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We study the superradiant instability in scalar-tensor theories of gravitation, where matter outside a black
hole provides an effective mass to the scalar degree of freedom of the gravitational sector. We discuss this
effect for arbitrarily spinning black holes and for realistic models of truncated thin and thick accretion disks
(where the perturbation equations are nonseparable), paying particular attention to the role of hot coronal
flows in the vicinity of the black hole. The system qualitatively resembles the phenomenology of plasma-
driven superradiant instabilities in general relativity. Nevertheless, we show that the obstacles hampering
the efficiency of plasma-driven superradiant instabilities in general relativity can be circumvented in scalar-
tensor theories. We find a wide range of parameter space where superradiant instabilities can be triggered in
realistic scenarios, and discuss the constraints on scalar-tensor theories imposed by this effect. In particular,
we argue that the existence of highly spinning accreting black holes is in tension with some scalar-tensor
alternatives to the dark energy, e.g., symmetron models with screening.
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I. INTRODUCTION

A. Motivation

Scalar-tensor theories are among the most interesting and
well-studied extensions of general relativity (GR). In this
class of theories, the gravitational sector includes one or
more scalar fields which are nonminimally coupled to the
standard metric. A quite general action of scalar-tensor
theories with one scalar field reads [1]:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½F ðϕÞR − ZðϕÞgμν∂μϕ∂νϕ

− UðϕÞ� þ Smðψm; gμνÞ; ð1Þ

where R is the Ricci scalar, gμν is the metric, ϕ is a scalar
field, and the last term denotes the action of matter fields
minimally coupled to the metric. Depending on the
expressions of the functions F , Z, and U, it is possible
to recover different theories. For example, for F ¼ ϕ,
Z ∝ ϕ−1, and U ¼ 0, Eq. (1) represents Brans-Dicke
theory. Actions with scalar fields nonminimally coupled
to gravity also arise from string theory, Kaluza-Klein-like
theories, and braneworld scenarios. These theories have
been intensively investigated in cosmology [2,3]. Likewise,
astrophysical implications of scalar-tensor theories for
compact objects have been explored in detail [4].
A crucial requirement for these theories is that their

weak-field limit, i.e., length scales between the micrometer
and the astronomical unit, must be consistent with GR,
which in this regime has been tested with extreme precision
[4,5]. Typically, scalar-tensor theories with interesting

cosmological phenomenology must feature some screening
mechanism, hiding the scalar field on local scales [6,7]. It is
thus relevant to study the phenomenology of these theories
in the strong gravity regime, where deviations from GR
might be more dramatic. In this work, we perform a
detailed analysis of matter-triggered superradiant instabil-
ities for spinning black holes (BHs) in scalar-tensor
theories (see [8] for an overview on BH superradiance).
This effect was unveiled in [9,10], where it was shown that
the presence of matter outside BHs can trigger either
spontaneous scalarization or a superradiant instability in
the system, due to the scalar field acquiring an effective
mass squared proportional to the trace of the stress-energy
tensor of the surrounding matter. The scope of this work is
to investigate whether this superradiant instabilities can
arise if one considers realistic models of accreting BHs. A
similar analysis was recently performed in [11] in the
context of plasma-driven [12,13] superradiant instabilities
of photons in GR for BHs accreting a tenuous plasma,
using a spin-0 toy model (see also [14] for an extension to
the Proca case, and [15,16] for a recent analysis of photon-
plasma interactions in curved spacetime). It was shown in
[11] that the complex geometry of accretion disks and the
high values of plasma density near the BH can significantly
quench the instability.
Nevertheless, we show that this problem can be circum-

vented in scalar-tensor theories for realistic accretion-disk
configurations, because the effective mass depends also on
the scalar-tensor coupling. For a cold, collisionless plasma
the effective photon mass corresponds to the plasma
frequency [12,13,15,16]:
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ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2ne
me

s
≈ 10−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne

10−3 cm−3

r
eV; ð2Þ

where ne is the number density of the free electrons (with
mass me and charge e) in the plasma. BH superradiant
instabilities are most effective when the gravitational
coupling ωpM ∼Oð0.1Þ, where M is the BH mass, and
highly suppressed if ωpM ≫ 1. For astrophysically rel-
evant BHs with M > M⊙, this condition on the coupling
implies ωp ≲ 10−11 eV. Thus, the effective mass lies in a
range able to trigger superradiant instabilities if
ne ∼ 10−3 − 10−2 cm−3, i.e., for plasma densities typical
of the interstellar medium [13]. The plasma density near an
accreting BH is several orders of magnitude bigger [11]. In
this case, the effective mass is too large to induce an
instability on a sufficiently short timescale.
However, as we shall later discuss, in scalar-tensor

theories the effective mass squared is [9,10]

μ2eff ¼ −2αT ∼ 2αρ; ð3Þ

where T is the trace of the stress-energy tensor, ρ ¼ mNne
is the matter-energy density of the gas (with nucleon mass
mN), α is a free parameter related to the nonminimal
coupling of the scalar field, and the last step above is valid
for a nonrelativistic disk (see details below). Thus, in the
scalar-tensor case the effective mass depends on n1=2e as in
the standard photon-plasma case but, crucially, also on a
free effective coupling α. As we shall discuss, depending on
the value of α, the effective mass can be in the optimal
range to trigger a superradiant instabilities for realistic
plasma configurations around BHs.
Another effect that can drastically quench plasma-driven

BH superradiant instabilities are nonlinearities [17]. While
transverse waves with frequency ω < ωp do not propagate
in a cold plasma within linear theory, nonlinear effects
make the plasma transparent if the electric field is higher

than Ecrit ¼ me
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p − ω2

q
[18,19]. This effectively corre-

sponds to the fact that the plasma frequency is decreased by
a Lorentz boost factor arising from the backreaction of the
plasma four-velocity. During the superradiant growth of the
electric field the Lorentz factor can be significantly large,
severely limiting the angular momentum and energy
extraction through plasma-driven superradiant instabilities
within GR [17]. As we shall later discuss, the situation is
radically different in the case of scalar-tensor theory. Also
in this case the backreaction induces a change in the plasma
four-velocity but, because the effective mass depends only
on the trace of the stress-energy tensor, it is not suppressed
by a Lorentz factor.
Throughout this paper, we use G ¼ c ¼ 1 units and the

ð−;þ;þ;þÞ signature.

II. SETUP

A. General equations and framework

The action in Eq. (1) is in the so-called Jordan frame,
where the scalar field is nonminimally coupled to the
metric. By performing a conformal transformation of the
metric and a field redefinition for the scalar field,

gEμν ¼ F ðϕÞgμν;

ΦðϕÞ ¼ 1

4π

Z
dϕ

�
3

4

F 0ðϕÞ2
F ðϕÞ2 þ 1

2

ZðϕÞ
F ðϕÞ

�
1=2

;

AðΦÞ ¼ F−1=2ðϕÞ;

VðΦÞ ¼ UðϕÞ
F 2ðϕÞ ; ð4Þ

it is possible to describe the system in the so-called Einstein
frame, where the action takes the form:

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
RE

16π
−
1

2
gEμν∂μΦ∂

νΦ −
VðΦÞ
16π

�
þ Sðψm;AðΦÞ2gEμνÞ: ð5Þ

In the Einstein frame, the scalar field is minimally coupled
to the gravity sector, but matter fields are coupled to the
effective metric AðΦÞ2gEμν, so that the weak equivalence
principle is preserved while its strong version is violated. In
this frame, we assume a generic analytic behavior for the
potentials around a GR solution with a constant value Φð0Þ
of the scalar field,1

V ¼
X
n¼0

VnðΦ −Φð0ÞÞn; ð6Þ

A ¼
X
n¼0

AnðΦ −Φð0ÞÞn: ð7Þ

Then, by expanding the field equations for φ≡Φ−Φð0Þ≪1,
it is possible to rearrange the field equation for the scalar field
in a GR background as (see [9,10] for details)

½□E − μ2effðr; θÞ�φ ¼ 0; ð8Þ

with an effective mass squared term

1We consider the field equations in the Einstein frame but
laboratory clocks and rods refer to the Jordan-field metric
gμν ¼ A2gEμν. Physical asymptotic quantities related to the metric
(e.g., masses and angular momenta) are obtained from their
Einstein-frame counterpart by rescaling the latter with suitable
powers of AðΦð0ÞÞ. In practice, recovering GR in the weak-field
regime requires AðΦð0ÞÞ ≈ 1 so the distinction between Einstein-
and Jordan-frame asymptotic quantities is negligible for our
purposes.
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μ2effðr; θÞ ¼
V2

8π
− 2αTEðr; θÞ; ð9Þ

where α ¼ A2=A0 Following [10] we focus on asymptoti-
cally-flat spacetimes (which requires V0 ¼ V1 ¼ 0) and on
theories admitting GR vacuum solutions (which requires
A1 ¼ 0). For the rest of this analysis we will also assume
V2 ¼ 0. This term is related to a standard bare mass, and
neglecting it corresponds to assuming a massless field.
We are therefore left with a Klein-Gordon equation with

an effective mass squared proportional to the trace of the
stress-energy tensor of the surrounding matter. Since the
matter backreaction on the metric is typically negligible,
and owing to BH no-hair theorems in this class of theories
[20], the background is described by the Kerr solution. The
sign of the parameter α has a crucial impact on the
phenomenology of the system [9,10]. If α < 0 the effective
mass squared in Eq. (8) is negative, and leads to a possible
tachyonic instability and to a scalarization of the BH. If
instead α > 0, the effective mass squared is positive and the
system can undergo a superradiant instability. In this work
we are interested in the latter case.
Indeed, it is well known that spinning compact objects

are unstable against massive bosonic degrees of freedom
(see [8] for an overview). For a bosonic field with mass
term μ ≲ 0.1=M, the spectrum is approximately hydrogenic
and modes are unstable when their frequency ωR ≈ μ
satisfies the superradiance condition 0 < ωR < mΩH,
whereΩH is the BH angular velocity andm is the azimuthal
number of the mode. As a result of this instability, a
macroscopic bosonic condensate forms around the BH,
extracting energy and angular momentum from the latter.
The same physical effect occurs if the bosonic field
possesses an effective mass, although in such case the
instability depends also on the geometry of the effective-
mass term, as we shall discuss.

B. Effective mass

1. Stress-energy tensor of accretion disks

As previously discussed the effective mass-squared term
depends on the trace of the stress-energy tensor of the
matter fields surrounding the BH. In this section we
characterize this term for realistic accretion disk profiles.
We consider different types of effective mass. In general,

the stress energy-tensor of an accretion disk can be fully
described by four different components [21]:

Tμ
ν ¼ ðTμ

νÞFLU þ ðTμ
νÞVIS þ ðTμ

νÞMAX þ ðTμ
νÞRAD; ð10Þ

which are, respectively, the fluid component, the viscosity
component, the electromagnetic component, and the radia-
tion one. Most models of accretion disks assume a particular
formof the stress energy-tensor. For example, thick accretion
disk models rely on a perfect fluid approximation, which

states that ðTμ
νÞVIS¼ðTμ

νÞMAX¼ðTμ
νÞRAD¼0. Throughout

this work, we will consider this assumption, in which the
stress energy-tensor reads

ðTμ
νÞFLU ¼ ðρuμÞðWuνÞ þ δμνP; ð11Þ

where ρ, W, P are respectively the mass-energy density,
enthalpy, and pressure. By neglecting the internal energy
density of the fluid, the stress-energy tensor trace reads
T ¼ −ρþ 3P. Note that while the perfect fluid approxima-
tion holds for thick disks, in our case we can use the same
approximation also for thin disks. Thin disks have a non-
vanishing stress part, which for example in the Shakura-
Sunyev model can be described using a nearly linear
viscosity approximation [22]. However, the stress part can
be written as ðTμ

νÞVIS ∝ σμν , where σμν is the shear tensor of
the four-velocity of the fluid. Since the shear tensor is by
definition traceless, the effective mass is independent of the
viscosity.
In what follows we will also neglect the effect of

pressure, as it is subdominant. Indeed, if one for example
assumes the equation of state of an ideal gas, then P ¼ c2sρ,
where cs is the speed of sound of the fluid. Since for
accretion disks cs is at least two orders of magnitude
smaller than the speed of light, we are in the nonrelativistic
regime, P ≪ ρ, and we can safely neglect pressure cor-
rections to the effective mass. Thus, the trace of the stress-
energy tensor in our models is simply T ≈ −ρ.

2. Accretion disks features: Truncation,
typical densities, and coronae

In the following, we will be interested in accretion
environments that exhibit a sharp cutoff sufficiently far
away from the BH horizon. In these models the disk creates
a cavity that can potentially trap scalar modes leading to an
instability. A system that satisfies this requirement is the
truncated disk accretion model. Truncated disk models are
commonly used in BH accretion physics and, depending on
the accretion rate, the location of the truncation can be close
to the innermost stable circular orbit (ISCO) (high/soft
state) or very far from it, even at 200 − 400M or more (low/
hard state). Whenever this happens, in the region within the
truncation radius and down to the vicinity of the BH, only a
hot coronal flow can exist (see e.g., [23–27]). The
Comptonization of hot electrons in the coronal medium
is believed to explain the hard, x-ray tail that follows the
black-body like emission spectrum of the disk. For this
reason, the truncated diskþ corona model succeeds in
explaining features in the emission spectrum [24].
Another ideal configuration producing sufficiently wide

cavities in the density profile near the BH are counter-
rotating disks that extend all the way to the ISCO. In this
case, the ISCO is sufficiently far away from the horizon
(6 ≤ rISCO=M ≤ 9 depending on the BH spin) so that the
cavity is able to trap modes. Finally, another interesting
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possibility are magnetically arrested disks, where a strong
poloidal magnetic field disrupts the disk at a relatively large
radius, creating a cavity. Also this model supports the
presence, inside the cavity, of a hot, low-density coronal
flow [28]. In general, these flows are always very tenuous
and quasispherical, and their density is lower than the disk’s
one by some orders of magnitude (see [29] for an estimate
or, e.g., [30,31] for GR magneto-hydrodynamics simula-
tions). In what follows, we shall therefore describe trun-
cated thin and thick disks by taking into account an
additional coronal structure.

3. Plasma profiles

We consider different models of density profiles, dis-
cussed below. In all models, since the timescales of interest
are much shorter than the typical BH accretion timescales
[16], we shall neglect the time dependence of the matter
fields. Moreover, we shall restrict to axisymmetric con-
figurations in which ρ ¼ ρðr; θÞ (that of course reduce to
spherical configurations for purely radial profiles).
Model I describes a thick diskþ corona system where

the corona is described by a constant asymptotic term. The
full profile reads

μ2eff;Iðr; θÞ ¼ α

�
ρHΘðr − r0Þ

�
1 −

r0
r

��
r0
r

�3
2 þ ρC

�
; ð12Þ

where ΘðxÞ is the Heaviside step function. When the scalar
coupling α ¼ 1, this model coincides with the one studied
in [11] with a suitable choice of the parameters ρH, ρC, and
r0. In order to investigate the role of the mass at spatial
infinity, in Model II we truncate the corona at r0:

μ2eff;IIðr;θÞ¼α

�
ρHΘðr−r0Þ

�
1−

r0
r

��
r0
r

�3
2þρCΘðr0−rÞ

�
:

ð13Þ

In Model III we investigate the effects of the sharp cutoff
produced by the Heaviside function in Models I and II by
replacing it with a sigmoidlike function:

μ2eff;IIIðr; θÞ ¼
αρH

1þ e−2ðr−r0Þ

�
1 −

r0
rð1þ β

r4Þ

��
r0
r

�3
2

: ð14Þ

Figure 1 shows that, with a suitable choice of β, Model
III is very similar to Model I, except that the effective mass
does not display a sharp cutoff.
Model IV describes a realistic scenario for a standard,

truncated thin disk with an additional structure made by an
ADAF-type corona which extends in the inner zones where
the disk evaporates [32,33]. We therefore model the disk
using the Shakura-Sunyev solution and the corona by the
self-consistent solution described in [34]. In our analysis,
we vary the coronal density by several orders of magnitude

to investigate its effect on the instability. Furthermore, in
thin disks the thickness is H=R ≪ 1. To try to capture this
effect we multiply the radial Shakura-Sunyev profile by a
sin2 θ [11]. As a matter of fact, even more thinner profiles
can be considered, but they would require higher angular
resolution when computing the spectrum (see Sec. III). As
for the ADAF-type corona, the geometry is quasispherical
so we can safely neglect deviations from spherical sym-
metry. Therefore, in Model IV we consider the following
effective mass:

μ2eff;IVðr; θÞ ¼ α

�
ρHΘðr − r0Þ

�
1 −

ffiffiffiffiffi
r0
r

r �11
20

�
r0
r

�15
8

sin2θ

þ ρC

�
1

r

�3
2

�
: ð15Þ

Finally, to explore the difference between the radial
geometry of a thin and a thick disk, in Model V we also
consider a radial profile typical of a thick-disk axisym-
metric model with the same corona as in Model IV:

μ2eff;Vðr;θÞ

¼α

�
ρHΘðr−r0Þ

�
1−

r0
r

��
r0
r

�3
2

sin2θþρC

�
1

r

�3
2

�
: ð16Þ

Note that the salient features of these models can be
qualitatively captured by three parameters, which, on
physical grounds, should produce the following effects
(see also Fig. 1):

(i) Parameter ρH represents the height of the barrier. If
this value is high enough, it can naturally confine the

FIG. 1. Radial profile of the effective mass in Model I with
αρCM2 ¼ 0.9, αρHM2 ¼ 20 and r0 ¼ 8M (solid blue) and Model
III with β ¼ 500 (dashed orange). The profiles are similar, but in
Model III the sharp cutoff is smoothed out. For convenience, we
have chosen unrealistic values to better highlight the three
fundamental parameters (r0; αρC; αρH) that govern the salient
features of the geometry.
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scalar modes into a cavity. The higher the ρH the
more efficient the confinement. As ρH represents a
potential barrier rather than a bare mass (at variance
with the standard superradiant instability from mas-
sive bosons), increasing ρH should not stabilize the
modes, but only confine them better.

(ii) Parameter r0 is the width of the cavity. If it is large
enough, the barrier can efficiently confine the modes.
In particular, a necessary requirement is that thewidth
of the cavity must be greater than (or at least
comparable to) theComptonwavelength of themodes
[35]. In the following we consider two representative
truncation values: r0 ¼ 8M and r0 ¼ 14M.

(iii) Parameter ρC, instead, represents an offset that
introduces an effective asymptotic mass to the scalar
field, thus contributing to stabilizing the modes.
Note also that, if the barrier is high enough and the
modes are strongly confined in it, ρC should be
relevant only inside the cavity, because the part of
the scalar field transmitted outside should be neg-
ligible. This effect will be explored by comparing
Model I with Model II.

In particular, as we shall later discuss, in the disk μeffM ∼ffiffiffiffiffiffiffiffi
αρH

p
M should be sufficiently large for the barrier to

confine the mode efficiently, whereas in the corona μeffM ∼ffiffiffiffiffiffiffiffi
αρC

p
M corresponds to the gravitational coupling that

governs the effective mass of the field inside the cavity.
As such,

ffiffiffiffiffiffiffiffi
αρC

p
M ≪ Oð0.1Þ for the instability not to be

quenched.

III. NUMERICAL METHODS FOR
NONSEPARABLE EQUATIONS IN

ARBITRARILY SPINNING SPACETIME

In this section we present the numerical methods used to
compute the spectrum of accreting spinning BHs in scalar-
tensor theories. We assume a stationary background and a
e−iωt time dependence for the perturbation, where ω ¼
ωR þ iωI is the (complex) eigenfrequency. Unstable modes
correspond to solutions having ωI > 0, which exponen-
tially grow in time. In the specific case of superradiant
instabilities, this exponential growth is triggered if the
mode satisfies the superradiant condition [8], i.e.,
0 < ωR < mΩH ¼ ma

r2þþa2, where aM is the BH angular

momentum, rþ is the radius of its event horizon, and m
is the azimuthal number of the mode.
We use a procedure consisting in two different numerical

methods, both in the frequency domain. We first use a
direct shooting method [36] for finding solutions of Eq. (8)
in the case of spherical symmetry, i.e., for nonspinning BHs
and when the effective mass profile depends only on the
radial coordinate. Imposing suitable boundary conditions at
the horizon and at infinity, the shooting method allows us to
solve the eigenvalue problem. Then, the wave functions and
eigenfrequencies are used as starting guess solutions for

computing the spinning case, by applying a numerical
method suitable for nonseparable differential equations. In
particular, following [37], we express Eq. (8) as a nonlinear
eigenvalue problem which we solve with the nonlinear
inverse iteration algorithm [38] (see below for details).
Starting with the spherical symmetric case, we can iter-
atively solve the problem by gradually increasing the spin
until we obtain the desired spinning configuration. With
this method we can study also quasiextremal BHs and
generic nonseparable equations.
For the case of effective mass profiles having a θ-

dependence through sin2 θ, the field equations are non-
separable even for a nonspinning BH. In this case we
introduce an extra iterative cycle in the procedure. We
express the generic effective mass of any of the previous
models as

μ2effðr; θÞ ¼ μ2rðrÞð1 − k cos2 θÞ þ μ20ðrÞ; ð17Þ

where limr→∞ μrðrÞ ¼ 0, we introduced the fictitious
parameter k connecting purely radial profiles (k ¼ 0) with
θ-depending profiles (k ¼ 1), whereas μ20ðrÞ comes from
the BH corona. The extra cycle consists in applying the
nonlinear inverse iteration to finding the mode of a non-
spinning BH with a nonspherical density profile (k ¼ 1),
using solutions with k ¼ 0 as starting guess: at each
iteration we gradually increase k and use the previous
result as a guess, until we obtain the desired configuration
with k ¼ 1 and zero BH spin. Finally, we use the latter
solution as a starting guess to find the modes of a spinning
BHs with k ¼ 1, as previously explained. Details of the
numerical methods outlined above are given in the next
subsections.

A. Nonspinning BHs with radial density profiles:
Direct shooting method

In the direct shooting method, the system is integrated
from the horizon to infinity. In particular, using the ansatz

φðt; r; θ;ϕÞ ¼
X
l;m

RlmðrÞ
r

e−iωtYlmðθ;ϕÞ ð18Þ

in spherical symmetry, the Klein-Gordon equation can be
rearranged to obtain a Schrdinger-like equation

DRlm ¼ 0 ð19Þ

where fðrÞ ¼ 1–2M=r, M is the mass of the BH, and
we defined the differential operator D≡ d2

dr2�
þ ω2 −

fðrÞðlðlþ1Þ
r2 þ 2M

r3 þ μ2effÞ, where r� is the tortoise coordinate
givenbydr=dr� ¼ fðrÞ.Owing to the spherical symmetryof
the system, modes with different multipole numbers l,m are
decoupled. This equation is then solved by direct integration
imposing suitable boundary conditions. In particular, at the
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horizon the solution must be a purely ingoing wave, given
that the horizon behaves as a one-way membrane,

Rlm ∼ e−iωr�
X
n

bnðr − 2MÞn; ð20Þ

while at infinity, the leading-order general solution
reads:

Rlm ∼ Be−k∞r� þ Ceþk∞r� ; ð21Þ

wherek∞¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2∞−ω2

p
andμ∞ ¼ limr→∞ μeffðr; θÞ. Usually,

in the context of massive boson superradiant instabilities, the
appropriate condition is C ¼ 0, implying exponentially
damped solutions at infinity, i.e., quasibound states.
Nevertheless, in our system the confinement is provided
by a potential barrier in the vicinity of the BH, instead that by
an asymptotic mass. In particular, in realistic accretion
models the effective mass at infinity vanishes. The condition
C ¼ 0 therefore would not correspond to damped solutions
at infinity, but to ingoing waves from infinity. Clearly this
solution is not physical, as it would correspond to an energy
injection from infinity. Therefore, we must set the opposite
conditions B ¼ 0, which is the one that corresponds to
quasinormal modes (QNMs), i.e., outgoing waves at infinity
(see Ref. [39] for a review). In some sense, we are hence
looking for modes that were supposed to behave as QNMs if
wedid not have any effectivemass; however, due to the scalar
coupling to matter, these modes are confined by a barrier in
the vicinity of the BH, and are thus prone to the superradiant
instability if the BH spins sufficiently fast. The same applies
also when we consider nonvanishing mass at infinity,
because we are interested in quasibound states for which
μ∞ < jωj.
We have also adapted a variation of the classical shooting

method, where we integrate from the horizon to a fixed
point and from infinity to the same point, and impose
regularity of the wave function and its derivative to solve
the equations [12]. We checked that the result is indepen-
dent on the matching point and that the two methods give
the same results.

B. Nonseparable perturbations: Cebyšëv interpolation
and nonlinear eigenvalue problem

Let us now consider the case of nonseparable perturba-
tions, which is relevant for both spinning BHs and even for
nonspinning BHs if the effective mass depends on the
angular coordinate θ.
We assume an axisymmetric (Kerr) background so that

perturbations have a definite azimuthal number m. We
rewrite Eq. (8) in the following form:

�
1

ΔðrÞ ½L
2 þ a2cos2θðμ2effðr;θÞ−ω2Þ�− 1

ΔðrÞ
∂

∂r

�
ΔðrÞ ∂

∂r

�

−ω2 −
P2þ

ðr− rþÞ2
−

P2
−

ðr− r−Þ2
þ Aþ
r− rþ

−
A−

r− r−

þ μ2effðr;θÞ
�
1þ Bþ

r− rþ
−

B−

r− r−

��
φðt; r;θ;ϕÞ ¼ 0;

ð22Þ

whereA�¼∓2ω2MþP2
þþP2

−−ð8M2−a2Þω2

rþ−r−
,B� ¼ 2M2−a2

rþ−r−
�M,

r�¼M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p
,P�¼ma−2ωMr�

rþ−r−
,L2¼− 1

sinθ
∂

∂θðsinθ ∂

∂θÞ−
1

sin2θ
∂
2

∂ϕ2, andΔðrÞ ¼ ðr − rþÞðr − r−Þ. Note that the depend-
ence on k is contained inside μ2effðr; θÞ in the above equation.
At the horizon we must have ingoing waves,

φ ∼ ðr − rþÞiPþ ; ð23Þ

whereas, as previously discussed, we impose that there are
no waves coming from infinity,

φ ∼ r−1−
Mð2ω2−μ2∞Þ

k∞ ek∞r: ð24Þ

We apply the following ansatz for the scalar field [37]:

φðt; r; θ;ϕÞ ¼ FðrÞ
X
l;m

BlmðζðrÞÞYlmðθ;ϕÞe−iωt; ð25Þ

where

FðrÞ ¼
�
r − rþ
r − r−

�
iPþðr − r−Þ−1−

Mð2ω2−μ2∞Þ
k∞ ek∞ðr−rþÞ ð26Þ

captures the asymptotic behaviors of the solution.
Henceforth for simplicity we drop the index m from
Blm. In the numerical results presented in the next section
wewill always consider the casem ¼ 1. In the above ansatz
BlðζðrÞÞ are radial functions depending on the auxiliary
radial coordinate ζ ∈ ð−1; 1Þ, defined by the following
mapping

ζðrÞ ¼ r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rþðr − r−Þ þ r2−

p
r − r−

; ð27Þ

rðζÞ ¼ 4rþ þ r−ðζ2 − 1Þ
ðζ − 1Þ2 : ð28Þ

By performing a spherical harmonics decomposition of
Eq. (22), we obtain an infinite cascade of coupled radial
equations:
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�
∂
2

∂ζ2
þ Cð1Þ

l ðζÞ ∂

∂ζ
þ Cð2Þ

l ðζÞ
�
BlðζÞ

þ
X4
j¼−4

Cð3Þ
l;j ðζÞBjðζÞ ¼ 0; ð29Þ

where we have the following expressions for the couplings

Cð3Þ
l;j ðζÞ ¼ −

cð1Þl;j

ζ02ðrðζÞÞ
�
a2½μ2rðrðζÞÞ þ μ20ðrðζÞÞ − ω2�

ΔðrðζÞÞ

− kμ2rðrðζÞÞ
�
1þ Bþ

rðζÞ − rþ
−

B−

rðζÞ − r−

��

þ kcð2Þl;j a
2μ2rðrðζÞÞ

ζ02ðrðζÞÞΔðrðζÞÞ ; ð30Þ

with the Clebsch-Gordan coefficients:

cð1Þl;j ¼hl;mjcos2θjj;mi

¼ 1

3
δljþ

2

3

ffiffiffiffiffiffiffiffiffiffiffiffi
2jþ1

2lþ1

r
hj;2;m;0jl;mihj;2;0;0jl;0i; ð31Þ

cð2Þl;j ¼ hl; mjcos4θjj;mi

¼ 1

5
δlj þ

4

7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

2lþ 1

r
hj; 2; m; 0jl; mihj; 2; 0; 0jl; 0i

þ 8

35

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

2lþ 1

r
hj; 4; m; 0jl; mihj; 4; 0; 0jl; 0i; ð32Þ

and the following expressions for the remaining functions

Cð1Þ
l ðζÞ ¼

�
1

rðζÞ − rþ
þ 1

rðζÞ − r−

�
1

ζ0ðrðζÞÞ

þ 1

ζ0ðrðζÞÞ
2F0ðrðζÞÞ
FðrðζÞÞ þ ζ00ðrðζÞÞ

ζ02ðrðζÞÞ ; ð33Þ

Cð2Þ
l ðζÞ¼ 1

ζ02ðrðζÞÞ
�
F00ðrðζÞÞ
FðrðζÞÞ þ

�
1

rðζÞ−rþ

þ 1

rðζÞ−r−

�
F0ðrðζÞÞ
FðrðζÞÞ þ

P2þ
½rðζÞ− rþ�2

þ P2
−

½rðζÞ− r−�2

− ½μ2rðrðζÞÞþμ20ðrðζÞÞ�
�
1þ Bþ

rðζÞ− rþ
−

B−

rðζÞ− r−

�

−
Aþ

rðζÞ− rþ
þ A−

rðζÞ− r−
þω2−

lðlþ1Þ
ΔðrðζÞÞ

�
: ð34Þ

The couplings cð1Þl;j are nonzero for j ∈ fl; l� 2g, while
cð2Þl;j are nonzero for j ∈ fl; l� 2; l� 4g, thus each l-mode
is coupled with four other differing ones. In order to find
solutions we truncate the infinite tower to some L (i.e., we
neglect perturbations with l > L) and transform the

remaining (finite) set of radial equations into a matrix
form. The radial coordinate is then discretized through a
ebyv interpolation, which is defined by the following
polynomials

pnðζÞ ¼
Q

q≠nðζ − ζqÞQ
q≠nðζn − ζqÞ

¼ pðζÞwn

ζ − ζn
; ð35Þ

pðζÞ ¼
YN
q¼0

ðζ − ζqÞ; ð36Þ

with ebyv nodes

ζn ¼ cos

�
πð2nþ 1Þ
2ðN þ 1Þ

�
; ð37Þ

and corresponding weights [37,40,41]

wn ¼
1

p0ðζnÞ
¼ ð−1Þn sin

�
πð2nþ 1Þ
2ðN þ 1Þ

�
: ð38Þ

where N þ 1 is the number of interpolation points and
n ∈ ½0; N�. The radial functions Bl are hence described by a
set of ðLþ 1ÞðN þ 1Þ coefficients BlðζkÞ, that define a
ðLþ 1ÞðN þ 1Þ-dimensional array B, while the radial
equations take the form

XN
q¼0

½p00
qðζnÞBlðζqÞ þ Cð1Þ

l ðζnÞp0
qðζnÞBlðζqÞ�

þ Cð2Þ
l ðζnÞBlðζnÞ þ

X4
j¼−4

Cð3Þ
l;j ðζnÞBjðζnÞ ¼ 0 ð39Þ

By exploiting the second barycentric form of the Lagrange
polynomials, we can get numerically robust differentiation
matrices [37,40,41]:

p0
qðζnÞ ¼

� wq=wn

ζn−ζq
n ≠ q

−
P

N
b;b≠n p

0
bðζnÞ n ¼ q

ð40Þ

p00
qðζnÞ¼

�2p0
qðζnÞðp0

nðζnÞ− 1
ζn−ζq

Þ n≠ q

2p0
qðζnÞp0

nðζnÞþ
P

N
b;b≠n

2p0
bðζnÞ

ζn−ζb
n¼ q

ð41Þ

At the end of this procedure we obtain a nonlinear
eigenvalue problem in ω and B,

AðωÞB ¼ 0; ð42Þ

to be solved through nonlinear inverse iteration [38].
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IV. RESULTS

A. Models I: Key ingredients for the instability

We start by studying the first three models with the same
density profiles considered in [11], to show that the
obstacles existing in plasma-driven superradiant instabil-
ities can be circumvented in scalar-tensor theories.
Figure 2 shows the modes of Model I with ρH ¼ 4=M2,
ρC ¼ 0.09=M2, r0 ¼ 8M, and different values of α. For
α ¼ 1 we recover the results obtained in [11]. In this case,
superradiance does not appear before a=M ¼ 0.99.
However, if we consider lower values of α the effective
mass of the scalar field (and hence the superradiant mode
frequency) decreases and the superradiant condition is
fulfilled for smaller values of the spin. This is evident
by looking at the real part of the mode frequency in the left
panel of Fig. 2. As the coupling α decreases, the real part
becomes smaller, eventually entering the superradiance
condition. Therefore, while in plasma-driven superradiant
instabilities in GR a small increase of the coronal mass is
sufficient to quench the instability [11], in scalar-tensor
theories decreasing α is sufficient to circumvent this
obstacle and recover an efficient superradiant regime, as
also discussed more in detail below.
Nevertheless, by decreasing α too much, the potential

barrier becomes too low and is not able to confine the
modes. For the case of Model I, we numerically find that
when α < 0.15 the eigenfunctions start having a non-
negligible amplitude even after the potential barrier, sug-
gesting that the confinement starts becoming inefficient.
Assuming a high spinning BH, the superradiant insta-

bility can therefore be quenched in the following cases:
(i) If the density of the corona is high enough to

stabilize the system. In Model I and for the chosen
parameters, this happens when

ffiffiffiffiffiffiffiffi
αρC

p
M > 0.42.

(ii) If the barrier is not high enough to confine modes.
This starts happening when

ffiffiffiffiffiffiffiffi
αρH

p
M < 0.76.

(iii) If the width of the cavity is not sufficiently large as to
support quasibound states inside it. Indeed, when the

effective mass within the cavity is negligible (i.e.,ffiffiffiffiffiffiffiffi
αρC

p
M ≪ 0.1), this system resembles the original

BH bomb, where the frequencies scale as the inverse
of the width of the cavity, ωR ∼ 1=r0 [35]. In Fig. 3
we show that we recover the same scaling in our
system.

Reversing the argument, if the barrier is high enough and
the cavity wide enough, modes can be confined efficiently.
If in addition the coronal density is tenuous enough not to
provide modes in the cavity with a too large effective mass,
then an efficient superradiant instability can develop around
an accreting spinning BH. We shall come back to this point
in Sec. V.
For the time being we wish to stress that the main

difference with respect to [11] is the free parameter α
appearing in scalar-tensor theories. In [11], it was shown
that, even though the disk can create a cavity where
superradiant modes can develop, an extremely tenuous
plasma inside this cavity (of the order of ne ∼ 10−2 cm−3

FIG. 2. Real (left panel) and imaginary (right panel) part of the modes in Model I as a function of the BH spin for different values of the
coupling α. For lower values of this parameter, ωR decreases and the modes become superradiantly unstable for smaller values of
the BH spin.

FIG. 3. Real part of the mode frequencies in Model I as a
function of r0 for αρHM2 ¼ 4, αρCM2 ¼ 0, and a ¼ 0. The real
part decreases linearly with 1=r0, as can be observed by
comparing the numerical result with a linear fit.
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for M ¼ 10 M⊙) is sufficient to quench the instability.
Given that realistic coronal densities are orders of magni-
tude higher, the instability is strongly suppressed. On the
other hand, as discussed in detail in Sec. V below, in our

system there are large unconstrained ranges of α in which
the effective mass due to the corona is negligible and, yet,
the disk barrier is sufficiently high.

B. Models II and III: Truncation of the corona
and smoothness of the profiles

Model II aims to quantitatively verify that only the
coronal density inside the cavity is relevant for providing an
additional effective mass. For this reason, we truncate the
corona at r0, where the disk begins. We obtain numerical
results which almost coincide with those of Model I,
confirming that what is really relevant to increase the
effective mass—and hence to possibly quench the insta-
bility—is only the density inside the cavity.
Finally, in Model III we replace the step function of the

inner edge by a sigmoid, in order to show that the corners in
both the real and imaginary parts shown in Fig. 2 are an
artifact of the Heaviside function used in modeling the
density profile. In Fig. 4 we show that when the barrier is
instead described by a smooth sigmoid, the corners dis-
appear, and the resulting modes are also smooth functions
of the model parameters.

C. Models IV and V: Role of the corona density

In these models, we study the impact of different coronal
density by parametrizing ρC ¼ γρH and varying the param-
eter γ in the realistic range 10−6 − 10−1 (see e.g.,
[29,30,32]). Figure 5 show the imaginary part of the
solutions for γ ¼ 10−6, r0 ¼ 14M, ρH ¼ 4=M2 obtained
by varying the parameter α in Model IV and Model V.

FIG. 4. Real and imaginary parts of modes respectively from
Model I (blue) and Model III (orange). By replacing the step
function with a sigmoid, the profile becomes more regular and the
corners disappear.

FIG. 5. Superradiant modes of Model IV (left) and Model V (right) for r0 ¼ 14M and γ ¼ 10−6 as functions of the dimensionless spin
parameter for different values of α. Even by varying α across two orders of magnitude, the instability is preserved.
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By varying α across two orders of magnitude the instability
is preserved with qualitatively similar features: this is
because the coronal density is so low that it remains
negligible, while the disk density is sufficiently high to
confine the modes in this range of α. Thus, if the coronal
density is strongly suppressed with respect to the disk one,
it is possible to have an instability in a wide range of the
coupling α. Also note that assuming a larger truncation
radius yields a smaller spin threshold for the instability.
This is because, akin to the original BH bomb phenome-
non, the real part of the frequency decreases with the
truncation radius ωR ∼ 1=r0 [35] (see Fig. 3).
Finally, Fig. 6 shows the imaginary part of the modes as a

function of α for different density ratios γ in Model V with
ρH ¼ 4=M2 and r0 ¼ 8M. Note that, for certain values of α
(e.g., α ≈ 1 for the parameters chosen in Fig. 6) the modes
are independent of γ in the γ ≪ 1 limit. This is because the
coronal density in this regime is subdominant and does not
affect the mode. On the other hand, as the α parameter
grows, the coronal effective mass eventually becomes
relevant and quenches the instability. In particular, for
the chosen parameters the instability is suppressed
when αγ ≳Oð10−1Þ.

V. CONSTRAINTS ON SCALAR-TENSOR
THEORIES FROM SPINNING

BH OBSERVATIONS

After having explored the parameter space of our models
and having identified the key features of the plasma-
triggered superradiant instability in scalar-tensor theories,
we are now in a position to draw a general picture and use it
to identify the parameter space of scalar-tensor theories in
which the instability is effective.
The first key ingredient is a sufficiently dense disk

that extends down to the BH up to some truncation

radius r0 > OðfewÞM, as predicted in various models.
The requirement that the disk can effectively confine scalar
modes implies

ffiffiffiffiffiffiffiffi
αρH

p
M ≳ 1: ð43Þ

For a standard thin disk the typical outer density is
[22,42]:

ρ ≈ 169
f

11
20

Edd

ðr=MÞ158
�
1 −

ffiffiffiffiffi
r0
r

r �11
20

�
0.1
β

� 7
10

M
− 7
10

6 kg=m3; ð44Þ

where r0 is the truncation radius, β is the viscosity parameter,
fEdd ¼ _M= _MEdd is the mass accretion Eddington ratio, and
we defined M6 ¼ M=ð106 M⊙Þ. Using the above normali-
zation, Eq. (43) yields a lower bound on the scalar coupling,

α ≳ αc ¼
1

ρHM2
≈ 3 × 106M−13=10

6 ; ð45Þ

so that supermassiveBHswould yield a smaller lower bound.
The above condition is necessary but not sufficient. In

the presence of a corona with characteristic density
ρC ¼ γρH, one should also require that the effective mass
inside the cavity be not too large, namely,

ffiffiffiffiffiffiffiffi
αρC

p
M ≲ 1: ð46Þ

This condition can be written as a upper bound on the scalar
coupling,

α ≲ αc
γ
≈
3

γ
× 106M−13=10

6 : ð47Þ

Since the corona is much less dense than the disk, γ ≪ 1
and condition (43) has always some overlap with condition
(46). In particular, provided the disk truncation is not too
close to the BH horizon, the superradiant instability can
occur when

3 × 106 ≲ αM13=10
6 ≲ 3

�
10−4

γ

�
1010; ð48Þ

where we have normalized the typical coronal density such
that γ ¼ ρC=ρH ¼ 10−4.
Remarkably, different classes of BHs could constrain

different ranges of α, extending roughly from α ∼Oð100Þ
for M ∼ 109 M⊙ up to α ∼Oð1017Þ for M ∼ 5 M⊙.
Furthermore, as shown in the previous section the insta-
bility timescale, τ ¼ 1=ωI , is typically very short compared
to astrophysical timescales. The instability can therefore be
effective to change the dynamics of the system (see [8,43]
for the phenomenology of the BH superradiant instability
in various systems).

FIG. 6. Imaginary part as a function of α in Model V for
different values of the density ratio γ between the corona and the
disk for a spinning BH with a ¼ 0.97M. When αγ ≳Oð10−1Þ,
the instability is suppressed. Hence, the lower γ, the more
efficient the instability is across several orders of magnitudes
in α.
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This implies that, providing the accretion flow can be
accurately modeled, constraints on scalar-tensor theories
coming from the observation of highly spinning accreting
BHs can rule out scalar-tensor theories with positive
couplings in a very wide range. Interestingly, while there
exists stringent constraints on α < 0 coming from sponta-
neous scalarization and the absence of dipolar radiation in
binary pulsars [9,10,44], the regime where α > 0 is
essentially unconstrained and is relevant for cosmology.
The α ≫ 1 regime is particularly interesting for certain

scalar-tensor theories. For example, in the symmetron
model [6] the conformal factor reads2 AðϕÞ ¼ 1þ αϕ2=2
and requiring the Milky Way to be screened imposes
α≳ 106–108 [46–48], which perfectly lies in the range
that can be potentially excluded by accretion-driven BH
superradiance.

VI. ON THE ROLE OF NONLINEARITIES FOR
PLASMA-DRIVEN SUPERRADIANT INSTABILITY

IN SCALAR-TENSOR THEORIES

As previously discussed, we find a wide range of
parameter space prone to trigger matter-driven BH super-
radiant instabilities in scalar-tensor theories. Since during
the instability the amplitude of the scalar field grows
exponentially in a short timescale, linear theory eventually
breaks down. It is therefore crucial to understand the
modifications that nonlinearities will introduce in the
system. This can be done by analyzing the backreaction
of the superradiantly growing scalar field on to the plasma.
In the Jordan frame, plasma particles follow geodesics, as it
can be easily seen by the conservation of the matter stress
energy tensor:

∇νTμν ¼ 0 →
Duμ

Dτ
¼ uν∇νuμ ¼ 0; ð49Þ

where uμ is the plasma four velocity in the Jordan frame.
Switching to the Einstein frame, this equation can be
rewritten as (see e.g., [1]):

DuμE
DτE

¼ fνuνEu
μ
E − fμEðuEμuEμÞ; ð50Þ

where uμE ¼ dxμ=dτE and τE are the four velocity and
proper time in the Einstein frame, respectively, whereas
fν ¼ −∂ν lnAðΦÞ and fμE ¼ gμνE fν. By expanding the con-
formal factor around Φ ∼Φð0Þ as before, this equation can
be rewritten to the leading order as

DuμE
DτE

¼ −αðφ∂νφuμEuμE − gμαE φ∂αφðuEνuEνÞÞ: ð51Þ

From this equation it is possible to observe that the
acceleration of the plasma particles in the Einstein frame
depends on nonlinear terms in the scalar field φ, with
coupling constant α. By solving this equation it is then
possible to relate the backreaction on the four velocity with
the backreaction on the density via the continuity equation
of the fluid. Hence, nonlinear effects can modify the density
of the fluid, which evolves dynamically. The details on the
evolution depend on the specific models and on higher-
order scalar interactions in the scalar-tensor theories.
Nevertheless, and most crucially, this system is safe from

another nonlinear effect, the relativistic transparency, which
severely hampers plasma-driven superradiant instabilities
in GR [17]. Due to this nonlinear correction, the effective
photon mass in a plasma is modified in the relativistic
regime [17–19]:

ω2
p ¼ 4πe2n

me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2E2

m2
eω

2

q : ð52Þ

In the presence of large-amplitude electric fields, the
effective mass vanishes, which dramatically quenches
plasma-driven GR instabilities before a significant amount
of energy can be extracted from the BH [17]. This effect can
be interpreted as a relativistic increase of the relativistic
electron mass-energy, and it is therefore a completely
different effect from the field backreaction on the density
distribution. We will now show that in scalar-tensor
theories the effective mass does not suffer from a similar
suppression. Indeed, in this system the effective mass is the
trace of the stress-energy tensor, Tμν ¼ ρuμuν. The crucial
point is that, no matter what the fluid four-velocity is, the
trace of this tensor is always the rest-mass density, given
that uμuμ ¼ −1 is a relativistic invariant. Therefore, even if
the plasma is accelerated to relativistic velocities, the
expression of the effective mass does not change (although
the density becomes a dynamical quantity as discussed
before). This follows from the fact that the trace of a tensor
is a scalar quantity, which is invariant under Lorentz boosts.
Hence, no Lorentz boost factor enters in the effective scalar
mass in the relativistic nonlinear regime, at variance with
the standard case of plasma-photon interactions.

VII. CONCLUSION AND EXTENSIONS

We have studied in detail the phenomenon of matter-
driven BH superradiant instabilities in scalar-tensor theo-
ries. We have considered arbitrarily spinning BHs and
realistic models of truncated thin and thick accretion disks.
In general the linearized scalar equation is nonseparable,
and we have discussed in detail an efficient numerical
method to find the unstable modes for this system.

2The bare mass term and scalar self-interactions of this
cosmological model are negligible for astrophysical BHs
[45,46], so the approximations assumed in Sec. II apply.
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We found two interesting results: (i) although the quali-
tative features of the instability are akin to the case of plasma-
driven electromagnetic superradiant instabilities within GR,
the obstacles preventing the latter (namely suppression due to
the corona [11] and nonlinearities [17]) can be circumvented
in scalar-tensor theories; (ii) Remarkably, there exists a very
wide range of (positive and large) scalar couplings whereBH
superradiant instabilities can be triggered in realistic scenar-
ios. This range is unconstrained by observations and it
actually includes the regime where certain scalar-tensor
alternatives to the dark energy, e.g., symmetron models with
screening, can evade solar system constraints while remain-
ing cosmologically viable. Our results suggest that such
theories could be ruled out as dark-energy alternatives by the
observation of highly spinning BHs, using the same tech-
nique adopted to constrain ultralight bosons from BH mass-
spin observations [8,49,50]. However, at variance with the
ultralight boson case, here an accurate modelling of the
accretion flow around the BH is needed in order to quanti-
tatively characterize the instability.
Furthermore, the possibility of circumventing nonlinear

damping effects suggests that the models proposed for
ordinary plasma-driven instabilities (e.g., as a possible
explanation for fast radio bursts [13] or for constraints
on primordial BHs [12]) could actually work in the context
of scalar-tensor theories.
Although the quantitative features of the instability

depend on the geometry of the accretion flow near a
BH, the key ingredients are naturally predicted in various
models: (i) a sufficiently dense disk with a sharp transition
from a low-density to a high-density region in the vicinity
of the ISCO; (ii) a sufficiently tenuous corona in the low-
density region, such that its density is much smaller than
the one of the disk; (iii) a BH spinning sufficiently fast to

make the quasibound modes unstable against the super-
radiant instability.
The numerical method implemented to compute the

unstable modes in the absence of separable equations is
general and robust, and could find applications in other
contexts.
Another interesting finding is the fact that the unstable

modes of this system resemble a quasibound state in the
vicinity of the BH but are in fact propagating waves far
from it. Therefore, one could imagine situations in which
(perhaps during the superradiant growth) the quasibound
states are not efficiently trapped and could propagate to
infinity, possibly after several reflections within the cavity.
The scalar modes in the Einstein frame correspond to a
(breathing) scalar polarization of the gravitational waves in
the Jordan frame. Therefore, the phenomenology of this
effect would be similar to the gravitational-wave echoes
predicted for matter fields [51], near-horizon structures
[52], and exotic compact objects [53]. A more detailed
study of this interesting phenomenon, that we leave to the
future, will probably require a time-domain analysis.
Finally, an important follow-up of our work is to study

backreaction effects on the plasma and the full dynamics of
the system at the nonlinear level.

ACKNOWLEDGMENTS

We thank Vitor Cardoso for comments on the manuscript
and Riccardo La Placa for useful conversations about
accretion physics. We acknowledge the financial support
provided under the European Union’s H2020 ERC,
Starting Grant agreement No. DarkGRA–757480. We also
acknowledge support under the MIUR PRIN and FARE
programmes (GW- NEXT, CUP: B84I20000100001).

[1] Y. Fujii and K. Maeda, The Scalar-Tensor Theory of
Gravitation, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2007).

[2] V. Faraoni, Cosmology in Scalar Tensor Gravity (Springer,
Dordrecht, 2004).

[3] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1
(2012).

[4] E. Berti et al., Testing general relativity with present
and future astrophysical observations, Classical Quantum
Gravity 32, 243001 (2015).

[5] C. M.Will, The confrontation between general relativity and
experiment, Living Rev. Relativity 17, 4 (2014).

[6] K. Hinterbichler and J. Khoury, Symmetron Fields: Screen-
ing Long-Range Forces through Local Symmetry Restora-
tion, Phys. Rev. Lett. 104, 231301 (2010).

[7] J. Khoury and A. Weltman, Chameleon Fields: Awaiting
Surprises for Tests of Gravity in Space, Phys. Rev. Lett. 93,
171104 (2004).

[8] R. Brito, V. Cardoso, and P. Pani, Superradiance: New
Frontiers in Black Hole Physics, Lecture Notes in Physics
Vol. 971 (Springer, New York, 2020), 10.1007/978-3-030-
46622-0.

[9] V. Cardoso, I. P. Carucci, P. Pani, and T. P. Sotiriou, Matter
around Kerr black holes in scalar-tensor theories: Scalari-
zation and superradiant instability, Phys. Rev. D 88, 044056
(2013).

[10] V. Cardoso, I. P. Carucci, P. Pani, and T. P. Sotiriou, Black
Holes with Surrounding Matter in Scalar-Tensor Theories,
Phys. Rev. Lett. 111, 111101 (2013).

[11] A. Dima and E. Barausse, Numerical investigation of
plasma-driven superradiant instabilities, Classical Quantum
Gravity 37, 175006 (2020).

LINGETTI, CANNIZZARO, and PANI PHYS. REV. D 106, 024007 (2022)

024007-12

https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1007/978-3-030-46622-0
https://doi.org/10.1007/978-3-030-46622-0
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevLett.111.111101
https://doi.org/10.1088/1361-6382/ab9ce0
https://doi.org/10.1088/1361-6382/ab9ce0


[12] P. Pani and A. Loeb, Constraining primordial black-hole
bombs through spectral distortions of the cosmic microwave
background, Phys. Rev. D 88, 041301 (2013).

[13] J. P. Conlon and C. A. Herdeiro, Can black hole super-
radiance be induced by galactic plasmas?, Phys. Lett. B 780,
169 (2018).

[14] Z. Wang, T. Helfer, K. Clough, and E. Berti, Superradiance
in massive vector fields with spatially varying mass, Phys.
Rev. D 105, 104055 (2022).

[15] E. Cannizzaro, A. Caputo, L. Sberna, and P. Pani, Plasma-
photon interaction in curved spacetime I: Formalism and
quasibound states around nonspinning black holes, Phys.
Rev. D 103, 124018 (2021).

[16] E. Cannizzaro, A. Caputo, L. Sberna, and P. Pani, Plasma-
photon interaction in curved spacetime. II. Collisions,
thermal corrections, and superradiant instabilities, Phys.
Rev. D 104, 104048 (2021).

[17] V. Cardoso, W.-d. Guo, C. F. Macedo, and P. Pani, The tune
of the universe: The role of plasma in tests of strong-field
gravity, Mon. Not. R. Astron. Soc. 503, 563 (2021).

[18] P. Kaw and J. Dawson, Relativistic nonlinear propagation of
laser beams in cold overdense plasmas, Phys. Fluids 13, 472
(1970).

[19] C. Max and F. Perkins, Strong Electromagnetic Waves in
Overdense Plasmas, Phys. Rev. Lett. 27, 1342 (1971).

[20] T. P. Sotiriou and V. Faraoni, Black Holes in Scalar-Tensor
Gravity, Phys. Rev. Lett. 108, 081103 (2012).

[21] M. A. Abramowicz and P. C. Fragile, Foundations of black
hole accretion disk theory, LivingRev. Relativity 16, 1 (2013).

[22] N. I. Shakura and R. A. Sunyaev, Reprint of
1973A&A....24..337S. Black holes in binary systems, ob-
servational appearance, Astron. Astrophys. 500, 33 (1973).

[23] C. Done, M. Gierliski, and A. Kubota, Modelling the
behaviour of accretion flows in x-ray binaries, Astron.
Astrophys. Rev. 15, 1 (2007).

[24] J. Poutanen and A. Veledina, Modelling spectral and timing
properties of accreting black holes: The hybrid hot flow
paradigm, Space Sci. Rev. 183, 61 (2014).

[25] F. Yuan and R. Narayan, Hot accretion flows around black
holes, Annu. Rev. Astron. Astrophys. 52, 529 (2014).

[26] A. A. Esin, J. E. McClintock, and R. Narayan, Advection-
dominated accretion and the spectral states of black
hole xray binaries: Application to Nova Muscae 1991,
Astrophys. J. 489, 865 (1997).

[27] B. F. Liu, Coupling of the accretion disk and corona around
black holes, in Feeding Compact Objects: Accretion on All
Scales, edited by C. M. Zhang, T. Belloni, M. Méndez, and
S. N. Zhang (International Astronomical Union, United
Kingdom, 2013), Vol. 290, pp. 62–65.

[28] R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz,
Magnetically arrested disk: An energetically efficient ac-
cretion flow, Publ. Astron. Soc. Jpn. 55, L69 (2003).

[29] G. S. Bisnovatyi-Kogan and S. I. Blinnikov, Old models for
Cygnus X-1 and AGN, Sov. Astron. Lett. 2, 191 (1976).

[30] J.-P. De Villiers, J. F. Hawley, and J. H. Krolik, Magnetically
driven accretion flows in the Kerr metric I: Models and
overall structure, Astrophys. J. 599, 1238 (2003).

[31] J.-P. De Villiers, J. F. Hawley, J. H. Krolik, and S. Hirose,
Magnetically driven accretion in the Kerr metric. 3.
Unbound outflows, Astrophys. J. 620, 878 (2005).

[32] E. Meyer-Hofmeister, B. F. Liu, and E. Qiao, Interaction of
the accretion flows in corona and disk near the black hole
in active galactic nuclei, Astron. Astrophys. 607, A94
(2017).

[33] E. Meyer-Hofmeister, B. F. Liu, and F. Meyer, Coronae
above accretion disks around black holes: The effect of
Compton cooling, Astron. Astrophys. 544, A87 (2012).

[34] R. Narayan and I. Yi, Advection-dominated accretion:
Underfed black holes and neutron stars, Astrophys. J.
452, 710 (1995).

[35] V. Cardoso, O. J. C. Dias, J. P. S. Lemos, and S. Yoshida,
The black hole bomb and superradiant instabilities, Phys.
Rev. D 70, 044039 (2004); 70, 049903(E) (2004).

[36] P. Pani, Advanced methods in black-hole perturbation
theory, Int. J. Mod. Phys. A 28, 1340018 (2013).

[37] D. Baumann, H. S. Chia, J. Stout, and L. ter Haar, The
spectra of gravitational atoms, J. Cosmol. Astropart. Phys.
12 (2019) 006.

[38] S. Gttel and F. Tisseur, The nonlinear eigenvalue problem,
Acta Numer. 26, 194 (2017).

[39] E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[40] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange
interpolation, SIAM Rev. 46, 501 (2004).

[41] N. J. Higham, The numerical stability of barycentric
Lagrange interpolation, IMA J. Numer. Anal. 24, 547
(2004).

[42] E. Barausse, V. Cardoso, and P. Pani, Can environmental
effects spoil precision gravitational-wave astrophysics?,
Phys. Rev. D 89, 104059 (2014).

[43] R. Brito, V. Cardoso, and P. Pani, Black holes as particle
detectors: Evolution of superradiant instabilities, Classical
Quantum Gravity 32, 134001 (2015).

[44] M. Kramer et al., Strong-Field Gravity Tests with the
Double Pulsar, Phys. Rev. X 11, 041050 (2021).

[45] A.-C. Davis, B. Li, D. F. Mota, and H. A. Winther, Structure
formation in the symmetron model, Astrophys. J. 748, 61
(2012).

[46] A.-C. Davis, R. Gregory, R. Jha, and J. Muir, Astrophysical
black holes in screened modified gravity, J. Cosmol.
Astropart. Phys. 08 (2014) 033.

[47] K. Hinterbichler, J. Khoury, A. Levy, and A. Matas,
Symmetron cosmology, Phys. Rev. D 84, 103521 (2011).

[48] B. F. de Aguiar, R. F. P. Mendes, and F. T. Falciano, Neutron
stars in the symmetron model, Universe 8, 6 (2021).

[49] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, String axiverse, Phys. Rev. D 81,
123530 (2010).

[50] A. Arvanitaki and S. Dubovsky, Exploring the string
axiverse with precision black hole physics, Phys. Rev. D
83, 044026 (2011).

[51] E. Barausse, V. Cardoso, and P. Pani, Environmental effects
for gravitational-wave astrophysics, J. Phys. Conf. Ser. 610,
012044 (2015).

[52] V. Cardoso, E. Franzin, and P. Pani, Is the Gravitational-
Wave Ringdown a Probe of the Event Horizon?, Phys. Rev.
Lett. 116, 171101 (2016); 117, 089902(E) (2016).

[53] V. Cardoso and P. Pani, Testing the nature of dark compact
objects: A status report, Living Rev. Relativity 22, 4 (2019).

SUPERRADIANT INSTABILITIES BY ACCRETION DISKS IN … PHYS. REV. D 106, 024007 (2022)

024007-13

https://doi.org/10.1103/PhysRevD.88.041301
https://doi.org/10.1016/j.physletb.2018.02.073
https://doi.org/10.1016/j.physletb.2018.02.073
https://doi.org/10.1103/PhysRevD.105.104055
https://doi.org/10.1103/PhysRevD.105.104055
https://doi.org/10.1103/PhysRevD.103.124018
https://doi.org/10.1103/PhysRevD.103.124018
https://doi.org/10.1103/PhysRevD.104.104048
https://doi.org/10.1103/PhysRevD.104.104048
https://doi.org/10.1093/mnras/stab404
https://doi.org/10.1063/1.1692942
https://doi.org/10.1063/1.1692942
https://doi.org/10.1103/PhysRevLett.27.1342
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.12942/lrr-2013-1
https://doi.org/10.1007/s00159-007-0006-1
https://doi.org/10.1007/s00159-007-0006-1
https://doi.org/10.1007/s11214-013-0033-3
https://doi.org/10.1146/annurev-astro-082812-141003
https://doi.org/10.1086/304829
https://doi.org/10.1093/pasj/55.6.L69
https://doi.org/10.48550/arXiv.astro-ph/0003275
https://doi.org/10.1086/379509
https://doi.org/10.1086/427142
https://doi.org/10.1051/0004-6361/201731105
https://doi.org/10.1051/0004-6361/201731105
https://doi.org/10.1051/0004-6361/201219245
https://doi.org/10.1086/176343
https://doi.org/10.1086/176343
https://doi.org/10.1103/PhysRevD.70.044039
https://doi.org/10.1103/PhysRevD.70.044039
https://doi.org/10.1103/PhysRevD.70.049903
https://doi.org/10.1142/S0217751X13400186
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1017/S0962492917000034
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1093/imanum/24.4.547
https://doi.org/10.1093/imanum/24.4.547
https://doi.org/10.1103/PhysRevD.89.104059
https://doi.org/10.1088/0264-9381/32/13/134001
https://doi.org/10.1088/0264-9381/32/13/134001
https://doi.org/10.1103/PhysRevX.11.041050
https://doi.org/10.1088/0004-637X/748/1/61
https://doi.org/10.1088/0004-637X/748/1/61
https://doi.org/10.1088/1475-7516/2014/08/033
https://doi.org/10.1088/1475-7516/2014/08/033
https://doi.org/10.1103/PhysRevD.84.103521
https://doi.org/10.3390/universe8010006
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1088/1742-6596/610/1/012044
https://doi.org/10.1088/1742-6596/610/1/012044
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1007/s41114-019-0020-4

