ ℏ ¼ 1. The fðRÞ
gravity can be recast as a scalar-tensor theory via the
following conformal transformation [6,7]

gμν → g̃μν ¼ gμνf0ðRÞ≡ gμν exp

�
−

ffiffiffi
2

3

r
ϕ

MPl

�
; ð2Þ

where a prime denotes differentiation with respect to R, and
ϕ is the scalar field which can be directly related to the
Jordan frame Ricci scalar by the above relation. The
Lagrangian density in the Einstein frame has the form [6,7]

L̃ ¼
ffiffiffiffiffiffi
−g̃

p �
M2

Pl

2
R̃ −

ð∂̃ϕÞ2
2

− VðϕÞ
�
þ L̃mðA2ðϕÞg̃μν;ψmÞ;

ð3Þ

where the potential is

VðϕÞ ¼ 1

2
M2

Plf
0ðRÞ−2ðf0ðRÞR − fðRÞÞ; ð4Þ

and the coupling function is

AðϕÞ ¼ f0ðRÞ−1
2 ¼ exp

�
ϕffiffiffi
6

p
MPl

�
: ð5Þ

Here, a tilde represents quantities in the Einstein frame.
Variation of L̃ with respect to the tensor field and the

scalar field gives the field equations

G̃μν ¼ 8πG½T̃μν þ ∂μϕ∂νϕ − ðð∂̃ϕÞ2=2þ VÞg̃μν�; ð6Þ

□̃ϕ ¼ dVeff=dϕ; ð7Þ

where □̃ is the curved space d’Alembertian, G̃μν is the
Einstein tensor, and T̃μν ≡ ð−2= ffiffiffiffiffiffi

−g̃
p ÞδðR dx4L̃mÞ=δg̃μν is

the energy-momentum tensor of the matter. Here, the
effective potential VeffðϕÞ≡ VðϕÞ þ ρAðϕÞ, and ρ1 is
the local environment density of the scalar field. In the
previous work [25–30], we have investigated the screening
mechanisms for the Lagrangian density (3) with a general
potential and coupling function. For this theory to have a
screening mechanism one must require that [27]

dVeff

dϕ

����
ϕmin

¼ 0; m2
eff ≡ d2Veff

dϕ2

����
ϕmin

> 0;
dmeff

dρ
> 0:

ð8Þ

In other words, the effective potential has a minimum
(acting as the physical vacuum), and the effective mass of
the scalar field increases as the ambient density increases.
As a result of these requirements, all mechanics effects
induced by the scalar field are suppressed in dense regions,
where the range of the scalar fifth force is so short that it is
hard to find by local experiments. Theories in which the
scalar field mass depends on the ambient density are
called to be chameleon theories [11–13]. For fðRÞ gravity
the above requirements turns into, in some regions of
ϕ [31],

dV
dϕ

< 0;
d2V
dϕ2

> 0;
d3V
dϕ3

< 0; ð9Þ

1ρ is defined as the conserved energy density in the Einstein
frame [24].

XING ZHANG PHYS. REV. D 106, 024010 (2022)

024010-2



these can be translated into the constraints on the functional
form of fðRÞ (see Appendix A). If the potential function
satisfies the above conditions, the fðRÞ gravity can have a
chameleon screening mechanism. The fðRÞ gravity with
chameleon screening mechanism is also called chameleon
fðRÞ gravity.
Note that, for convenience, thereafter, we still use fðRÞ

to refer to chameleon fðRÞ, work in the Einstein frame and
no longer label the Einstein frame with a tilde.

III. PK PARAMETERS

In this section, we study the PK effects in fðRÞ gravity
and calculate in detail the PK parameters for the binary
pulsar moving on a quasielliptical orbit.

A. Periastron advance

The periastron advance is an astronomical phenomenon
in which the major axis of the orbit slowly rotates in the
orbital plane. This phenomenon is because in fact the net
force experienced by a planet does not vary exactly as
inverse-square.
In fðRÞ gravity, the scalar fifth force modifies the orbital

dynamics of binary pulsars and contributes to the periastron
advance. The scalar field corrections to the orbital dynam-
ics can be effectively described by the point-particle action
with scalar field-dependent mass introduced by Eardley
[32]. The Lagrangian for the ath body is given by

La ¼ maðϕÞ
dτa
dt

¼ maðϕÞ
�
−gμν

dxμa
dt

dxνa
dt

�1
2

: ð10Þ

By substituting the post-Newtonian (PN) expressions of the
scalar and tensor fields in Eqs. (B4), and adopting the
method of Einstein, Infeld and Hoffmann [33], we obtain
the N-body Lagrangian up to Oðv4Þ,

LN ¼ −
X
a

ma

�
1 −

v2a
2
−
v4a
8

�
þ 1

2

X
a

X
b≠a

Gmamb

rab

×

�
Gab þ 3Babv2a −

1

2
ðGab þ 6BabÞðva · vbÞ

−
1

2
Gabðnab · vaÞðnab · vbÞ −

X
c≠a

Gmc

rac
Dabc

�
; ð11aÞ

with

Gab ¼ 1þ ϵaϵb
2

; Bab ¼ 1 −
ϵaϵb
6

;

Dabc ¼ 1þ ϵaðϵb þ ϵcÞ
2

; ð11bÞ

where nab ≡ ðra − rbÞ=rab is the unit direction vector, and
ϵ is the scalar charge of the body. The scalar charge
characters the difference from GR and can be well

approximated by ϵ ¼ ϕ∞=ðMPlΦÞ [see Eq. (B5)]. Using
Eq. (2), the scalar charge can be rewritten as

ϵ ¼ −
ffiffiffi
3

2

r
ln f0ðR∞Þ

Φ
; ð12Þ

where R∞ is the background value of Ricci scalar, and
Φ ¼ Gm=R is the compactness of the body and R is its
radius.
Specializing to a two-body system (labeled by 1 and 2),

the two-body equations of motion following from this
Lagrangian are

d2r1
dt2

¼ −
Gm2n12

r2

�
G
�
1 − v21 þ

v212
2

−
3

2
ðv2 · n12Þ2

�

−
Gm2

r
ð3GB þD122Þ −

Gm1

r
ðG2 þ 3GB þD211Þ

þ 3B
2
v212

�
þ Gm2v12

r2
ðGv1 þ 3Bv12Þ · n12;

d2r2
dt2

¼ f1 ↔ 2g; ð13Þ

where v12 ≡ v1 − v2, r≡ r12, G≡ G12 and B≡ B12.
Obviously, at the Newtonian order, the equations of motion
satisfy the inverse-square law, only the gravitational con-
stant is replaced by GG. This result also suggests that the
conservative orbital dynamics at the Newtonian order still
hold, e.g., the Kepler’s third law a3 ¼ GGmðPb=2πÞ2.
Using the above equations of motion, employing the

method of osculating elements [5], the periastron advance
of the binary system is given by [5]

_ω ¼ 6πGm
að1 − e2ÞPb

�
B þ G

6
−
m1D211 þm2D122

6Gm

�
; ð14Þ

where m, Pb, e and a are the total mass, orbital period,
orbital eccentricity and semimajor axis, respectively. Using
the Kepler’s third law, the expression (14) for the periastron
advance is further simplified and summarized in Eqs. (38).

B. Time delay

1. Einstein delay

The combined effect of gravitational and kinetic time
dilation is so-called Einstein delay. In a circular orbit, the
Einstein delay can be absorbed as a constant parameter, and
it is meaningless. In an elliptical orbit, the Einstein delay is
always changing with time due to a variation in the pulsar
velocity and a change of the distance between the pulsar
and its companion.
The Einstein delay in an elliptical orbit can be computed

by the proper time at the pulsar’s point of emission,
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dτp ¼ dt

�
−gμν

dxμp
dt

dxνp
dt

�1
2

; ð15Þ

where the subscript p represents the pulsar. Using the PN
expressions in (B4), integrating the above equation,
and dropping the constant terms, the result to first order
is given by

τp ¼ t − γ sinE; ð16aÞ

with

γ ¼ GGmc

a

�
1þmc

m

�
Pb

2π
e; ð16bÞ

where E is the eccentric anomaly of the orbit and mc is the
companion mass. The parameter γ is the amplitude of
Einstein delay, using the Kepler’s third law, and it is
rewritten as

γ ¼ e
Pb

2π

�
2πGGm

Pb

�2
3 mc

m

�
1þmc

m

�
; ð17Þ

which is identical to that of GR in the limit of ϵ → 0 [34].

2. Shapiro delay

The retardation of light signal caused by the reduced
coordinate velocity of light in a gravitational field is so-
called Shapiro delay [35]. In binary pulsar systems, the
Shapiro delay is usually parametrized by [36]

ΔtS ¼ 2r ln½1 − e cosE − s sinωðcosE − eÞ
− s cosωð1 − e2Þ12 sinE�; ð18Þ

where r and s are called the range and shape of the Shapiro
delay, and ω is the longitude of periastron.
The light signal travels along a null geodesic

gμνdxμdxν ¼ 0, which remains unchanged under the con-
formal transformation. In other words, photons do not
couple to the scalar field in fðRÞ gravity, because the
electromagnetic energy-momentum tensor has a vanishing
trace. Using the PN expressions (B4), the equation of
null geodesic translates into the coordinate velocity of
light,

cγðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxidxjδij

q
dt

¼ 1 − 2
X
a

Gma

jr − raj
þOðv4Þ: ð19Þ

The Shapiro delay can be obtained by the integral
ΔtS ¼ R

dz=cγðrÞ. Clearly, cγðrÞ is exactly the same as that
in GR, which indicates that the Shapiro delay para-
meters are also the same as those in GR. Therefore, the
range of the Shapiro delay is given by r ¼ rGR ¼ Gmc [34].

The shape of the Shapiro delay is defined by s≡ sin i ¼
xp=ap, where ap and xp are the semimajor axis and
projected semimajor axis of the pulsar orbit, and i is the
orbital inclination angle. Using the Kepler’s third law, the
shape of the Shapiro delay is rewritten as

s ¼ xp

�
2π

Pb

�2
3 m

2
3

ðGGÞ13mc

: ð20Þ

C. Orbital decay

In the previous sections, the periastron advance and time
delay only describe the conservative sector of the theory. In
this section we focus on the dissipative effects, calculate the
loss rates of the orbital energy and angular momentum from
the emission of GWs predicted by fðRÞ, and derive their
contributions to the orbital decay.

1. Energy and angular momentum fluxes

The orbital decay due to GWs damping is very important
for testing gravity [16–18], and its theoretical derivation is
also the basis of GWs waveform calculation [37,38].
In the far zone, the tensor and scalar fields can be

decomposed as the perturbations about the Minkowski
background and the scalar background, i.e., gμν¼ημνþhμν
and ϕ ¼ ϕ∞ þ φ. Using these and imposing the transverse-
traceless (TT) gauge on the Lagrangian density (3),
expanding to quadratic order in the perturbations hμν
and φ, the Lagrangian densities of the tensor and scalar
GWs are given by

LT ¼ −
M2

Pl

8
∂μhTTij ∂

μhTTij ; ð21Þ

LS ¼ −
ð∂φÞ2
2

−
1

2
m2

sφ
2; ð22Þ

where hTTij is the TT part of hij, and m2
s ¼ d2Veff=dϕ2jϕ∞

is
the scalar field mass. Energy and angular momentum are
the conserved charges associated to time translation invari-
ance and spatial rotation invariance, respectively. The
energy and angular momentum fluxes of the tensor and
scalar GWs are derived directly from the above
Lagrangians by investigating the Noether charges and
currents, given by

_ET ¼ r2

32πG

Z
dΩh _hTTij _hTTij i; ð23aÞ

_ES ¼ −r2
Z

dΩh _φ∂rφi; ð23bÞ

_Li
T ¼ ϵijk

r2

32πG

Z
dΩh2hTTjl _hTTkl − _hTTlm xj∂khTTlm i; ð23cÞ

XING ZHANG PHYS. REV. D 106, 024010 (2022)

024010-4



_Li
S ¼ −ϵijkr2

Z
dΩh _φxj∂kφi; ð23dÞ

where the overdots denote time derivatives, the angular
brackets stand for an average over an orbital period,Ω is the
solid angle, and ϵijk is the Levi-Civita symbol. Obviously,
the energy and angular momentum fluxes of the tensor
GWs are exactly the same as those in GR. In Eq. (23c), the
angular momentum flux of the tensor GWs comes from the
contributions of the spin and orbital angular momentum of
the tensor graviton. In Eq. (23d), the angular momentum
flux of the scalar GWs comes only from the orbital angular
momentum of the scalar GWs, because the scalar field is
spin-0.

2. Wave solutions

In the far zone, expanding the field equations (6) and (7)
to linear order in the perturbations hμν and φ, and imposing
the Lorentz gauge ∂μðhμν − 1

2
ημνhÞ ¼ 0, the wave equations

for the perturbations are given by [26,29]

□hμν ¼ −16πG
�
Tμν −

1

2
ημνT

�
; ð24Þ

ð□ −m2
sÞφ ¼ −∂φT; ð25Þ

where □≡ ημν∂μ∂ν is the d’Alembertian of the flat space-
time, and T ¼ ημνTμν. Note that here, Tμν is the energy-
momentum tensor of the matter, the energy-momentum
tensors of the perturbations do not contribute to the wave
equations in the linear regime. From the definition of
Tμν ≡ −ð2= ffiffiffiffiffiffi−gp ÞδSm=δgμν, using the matter action of
Sm ¼ −

P
a

R
maðϕÞdτa [see Eq. (10)], yields

Tμν ¼ ð−gÞ−1
2

X
a

maðϕÞuμauνaðu0aÞ−1δ3ðr − raÞ; ð26Þ

where uμa is the unit four-velocity of the ath body.
By substituting a plane wave φ ∼ eik

λxλ into
ð□ −m2

sÞφ ¼ 0, yields the dispersion relation ω2 ¼
k2 þm2

s , where ω and k are the frequency (energy) and
wave vector of the scalar GWs, and kλ ¼ ðω;kÞ. It is clear
that the scalar mode in fðRÞ can be excited only when its the
energy is greater than its mass. In general, ms ≪ ω for
compact binaries, because ms ∼ 10−12 Hz for a scalar fifth
force range on galactic scales (∼10 kpc) and ω ∼ 10−3 Hz
for a typical binary pulsar with a 1 hour orbital period.
Therefore, the scalar field mass is neglected in the calcu-
lations below.
By using the Green’s function method, the formal

solutions of the wave equations are

hTTij ðt; rÞ ¼ 4GΛij;klðnÞ
Z

d3r0
Tklðt − jr − r0j; r0Þ

jr − r0j ; ð27Þ

φðt; rÞ ¼ 1

4π

Z
d3r0

∂φTðt − jr − r0j; r0Þ
jr − r0j ; ð28Þ

where we have used hTTij ¼ Λij;klhkl and Λij;klδkl ¼ 0,
Λij;klðnÞ is the Lambda tensor as defined in [39], and
n ¼ r=r is a unit vector in the direction of r. Here the
spatial (source point r0) integration region is over the near
zone, the field point r is in the far zone, i.e., jr0j ≪ jrj, such
that jr − r0j ¼ r − r0 · nþOðr02=rÞ. Using this, the wave
solutions can be expanded in the sum of a series of
multipole moments,

hTTij ðt;rÞ ¼
4G
r
Λij;klðnÞ

X∞
l¼0

1

l!
∂
l
t

Z
d3r0ðr0 ·nÞlTklðt−r;r0Þ;

ð29Þ

φðt; rÞ ¼ 1

4πr

X∞
l¼0

1

l!
∂
l
t

Z
d3r0ðr0 · nÞl∂φTðt − r; r0Þ; ð30Þ

where ∂
l
t ≡ ð∂=∂tÞl.

3. Orbital decay

According to the balance law, the decay rates of the
orbital energy and angular momentum equal to minus
the energy flux and angular momentum flux of GWs of the
emission, respectively. For binary pulsar systems, substi-
tuting the multipole moment expressions (29) and (30) of
the wave solutions into the expressions (23) of the energy
and angular momentum fluxes, performing a series of
calculations, up to the 2.5PN order, and the decay rates of
the orbital energy and angular momentum are given and
summarized in Appendix C. Keeping only the leading order
terms in Eqs. (C1) and (C2), the results reduce to

_E ¼ −
32G4μ2m3

5a5
FðeÞ −G3μ2m2

6a4
ð1þ 1

2
e2Þ

ð1 − e2Þ52 ϵ
2
d; ð31Þ

_L ¼ −
32G

7
2μ2m

5
2

5a
7
2

ð1þ 7
8
e2Þ

ð1 − e2Þ2 −
G

5
2μ2m

3
2

6a
5
2

ϵ2d
ð1 − e2Þ ; ð32Þ

where FðeÞ is defined in Eq. (D2), ϵp and ϵc are the scalar
charges of the pulsar and its companion, ϵd ≡ ϵp − ϵc, and
μ≡m1m2=m. The orbital energy E and the orbital angular
momentum L are related to the orbital semi-major axis a
and eccentricity e through,

E ¼ −
GGmμ

2a
; L2 ¼ GGmμ2að1 − e2Þ: ð33Þ

Derivatives with respect to time yields
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_a¼ 2a2

GGmμ
_E; _e¼að1−e2Þ

GGmμe

�
_E−

ðGGmÞ12
a

3
2ð1−e2Þ12

_L

�
; ð34Þ

where _E < 0 is a negative contribution to _e, and _L < 0 is a
positive contribution to _e. Substituting Eqs. (31) and (32)
into the above expressions, and using the Kepler’s third law,
the decay rates of the orbital parameters Pb, e and a are
given by

_Pb¼−
192π

5

�
2πGm
Pb

�5
3 μ

m
FðeÞ−2π2Gμð1þ 1

2
e2Þϵ2d

Pbð1−e2Þ52 ; ð35Þ

_e¼−
608π

15

�
2πGm
Pb

�5
3μeð1þ 121

304
e2Þ

mPbð1−e2Þ52 −
π2Gμeϵ2d
P2
bð1−e2Þ32 ; ð36Þ

_a ¼ 1

3π

�
2πGm
Pb

�1
3
_Pb: ð37Þ

Here, the first and second terms are the quadrupole and
dipole radiation. It can be seen that the orbital decay for an
asymmetric binary system is dominated by the dipole
radiation and is typically faster than in GR. The above
results will return to the GR case when ϵp ¼ ϵc ¼ 0. In fact,
most extended theories of GR include extra helicity-0 or
helicity-1 degrees of freedom, both of which can open up
new channels of dipole gravitational radiation in asym-
metric binary systems [39]. Therefore, testing dipole
radiation can also probe whether gravity includes these
degrees of freedom. Note that, the above expressions are
also applicable to most theories of gravity with dipole
radiation, and the only difference is that the model-
dependent coefficients in dipole radiation are different.
The orbital evolution can be obtained by solving the

above system of nonlinear differential equations. In Fig. 1,
we show the temporal evolution of the orbital frequency
(fb ¼ 1=Pb) and eccentricity (e) of a NS-WD binary
system in fðRÞ theories with different values of f0ðR∞Þ.
The temporal evolution is given by numerically solving
Eqs. (35) and (36) for a 1.6 M⊙–0.4 M⊙ NS-WD binary
system with compactnesses of 0.2–5 × 10−5 and an
initial eccentricity of 0.4 and an initial orbital frequency
of 10−4 Hz (correspond to an initial orbital period of
2.8 hours). Observe that the orbital frequency and

FIG. 1. Temporal evolution of the orbital frequency and
eccentricity of a 1.6 M⊙–0.4 M⊙ NS-WD binary system with
compactnesses of 0.2–5 × 10−5 in fðRÞ theories with different
values of f0ðR∞Þ. The initial values of the orbital frequency and
eccentricity are 10−4 Hz and 0.4.

TABLE I. Timing model parameters for three binary pulsar systems. Numbers in parentheses represent 1σ (68.3%) uncertainties in the
last quoted digit.

PSR name J1141 − 6545 [42,43] J1738þ 0333 [44] J0348þ 0432 [45]

Orbital period, Pb (days) 0.1976509593(1) 0.3547907398724(13) 0.102424062722(7)
Projected semi-major axis, xp (s) 1.858922(6) 0.343429130(17) 0.14097938(7)
Eccentricity, e 0.171884(2) 0.34ð11Þ × 10−6 0.24ð10Þ × 10−5

Periastron advance, _ω (deg =yr) 5.3096(4) … …
Einstein delay, γ (ms) 0.773(11) … …
Observed _Pb, _Pobs

b ð10−13Þ −4.03ð25Þ −0.170ð31Þ −2.73ð45Þ
Intrinsic _Pb, _Pint

b ð10−13Þ −4.01ð25Þ −0.259ð32Þ −2.73ð45Þ
Shapiro delay, s 0.97(1) … …
Mass ratio, q ¼ mNS=mWD … 8.1(2) 11.70(13)
WD mass, mWD (M⊙) 1.02(1)a 0.181þ0.008

−0.007 0.172(3)
NS mass, mNS (M⊙) 1.27(1)a 1.46þ0.06

−0.05
a 2.01(4)a

WD radius, RWD (R⊙) 0.0080(1)b 0.037þ0.004
−0.003 0.065(5)

NS radius, RNS (km) 11.391(2)c 11.35(2)c 10.89(8)c

aThe masses are derived by assuming that GR is valid.
bThe WD radius is derived by the WD mass-radius relation [46].
cThe NS radius is derived by assuming APR EoS is valid [47].
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eccentricity decay typically faster in fðRÞ than in GR due to
the presence of dipole radiation.

D. Summary of PK parameters

For convenience, the PK parameters are rewritten and
summarized as follows:

_ω ¼ _ωGR

�
1 −

1

3
ϵpϵc

�
; ð38aÞ

γ ¼ γGR
�
1þ 1

3
ϵpϵc

�
; ð38bÞ

r ¼ rGR; ð38cÞ

s ¼ sGR
�
1 −

1

6
ϵpϵc

�
; ð38dÞ

_Pb ¼ _PGR
b

�
1þ 5

192

�
Pb

2πGm

�2
3 ð1þ 1

2
e2Þϵ2d

ð1 − e2Þ52FðeÞ

�
; ð38eÞ

_e ¼ _eGR
�
1þ 15

1216

�
Pb

2πGm

�2
3 ð1 − e2Þϵ2d
1þ 121

304
e2

�
; ð38fÞ

_a ¼ _aGR
�
1þ 5

192

�
Pb

2πGm

�2
3 ð1þ 1

2
e2Þϵ2d

ð1 − e2Þ52FðeÞ

�
; ð38gÞ

with

ϵpϵc ¼
3½lnf0ðR∞Þ�2

2ΦpΦc
; ϵ2d ¼ 3½lnf0ðR∞Þ�2

ðΦp −ΦcÞ2
2Φ2

pΦ2
c

;

ð38hÞ

where the superscript GR denotes the GR values of the
PK parameters (see Appendix D). The periastron advance,
Einstein delay and Shapiro delay are the PK effects of
1PN, 1PN and 1.5PN, respectively. The orbital decay rates
come from the contributions of 2.5PN quadrupole radiation
and 1.5PN dipole radiation. In binary pulsars, through
timing analysis, in general, the measurement of _Pb is more
accurate than that of _e (or _a), and hence the constraint on
the theory from _Pb is generally more stringent. Therefore,
in binary pulsars, _Pb and the first four PK parameters in
Eqs. (38) are usually used to test GR.

IV. BINARY PULSAR TESTS

In this section, we study how to place constraints on
fðRÞ gravity with binary pulsar observations.

A. Binary pulsars

Binary pulsars are crucial as the first indirect detectors of
GWs [16–18]. Binary pulsars possess extreme gravitational
environment, making them very useful tools for testing
strong-field gravity. The orbital decay in fðRÞ gravity is
dominated by the dipole radiation, which depends on the
difference in the compactnesses of pulsar and its
companion [see Eqs. (38)]. Therefore the asymmetric
systems like NS-WD binaries are one of the ideal targets
to test fðRÞ gravity. Moreover, although the theory param-
eter f0ðR∞Þ is degenerate with the compactnesses of
binaries, the degeneracy can be broken by the radii of
binaries. Therefore, in the PK parameters, there are only
three independent parameters mp, mc and f0ðR∞Þ to be
determined. For all these reasons, testing fðRÞ gravity by
binary pulsars requires that they can provide at least three
PK observables, including the intrinsic _Pint

b
2 caused by

gravitational radiation damping. Based on the above
analysis, we consider the following three NS-WD systems:
PSRs J1141 − 6545 [42,43], J1738þ 0333 [44] and
J0348þ 0432 [45]. Among these three NS-WD systems
only the latter two systems provide the measured value of
WD radius. The radius of the WD in the first system is
estimated by using the WD mass-radius relation [46]. For
each NS in these three systems, the NS radius is estimated

FIG. 2. Violin plots of parametersmNS,mWD and j1 − f0ðR∞Þj2
for binary pulsars. PSRs J1141 − 6545, J1738þ 0333 and
J0348þ 0432 are represented in gray, blue and orange, respec-
tively. The red lines represent the 95.4% confidence level (CL)
upper bound.

TABLE II. Parameters mNS, mWD, and upper bound on
j1 − f0ðR∞Þj at 95.4% CL for binary pulsars.

PSR name mNSðM⊙Þ mWDðM⊙Þ j1 − f0ðR∞Þj ≤
J1141 − 6545 1.27(1) 1.02(1) 8.9 × 10−7

J1738þ 0333 1.47(7) 0.181(8) 2.6 × 10−8

J0348þ 0432 2.01(4) 0.172(3) 3.3 × 10−8

2The intrinsic _Pint
b can be obtained from the observed value of

_Pobs
b by subtracting two main effects: the differential galactic

acceleration [40] and the Shklovskii effect [41].
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by using the mass-radius relation derived from the equa-
tions of state (EoS) based on the Akmal, Pandharipande,
and Ravenhall (APR)3 model [47]. The relevant parameters
for these three systems are listed in Table I.

B. Method and results

We perform aMonte-Carlo simulation to determine these
three unknown parameters mp, mc and f0ðR∞Þ for each of
these systems mentioned above. In this simulation, the
input quantities are mainly the PK observables, and each of
them is randomly sampled from a normal distribution with
mean and standard deviation equal to its observed value
and 1-σ uncertainty. Then, these unknown parameters as
the output quantities are estimated by numerically solving
the system of equations (38) of the PK parameters. This
process is repeated 106 times to construct the histograms of
these unknown parameters and determine their median
values and uncertainties. The results are shown in Fig. 2
and Table II.
PSR J1141 − 6545 is a 394 ms pulsar in a 4.74 hours

elliptical orbit with a WD companion. This system provides
the four PK observables _Pint

b , _ω, γ and s. The first three
observables are used to compute the three unknown
parameters mNS, mWD and f0ðR∞Þ, and the last is the only
one test on fðRÞ. By performing a Monte-Carlo simulation,
the unknown parameters for this system are derived and
shown in Fig. 2 and Table II. This system gives the upper
bound on j1 − f0ðR∞Þj of 8.9 × 10−7 at 95.4% CL. These
results imply the Shapiro delay shape s ¼ 0.96ð1Þ
(68.3% CL) in fðRÞ, which agrees with its observed value
0.97(1) (see Table I).

PSRs J1738þ 0333 and J0348þ 0432 are millisecond
pulsars in low-eccentricity orbits with low-mass WD
companions. Each of these two systems provides only
the three observables _Pint

b , WD massmWD and mass ratio q.
Using these observables and performing Monte-Carlo
simulations, we obtain the upper bounds on j1 − f0ðR∞Þj
of 2.6 × 10−8 and 3.3 × 10−8 at 95.4% CL from PSRs
J1738þ 0333 and J0348þ 0432 (see Fig. 2 and Table II),
respectively. These results rule out significant strong-field
deviations of gravity from GR, and confirm that GR is a
correct theory of gravity for asymmetric systems of strong
gravity. PSR J1738þ 0333 is the most constraining binary
pulsar for testing fðRÞ in these binary pulsar systems.
The mass-mass diagrams for PSRs J1141 − 6545,

J1738þ 0333 and J0348þ 0432 are shown in Figs. 3
(a)–3(c), respectively. These constraints on mNS and mWD
in GR (solid) and in fðRÞ (dashed) are based on the
observables of the PK parameters, WD mass and mass
ratio. The PK constraint curves in fðRÞ (dashed) are
obtained by giving the deviation parameter j1 − f0ðR∞Þj
an upper limit (see Table II). In Fig. 3(a), for a very small
value of 8.9 × 10−7 of j1 − f0ðR∞Þj, the _ω, γ and s
constraint curves in fðRÞ (dashed) are exactly covered
by those in GR (solid). The _Pb constraint curves in fðRÞ
(blue dashed) are significantly different from that in GR
(red solid), because the stronger dipole radiation appears in
fðRÞ. Therefore, the constraint on fðRÞ from PSR J1141 −
6545 mainly comes from the measured value of _Pint

b . In
Figs. 3(b) and 3(c), the WD massmWD and mass ratio q are
theory-independent, therefore the constraints on fðRÞ from
PSRs J1738þ 0333 and J0348þ 0432 only come from the
measured value of _Pint

b . These constraints from _Pint
b exclude

significant dipole radiation deviations, which indicates no
solid evidence of the existence of helicity-0 or helicity-1
degrees of freedom.

(a) (b) (c)

FIG. 3. Mass-mass diagrams for the NS-WD PSRs J1141 − 6545, J1738þ 0333 and J0348þ 0432. In (a), for _ω, γ and s, the dashed
curves (fðRÞ) are covered by the solid curves (GR). In (b) and (c), q andmWD are independent of specific gravity theories. The width of
each curve represents �1σ error bounds. The gray regions are ruled out by the condition s≡ sin i ≤ 1.

3So far, the NS EoS is not fully known. Here we consider the
APR model and assume that it is valid.
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V. CONCLUSIONS

Chameleon fðRÞ gravity is a natural alternative to GR. In
this paper, in the framework of chameleon fðRÞ, we studied
the full PK effects of binary pulsars, and constrained the
theory by using the observed PK parameters of NS-WD
binary pulsar systems. The PK effects in chameleon fðRÞ
differ from those in GR and the deviations are quantified by
a combination of theory parameter f0ðR∞Þ and star’s
compactness. Because of the degeneracy between them,
the theory parameter cannot be constrained alone. The
parameter degeneracy is broken by using the mass-radius
relation, which allows us to place constraints on theory
parameter. The temporal evolution of the orbital period and
eccentricity is typically faster than in GR due to the
emission of dipole radiation in chameleon fðRÞ. We used
the three NS-WD binary pulsars to place constraints on
chameleon fðRÞ by performing Monte-Carlo simulations.
These constraints can also be thought of as tests of dipole
radiation, which can probe whether GWs include extra
helicity-0 or helicity-1 polarization states. The results show
that PSR J1738þ 0333 is the most constraining binary
pulsar for testing chameleon fðRÞ in these systems. The
significant strong-field deviations from GR are excluded by
binary pulsar tests. All tests show good agreement with GR,
which indicates that GR is correct for asymmetric systems
of strong gravity.
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APPENDIX A: CHAMELEON CONSTRAINTS
ON f ðRÞ

In chameleon fðRÞ gravity, the chameleon mechanism
allows the theory to escape the tight solar system tests.
Using Eq. (2), the constraint conditions (9) of the chame-
leon mechanism can be translated into the following
constraints on the functional form of fðRÞ [31].

dV
dϕ

¼ MPlffiffiffi
6

p
f02

½Rf0 − 2f� < 0;

d2V
dϕ2

¼ 1

3

�
R
f0

þ 1

f00
−
4f
f02

�
> 0;

d3V
dϕ3

¼ 2

3
ffiffiffi
6

p
MPl

�
3

f00
þ f0f000

f003
þ R
f0

−
8f
f02

�
< 0; ðA1Þ

where a prime denotes differentiation with respect to R,
and f ≡ fðRÞ.

APPENDIX B: PN SOLUTIONS

Here we derive the PN solutions of the field equations in
the near zone. In the PN formalism [5,34], the tensor and
scalar fields are decomposed as

g00 ¼ −1þ h
ð2Þ

00 þ h
ð4Þ

00 þ � � � ;

g0j ¼ h
ð3Þ

0j þ � � � ;

gij ¼ δij þ h
ð2Þ

ij þ � � � ;

ϕ ¼ ϕ∞ þ φ
ð2Þ þ φ

ð4Þ þ � � � ; ðB1Þ

where the superscript (n) means that the quantity is of order
OðvnÞ, and ϕ∞ is the physical vacuum of the scalar field in
the background (i.e., the scalar background) which depends
on the background density.
By using the matter Lagrangian (10), performing the PN

expansions of the field equations (6) and (7), and imposing
the PN gauge (hμi;μ − 1

2
hμμ;i ¼ 0 and hμ0;μ − 1

2
hμμ;0 ¼ − 1

2
h00;0)

[5,34], the PN field equations are given by

∇2 h
ð2Þ

00 ¼ −8πG
X
a

maδ
3ðr − raÞ; ðB2aÞ

∇2 h
ð2Þ

ij ¼ −8πGδij
X
a

maδ
3ðr − raÞ; ðB2bÞ

∇2 h
ð3Þ

0j þ
1

2
h
ð2Þ

00;0j ¼ 16πG
X
a

mav
j
aδ3ðr − raÞ; ðB2cÞ

∇2 h
ð4Þ

00þ
1

2
∇2 h

ð2Þ2
00− h

ð2Þ
00∇2 h

ð2Þ
00− h

ð2Þ
jk h
ð2Þ

00;jk

¼−8πG
X
a

maδ
3ðr−raÞ

�
3

2
v2a− h

ð2Þ
00−

1

2
h
ð2Þ

ijδijþsa
φ
ð2Þ

ϕ∞

�
;

ðB2dÞ

□ðφð2Þ þ φ
ð4ÞÞ ¼ 8πM2

Pl

ϕ∞

X
a

Gmasaδ3ðr − raÞ

×

�
1 −

1

2
v2a −

X
b≠a

Gmb

rb

− 2
s0a
sa

�
MPl

ϕ∞

�
2X
b≠a

Gmbsb
rb

�
; ðB2eÞ

where va is the velocity of the ath body, and
ra ¼ jr − raðtÞj. The mass ma ≡maðϕ∞Þ is the inertial
mass at ϕ∞, and
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sa ≡ ∂ðlnmaÞ
∂ðlnϕÞ

����
ϕ∞

; s0a ≡ s2a − sa þ
∂
2ðlnmaÞ
∂ðlnϕÞ2

����
ϕ∞

; ðB3Þ

are respectively the first and second sensitivities [32,48],
which characterize how the gravitational binding energy
of a strongly self-gravitating body responds to its
motion relative to the extra fields. Note that here we

have neglected the scalar field mass ms of cosmological
scales and the potential VðϕÞ corresponding to the dark
energy, since these effects are very weak in the near
zone.
Solving the above system of equations, and summing the

relevant components, the PN solutions of the field equa-
tions are

g00 ¼ −1þ 2
X
a

Gma

ra
− 2

�X
a

Gma

ra

�
2

þ 3
X
a

Gmav2a
ra

− 2
X
a

X
b≠a

G2mamb

rarab

�
1þ 1

2
ϵaϵb

�
þOðv6Þ;

g0j ¼ −
7

2

X
a

Gmav
j
a

ra
−
1

2

X
a

Gma

r3a
ðra · vaÞðrj − rjaÞ þOðv5Þ;

gij ¼ δij

�
1þ 2

X
a

Gma

ra

�
þOðv4Þ;

φ ¼ −MPl

X
a

Gmaϵa
ra

�
1 −

1

2
v2a −

X
b≠a

Gmb

rab
−
s0a
sa

MPl

ϕ∞

X
b≠a

Gmbϵb
rab

þ ra
2

∂
2ra
∂t2

�
þOðv6Þ; ðB4Þ

where rab ¼ jraðtÞ − rbðtÞj. Here, the quantity ϵa is usually
called the scalar charge, and connects with the sensitivity sa
by ϵa ¼ 2MPlsa=ϕ∞ [26]. For a static spherically sym-
metric source of homogeneous density, the scalar charge is
given by [25]

ϵa ¼
ϕ∞ − ϕa

MPlΦa
; ðB5Þ

where ϕa is the position of the effective potential minimum
inside the ath body, and Φa ¼ Gma=Ra is the compactness

of the ath body and Ra is its radius. Note that ϕa is
generally inversely correlated to the matter density [25].
For a compact object, its density is always much larger than
the background density, and therefore there are ϕ∞ ≫ ϕa
and ϵa ≃ ϕ∞=ðMPlΦaÞ.

APPENDIX C: ORBITAL ENERGY AND
ANGULAR MOMENTUM DECAYS

In fðRÞ gravity, the decay rates of the orbital energy and
angular momentum are summarized as follows:

_E ¼ −
G3μ2m2ð1þ 1

2
e2Þ

6a4ð1 − e2Þ52 ϵ2d −
G4μ2m3

a5ð1 − e2Þ72 ×
�
32

5

�
1þ 73

24
e2 þ 37

96
e4
��

1þ 3

2
ϵ1ϵ2

�
þ e2

4

�
1þ e2

4

�
ϵ2m

− ϵd

�
ϵd1 þ ϵd2

3
þ
�
ϵd1 þ

13

6
ϵd2

�
e2 þ

�
ϵd1
8

þ 5

12
ϵd2

�
e4
�
þ 8

15

�
1þ 99

32
e2 þ 51

128
e4
�
ϵ2q −

e2

6

�
1þ e2

4

�
ϵmϵq

−
1

30

�
1 − 18e2 −

39

8
e4
�
ϵdϵo

	
; ðC1Þ

_L ¼ −
Gμ2ðGmÞ32
6a

5
2ð1 − e2Þ ϵ

2
d −

Gμ2ðGmÞ52
a

7
2ð1 − e2Þ2 ×

�
32

5

�
1þ 7

8
e2
��

1þ 5

4
ϵ1ϵ2

�
−
ϵdϵo
60

ð2 − 17e2Þ þ ϵ2q
15

ð8þ 7e2Þ

−
1

6
½2ðϵd1 þ ϵd2Þ þ e2ðϵd1 þ 4ϵd2Þ�ϵd

	
; ðC2Þ
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where we have defined

ϵm ≡ ϵ1 þ ϵ2 þ
ϵ1m2 þ ϵ2m1

m
; ϵd ≡ ϵ2 − ϵ1;

ϵd1 ≡ ϵ2m1 − ϵ1m2

m
; ϵd2 ≡ ϵ2m2

1 − ϵ1m2
2

2m2
;

ϵq ≡ ϵ2m1 þ ϵ1m2

m
; ϵo ≡ ϵ2m2

1 − ϵ1m2
2

m2
: ðC3Þ

Here the subscriptsm, d, q and o denote monopole, dipole,
quadrupole and octupole, respectively. In Eqs. (C1) and
(C2), the first term is the scalar dipole radiation of 1.5PN
order, and the second term mainly comes from the con-
tribution of the tensor quadrupole radiation of 2.5PN order.
Although the scalar monopole radiation is the leading
term of the multipole expansion of scalar radiation, it
is of the same 2.5 PN order as the quadrupole radiation.
The scalar monopole radiation carries energy but not
angular momentum, because the scalar field is spin-0. In
the limit of ϵ1 → 0 and ϵ2 → 0, these results reduce to those
in GR.

APPENDIX D: PK PARAMETERS IN GR

In GR, the PK parameters can be related to the masses of
the two bodies and to measured Keplerian parameters by
the equations,

_ωGR ¼
�
2πGm
Pb

�2
3 6π

Pbð1 − e2Þ ;

γGR ¼ e
Pb

2π

�
2πGm
Pb

�2
3 mc

m

�
1þmc

m

�
;

rGR ¼ Gmc;

sGR ¼
�
2πGm
Pb

�2
3 xp
Gmc

;

_PGR
b ¼ −

192π

5

�
2πGm
Pb

�5
3 μ

m
FðeÞ;

_eGR ¼ −
608π

15

�
2πGm
Pb

�5
3 μeð1þ 121

304
e2Þ

mPbð1 − e2Þ52 ;

_aGR ¼ −
64

5

�
2πGm
Pb

�
2 μ

m
FðeÞ; ðD1Þ

with

FðeÞ≡ ð1 − e2Þ−7
2

�
1þ 73e2

24
þ 37e4

96

�
; ðD2Þ

where m≡mp þmc is the total mass, and mp, mc, Pb, e
and xp are the pulsar mass, companion mass, orbital period,
orbital eccentricity and projected semimajor axis of the
pulsar orbit, respectively.
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