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Time delay interferometry (TDI) is an algorithm proposed to suppress the laser frequency noise in space-
borne gravitational-wave detectors. As a post-processing technique, it is implemented by constructing a
virtual equal-arm interferometer through an appropriate combination of the time-shifted data streams. Such
an approach is tailored to the intrinsic feature of space-based gravitational-wave detection, namely, the
distances between spacecraft are governed by orbital dynamics and thus cannot be held constant. Among
different implementations, geometric TDI was introduced as a method of exhaustion to evaluate the
second-generation TDI combinations. The applications of the algebraic approach based on computational
algebraic geometry, on the other hand, are mostly restricted to first- and modified first-generation TDI.
Besides, geometric TDI furnishes an intuitive physical interpretation of the synthesis of the virtual optical
paths. In this paper, geometric TDI is utilized to investigate the modified second-generation TDI
combinations in conjunction with a ternary search algorithm. The distinction between second-generation
and modified second-generation TDI solutions is elaborated regarding the rate of change of the arm lengths
with respect to the opposite cyclic directions. For the 16-link combinations, 40 second-generation TDI
solutions are recovered, among which nine are identified as the modified second-generation ones.
Furthermore, we explore the properties of the modified second-generation TDI solutions, which turn out to
be potentially preferable in practice. Regarding the Taylor expansion of arm lengths in time, the expressions
for the leading-order optical path residuals for the relevant geometric TDI combinations are derived, which
are further specified using the Keplerian orbits of the spacecraft for the LISA detector constellation. The
response function, noise power spectral density, and signal-to-noise ratio of the TDI solutions are given
analytically and discussed. We obtain three distinct sensitivity curves among nine 16-link modified second-
generation TDI combinations, while eight sensitivity curves are encountered out of 31 second-generation
ones. It is argued that the modified second-generation TDI solutions present a quantitative advantage over
their second-generation counterparts. Even though the noise suppressions of both scenarios are found to be
at the same level, owing to the cancellations in the response function caused by the temporal symmetry of
the arm lengths, the magnitude of the gravitational-wave signals is less pronounced for the second-
generation TDI solutions. Moreover, analytic analysis confirms that the alternative modified second-
generation TDI solutions are desirable as they possess fewer zeros in the average response function and the
noise power spectral density, in accordance with previous findings.
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I. INTRODUCTION

Since 2015, a series of gravitational-wave (GW)
detections [1–7] performed by the Advanced LIGO and

Advanced Virgo collaborations has opened up a new era of
observational astronomy. These high-frequency GWs are
originated from dramatic processes such as the merger of
black holes and neutron stars. On the other hand, ordinary
astrophysical events usually give rise to GW radiation
in a lower frequency band. As a result, the successful
observations by the ground-based detectors have further
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incentivized various projects aiming at space-borne facili-
ties. Unlike the ground-based GW facilities, whose typical
observation frequencies are 10 Hz–1 kHz, the target
frequency range of the space-based detectors is between
0.1 mHz and 10 Hz. Several projects are under active
development, including LISA [8,9], TianQin [10], Taiji
[11], and DECIGO [12].
For the GWs associated with the 0.1 mHz–1 kHz

frequency band, direct observation can be accomplished
by using laser interferometers. The existing implementation
of space-based detection involves the measurements of
Doppler frequency shifts via the interferences among six
laser beams exchanged between three spacecraft. An
individual spacecraft follows a trajectory determined by
the geodesic. Subsequently, the arm lengths vary in time so
that an ideal equal-arm Michelson interferometer setup is
not feasible in space. Therefore, the dominant noise source,
characteristic of the space-borne interferometers, comes
from the laser frequency noise. The noise is embedded in
the interferometric signals between the distant and local
laser beams, known as the science data stream, and it is
typically many orders of magnitude above the GW signal
[13]. In this regard, the time-delay interferometry (TDI)
algorithm [13–15] is a scheme to efficiently suppress the
laser frequency noise by constructing virtual equal-arm
interference through the appropriate combination of the
data streams. As an offline post-processing technique, it is
tailored to deal with the scenarios of unequal arm lengths.
The first-generation TDI combinations are applicable to

the case of a static detector constellation with constant
unequal arm length [14,16–22]. The modified first-gener-
ation TDI discriminates between opposite optical paths
along a given arm length, and therefore it is suitable to
handle a detector layout that rigidly rotates at a constant
speed [23]. Both the first and the modified first-generation
TDI can be treated rigorously using the computational
algebraic through the notation of the first module of
syzygies [19,24]. Alternatively, one may employ the geo-
metric TDI approach [23] first proposed by Vallisneri. As a
method of exhaustion, it provides an intuitive interpretation
that the resulting TDI combination effectively synthesizes
an equal-arm interferometer, which cancels out the laser
frequency noise. In practice, the spacecraft are in motion,
and therefore the two synthetic optical paths furnished by
the first-generation TDI are not entirely identical. These
discrepancies are originated from the nonvanishing com-
mutators of time-delay operators of different arm lengths.
In this regard, the second-generation TDI is aimed at a
constellation with rotating and flexing arm lengths [25–30].
Specifically, compared with the first-generation TDI, it
further considers the discrepancies due to the rate of change
of the distance between the spacecraft. However, due to the
noncommutative nature of the time-delay operators, the
commutative ring theory cannot be straightforwardly
applied to the second-generation TDI. On the other hand,

geometric TDI can be readily utilized to seek feasible
solutions by explicitly requiring that the additional con-
tributions to the optical paths be canceled out up to the first
order in the velocity. The topic of geometric TDI has been
explored recently by several authors. In Ref. [31], Muratore
et al. enumerated possible TDI combinations using sym-
bolic algorithms and investigated the residual delay
numerically. The approach was further extended recently
[32], aiming primarily at null combinations that carry
mostly the information on instrumental noise while the
GWs are suppressed. In Ref. [33], Hartwig and Muratore
characterized geometric TDI channels in terms of the first-
generation TDI variables.
Similar to the generalization from the first to the

modified first-generation TDI, one may distinguish the
rate of change of the arm length in the two opposite cyclic
directions for a given arm length. By explicitly requiring
that the corresponding first-order derivatives of the arm
lengths be canceled out independently for both directions,
one further picks out the modified second-generation TDI
combinations from the remaining ones. By definition, it
will subsequently give rise to the modified second-gen-
eration TDI combinations. According to geometric TDI,
such an approach does not systematically remove all of the
second-order terms. To be specific, the residual still
consists of the contributions due to acceleration and the
second order terms in the spacecraft’s velocity. However,
reminiscent of the difference between the first and modified
first-generation TDI, we understand that it effectively
cancels out a specific subset of second-order discrepancies.
In this work, we utilize geometric TDI in conjunction

with a ternary search algorithm to investigate the modified
second-generation TDI combinations. Using the method of
exhaustion and eliminating redundant solutions, 3, 4, and
40 second-generation TDI solutions are obtained respec-
tively for 12-, 14-, and 16-link combinations. Among the
above solutions, we further separate the combinations that
are qualified to be the modified second-generation TDI. For
instance, 9 of the 16-link combinations are recognized as
being of the latter type, which are already established in the
literature [27], such as the Michelson, Relay, Beacon, and
Monitor combinations. There are no modified second-
generation TDI solutions among the 12- and 14-link
combinations. The properties of the modified second-
generation TDI are analyzed, and we argue that some of
these combinations, referred to as alternative combinations
in this work, possess advantageous features and might be
considered preferable alternatives. In particular, the alter-
native combinations are essentially folded in time by
inverse time-delay operations, and they are featured by
reduced temporal footprint. As pointed out in Ref. [23], the
resultant contamination of the data set is likely to be
minimized in the presence of instrumental gaps or glitches.
By analytically evaluating the response function and
residual noise power spectral density (PSD), one may
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argue that the 16-link modified second-generation solutions
are more favorable than the second-generation ones.
Although the noise suppression of both cases is of the
same level, the magnitude of the gravitational-wave signals
is less pronounced in the case of the second-generation
TDI. The latter can be attributed to the cancellation in the
response function caused by the temporal symmetry of
the arm length. Besides, as a rather desirable feature, the
response function of the alternative modified second-
generation TDI possesses fewer zeros, consistent with
the observations by Vallisneri [23]. Moreover, we derive
the analytical expression for the leading-order residual
mismatch between the two synthesized optical paths.
Such discrepancies are caused by the higher-order terms
associated with the accelerations and products of space-
craft’s velocities. Their magnitudes are found to be on the
order of picoseconds.
The remainder of the paper is organized as follows. In

Sec. II the notations and conventions used in the paper are
presented. We review the basic notions of the TDI and
geometric TDI, and the ternary search algorithm utilized in
the study is discussed. Consequently, in Sec. III we present
the results for the eight-link first-generation TDI, and the
12-, 14-, and 16-link second-generation TDI combinations.
The modified second-generation TDI solutions are identi-
fied from the 16-link ones. The analytical expressions for
the optical path discrepancies are then derived in Sec. IV.
Section V is dedicated to investigating the properties of the
sensitivity function of the relevant TDI combinations.
Concluding remarks are given in Sec. VI. The adopted
index conventions are discussed in Appendix A. The
corresponding Fourier coefficients that constitute the aver-
aged response function are given in Appendix B.

II. GEOMETRIC TDI AND A TERNARY
SEARCH ALGORITHM

A. Definitions and conventions

For convenience, in this paper we utilize subscripts with
a single index to indicate the physical quantities, such as the
arm length and data stream [15]. The choice of the
conventions is further discussed in Appendix A. The layout
of the space-borne GW detector is illustrated in Fig. 1. The
constellation consists of three spacecraft (S/C), denoted by
S/C 1, S/C 2, and S/C 3 in the clockwise direction. An
individual spacecraft carries two almost identical optical
benches, represented by i and i0, where i ¼ 1; 2; 3. The two
opposite arm lengths of S/C i are denoted by Li and Li0 ,
respectively, for counterclockwise and clockwise propaga-
tion directions. The information of the GW signals is
primarily captured through the interference between the
local and distant laser beams, known as the science data
stream. Based on the principle of three-segment laser
interferometry [34], the above measurement is further
complemented by the test mass data stream and reference

data stream. In this study, we consider the laser frequency
noise, test mass noise, and shot noise.
The data streams recorded at the optical benches i

and i0 are

siðtÞ ¼ Di−1pðiþ1Þ0 ðtÞ − piðtÞ þ hiðtÞ þ Nopt
i ðtÞ;

εiðtÞ ¼ pi0 ðtÞ − piðtÞ − 4πνi0 n⃗ði−1Þ0 δ⃗iðtÞ;
τiðtÞ ¼ pi0 ðtÞ − piðtÞ; ð1Þ

and

si0 ðtÞ ¼ Dðiþ1Þ0pi−1ðtÞ − pi0 ðtÞ þ hi0 ðtÞ þ Nopt
i0 ðtÞ;

εi0 ðtÞ ¼ piðtÞ − pi0 ðtÞ − 4πνin⃗iþ1δ⃗i0 ðtÞ;
τi0 ðtÞ ¼ piðtÞ − pi0 ðtÞ: ð2Þ

In the above equations, si and si0 with i ¼ 1; 2; 3 and
i0 ¼ 10; 20; 30 are the science data streams, which represents
the interference between the laser beams from the local and
distant spacecraft. εi and εi0 are the test mass data stream,
where the light beams are bounced off of the test mass
deliberately in order to capture its mechanical motion. τi
and τi0 are the reference data stream, which represents the
direct interference between two adjacent laser beams from
the same spacecraft. The possible GW signal, which
demonstrates itself as a Doppler frequency shift, is
embedded in the incident laser beam from the distant
spacecraft. hi and hi0 represent contributions due to the
possible presence of a transverse-traceless GW. pi and pi0

denote either the laser frequency noise or laser phase noise.
The latter two physical quantities, namely, the laser
frequency and phase noise, are by and large equivalent,
but in the case of the laser frequency noise there will be an
additional Doppler shift, and the delay operator needs to be
corrected (see also the discussions in Ref. [35]). In the

FIG. 1. Notation defined in the space-based interferometric
layout consists of the GW detector, lasers, and links.
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remainder of the present paper, the calculations will be
carried out by considering the laser frequency noise, which
are perturbed around the center frequency νi ≈ 282 THz.
Nopt

i and Nopt
i0 are the shot noise, and δ⃗i and δ⃗i0 are

associated with the mechanical vibrations of the test mass
with respect to the local inertial reference frame.Di andDi0

represent six time-delay operators.
The signal and noise embedded in the laser beam that

propagates along a specific detector arm length i are
subjected to a time delay associated with the optical path
connecting the two spacecraft.Mathematically, the effect can
be formulated by the action of a time-delay operatorDi on the
relevant data streams xðtÞ. To be specific, we have [34]

DjxðtÞ ¼ x

�
t −

1

c
LjðtÞ

�
;

DiDjxðtÞ ¼ Dix

�
t −

1

c
LjðtÞ

�

¼ x

�
t −

1

c
LiðtÞ −

1

c
Lj

�
t −

1

c
LiðtÞ

��
; ð3Þ

where c is the speed of light. Successive applications of the
time-delay operators can be simplified to

DiDjxðtÞ≡DijxðtÞ: ð4Þ

To eliminate primed laser frequency noise and optical bench
noise, one introduces intermediate variables [15,36]. The
process gives rise to the following six observables:

ηiðtÞ¼ hiðtÞþDi−1piþ1ðtÞ−piðtÞ
þ2πνðiþ1Þ0 n⃗i−1½Di−1δ⃗ðiþ1Þ0 ðtÞ− δ⃗iðtÞ�þNopt

i ðtÞ;
ηi0 ðtÞ¼ hi0 ðtÞþDðiþ1Þ0pi−1ðtÞ−piðtÞ

þ2πνi−1n⃗iþ1½δ⃗i0 ðtÞ−Dðiþ1Þ0 δ⃗i−1ðtÞ�þNopt
i0 ðtÞ: ð5Þ

Moreover, the TDI algorithm constructs virtual equal-arm-
length interference by linear combination of the above
variables, namely [29],

TDI ¼
X3
i¼1

½PiηiðtÞ þ Pi0ηi0 ðtÞ�: ð6Þ

wherePi andPi0 are polynomials of the time-delay operators.
The laser frequency noise is expected to be eliminated from
the above resultant expression.

B. Ternary search for geometric TDI

Geometric TDI is an algorithm that constitutes appro-
priate TDI combinations in the form of Eq. (6) by the
method of exhaustion [23]. For example, a typical geo-
metric TDI solution is illustrated by the space-time diagram

in Fig. 2. The diagram features discrete grids. The grids in
the horizontal direction are spatial, and they correspond to
the index numbers of the three spacecraft. While the
vertical ones are temporal, the time propagation is upward.
ATDI combination can be seen as being composed of two
optical paths, as illustrated in Fig. 2. Both paths start at a
given S/C i and eventually terminate at a second S/C j. For
instance, in Fig. 2, the two optical paths start at S/C 1 and
cease at S/C 1, which is the third intersection point from top
to bottom. Equivalently, one can visualize the TDI combi-
nation to construct a loop that eventually returns the starting
spacecraft by propagating successively forward and back-
ward in time. To show the successive propagation of the
laser between the spacecraft more transparently, when it is
necessary, the grid indices can be periodically expanded in
the horizontal direction [such as those shown in Figs. 4(c)
and 4(d).] An optical path may also propagate in the
opposite direction of time, which gives rise to a time-
advance operation. Apparently, since the latter is the
inverse action of the time delay, successive application
of the time-delay and time-advance operations along the
same arm length, known as the null bigrams, should not be
considered due to its redundancy. Subsequently, the algo-
rithm exhausts all possible diagrams for a given number of
total links and searches for valid solutions that satisfy the
criterion discussed below.
Following the spirit of geometric TDI, a valid TDI

combination implies that the summations of optical paths
along the two synthesized routes must be identical [23].
Equivalently, one assigns a negative sign if the time
propagation is backward, one has

X
α

L⃗αðtαÞ þ
X
β

ð−1ÞL⃖βðtβÞ ¼ 0; ð7Þ

FIG. 2. Space-time diagram of a geometric TDI solution for the
eight-link Michelson combination.
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where the arm length LαðtÞ is a function in time, α; β ¼
1; 2; 3; 10; 20; 30 enumerates all of the links that constitute
the diagram, the superscripts “→” and “←” indicate the two
forward and backward evolutions in time, and the summa-
tions are carried out for all of the links on the optical paths.
The detector arm lengths LiðtÞ, as a function of time, can

be rewritten using Taylor expansion about the instant of
measurement as

LiðtÞ ¼ Li þ _Litþ
1

2
L̈it2 þ � � � ;

Li0 ðtÞ ¼ Li0 þ _Li0tþ
1

2
L̈i0 t2 þ � � � : ð8Þ

One substitutes the above equation into Eq. (7), groups
together the terms proportional to the arm lengths and their
time derivatives, and divides both sides by L

c. The resulting
delay-time residual along a closed optical path reads

cδt
L

¼
X3
i¼1

�
bi
Li

L
þbi0

Li0

L
þdi

_Li

c
þdi0

_Li0

c
þ1

2
fi
L̈iL
c2

þ�� �
�
;

ð9Þ

where Li; Li0 represent the arm lengths, _Li; _Li0 are their
first-order time derivatives, L̈i corresponds to the second-
order terms, and all are evaluated at a given instant. One
ignores the difference in the second-order terms, so that
L̈i ≈ L̈i0 . The dimensionless coefficients bi; bi0 , di; di0 , and
fi are governed by the specific diagrams. The explicit
forms of these coefficients are given, for instance, in
Table V for the second-generation 14-link diagrams and
Table VII for the modified second-generation 16-link
ones in the following section. In deriving Eq. (9), one
also makes use of the approximation L ¼ cT, where
L ∼ Li. Therefore, δt essentially contains the contribu-
tions of second-order terms, which are not considered in the
first and second TDI combinations. The remaining higher-
order contributions from the Taylor expansion and those
from the above approximations are insignificant and thus
attributed to “� � �”.
The criterion for the first-generation TDI is derived by

only taking into account the leading terms in the expansion
(9). In particular, the first-generation TDI is obtained by
requiring

bi þ bi0 ¼ 0: ð10Þ

On the other hand, the modified first-generation TDI
demands that

bi ¼ bi0 ¼ 0: ð11Þ

Apparently, the first-generation TDI gives a rigorous
solution if the detector constellation is static, namely,

LiðtÞ ¼ Li0 ðtÞ≡ Li. The modified first-generation TDI
serves as a solution if the constellation is rigid and rotates
at a constant speed. This is because, for the latter case, one
effectively has constant arm lengths LiðtÞ ¼ Li ≠ Li0 ¼
Li0 ðtÞ due to the symmetry in time translation.
For the second-generation TDI, one further includes the

first-order derivative terms. The criterion for the second
generation reads

bi ¼ bi0 ¼ 0;

di þ di0 ¼ 0: ð12Þ

However, generally one has _Li ≠ _Li0 , and some discrep-
ancy from _Li ¼ _Li0 is expected [see also the explicit form
given by Eq. (42) below]. In other words, the dominant
contribution on the rhs of Eq. (9) gives

cδt
L

≈
X3
i¼1

di
_Li − _Li0

c
þ
X3
i¼1

1

2
fi
L̈iL
c2

: ð13Þ

Therefore, following the line of thought of the modified
first-generation TDI, one may distinguish the rates of
change of arm lengths in the two opposite directions.
This gives rise to the modified second-generation TDI,
which satisfies

bi ¼ bi0 ¼ 0;

di ¼ di0 ¼ 0: ð14Þ

In this case, one is free of the problem caused by the speed
mismatch _Li ≠ _Li0 . Now, Eq. (9) gives

cδt
L

≈
X3
i¼1

1

2
fi
L̈iL
c2

; ð15Þ

which is essentially of second order in derivatives, and is
expected to be of minor magnitude. Equations (13) and (15)
will be utilized to estimate the optical path discrepancies
and explicitly evaluated in Sec. IV.
We now turn to discuss the enumeration process of

geometric TDI. In Ref. [23], the search was performed by
enumerating a total of 4n possible diagrams with n links.
However, this computationally expensive task can be
somewhat relieved by the following considerations. It is
noted that both the laser propagation and the time evolution
directions can be denoted by a binary digit, and sub-
sequently, there are four possibilities (2 × 2 ¼ 4). To be
specific, one adopts the convention that the clockwise
propagations S=C3→S=C1→S=C2→S=C3 are denoted
by 1, and the counterclockwise propagations S=C 3 →
S=C 2 → S=C 1 → S=C 3 by 0. Also, the laser beam that
propagates forward in time is denoted by “1” and the one
that propagates backward in time by “0.” As explicitly
shown in Fig. 3, as long as one considers the preceding
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spacecraft where the laser beam was deflected, among the
above four possibilities, one of them (indicated by the wavy
line) is always a null bigram and can readily be excluded.
As a result, apart from the first link, there are only three
relevant possibilities for laser propagation. Therefore, a
ternary search algorithm is adopted to look for the feasible
TDI combinations, with a total of 3n possible diagrams
with n links, which significantly reduces the computational
load. The three possible optical paths are denoted by “0,”
“1,” and “2.” In particular, the two choices with the same
time evolution direction are denoted by “0” and “1”
according to the cyclic order for the spatial arm length.
The remaining one is denoted by “2.” Also, without loss of
generality, one assumes that the index of the starting
spacecraft i ¼ 1 and the first link is “1.” For instance,
the eight-link Michelson combination shown in Fig. 2 is
thus written as f10012001g.
Consider the case of n-link combinations as an example.

The enumeration process starts from the diagram
f1; 0;…0|fflffl{zfflffl}

n−1

g, which corresponds to a ternary number with

the value nmin ¼ 3n−1. It ceases at the diagram f1; 2;…2|fflffl{zfflffl}
n−1

g

with the maximum value nmax ¼ 2 × 3n−1 − 1. The differ-
ence nmax − nmin þ 1 ¼ 3n−1 gives the number of possible
diagrams. By exhausting all of these diagrams using the
criterion given by Eqs. (10)–(14), it is necessary to check
whether the obtained solutions are redundant.
For completeness of the discussion, we briefly mention

why the geometric TDI solution satisfying Eq. (7) furnishes
a valid TDI solution of Eq. (6). According to Ref. [23], one
assigns the corresponding observable (5) to each node of a
geometric TDI solution and then sums up individual

contributions from all of the grids with appropriate time
delays. A valid solution thus implies that all the terms (that
involve the three independent laser frequency noise) cancel
out entirely. It is apparent that Eq. (7) dictates that the laser
frequency noise pi of the starting S/C i cancels out. This
is because the two optical paths through the two virtual
routes are identical when they terminate at S/C j and,
subsequently, the time delays along the two routes are the
same. However, due to the specific form of Eq. (5), the first
links of both routes also inevitably bring in an additional
noise term originating from the receiving spacecraft of the
link multiplied by a minus sign. It is noted that this
additional term is eliminated by the corresponding observ-
able ηi assigned to this grid since it is readily verified that
both terms experience the same amount of time delay and
thus are identical up to a minus sign. One may verify that
such cancellations can be carried out iteratively until the
grid where the two routes meet. Neither of the two laser
frequency noise terms pj from the two corresponding links
are subjected to any time delay, and therefore all of the
noise terms are annihilated.

III. RESULTING GEOMETRIC
TDI SOLUTIONS

This section presents the resulting geometric TDI com-
binations, obtained by exhausting the 8-, 12-, 14-, and 16-
link diagrams. Our focus is on the modified versions of the
TDI solutions, for which the differences between Li and Li0

and their time derivatives are taken into consideration
explicitly. As it turns out, nine 16-link solutions belong
to the modified second-generation combinations, which
include the ones previously derived in the literature [27],
such as the Michelson, Relay, Beacon, and Monitor
combinations. We refer to the remaining ones as alternative
solutions and study their properties. The results of the
calculations are shown by the Tables I–XI and Figs. 4–13.

A. Eight-link modified first-generation
TDI combinations

For the first-generation TDI combinations, one assumes
that the six arm lengths satisfy Li ¼ Li0 ¼ const, but
L1 ≠ L2 ≠ L3. The modified first-generation TDI combi-
nations further assume that the six arm lengths are distinct,
namely, LiðtÞ ¼ Li ≠ Li0 ¼ Li0 ðtÞ. There are only four
modified first-generation TDI combinations, and their
space-time diagrams of the geometric TDI solutions are
illustrated in Fig. 4. The red-solid and blue-dashed line
segments correspond to the two synthesized routes, either
of which might contain both forward and backward
propagations in time. The initial and terminal grids of
the two routes are indicated by the black squares and black
dots, respectively. Also, without loss of generality, the
reference time t ¼ 0 is assigned to the terminal S/C 1. In
this study, the above convention is adopted by the remain-
ing plots.

FIG. 3. The four possible space-time diagrams where one
considers the preceding spacecraft from which the laser beam
was deflected. For all of the cases, one of the four propagation
schemes (indicated by the wavy line) is identified to be a null
bigram and, therefore, can be excluded from the enumeration
process.
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To be specific, following the convention developed in
Ref. [31], the time series of Figs. 4(a)–4(d) are illustrated in
Table I.
Accordingly, the resulting TDI combinations are found to

be consistent with the existing literature [15]. For Fig. 4(a),

XðtÞ ¼ D33020η3 þD330η10 þD3η20 þ η1

− ðD2023η20 þD202η1 þD20η3 þ η10 Þ: ð16Þ

It corresponds to the Michelson combination. The first four
terms of Eq. (16) correspond to the virtual optical paths via

the links 1 − 2 − 3 − 4, and the last four terms correspond
to the one in terms of the links 5 − 6 − 7 − 8.
Figure 4(b) gives the Relay TDI combination, which

reads

UðtÞ ¼ D33020η30 þD330η10 þD3η20 þ η1

− ðD201030η1 þD2010η20 þD20η30 þ η10 Þ: ð17Þ

The first four terms of Eq. (17) correspond to the virtual
optical paths via the links 1 − 2 − 3 − 4, and the last four
terms correspond to the one in terms of the links
5 − 6 − 7 − 8. Based on the cycle rules between the three
spacecraft, the Relay TDI combination contains UðtÞ,
VðtÞ, WðtÞ, where UðtÞ was denoted as WðtÞ in some
works [15,34].
Figure 4(c) gives the Monitor TDI combination, which

reads

EðtÞ ¼ −D31103̄η1 þD31η30 þD3η2 þ η1

− ð−D201012̄0η10 þD2010η2 þD20η30 þ η10 Þ; ð18Þ

where D3̄ is an advance operator which is the inverse
of the corresponding delay operator, satisfying D3̄D3 ¼
D3D3̄ ¼ 1. The first four terms of Eq. (18) correspond to
the virtual optical paths via the links 1 − 2 − 3 − 4, and the
last four terms correspond to the one in terms of the links
5 − 6 − 7 − 8. Because the modified first-generation TDI
combination ignores the commutator of time-delay oper-
ators, Eq. (18) can be further simplified to

EðtÞ ¼ η1 þD3η2 þD31η30 þD101η10

− ðη10 þD20η30 þD2010η2 þD110η1Þ: ð19Þ

Figure 4(d) gives the Beacon TDI combination. The
combination PðtÞ is different from the other three given
above. It consists of two independent virtual optical loops.
For the space-time diagram, we choose t ¼ 0 and S/C 1 as
the final grid for both loops, and one finds

PðtÞ ¼ ð−D330201̄η2 þD330η10 þD3η20 þ η1Þ
− ðD201̄30η1 þD201̄η20 −D201̄η2 þ η10 Þ: ð20Þ

The expression in the literature [15,34] is

PðtÞ ¼ D1η1 þD13η20 þD1330η10 þD20η2

− ðD1η10 þD20η20 þD2030η1 þD20330η2Þ: ð21Þ

The time-delay operator D1 acts on Eq. (20) given by the
geometric space-time diagram, which is the same as the
mathematical Eq. (21).
It is noted that the four TDI combinations given above do

not form a complete generating set for an arbitrary modified
first-generation TDI combination. By adding two cyclic

(a) (b)

(c) (d)

FIG. 4. Space-time diagrams for the eight-link TDI combina-
tions: Michelson-X, Relay-U, Monitor-E, and Beacon-P. The
red-solid and blue-dashed line segments correspond to the two
synthesized routes, either of which might contain both forward
and backward propagations in time. The black squares and black
dots indicate the initial and terminal grids of the two routes, and
the reference time t ¼ 0 is attributed to the terminal S/C 1.

TABLE I. Trajectory of the eight-link modified first-generation
TDI combination laser link, where 1, 2, and 3 represent the
indices of the spacecraft, and 1 → 2 indicates that the laser
emitted from S/C 1 propagates to S/C 2. Similarly, 1 ← 2 means
that the laser emitted from S/C 2 propagates to S/C 1 in the
positive direction of time, or the laser propagates from S/C 1 to
S/C 2 in the opposite direction of time.

TDI combination Laser link trajectory

XðtÞ 1 ← 2 ← 1 ← 3 ← 1 → 2 → 1 → 3 → 1
UðtÞ 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 → 3 → 1
EðtÞ 1 ← 2 ← 3 ← 2 → 1 ← 3 → 2 → 3 → 1
PðtÞ 1 ← 2 ← 1 ← 3 → 2 → 1 → 2 ← 3 → 1
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combinations to these four combinations, one furnishes a
complete basis [19,24].

B. Twelve-link second-generation TDI combinations

Using the criterion given by Eq. (12) to study the 12-link
diagrams, one finds three geometric TDI combinations, as
shown in Fig. 5. The corresponding time series are
illustrated in Table II.
It is noted that ½α�1 is a known form of the second-

generation TDI combination, which reads

½α�1 ¼ D3122010η20 þD31220η30 þD312η10 þD31η3

þD3η2 þ η1 − ðD20103031η3 þD2010303η2

þD201030η1 þD2010η20 þD20η30 þ η10 Þ: ð22Þ

The first six terms of Eq. (22) correspond to the virtual
optical paths via the links 1 − 2 − 3 − 4 − 5 − 6, and the
last six terms correspond to the one in terms of the links
7 − 8 − 9 − 10 − 11 − 12. Comparing with the optical path
with ½α�1, ½α�2, and ½α�3, it can be found that the ½α�2, ½α�3
combinations of alternative forms span shorter time in the
time domain. Therefore, the alternative TDI combinations
are not easily affected by instrumental gaps or glitches. On
the other hand, the alternative TDI combination ½α�2 has
better sensitivity in the high-frequency region. This is
because the averaged response function and noise PSD
have fewer zeros, as shown by Figs. 19 and 20 of Sec. V.
In the second and third columns of Table III we give the

coefficients di; di0 , and fi defined earlier by Eq. (9) of the
12-link second-generation geometric TDI combinations.
These quantities are then utilized to eventually evaluate the
residual cδtL , shown in the fourth column of the table (see the
derivations given in Sec. IV).

C. Fourteen-link second-generation
TDI combinations

Similarly, by employing the criterion given by Eq. (12)
to study the 14-link diagrams, one finds four geometric TDI
combinations, as shown in Fig. 6. The corresponding time
series are given in Table IV.
One observes that the resulting geometric TDI solutions

can be expressed in the modified first-generation TDI
combination. In particular, ½U�141 ; ½U�142 are the summation
of two modified first-generation Relay combinations.
½EP�141 ; ½EP�142 are the summation of a modified first-
generation Monitor combination and a modified first-
generation Beacon combination. In order to distinguish
it from the 16-link TDI combinations introduced later, these
combinations are denoted by the superscript “14.”
In the second and third columns of Table V we

enumerate the coefficients di; di0 , and fi defined earlier

(a) (b)

(c)

FIG. 5. Space-time diagrams for the 12-link geometric TDI
combinations.

TABLE II. Trajectory of the 12-link second-generation TDI combination laser link.

TDI combination Laser link trajectory

½α�1 1 ← 2 ← 3 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 2 → 3 → 1
½α�2 1 ← 2 ← 3 ← 2 ← 1 → 3 → 2 → 1 ← 3 ← 1 → 2 → 3 → 1
½α�3 1 ← 2 ← 1 → 3 ← 2 → 1 ← 3 → 2 → 3 ← 1 → 2 ← 3 → 1

TABLE III. Delay-time residual of the 12-link geometric TDI combinations. The fifth and sixth columns were evaluated using the
parameters of the LISA detector.

TDI combination fdi; di0 g ffig Time residual cδt
L

Coefficient before
sin 3Ωt (s)

Coefficient before
cosΩt (s)

½α�1 f3; 3; 3;−3;−3;−3g f0;−6; 6g 3
P

3
i¼1

_Li− _Li0
c þ 6 L

c2 ðL̈3 − L̈2Þ 2.7 × 10−13 2.7 × 10−13

½α�2 f1; 1; 1;−1;−1;−1g f0;−2; 2g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈3 − L̈2Þ 9 × 10−14 9 × 10−14

½α�3 f1; 1; 1;−1;−1;−1g f0; 0; 0g P
3
i¼1

_Li− _Li0
c

9 × 10−14 0
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by Eq. (9) of the 14-link second-generation geometric TDI
combinations. These quantities are then utilized to even-
tually evaluate the residual cδtL , shown in the fourth column
of the table (see the derivations given in Sec. IV).

D. Sixteen-link modified second-generation
TDI combinations

Using the criterion given by Eq. (12) to study the 16-link
diagrams, one finds 40 geometric TDI combinations as
shown in Tables VI, VIII, and X. Using the criterion given
by Eq. (14) to study the 16-link diagrams, we found nine
solutions as the modified second-generation TDI combi-
nations. They are given in Table VI.

When compared with the existing standard TDI combi-
nations in the literature [15], two of the solutions,
½X�161 ; ½X�162 , are of Michelson type. The corresponding
space-time diagram is illustrated in Fig. 7. It is observed
that ½X�161 is identical to the traditional form of theMichelson
combination in the literature [15,34], which reads

½X�161 ¼ D3302022023η20 þD330202202η1 þD33020220η3

þD330202η10 þD33020η3 þD330η10 þD3η2 þ η1

− ðη10 þD20η3 þD202η1 þD2023η20 þD202330η1

þD2023303η20 þD202330330η10 þD20233033020η3Þ: ð23Þ

The first row of Eq. (17) corresponds to the virtual
optical paths via the links 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8,
and the second row corresponds to the one in terms of the
links 9 − 10 − 11 − 12 − 13 − 14 − 15 − 16. Similarly, the
space-time diagram of the combination ½X�162 is also shown
in Fig. 7(b).
To determine whether an obtained geometric TDI sol-

ution is equivalent to an existing one in the literature, one
may repeat the process to construct the solution based on
their modified first-generation counterpart. Accordingly, it
can be shown that the combinations ½U�161 ; ½U�162 ; ½U�163 are
Relay-type TDI, and their space-time diagrams are illus-
trated in Fig. 8. To be specific, by using Fig. 8(a), the
solution ½U�161 reads

½U�161 ¼ðD33020103̄−1Þðη10 þD20η30 þD2010η20 þD201030η1−η1Þ
−ðD201030−1ÞðD3η20 þD330η10 þD33020η30 Þ: ð24Þ

(a)

(c)

(b)

(d)

FIG. 6. Space-time diagrams for the 14-link geometric TDI
combinations.

TABLE V. Delay-time residual of the 14-link geometric TDI combinations. The fifth and sixth columns were evaluated using the
parameters of the LISA detector.

TDI combination fdi; di0 g ffig Time residual cδt
L

Coefficient before
sin 3Ωt (s)

Coefficient before
cosΩt (s)

½U�141 f2; 2; 2;−2;−2;−2g f0;−4; 4g 2
P

3
i¼1

_Li− _Li0
c þ 4 L

c2 ðL̈3 − L̈2Þ 1.8 × 10−13 1.8 × 10−13

½U�142 f2; 2; 2;−2;−2;−2g f0;−4; 4g 2
P

3
i¼1

_Li− _Li0
c þ 4 L

c2 ðL̈3 − L̈2Þ 1.8 × 10−13 1.8 × 10−13

½EP�141 f2; 2; 2;−2;−2;−2g f0;−4; 4g 2
P

3
i¼1

_Li− _Li0
c þ 4 L

c2 ðL̈3 − L̈2Þ 1.8 × 10−13 1.8 × 10−13

½EP�142 f2; 2; 2;−2;−2;−2g f0; 0; 0g 2
P

3
i¼1

_Li− _Li0
c

1.8 × 10−13 0

TABLE IV. Trajectory of the 14-link second-generation TDI combination laser link.

TDI combination Laser link trajectory

½U�141 1 ← 2 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 2 ← 3 ← 1 → 2 → 3 → 1

½U�142 1 ← 2 ← 3 ← 1 ← 3 → 2 → 1 ← 3 ← 2 ← 1 → 3 → 1 → 2 → 3 → 1

½EP�141 1 ← 2 ← 3 ← 2 → 1 ← 3 ← 2 ← 1 → 3 → 2 → 3 ← 1 → 2 → 3 → 1

½EP�142 1 ← 2 ← 1 ← 3 → 2 ← 1 → 3 ← 2 → 1 → 2 → 3 ← 1 → 2 ← 3 → 1
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We rewrite the relevant terms of the modified first-gen-
eration UðtÞ combination (17), and we have

D3ðη20 þD30η10 þD3020η30 Þ ¼ D3ðD302010 − 1Þp2

¼ ðD33020103̄ − 1ÞD3p2; ð25aÞ

η10 þD20η30 þD2010η20 þD201030η1−η1¼ðD201030 −1ÞD3p2:

ð25bÞ

By multiplying Eq. (25a) by ðD201030 − 1Þ and Eq. (25b)
by ðD33020103̄ − 1Þ, one rewrites ½U�16stan as

½U�16stan ¼ ðD33020103̄− 1Þðη10 þD20η30

þD2010η20 þD201030η1− η1Þ
− ðD201030 − 1ÞðD3η20 þD330η10 þD33020η30 Þ; ð26Þ

and therefore ½U�161 is indeed the second-generation Relay
combination in the literature [34].
Similarly, the combinations ½E�161 and ½E�162 shown in

Fig. 9 are the Monitor-type TDI solutions. The geometric
TDI solution given in Fig. 9(a) implies

½E�161 ¼ ðD201012̄0 − 1ÞðD31103̄ − 1Þη1
− ðD201012̄0 − 1ÞðD3η2 þD31η30 Þ
− ðD31103̄ − 1ÞðD201012̄0 − 1Þη10
þ ðD31103̄ − 1ÞðD20η30 þD2010η2Þ: ð27Þ

To compare with the combination ½E�16stan of the Monitor
type in the literature [27], one can further simplify each
term in Eq. (18) as follows:

ð1−D31103̄Þη1þD3η2þD31η30 ¼−ð1−D31103̄Þp1; ð28aÞ

ð1 −D201012̄0 Þη10 þ ðD20η30 þD2010η2Þ ¼ −ð1 −D201012̄0 Þp1;

ð28bÞ

TABLE VI. Trajectory of the 16-link modified second-generation TDI combination laser link.

TDI combination Laser link trajectory

½X�161 1 ← 2 ← 1 ← 3 ← 1 ← 3 ← 1 ← 2 ← 1 → 3 → 1 → 2 → 1 → 2 → 1 → 3 → 1

½X�162 1 ← 2 ← 1 ← 3 ← 1 ← 2 ← 1 → 3 → 1 → 2 → 1 ← 3 ← 1 → 2 → 1 → 3 → 1

½U�161 1 ← 2 ← 1 ← 3 ← 2 → 1 ← 3 ← 2 ← 1 ← 2 → 3 → 1 → 2 → 1 → 2 → 3 → 1

½U�162 1 ← 2 ← 1 ← 3 ← 2 ← 1 ← 2 → 3 → 1 → 2 → 1 ← 3 ← 2 → 1 → 2 → 3 → 1

½U�163 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 → 1 ← 3 ← 2 ← 1 ← 2 → 3 → 1 → 2 → 3 → 1

½E�161 1 ← 2 ← 3 ← 2 → 1 ← 3 ← 2 ← 3 → 1 ← 2 → 3 → 2 → 1 ← 3 → 2 → 3 → 1

½E�162 1 ← 2 ← 3 ← 2 ← 3 → 1 ← 2 → 3 → 2 → 1 ← 3 ← 2 → 1 ← 3 → 2 → 3 → 1

½P�161 1 ← 2 ← 1 ← 3 → 2 ← 1 ← 2 ← 3 → 1 → 2 → 1 ← 3 → 2 → 1 → 2 ← 3 → 1

½P�162 1 ← 2 ← 1 ← 3 → 2 → 1 ← 3 → 2 ← 1 ← 2 ← 3 → 1 → 2 → 1 → 2 ← 3 → 1

(a) (b)

FIG. 7. Space-time diagrams for the 16-link Michelson-type
geometric TDI combinations.

(b) (c)(a)

FIG. 8. Space-time diagrams for the 16-link Relay-type geometric TDI combinations.
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By multiplying Eq. (28a) by ð1 −D201012̄0 Þ and Eq. (28b)
by ð1 −D31103̄Þ, one rewrites ½E�16stan as

½E�16stan ¼ ð1−D201012̄0 Þ½ð1−D31103̄Þη1 þD3η2 þD31η30 �
− ð1−D31103̄Þ½ð1−D201012̄0 Þη10 −D20η30 −D2010η2�:

ð29Þ

The above equation is readily compared to Eq. (27), and
therefore ½E�161 is indeed the second-generation Monitor
combination in the literature [34].
The space-time diagrams of the Beacon-type TDI

combination ½P�161 ; ½P�162 are illustrated in Fig. 10. Similar
to the above analysis, one of the geometric TDI solutions,
½P�161 , is shown to be equivalent to the standard form in the
literature [34].
Moreover, it is interesting that the modified second-

generation TDI combinations can be derived from the
modified first-generation counterpart with appropriate
time shifts. This can be seen by comparing the rele-
vant structures of the respective space-time diagrams.
To be specific, one has the following relations. For
the Michelson-type TDI combination ½X�161 and ½X�162 ,
we have

½X�161 ðtÞ ≈ XðtÞ − Xðt − 4TÞ;
½X�162 ðtÞ ≈ XðtÞ − Xðt − 3TÞ: ð30Þ

For the Relay-type TDI combination ½U�161 , ½U�162 ,
and ½U�163 ,

½U�161 ðtÞ ≈UðtÞ −Uðt − 3TÞ;
½U�162 ðtÞ ≈UðtÞ −Uðt − 2TÞ;
½U�163 ðtÞ ≈UðtÞ −Uðt − TÞ: ð31Þ

For the Monitor-type TDI combination ½E�161 and ½E�162 ,

½E�161 ðtÞ ≈ EðtÞ − Eðt − 2TÞ;
½E�162 ðtÞ ≈ EðtÞ − Eðt − TÞ: ð32Þ

For the Beacon-type TDI combination ½P�161 and ½P�162 ,

½P�161 ðtÞ ≈ PðtÞ − Pðt − 2TÞ;
½P�162 ðtÞ ≈ PðtÞ − Pðt − TÞ: ð33Þ

Besides the TDI that have already been explored in the
literature [27], it is worth noting that the other combina-
tions, namely, ½X�162 ; ½U�162 ; ½U�163 ; ½E�162 ; ½P�162 , are largely
new results which will be referred to as alternative
solutions. The remainder of the present paper is mainly
devoted to studying their properties. First, these alternative
solutions are featured by a reduced temporal span in the
space-time diagram. As a result, the resultant contamina-
tion of the data set is likely to be minimized in the presence
of instrumental gaps or glitches, as pointed out in Ref. [23].
In the second and third columns of Table VII we give the

coefficients di; di0 , and fi defined earlier by Eq. (9) of the
16-link modified second-generation geometric TDI combi-
nations. These quantities are then utilized to eventually
evaluate the residual cδtL , shown in the fourth column of the
table (see the derivations given in Sec. IV).
For the 16-link modified second-generation TDI combi-

nations, the coefficients di and di0 vanish identically, which
implies that residuals of the virtual optical paths only come
from the arm length acceleration terms. As will be specified
below, for the 16-link second-generation TDI combina-
tions, there are a total of 31 solutions, of which 13 (given in
Table VIII) can be intuitively derived using their modified
first-generation counterparts. In this context, the remaining
18 combinations (given in Table X) are generic.
The combinations ½U�164 , ½U�165 , and ½U�166 shown in

Fig. 11 can be rewritten, up to second-order commutators,
using the modified first-generation Relay combinations as
follows:

½U�164 ðtÞ ≃UðtÞ þ Ūðt − 4TÞ;
½U�165 ðtÞ ≃ ½U�166 ðtÞ ≃UðtÞ þ Ūðt − 2TÞ; ð34Þ

(a) (b)

FIG. 9. Space-time diagrams for the 16-link Monitor-type
geometric TDI combinations.

(a) (b)

FIG. 10. Space-time diagrams for the 16-link Beacon-type
geometric TDI combinations.
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where Ū denotes the flipped U combination. Besides
Eq. (34), the relevant grids in the space-time diagram for
½U�165 and ½U�166 are the same, but the specific links are
distinct, as shown in Table VIII.

The combination ½PE�161 , ½PE�162 , ½PE�163 , and ½PE�164
shown in Fig. 12 can be furnished by the modified first-
generation Beacon and modified Monitor combination as
follows:

½PE�161 ðtÞ ≃ ½PE�162 ðtÞ ≃ EðtÞ þ Pðt − TÞ;
½PE�163 ðtÞ ≃ EðtÞ þ Pðt − 3TÞ;
½PE�164 ðtÞ ≃ PðtÞ þ Eðt − 3TÞ: ð35Þ

In addition, ½PE�165 –½PE�1610 are illustrated in Fig. 13; they
consist of the Beacon andMonitor combination, or the two-
relay combination:

½PE�165 ðtÞ≃ ½PE�166 ðtÞ≃ ½PE�167 ðtÞ≃ ½PE�168 ðtÞ≃ ½PE�169 ðtÞ
≃ ½PE�1610ðtÞ≃PðtÞþEðt−TÞ≃UðtÞþŪðtÞ: ð36Þ

TABLE VII. Delay-time residual of the 16-link modified second-generation geometric TDI combinations. The
fifth and sixth columns were evaluated using the parameters of the LISA detector.

TDI combination fdi; di0 g ffig Time residual cδt
L

Coefficient before
cosΩt (s)

½X�161 f0; 0; 0; 0; 0; 0g f0;−16; 16g 16 L
c2 ðL̈3 − L̈2Þ 7.2 × 10−13

½X�162 f0; 0; 0; 0; 0; 0g f0;−8; 8g 8 L
c2 ðL̈3 − L̈2Þ 3.6 × 10−13

½U�161 f0; 0; 0; 0; 0; 0g f−6;−6; 12g 6 L
c2 ð2L̈3 − L̈2 − L̈1Þ 2.7 × 10−13

½U�162 f0; 0; 0; 0; 0; 0g f−4;−4; 8g 4 L
c2 ð2L̈3 − L̈2 − L̈1Þ 1.8 × 10−13

½U�163 f0; 0; 0; 0; 0; 0g f−2;−2; 4g 4 L
c2 ð2L̈3 − L̈2 − L̈1Þ 9 × 10−14

½E�161 f0; 0; 0; 0; 0; 0g f0;−4; 4g 4 L
c2 ðL̈3 − L̈2Þ 1.8 × 10−13

½E�162 f0; 0; 0; 0; 0; 0g f0;−2; 2g 2 L
c2 ðL̈3 − L̈2Þ 9 × 10−14

½P�161 f0; 0; 0; 0; 0; 0g f4;−4; 0g 4 L
c2 ðL̈1 − L̈2Þ 1.8 × 10−13

½P�162 f0; 0; 0; 0; 0; 0g f2;−2; 0g 2 L
c2 ðL̈1 − L̈2Þ 9 × 10−14

TABLE VIII. Trajectory of the second-generation TDI combination laser link. These 13 second-generation TDI
combination solutions can be intuitively derived using their modified first-generation counterparts.

TDI combination Laser link trajectory

½U�164 1 ← 2 ← 1 ← 3 ← 2 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 → 1 → 2 → 3 → 1

½U�165 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 → 3 → 1

½U�166 1 ← 2 ← 1 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 ← 3 ← 2 → 1 → 2 → 3 → 1

½PE�161 1 ← 2 ← 3 ← 2 ← 1 → 3 → 2 → 3 ← 1 → 2 ← 3 ← 2 → 1 ← 3 → 2 → 3 → 1

½PE�162 1 ← 2 ← 3 ← 2 → 1 → 2 ← 3 ← 2 ← 1 → 3 → 2 → 3 ← 1 ← 3 → 2 → 3 → 1

½PE�163 1 ← 2 ← 3 ← 2 ← 3 ← 2 ← 1 ← 3 → 2 → 3 ← 1 → 2 → 1 ← 3 → 2 → 3 → 1

½PE�164 1 ← 2 ← 1 ← 3 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 3 → 2 → 1 → 2 ← 3 → 1

½PE�165 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 → 1 → 2 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 3 → 1

½PE�166 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 → 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 ← 3 → 1

½PE�167 1 ← 2 ← 1 ← 3 → 2 → 1 → 2 ← 3 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 3 → 1

½PE�168 1 ← 2 ← 1 ← 3 → 2 → 3 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 1 → 2 ← 3 → 1

½PE�169 1 ← 2 ← 1 ← 2 ← 1 → 3 → 2 → 3 ← 1 ← 3 ← 2 → 1 → 2 → 1 → 2 ← 3 → 1

½PE�1610 1 ← 2 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 1 → 2 ← 3 ← 1 ← 3 → 2 → 3 → 1

(a) (b) (c)

FIG. 11. Space-time diagrams for the 16-link Relay-type
second-generation geometric TDI combinations.
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Although the relevant grids are identical, the links for the
diagrams ½PE�165 –½PE�1610 are different.
In the second and third columns of Tables IX and XI we

give the coefficients di; di0 , and fi defined earlier by
Eq. (9) of the 16-link second-generation geometric
TDI combinations. These quantities are then utilized to
eventually evaluate the residual cδt

L , shown in the
fourth column of the table (see the derivations given
in Sec. IV).
For the 16-link second-generation TDI combinations, the

coefficients di ¼ −di0 ≠ 0, which implies that residuals of
the virtual optical paths only come from the arm length
velocity terms and arm length acceleration terms.

IV. ANALYTICAL RESULTS
OF DELAY-TIME RESIDUAL

In this section, we first analytically derive the leading-
order delay-time residuals due to the optical path mis-
match. Physically, such an additional discrepancy origi-
nates from the fact that the optical paths are associated
with position measurements at different instants, while
the distances between the spacecraft Li are instantaneous.
By employing the obtained analytic expressions, the
magnitudes of the residuals are further explored and
discussed.
As shown in Fig. 14, the two spacecraft S/C k and S/C j

are moving along their respective orbits. The two gray filled

circles represent the positions of the two spacecraft at time
t1, and the black ones represent the positions at time t2. We
note that the instantaneous distance Di ¼ jDij ¼ jxjðt2Þ −
xkðt2Þj does not correspond to the optical path of the laser
beam. The latter can be described by the coordinate
distance Ri ¼ xjðt2Þ − xkðt1Þ, and it can be expressed in
terms of the former by Taylor expansion. To be specific,
one has [37,38]

Ri ¼ Di þ vkðt2Þ
�
Ri

c

�
−
1

2
akðt2Þ

�
Ri

c

�
2

þOðc−3Þ; ð37Þ

where for i (without a prime), j ¼ iþ 1 and k ¼ i − 1
are the S/C indices in the clockwise direction. The
time interval t2 − t1 ¼ Ri=c ¼ jRij=c ≃ Δt, which has
been substituted iteratively in order to obtain the
expression. Also, the corrections to the speed of light c
due to general relativity have been ignored in the
adopted frame.
Themodule of the above quantity can be approximated by

Ri ¼ Di þ
Di · vk

c
þ Di

2c2

�
v2k þ

ðDi · vkÞ2
D2

i
− Di · ak

�
þOðc−3Þ; ð38Þ

(a) (b)

(c) (d)

FIG. 12. Space-time diagrams for the 16-link Beacon and
Monitor combination-type second-generation geometric TDI
combinations.

(a) (b)

(c) (d)

(e) (f)

FIG. 13. Space-time diagrams for the 16-link Relay-type or
Beacon and Monitor combination-type second-generation geo-
metric TDI combinations.
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TABLE IX. Delay-time residual of the 16-link second-generation geometric TDI combinations. These 13 second-generation TDI
combination solutions can be intuitively derived using their modified first-generation counterparts. The fifth and sixth columns were
evaluated using the parameters of the LISA detector.

TDI
combination fdi; di0 g ffig Time residual cδt

L

Coefficient before
sin 3Ωt (s)

Coefficient before
cosΩt (s)

½U�164 f2; 2; 2;−2;−2;−2g f−6;−10; 16g 2
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ð8L̈3 − 5L̈2 − 3L̈1Þ 1.8 × 10−13 4.5 × 10−13

½U�165 f1; 1; 1;−1;−1;−1g f−2;−6; 8g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ð4L̈3 − 3L̈2 − L̈1Þ 9 × 10−14 2.7 × 10−13

½U�166 f4; 4; 4;−4;−4;−4g f−2;−6; 8g 4
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ð4L̈3 − 3L̈2 − L̈1Þ 3.6 × 10−13 2.7 × 10−14

½PE�161 f1; 1; 1;−1;−1;−1g f0;−2; 2g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈3 − L̈2Þ 9 × 10−14 9 × 10−14

½PE�162 f3; 3; 3;−3;−3;−3g f0;−2; 2g 3
P

3
i¼1

_Li− _Li0
c 2þ L

c2 ðL̈3 − L̈2Þ 2.7 × 10−14 9 × 10−14

½PE�163 f4; 4; 4;−4;−4;−4g f0;−6; 6g 4
P

3
i¼1

_Li− _Li0
c þ 6 L

c2 ðL̈3 − L̈2Þ 3.6 × 10−14 2.7 × 10−13

½PE�164 f5; 5; 5;−5;−5;−5g f6;−6; 0g 5
P

3
i¼1

_Li− _Li0
c þ 6 L

c2 ðL̈1 − L̈2Þ 4.5 × 10−14 2.7 × 10−13

½PE�165 f1; 1; 1;−1;−1;−1g f2;−2; 0g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 9 × 10−14 9 × 10−14

½PE�166 f−1;−1;−1; 1; 1; 1g f2;−2; 0g −
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 9 × 10−14 9 × 10−14

½PE�167 f1; 1; 1;−1;−1;−1g f2;−2; 0g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 9 × 10−14 9 × 10−14

½PE�168 f1; 1; 1;−1;−1;−1g f2;−2; 0g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 9 × 10−14 9 × 10−14

½PE�169 f3; 3; 3;−3;−3;−3g f2;−2; 0g 3
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 2.7 × 10−14 9 × 10−14

½PE�1610 f−1;−1;−1; 1; 1; 1g f2;−2; 0g −
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 9 × 10−14 9 × 10−14

TABLE X. Trajectory of the second-generation TDI combination laser link. These 18 second-generation
combinations are generic ones that do not belong to any existing class.

TDI combination Laser link trajectory

½T�161 1 ← 2 ← 1 ← 3 → 2 → 1 ← 3 ← 2 ← 1 → 3 → 1 → 2 ← 3 ← 1 → 2 → 3 → 1

½T�162 1 ← 2 ← 1 ← 2 ← 1 → 3 → 2 → 1 ← 3 ← 2 → 1 → 2 ← 3 ← 1 → 2 → 3 → 1

½T�163 1 ← 2 ← 3 ← 2 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 2 → 3 ← 1 → 2 → 3 → 1

½T�164 1 ← 2 ← 3 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 1 ← 3 ← 1 ← 2 → 3 → 2 → 3 → 1

½T�165 1 ← 2 ← 3 ← 2 ← 3 ← 2 ← 1 → 3 → 2 → 1 ← 3 → 2 → 3 ← 1 → 2 → 3 → 1

½T�166 1 ← 2 ← 3 ← 1 ← 3 ← 2 → 1 ← 3 ← 2 ← 1 → 3 → 2 → 3 → 1 → 2 → 3 → 1

½T�167 1 ← 2 ← 3 ← 1 ← 3 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 3 → 1 → 2 → 3 → 1

½T�168 1 ← 2 ← 3 ← 1 ← 3 → 2 ← 1 → 3 → 2 → 1 ← 3 ← 2 ← 3 → 1 → 2 → 3 → 1

½T�169 1 ← 2 ← 1 ← 2 → 3 → 2 → 1 ← 3 ← 2 → 1 ← 3 ← 1 → 2 ← 3 → 1 → 3 → 1

½T�1610 1 ← 2 ← 3 ← 2 → 1 → 2 → 1 ← 3 ← 1 ← 3 → 2 ← 1 → 3 → 1 ← 2 → 3 → 1

½T�1611 1 ← 2 ← 1 ← 3 ← 2 → 1 → 3 → 2 → 1 ← 3 ← 1 ← 2 → 3 → 1 → 2 ← 3 → 1

½T�1612 1 ← 2 ← 1 ← 3 ← 2 → 1 ← 3 → 2 ← 1 → 3 → 1 → 2 → 3 ← 1 → 2 ← 3 → 1

½T�1613 1 ← 2 ← 1 ← 3 → 2 → 1 → 3 ← 2 → 1 ← 3 ← 1 ← 2 ← 3 → 1 → 2 → 3 → 1

½T�1614 1 ← 2 ← 1 ← 3 → 2 → 1 ← 3 → 2 → 3 ← 1 → 2 ← 3 ← 2 ← 3 → 1 → 3 → 1

½T�1615 1 ← 2 ← 1 ← 2 ← 1 → 3 ← 2 → 1 ← 3 → 2 → 1 → 2 → 3 ← 1 → 2 ← 3 → 1

½T�1616 1 ← 2 ← 1 ← 2 ← 3 → 1 → 2 → 1 → 3 ← 2 → 1 ← 3 ← 1 ← 3 → 2 → 3 → 1

½T�1617 1 ← 2 ← 1 ← 2 → 3 → 2 → 1 ← 3 ← 1 ← 3 ← 2 → 1 → 3 → 1 → 2 ← 3 → 1

½T�1618 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 ← 3 ← 2 → 1 ← 3 → 2 → 3 ← 1 ← 2 → 3 → 1
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where the relevant quantities are evaluated at the moment
that the light beam reaches the receiving spacecraft, t ¼ t2.
For an arbitrary link at t ¼ t2, regarding the first

term on the rhs of Eq. (38), the optical path

Liðt ¼ t2Þ≡ Riðt ¼ t2Þ ≃Diðt ¼ t2Þ can be expanded
about the instant of measurement t ¼ t0 ≡ t2 − ΔT, and
one has

Diðt2Þ ¼ Diðt0Þ þ n̂i · ðvjðt0Þ − vkðt0ÞÞð−ΔTÞ

þ 1

2Di
ððvjðt0Þ − vkðt0ÞÞ · ðvjðt0Þ − vkðt0ÞÞ

þDiðt0Þn̂i · ðajðt0Þ − akðt0ÞÞ
− ðn̂i · ðvkðt0Þ − vjðt0ÞÞÞ2Þð−ΔTÞ2 þ � � � ; ð39Þ

where Di ¼ Din̂i. It is further observed that, when
expanded about t ¼ t0, the second term on the rhs of
Eq. (38) gives the following contribution:

Diðt2Þ · vkðt2Þ
c

¼ Diðt0Þ · vkðt0Þ
c

þ
�ðvjðt0Þ − vkðt0ÞÞ · vkðt0Þ

c

þDiðt0Þ · akðt0Þ
c

�
ð−ΔTÞ þ � � � : ð40Þ

Now, one can readily identify the specific forms of Li

and _Li by substituting Eqs. (39) and (40) back into Eq. (38)

TABLE XI. Delay-time residual of the 16-link second-generation geometricTDI combinations. These 18 second-generation combinations
are generic ones that do not belong to any existing class. The fifth and sixth columnswere evaluated using the parameters of theLISAdetector.

TDI
combination fdi; di0 g ffig Time residual cδt

L

Coefficient before
sin 3Ωt (s)

Coefficient before
cosΩt (s)

½T�161 f1; 1; 1;−1;−1;−1g f0;−2; 2g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈3 − L̈2Þ 9 × 10−14 9 × 10−14

½T�162 f1; 1; 1;−1;−1;−1g f0;−2; 2g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈3 − L̈2Þ 9 × 10−14 9 × 10−14

½T�163 f4; 4; 4;−4;−4;−4g f0;−8; 8g 4
P

3
i¼1

_Li− _Li0
c þ 8 L

c2 ðL̈3 − L̈2Þ 3.6 × 10−13 3.6 × 10−13

½T�164 f1; 1; 1;−1;−1;−1g f0;−2; 2g P
3
i¼1

_Li− _Li0
c þ 2 L

c2
ðL̈3 − L̈2Þ 9 × 10−13 9 × 10−14

½T�165 f3; 3; 3;−3;−3;−3g f0;−6; 6g 3
P

3
i¼1

_Li− _Li0
c þ 6 L

c2 ðL̈3 − L̈2Þ 2.7 × 10−13 2.7 × 10−13

½T�166 f4; 4; 4;−4;−4;−4g f0;−8; 8g 4
P

3
i¼1

_Li− _Li0
c þ 8 L

c2 ðL̈3 − L̈2Þ 3.6 × 10−13 3.6 × 10−13

½T�167 f5; 5; 5;−5;−5;−5g f0;−10; 10g 5
P

3
i¼1

_Li− _Li0
c þ 10 L

c2 ðL̈3 − L̈2Þ 4.5 × 10−13 4.5 × 10−13

½T�168 f1; 1; 1;−1;−1;−1g f0;−2; 2g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈3 − L̈2Þ 9 × 10−14 9 × 10−14

½T�169 f−1;−1;−1; 1; 1; 1g f0; 0; 0g −
P

3
i¼1

_Li− _Li0
c 9 × 10−14 0

½T�1610 f1; 1; 1;−1;−1;−1g f0; 0; 0g P
3
i¼1

_Li− _Li0
c

9 × 10−14 0

½T�1611 f1; 1; 1;−1;−1;−1g f2; 0;−2g P
3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈3Þ 9 × 10−14 9 × 10−14

½T�1612 f3; 3; 3;−3;−3;−3g f0; 0; 0g 3
P

3
i¼1

_Li− _Li0
c

2.7 × 10−13 0

½T�1613 f−1;−1;−1; 1; 1; 1g f2;−2; 0g −
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 9 × 10−14 9 × 10−14

½T�1614 f1; 1; 1;−1;−1;−1g f0; 0; 0g P
3
i¼1

_Li− _Li0
c

9 × 10−14 0

½T�1615 f3; 3; 3;−3;−3;−3g f0; 0; 0g 3
P

3
i¼1

_Li− _Li0
c

2.7 × 10−13 0

½T�1616 f−1;−1;−1; 1; 1; 1g f2;−2; 0g −
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈2Þ 9 × 10−14 9 × 10−14

½T�1617 f1; 1; 1;−1;−1;−1g f2; 0;−2g −
P

3
i¼1

_Li− _Li0
c þ 2 L

c2 ðL̈1 − L̈3Þ 9 × 10−14 9 × 10−14

½T�1618 f1; 1; 1;−1;−1;−1g f0; 0; 0g P
3
i¼1

_Li− _Li0
c

9 × 10−14 0

FIG. 14. Schematic diagram of the link i defined by two
spacecraft S/C j and S/C k in motion. The red vector Ri indicates
that a laser beam was emitted by S/C k at an earlier instant t1
(indicated by gray filled circles) and received by S/C j at a later
instant t2 (indicated by dark filled circles). The black vector Di,
on the other hand, represents the instantaneous vectorial differ-
ence between the two spacecraft at a later instant t2.
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and comparing it with the Taylor expansion (8). To be
specific, by extracting out the terms that are, respectively,
constant and proportional to ΔT, we have

Li ¼ Di þ
Di · vk

c
;

Li0 ¼ Di0 þ
Di0 · vj

c
; ð41Þ

and

_Li

c
¼ ni · ðvj − vkÞ

c
þ 1

c2
ððvj − vkÞ · vk þ Di · akÞ;

_Li0

c
¼ ni0 · ðvk − vjÞ

c
þ 1

c2
ððvk − vjÞ · vj þ Di0 · ajÞ; ð42Þ

where all of the quantities on the rhs of the expressions
are evaluated at t ¼ t0. Subsequently, the difference
between the two lines of Eq. (42) reads

_Li − _Li0

c
¼ 1

c2
½v2j − v2k þ Di · ðak þ ajÞ�; ð43Þ

where we utilize Dj ¼ Di0 and Di ¼ xj − xk ¼ −Di0 .
By making use of Eq. (12), as well as the values given in

Tables III, V, VII, IX, and XI, we have di ¼ −di0 ≡ d.
Therefore, Eq. (13) can be simplified to read

X3
i¼1

di
_Li − _Li0

c
¼ d

X3
i¼1

_Li − _Li0

c

¼ d
c2

X3
i¼1

½ðxiþ1 − xi−1Þ · ðai−1 þ aiþ1Þ�

¼ d
c2

½ðaj − akÞ · ðxi − xkÞ
þ ðai − akÞ · ðxk − xjÞ�: ð44Þ

We note that the above quantity is merely a function of
relative acceleration.
For the LISA detector, the position vectors of the

three spacecraft under the first-order approximation are
given by [39]

xk ¼ eR

��
cosΩt − ðk − 1Þ 2π

3

�
;−2 sin

�
Ωt − ðk − 1Þ 2π

3

�
;

ffiffiffi
3

p
cos

�
Ωt − ðk − 1Þ 2π

3

��
; ð45Þ

where xk ¼ ðxk; yk; zkÞ represent the displacements
between the individual S/C and the centers of the con-
stellation and e is the orbital eccentricity. The trajectory of

the barycenter of the three S/C is a circle in the ecliptic
plane with a radius R, arm length L ¼ 2

ffiffiffi
3

p
eR, and angular

velocity Ω ¼
ffiffiffiffiffiffi
GM
R3

q
. The acceleration of S/C i is

ai ≈ −
GM
RA

3
RA; ð46Þ

where RA is the vector from S/C i to the Sun. The
acceleration of S/C j can be written as

aj ≈ −
GM

jRA − Dkj3
ðRA − DkÞ: ð47Þ

The acceleration of S/C k is written as

ak ≈ −
GM

jRA þ Djj3
ðRA þ DjÞ: ð48Þ

According to Eq. (44), only the relative acceleration is
relevant, and it is assumed that RA ≈ R.
The Taylor expansions of the accelerations of S/C j and

S/C k give

−aj ≈
GM
R3

R −
GM
R3

Dk −
GM
R3

R
3R · ð−DkÞ

R2

þ 3
GM
R3

Dk
Dk cos θkðtÞ

R

þ 3

2

GM
R3

R
D2

k

R2
ð5 cos2 θkðtÞ − 1Þ; ð49aÞ

−ak ≈
GM
R3

Rþ GM
R3

Dj −
GM
R3

R
3R · Dj

R2

− 3
GM
R3

Dj
Dj cos θjðtÞ

R

þ 3

2

GM
R3

R
D2

j

R2
ð5 cos2 θjðtÞ − 1Þ: ð49bÞ

Here, we have denoted the angle between R and −Dk by
θkðtÞ, and the angle between R and Dj by θjðtÞ.
By combining Eqs. (44), (49a), and (49b), one finds

X3
i¼1

di
_Li − _Li0

c
¼ d

c2
3

2

GM
R3

L3

R
½cos θjðtÞ − cos θkðtÞ�

þ d
c2

3

2

GM
R3

L3

R
½ð5 cos2 θkðtÞ − 1Þ cos θjðtÞ

− ð5 cos2 θjðtÞ − 1Þ cos θkðtÞ�; ð50Þ

which can be further simplified to
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X3
i¼1

di
_Li − _Li0

c
¼ d

c2
15

2

GM
R3

L3

R
cos θjðtÞ cos θkðtÞ

× ½cos θkðtÞ − cos θjðtÞ�: ð51Þ

To evaluate θi, θk, we need to projectDj,Dk onto the x axis,
and subsequently we have

cos θj ¼ −
1

2
sin

�
Ωtþ π

3

�
;

cos θk ¼
1

2
sin

�
Ωt −

π

3

�
; ð52Þ

where Ω is the average angular velocity. By substituting
Eq. (52) into Eq. (51), the optical path discrepancy
associated with the _Li term is found to be

δtv ≈ d
L
c
15

64

GML3

R4c2
sin 3Ωt: ð53Þ

Similarly, one can evaluate Eq. (15). For the optimized
case, the expression for L̈i is [39,40]

L̈i ¼ RΩ2

�
15

ffiffiffi
3

p

16
cos θi þ

9
ffiffiffi
3

p

16
cos 3θi

�
e2; ð54Þ

whereθi ¼ Ωt − π
3
− i 2π

3
. Utilizing the above result, one finds

X3
i¼1

fi
L̈iL
c2

¼RΩ2
X3
i¼1

fi

�
15

ffiffiffi
3

p

16
cosθiþ

9
ffiffiffi
3

p

16
cos3θi

�
e2

L
c2
;

ð55Þ
where fi are the coefficients of the acceleration terms in
Eq. (9). In particular, it is observed that the coefficients
ff1; f2; f3g satisfy f1 þ f2 þ f3 ¼ 0. Therefore, the coef-
ficient before the term cos 3θi in Eq. (55) always vanishes,
and the resulting optical path discrepancy associated with the
L̈i term is given by

δta ≈
L
c
5

ffiffiffi
3

p

128

GML3

R4c2
X3
i¼1

fi cos θi: ð56Þ

By summing Eqs. (53) and (56), the delay-time residual
reads

δt≈d
L
c
15

64

GML3

R4c2
sin3ΩtþL

c
5

ffiffiffi
3

p

128

GML3

R4c2
X3
i¼1

ficosθi: ð57Þ

The coefficients d; fi and the resultant expressions for the
residual can be found in Tables III, V, VII, IX, and XI. As a
rough estimation, one employs the following typical values
of the parameters. The instantaneous distance between the
spacecraft is Dk ≈Dj ≈Di ≡ L ≈ 2.5 × 109 m, the accel-
eration of the Sun is 6 × 10−3 m=s2, and the distance
between the center of the constellation and the Sun is

R ≈ 1.5 × 1011 m. Then, according to Eq. (57), for the
modified second-generation TDI combinations, the
residual only receives a contribution from the second term
of Eq. (57), when compared to their second-generation
counterparts. Using the above specific parameters, the
coefficient of the term sin 3Ωt is approximately
d × 9 × 10−14 s, and the coefficient of the term cosΩt isP

3
i¼1 fi × 4.5 × 10−14 s. In the last two columns of the

tables, we estimate the magnitude of the contribution
proportional to Ω2 (where the initial phase has been
neglected) in the delay-time residual. It is observed that
the mismatch of the optical paths for both second-gen-
eration and modified second-generation TDI combinations
is a few picoseconds. The magnitude of the obtained results
is consistent with those from numerical simulations [31].

V. SENSITIVITY FUNCTION

In this section, we explore the response functions,
residual noise PSDs, and sensitivity curves of the obtained
geometric TDI combinations by making use of the ana-
lytical results derived in Ref. [41]. These formulas provide
straightforward access to the analytic characteristics of the
space-borne GW detector.
The averaged response function for an arbitrary TDI

combination reads

RðuÞ ¼ 2

4
C1½P̃iðuÞ� × f1ðuÞ þ C2½P̃iðuÞ� × f2ðuÞ

þ 3

4
C3½P̃iðuÞ� × f3ðuÞ −

3

4
C4½P̃iðuÞ� × f4ðuÞ

þ 1

4
C5½P̃iðuÞ� × f5ðuÞ; ð58Þ

where the coefficients P̃iðuÞ are the Fourier transforms
of Pi, the polynomials of the delay operators, given in
Eq. (6). We note that the Fourier transform of the delay
operator possesses the form D̃i ¼ eiu, where one defines
the dimensionless quantity u ¼ 2πfL

c . The coefficients
Ci½P̃iðuÞ� and fiðuÞ are given by

C1½P̃iðuÞ� ¼
X3
i¼1

½P̃ij2 þ jP̃i0 j2�;

C2½P̃iðuÞ� ¼ 2
X3
i¼1

Re½P̃iP̃ðiþ1Þ0 ��;

C3½P̃iðuÞ� ¼ 2
X3
i¼1

Re½ðP̃iP̃iþ1
� þ P̃i0P̃ði−1Þ0 �Þeiu�;

C4½P̃iðuÞ� ¼ 2
X3
i¼1

Im½ðP̃iP̃iþ1
� þ P̃i0P̃ði−1Þ0 �Þeiu�;

C5½P̃iðuÞ� ¼ 2
X3
i¼1

Re½P̃iP̃i0
� þ P̃iP̃ði−1Þ0 ��; ð59Þ
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and

f1ðuÞ ¼
4

3
−

2

u2
þ sin 2u

u3
;

f2ðuÞ ¼
−u cos uþ sin u

u3
−
cos u
3

;

f3ðuÞ ¼ log
4

3
−

5

18
þ −5 sin uþ 8 sin 2u − 3 sin 3u

8u
−
1

3

�
4þ 9 cos uþ 12 cos 2uþ cos 3u

8u2

�

þ 1

3

�
−5 sin uþ 8 sin 2uþ 5 sin 3u

8u3

�
þ Ci3u − 2Ci2uþ Ciu;

f4ðuÞ ¼
−5 cos uþ 8 cos 2u − 3 cos 3u

8u
þ 1

3

�
9 sin uþ 12 sin 2uþ sin 3u

8u2
−
8þ 5 cos u − 8 cos 2u − 5 cos 3u

8u3

�
þ 2Si2u − Si3u − Siu;

f5ðuÞ ¼ − log 4þ 7

6
þ 11 sin u − 4 sin 2u

4u
−
10þ 5 cos u − 2 cos 2u

4u2
þ 5 sin uþ 4 sin 2u

4u3
þ 2ðCi2u − CiuÞ: ð60Þ

Here, we denote the functions SinIntegral by SiðzÞ ¼ R
z
0 sin t=tdt and CosIntegral by CiðzÞ ¼ −

R
∞
z cos t=tdt.

The total noise PSD can be written as

NðuÞ ¼ STDIaðuÞ þ STDIshotðuÞ
¼ C1½P̃iðuÞ�n1ðuÞ þ 2C2½P̃iðuÞ�n2ðuÞ; ð61Þ

and

n1ðuÞ ¼ 2
L2s2a
u2c4

þ u2s2x
L2

;

n2ðuÞ ¼
L2s2a
u2c4

cos u: ð62Þ

In what follows, the calculations are carried out using
the LISA mission’s typical parameters. The corresponding
amplitude spectral densities of the test mass and shot
noise are, respectively, sLISAa ¼ 3 × 10−15 ms−2=

ffiffiffiffiffiffi
Hz

p
and

sLISAx ¼ 10 × 10−12 m=
ffiffiffiffiffiffi
Hz

p
.

For the 16-link combinations, we first analyze the
modified second-generation TDI combinations. Among
the nine solutions, four of them are the standard forms
½X�161 ; ½U�161 ; ½E�161 , and ½P�161 .
For the Michelson-type TDI combinations, by substitut-

ing Eqs. (B1) and (B2) into Eqs. (58)–(62), the GW signal
response function and the noise PSD of ½X�161 are given by

RðuÞ½X�16
1
¼ 8

3
sin2usin22u

�
5þ cos2uþ 12ðCiu−Ci2uþ log2Þ− 18cos2u

�
Ciu−2Ci2uþCi3uþ log

4

3

�

− 18sin2uðSiu− 2Si2uþSi3uÞþ 3ð−7sinuþ 2sin2uÞ
u

−
3cosuð−5þ 8cosuÞ

u2
þ 3ð−5sinuþ 4sin2uÞ

u3

	
; ð63Þ

and

NðuÞ½X�16
1
¼ 64sin22usin2u

�
ð3þ cos 2uÞL

2sa2

u2c4
þ u2sx2

L2

�
:

ð64Þ

Also, the GW signal response function and the noise PSD
of the alternative form ½X�162 are found to be

RðuÞ½X�16
2
¼

RðuÞ½X�16
1

sin2 2u
sin2 u; ð65Þ

and

NðuÞ½X�16
2
¼

NðuÞ½X�16
1

sin2 2u
sin2 u: ð66Þ

The resultingGWresponse function andnoise PSD for the
twoMichelson-type combinations ½X�161 and ½X�162 are shown
in Fig. 15. Here, the zeros of the functions can be identified
using Eqs. (63)–(66). To be specific, the zeros of the
alternative form ½X�162 are governed by sinu ¼ 0. They are
more sparsely distributed, located at nc=2L, where n is an
integer. On the other hand, the zeros of the standard form
½X�161 are at nc=4L, determined by sin 2u ¼ 0. These results
are consistent with the observations given by Vallisneri [23].
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For the Relay-type TDI combinations, the response functions and noise PSD are obtained by substituting Eqs. (B3)–(B5)
into Eqs. (58)–(62). For the standard form ½U�161 , we have

RðuÞ½U�16
1
¼ 1

3
ð1þ 2 cos uÞ2sin4 u

2

�
72þ 56 cos uþ 16 cos 2u −

3ð108 sin u − 8 sin 2u − 8 sin 3uþ sin 4uÞ
u

−
3ð29 − 12 cos uþ 34 cos 2uþ 16 cos 3uþ 5 cos 4uÞ

u2
þ 3ð−44 sin uþ 24 sin 2uþ 16 sin 3uþ 5 sin 4uÞ

u3

þ 48½ð7þ 6 cos u − cos 2uÞCiu − 2ð5þ 3 cos u − 2 cos 2uÞCi2uþ cos 2u log
27

16
þ log

1024

27
þ cos u log 64

þ 6Ci3usin2u − 3ðsin uþ sin 2uÞðSiu − 2Si2uþ Si3uÞ�
	
; ð67Þ

and

NðuÞ½U�16
1
¼ 32ð1þ 2 cos uÞ2sin4 u

2

�
2ð5þ 5 cos uþ 2 cos 2uÞ × L2sa2

u2c4
þ ð4þ 4 cos uþ cos 2uÞ × u2s2x

L2

�
: ð68Þ

For the alternative form ½U�162 , one finds

RðuÞ½U�16
2
¼

RðuÞ½U�16
1

ð1þ 2 cos uÞ2 sin2 u
2

sin2 u; ð69Þ

and

NðuÞ½U�16
2
¼

NðuÞ½U�16
1

ð1þ 2 cos uÞ2 sin2 u
2

sin2 u: ð70Þ

Also, the expression for the GW signal response function
and the noise PSD of the alternative form ½U�163 are found
to be

RðuÞ½U�16
3
¼

RðuÞ½U�16
1

ð1þ 2 cos uÞ2 ; ð71Þ

and

NðuÞ½U�16
3
¼

NðuÞ½U�16
1

ð1þ 2 cos uÞ2 : ð72Þ

Again, the zeros of the GW averaged response function
and noise PSD can be analyzed using the analytic forms
given by Eqs. (67)–(72). To be specific, for the standard
form ½U�161 , they are located at nc=3L, governed by
cos u ¼ − 1

2
. On the other hand, those of the alternative

forms ½U�162 and ½U�163 are at nc=2L and nc=L, respectively,
determined by sinu ¼ 0 and sin u

2
¼ 0. The above functions

are shown in Fig. 16.
For the Monitor-type TDI combinations, by substituting

Eqs. (B6) and (B7) into Eqs. (58)–(62), the GW signal
response function and the noise PSD of the standard form
½E�161 are given by

FIG. 15. GW averaged response function and noise PSD of the 16-link Michelson-type TDI combinations. The calculations were
carried out using the parameters of the LISA detector. The left panel shows the GW averaged response function, while the right panel
shows that for the noise PSD.
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RðuÞ½E�16
1
¼ 2

3
sin2usin2

u
2

�
ð20þ4cosuþ168ð1þ cosuÞCiu−240ð1þ cosuÞCi2u

−
3ð27sinu−9sin2uþ sin3uÞ

u
−
3ð11−15cosuþ11cos2uþ5cos3uÞ

u2
þ3ð−25sin½u�þ11sin½2u�þ5sin½3u�Þ

u3

þ24

�
3ð1þ cosuÞCi3uþð1þ cosuÞ log1024

27
þ3sinuðSiu−2Si2uþSi3uÞ

�	
; ð73Þ

and

NðuÞ½E�16
1
¼ 32sin2usin2

u
2

�
2ð3þ cos uÞ × L2sa2

u2c4
þ ð3þ 2 cos uÞ × u2sx2

L2

�
: ð74Þ

Those for the alternative form ½E�162 are found to be

RðuÞ½E�16
2
¼

RðuÞ½E�16
1

sin2 u
sin2

u
2
; ð75Þ

and

NðuÞ½E�16
2
¼

NðuÞ½E�16
1

sin2 u
sin2

u
2
: ð76Þ

For the Beacon-type TDI combinations, by substituting
Eqs. (B8) and (B9) into Eqs. (58)–(62), the GW signal
response function and noise PSD of the standard form ½P�161
are given by

RðuÞ½P�16
1
¼ RðuÞ½E�16

1
; NðuÞ½P�16

1
¼ NðuÞ½E�16

1
; ð77Þ

and those for the alternative form ½P�162 are found to be

RðuÞ½P�16
2
¼ RðuÞ½E�16

2
; NðuÞ½P�16

2
¼ NðuÞ½E�16

2
: ð78Þ

The zeros of the GW averaged response function and
noise PSD can be derived using Eqs. (73)–(78). The zeros

of the standard form ½E�161 and ½P�161 are located at nc=2L, in
accordance with sin u ¼ 0. Those of the alternative forms
½E�162 and ½P�162 are at nc=L, governed by sin u

2
¼ 0. The

resulting functions are presented in Fig. 17.
In terms of the response function and noise PSD, the

sensitivity function is defined as

SðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
NðuÞ
2
5
RðuÞ

s
; ð79Þ

where the factor 2=5 is the average of the orbital inclination
for the binary system. It is interesting to note that the
alternative form of the Michelson-type combination ½X�162
possesses the same sensitivity function as the standard
form ½X�161 ,

SðuÞ½X�16
1
¼ SðuÞ½X�16

2
: ð80Þ

However, the GW response function and noise PSD of
½X�162 have fewer zeros.
The alternative forms of the Relay-type combinations,

½U�162 and ½U�163 , also have an identical sensitivity function
as the standard form ½U�161 ,

FIG. 16. GW averaged response function and noise PSD of the 16-link Relay-type TDI combinations. The calculations were carried
out using the parameters of the LISA detector. The left panel shows the GWaveraged response function, while the right panel shows that
for the noise PSD.
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SðuÞ½U�16
1
¼ SðuÞ½U�16

2
¼ SðuÞ½U�16

3
: ð81Þ

Similarly, for the Monitor-type and Beacon-type TDI
combinations, it is found that the alternative TDI combi-
nations possess the same sensitivity function as the stan-
dard ones,

SðuÞ½E�16
1
¼ SðuÞ½P�16

1
¼ SðuÞ½E�16

2
¼ SðuÞ½P�16

2
: ð82Þ

As given above in Eqs. (80)–(82), there are three distinct
sensitivity curves out of the nine modified second-gener-
ation TDI combinations. The resulting curves are shown in
the left panel of Fig. 18.
We also analytically evaluate the GW response function

and noise PSD for the second-generation TDI combina-
tions. Out of 31 TDI solutions, eight distinct sensitivity
functions are obtained and enumerated as follows:

SðuÞ1∶½U�164 ;

SðuÞ2∶½U�165 ¼½U�166 ;

SðuÞ3∶½PE�161 ¼½PE�162 ;

SðuÞ4∶½PE�163 ;

SðuÞ5∶½PE�164 ;

SðuÞ6∶½PE�165 ¼½PE�166 ¼½PE�167 ¼½PE�168 ¼½PE�169
¼½PE�1610;

SðuÞ8∶½T�161 ¼½T�162 ¼½T�163 ¼½T�164 ¼½T�165 ¼½T�166 ¼½T�167
¼½T�168 ¼½T�1611¼½T�1613¼½T�1616¼½T�1617;

SðuÞ8∶½T�169 ¼½T�1610¼½T�1612¼½T�1614¼½T�1615¼½T�1618: ð83Þ

These results are shown in the right panel of Fig. 18.
Judging from the sensitivity curves, overall, the modified

FIG. 18. Sensitivity curves of the 16-link TDI combinations. The calculations were carried out using the parameters of the LISA
detector. The left panel shows the sensitivity curve of modified second-generation TDI combinations, while the right panel shows that
for the second-generation TDI combinations.

FIG. 17. GW averaged response function and noise PSD of the 16-link Monitor-type and Beacon-type TDI combinations. The
calculations were carried out using the parameters of the LISA detector. The left panel shows the GWaveraged response function, while
the right panel shows that for the noise PSD.
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second-generation TDI combinations are more favorable
when compared to their second-generation counterparts.
For the 12-link TDI combination, the GW response and

noise PSDare shown inFig. 19. For the standardTDI ½α�1, the
zeros are located atnc=3L. On theother hand, the zeros of the
alternative form ½α�2; ½α�3 are more sparsely distributed,
located at nc=L. Also, from Fig. 20 it is observed that the
alternative form ½α�2 has the same sensitivity curve as the
standard Sagnac combination ½α�1, which outperforms ½α�3.
The sensitivity curves of the 14-link TDI combinations and

the classic 12-link Sagnac combination are presented in
Fig. 21. For the 14-link TDI combinations, the sensitivity
functions of ½U�141 ; ½U�142 , and ½EP�141 are found to be identical,
which performs better than ½EP�142 . However, it is found that
the sensitivity functions of the 14-link TDI combinations are
generally worse than that of the Sagnac combination.

VI. CONCLUDING REMARKS

By employing a ternary search implemented for the
geometric TDI algorithm, we studied the 12-, 14-, and
16-link TDI combinations. The obtained geometric TDI
solutions, specifically the modified second-generation
ones, were analyzed. First, the laser frequency noise
suppression was investigated, and the time-mismatch
residual was analytically evaluated. In particular, for the
LISA detector, the derived analytic expressions were shown
to be consistent with the numerical simulation results. The
modified second-generation TDI solutions investigated in
the present study distinguish the cyclic directions regarding
the rate of change of a given arm length. Second, the noise
PSD and GW signal response functions of relevant TDI
combinations were evaluated, and the relevant TDI combi-
nations’ sensitivity functions were analytically derived.
Overall, we observed that the sensitivity functions of the
modified second-generation TDI combinations are better
than the second-generation ones.

FIG. 19. GW averaged response function and noise PSD of the 12-link TDI combinations. The calculations were carried out using
the parameters of the LISA detector. The left panel shows the GW averaged response function, while the right panel shows that for the
noise PSD.

FIG. 20. Sensitivity curves of the 12-link TDI combinations.
The calculations were carried out using the parameters of the
LISA detector.

FIG. 21. Sensitivity curves of the 14-link TDI combinations
and Sagnac combination ½α�1. The calculations were carried out
using the parameters of the LISA detector.
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APPENDIX A: INDEX CONVENTIONS

A variety of notations for the signal channel have been
utilized in the literature. When Tinto et al. first proposed
TDI [13], a single index indicated a vertex or an arm sitting
on the opposite side of the vertex. A signal transmitted
along the optical path associated with the arm Li and
eventually received by the spacecraft j is represented by a
pair of indices “ij.” For (artificially) delayed data streams,
one further introduces the notation sij;k ≡ sijðt − LkÞ. To
be specific, s31 gives the one-way phase difference mea-
sured at spacecraft 1, which is emitted by spacecraft 2, and
subsequently transmitted along the arm L3. Such a con-
vention has been subsequently utilized in Refs. [20,42–44].
As a comparison, a second convention [25–27,45–47] also
makes use of two indices while adopting more intuitive
notations. Here, sij denotes the phase difference measured
at spacecraft j, which comes from spacecraft i. Moreover, a
third convention is also extensively utilized in the literature
[15,29,30,48–50]. Here, an index is used to denote the
optical path sitting on the opposite side of the vertex, in the
counterclockwise direction, while an index with a prime
indicates that in the clockwise direction. Apart from the
above three conventions, other notations have also been
employed by some authors [21].
Obviously, the second set of conventions is rather

intuitive and not restricted to the case of the three-space-
craft constellation, and the only drawback is its apparent
redundancy. On the other hand, the third choice suffices for
the present purpose and is rather convenient in practice due
to its compact form. Therefore, in our manuscript, we adopt
the third convention, which has also been employed in the
recently updated Ref. [15].

APPENDIX B: DELAY OPERATOR
POLYNOMIAL COEFFICIENTS FOR THE
MODIFIED SECOND-GENERATION TDI

COMBINATIONS

This appendix presents the Fourier transforms of the
delay operator polynomial coefficients for the modified
second-generation TDI combinations. The corresponding

coefficients P̃iðuÞ, P̃i0 ðuÞ of the ½X�161 ; ½X�162 combinations
are, respectively,

P̃1ðuÞ ¼ 1 − e2iu − e4iu þ e6iu;

P̃2ðuÞ ¼ 0;

P̃3ðuÞ ¼ −eiu þ e3iu þ e5iu − e7iu;

P̃10 ðuÞ ¼ −1þ e2iu þ e4iu − e6iu;

P̃20 ðuÞ ¼ eiu − e3iu − e5iu þ e7iu;

P̃30 ðuÞ ¼ 0; ðB1Þ
and

P̃1ðuÞ ¼ 1 − 2e2iu þ e4iu;

P̃2ðuÞ ¼ 0;

P̃3ðuÞ ¼ −eiu þ 2e3iu − e5iu;

P̃10 ðuÞ ¼ −1þ 2e2iu − e4iu;

P̃20 ðuÞ ¼ eiu − 2e3iu þ e5iu;

P̃30 ðuÞ ¼ 0: ðB2Þ
The corresponding coefficients P̃iðuÞ, P̃i0 ðuÞ of the
½U�161 ; ½U�162 ; ½U�163 combinations are, respectively,

P̃1ðuÞ ¼ 1 − 2e3iu þ e6iu;

P̃2ðuÞ ¼ 0;

P̃3ðuÞ ¼ 0;

P̃10 ðuÞ ¼ −1þ e2iu þ e3iu − e5iu;

P̃20 ðuÞ ¼ eiu − e2iu − e4iu þ e5iu;

P̃30 ðuÞ ¼ −eiu þ e3iu þ e4iu − e6iu; ðB3Þ

P̃1ðuÞ ¼ 1 − e2iu − e3iu þ e5iu;

P̃2ðuÞ ¼ 0

P̃3ðuÞ ¼ 0

P̃10 ðuÞ ¼ −1þ 2e2iu − e4iu

P̃20 ðuÞ ¼ eiu − e2iu − e3iu þ e4iu

P̃30 ðuÞ ¼ −eiu þ 2e3iu − e5iu; ðB4Þ

and

P̃1ðuÞ ¼ 1 − eiu − e3iu þ e4iu;

P̃2ðuÞ ¼ 0;

P̃3ðuÞ ¼ 0;

P̃10 ðuÞ ¼ −1þ eiu þ e2iu − e3iu;

P̃20 ðuÞ ¼ eiu − 2e2iu þ e3iu;

P̃30 ðuÞ ¼ −eiu þ e2iu þ e3iu − e4iu: ðB5Þ
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The corresponding coefficients P̃iðuÞ, P̃i0 ðuÞ of the
½E�161 ; ½E�162 combinations are, respectively,

P̃1ðuÞ ¼ 1 − 2e2iu þ e4iu;

P̃2ðuÞ ¼ eiu − e2iu − e3iu þ e4iu;

P̃3ðuÞ ¼ 0;

P̃10 ðuÞ ¼ −1þ 2e2iu − e4iu;

P̃20 ðuÞ ¼ 0;

P̃30 ðuÞ ¼ −eiu þ e2iu þ e3iu − e4iu; ðB6Þ

and

P̃1ðuÞ ¼ 1 − eiu − e2iu þ e3iu;

P̃2ðuÞ ¼ eiu − 2e2iu þ e3iu;

P̃3ðuÞ ¼ 0;

P̃10 ðuÞ ¼ −1þ eiu þ e2iu − e3iu;

P̃20 ðuÞ ¼ 0;

P̃30 ðuÞ ¼ −eiu þ 2e2iu − e3iu: ðB7Þ

The corresponding coefficients P̃iðuÞ, P̃i0 ðuÞ of the
½P�161 ; ½P�162 combinations are, respectively,

P̃1ðuÞ ¼ 1 − eiu − e2iu þ e3iu;

P̃2ðuÞ ¼ 1 − 2e2iu þ e4iu;

P̃3ðuÞ ¼ 0;

P̃10 ðuÞ ¼ −1þ 2e2iu − e4iu;

P̃20 ðuÞ ¼ −1þ eiu þ e2iu − e3iu;

P̃30 ðuÞ ¼ 0; ðB8Þ

and

P̃1ðuÞ ¼ 1 − 2eiu þ e2iu;

P̃2ðuÞ ¼ 1 − eiu − e2iu þ e3iu;

P̃3ðuÞ ¼ 0

P̃10 ðuÞ ¼ −1þ eiu þ e2iu − e3iu;

P̃20 ðuÞ ¼ −1þ 2eiu − e2iu;

P̃30 ðuÞ ¼ 0: ðB9Þ

[1] B. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[2] B. P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016).
[3] B. P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017);

121, 129901(E) (2018).
[4] B. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017).
[5] B. Abbott et al., Phys. Rev. Lett. 119, 141101 (2017).
[6] B. P. Abbott et al., Astrophys. J. Lett. 851, L16 (2017).
[7] B. P. Abbott et al. (The LIGO Scientific Collaboration and

the Virgo Collaboration), Phys. Rev. X 9, 031040 (2019).
[8] P. Amaro-Seoane et al., arXiv:1702.00786.
[9] K. Danzmann, Classical Quantum Gravity 14, 1399 (1997).

[10] J. Luo et al., Classical Quantum Gravity 33, 035010 (2016).
[11] W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
[12] S. Kawamura et al., Classical Quantum Gravity 23, S125

(2006).
[13] J. W. Armstrong, F. B. Estabrook, and M. Tinto, Astrophys.

J. 527, 814 (1999).
[14] M. Tinto and J. Armstrong, Phys. Rev. D 59, 102003

(1999).
[15] M. Tinto and S. V. Dhurandhar, Living Rev. Relativity 24, 1

(2021).
[16] F. B. Estabrook, M. Tinto, and J. W. Armstrong, Phys. Rev.

D 62, 042002 (2000).
[17] J. W. Armstrong, F. B. Estabrook, and M. Tinto, Classical

Quantum Gravity 18, 4059 (2001).
[18] S. L. Larson, R. W. Hellings, and W. A. Hiscock, Phys. Rev.

D 66, 062001 (2002).

[19] S. V. Dhurandhar, K. Rajesh Nayak, and J. Y. Vinet, Phys.
Rev. D 65, 102002 (2002).

[20] M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W.
Armstrong, Phys. Rev. D 67, 122003 (2003).

[21] M. Vallisneri, Phys. Rev. D 71, 022001 (2005).
[22] A. Petiteau, G. Auger, H. Halloin, O. Jeannin, E. Plagnol, S.

Pireaux, T. Regimbau, and J.-Y. Vinet, Phys. Rev. D 77,
023002 (2008).

[23] M. Vallisneri, Phys. Rev. D 72, 042003 (2005); 76, 109903
(E) (2007).

[24] K. Rajesh Nayak and J. Y. Vinet, Phys. Rev. D 70, 102003
(2004).

[25] D. A. Shaddock, M. Tinto, F. B. Estabrook, and J.
Armstrong, Phys. Rev. D 68, 061303 (2003).

[26] N. J. Cornish and R.W. Hellings, Classical Quantum
Gravity 20, 4851 (2003).

[27] M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev.
D 69, 082001 (2004).

[28] S. V. Dhurandhar, K. R. Nayak, and J. Y. Vinet, Classical
Quantum Gravity 27, 135013 (2010).

[29] M. Tinto and O. Hartwig, Phys. Rev. D 98, 042003 (2018).
[30] J.-B. Bayle, M. Lilley, A. Petiteau, and H. Halloin, Phys.

Rev. D 99, 084023 (2019).
[31] M. Muratore, D. Vetrugno, and S. Vitale, Classical Quantum

Gravity 37, 185019 (2020).
[32] M. Muratore, D. Vetrugno, S. Vitale, and O. Hartwig, Phys.

Rev. D 105, 023009 (2022).

WANG, QIAN, TAN, WU, and SHAO PHYS. REV. D 106, 024003 (2022)

024003-24

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.3847/2041-8213/aa9a35
https://doi.org/10.1103/PhysRevX.9.031040
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/14/6/002
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1088/0264-9381/23/8/S17
https://doi.org/10.1088/0264-9381/23/8/S17
https://doi.org/10.1086/308110
https://doi.org/10.1086/308110
https://doi.org/10.1103/PhysRevD.59.102003
https://doi.org/10.1103/PhysRevD.59.102003
https://doi.org/10.1007/s41114-020-00029-6
https://doi.org/10.1007/s41114-020-00029-6
https://doi.org/10.1103/PhysRevD.62.042002
https://doi.org/10.1103/PhysRevD.62.042002
https://doi.org/10.1088/0264-9381/18/19/313
https://doi.org/10.1088/0264-9381/18/19/313
https://doi.org/10.1103/PhysRevD.66.062001
https://doi.org/10.1103/PhysRevD.66.062001
https://doi.org/10.1103/PhysRevD.65.102002
https://doi.org/10.1103/PhysRevD.65.102002
https://doi.org/10.1103/PhysRevD.67.122003
https://doi.org/10.1103/PhysRevD.71.022001
https://doi.org/10.1103/PhysRevD.77.023002
https://doi.org/10.1103/PhysRevD.77.023002
https://doi.org/10.1103/PhysRevD.72.042003
https://doi.org/10.1103/PhysRevD.76.109903
https://doi.org/10.1103/PhysRevD.76.109903
https://doi.org/10.1103/PhysRevD.70.102003
https://doi.org/10.1103/PhysRevD.70.102003
https://doi.org/10.1103/PhysRevD.68.061303
https://doi.org/10.1088/0264-9381/20/22/009
https://doi.org/10.1088/0264-9381/20/22/009
https://doi.org/10.1103/PhysRevD.69.082001
https://doi.org/10.1103/PhysRevD.69.082001
https://doi.org/10.1088/0264-9381/27/13/135013
https://doi.org/10.1088/0264-9381/27/13/135013
https://doi.org/10.1103/PhysRevD.98.042003
https://doi.org/10.1103/PhysRevD.99.084023
https://doi.org/10.1103/PhysRevD.99.084023
https://doi.org/10.1088/1361-6382/ab9d5b
https://doi.org/10.1088/1361-6382/ab9d5b
https://doi.org/10.1103/PhysRevD.105.023009
https://doi.org/10.1103/PhysRevD.105.023009


[33] O. Hartwig and M. Muratore, Phys. Rev. D 105, 062006
(2022).

[34] M. Otto, Time-delay interferometry simulations for the
laser interferometer space antenna, Ph.D. thesis, Leibniz
Universität Hannover, 2015.

[35] J.-B. Bayle, O. Hartwig, and M. Staab, Phys. Rev. D 104,
023006 (2021).

[36] P.-P. Wang, Y.-J. Tan, W.-L. Qian, and C.-G. Shao, Phys.
Rev. D 104, 082002 (2021).

[37] S. G. Turyshev, M. V. Sazhin, and V. T. Toth, Phys. Rev. D
89, 105029 (2014).

[38] S. G. Turyshev, N. Yu, and V. T. Toth, Phys. Rev. D 93,
045027 (2016).

[39] S. V. Dhurandhar, K. Rajesh Nayak, S. Koshti, and J. Y.
Vinet, Classical Quantum Gravity 22, 481 (2005).

[40] B. Wu, C.-G. Huang, and C.-F. Qiao, Phys. Rev. D 100,
122001 (2019).

[41] P.-P. Wang, Y.-J. Tan, W.-L. Qian, and C.-G. Shao, Phys.
Rev. D 103, 063021 (2021).

[42] M. Tinto, J. W. Armstrong, and F. B. Estabrook, Phys. Rev.
D 63, 021101 (2000).

[43] C. J.Hogan andP. L.Bender, Phys. Rev.D 64, 062002 (2001).
[44] T. A. Prince, M. Tinto, S. L. Larson, and J. W. Armstrong,

Phys. Rev. D 66, 122002 (2002).
[45] D. A. Shaddock, Phys. Rev. D 69, 022001 (2004).
[46] R. W. Hellings, Phys. Rev. D 64, 022002 (2001).
[47] L. J. Rubbo, N. J. Cornish, and O. Poujade, Phys. Rev. D 69,

082003 (2004).
[48] G. Heinzel, J. J. Esteban, S. Barke, M. Otto, Y. Wang, A. F.

Garcia, and K. Danzmann, Classical Quantum Gravity 28,
094008 (2011).

[49] M. Otto, G. Heinzel, and K. Danzmann, Classical Quantum
Gravity 29, 205003 (2012).

[50] M. Tinto and N. Yu, Phys. Rev. D 92, 042002 (2015).

GEOMETRIC APPROACH FOR THE MODIFIED SECOND … PHYS. REV. D 106, 024003 (2022)

024003-25

https://doi.org/10.1103/PhysRevD.105.062006
https://doi.org/10.1103/PhysRevD.105.062006
https://doi.org/10.1103/PhysRevD.104.023006
https://doi.org/10.1103/PhysRevD.104.023006
https://doi.org/10.1103/PhysRevD.104.082002
https://doi.org/10.1103/PhysRevD.104.082002
https://doi.org/10.1103/PhysRevD.89.105029
https://doi.org/10.1103/PhysRevD.89.105029
https://doi.org/10.1103/PhysRevD.93.045027
https://doi.org/10.1103/PhysRevD.93.045027
https://doi.org/10.1088/0264-9381/22/3/002
https://doi.org/10.1103/PhysRevD.100.122001
https://doi.org/10.1103/PhysRevD.100.122001
https://doi.org/10.1103/PhysRevD.103.063021
https://doi.org/10.1103/PhysRevD.103.063021
https://doi.org/10.1103/PhysRevD.63.021101
https://doi.org/10.1103/PhysRevD.63.021101
https://doi.org/10.1103/PhysRevD.64.062002
https://doi.org/10.1103/PhysRevD.66.122002
https://doi.org/10.1103/PhysRevD.69.022001
https://doi.org/10.1103/PhysRevD.64.022002
https://doi.org/10.1103/PhysRevD.69.082003
https://doi.org/10.1103/PhysRevD.69.082003
https://doi.org/10.1088/0264-9381/28/9/094008
https://doi.org/10.1088/0264-9381/28/9/094008
https://doi.org/10.1088/0264-9381/29/20/205003
https://doi.org/10.1088/0264-9381/29/20/205003
https://doi.org/10.1103/PhysRevD.92.042002

