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In this paper we construct the 5D uplift of 4D gravitational waves in de Sitter cosmology for the brane
world scenario based on a nucleated bubble in AdS5. This makes it possible to generalize the connection
between the dark bubbles and Vilenkin’s quantum cosmology to include gravitational perturbations. We
also use the uplift to explain the interpretation of the apparently negative energy contributions in the 4D
Einstein equations, which distinguish the dark bubble scenario from Randall-Sundrum.
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I. INTRODUCTION

Constructing metastable de Sitter (dS) vacua in string
theory is undoubtedly one of the most challenging prob-
lems in contemporary physics that still remains unsolved
(see e.g., the arguments in [1–5]). In [6] it was proposed
that a dS universe can be realized in a string theory setting
through a braneworld scenario similar to a Randall-
Sundrum (RS) or Karch-Randall (KR) set up [7–9]. The
brane corresponds to an expanding Coleman-de Luccia
(CL) bubble of a true vacuum inside a false, unstable, five-
dimensional anti de Sitter (AdS) vacuum. The motivation
for this model comes from the ubiquity of AdS vacua in
string theory which, if nonsupersymmetric, are believed to
be unstable as a consequence of the weak gravity con-
jecture [10–12]. The dark bubble scenario thus emerges
naturally whenever there is a codimension one brane
present in the theory that can mediate the decay of the
false AdS5. Its advantage is twofold: it evades the swamp-
land constraints of constructing “fundamental” dS vacua
based on pure compactifications of string theory [13] and,
at the same time, it provides a concrete realization of a
braneworld in string theory with an inside-outside con-
struction (in contrast to the inside-inside structure of RS
or KR models). In [14–17] the physics of nucleation in
AdS5 was further studied, while [18] discusses a concrete

realization of the dark bubble through a resolved Calabi-
Yau conifold.
The proposed model realises an effective dS vacuum

with lower dimensional observers being confined to the
bubble boundary, where they perceive an expanding FLRW
cosmology with a positive cosmological constant (CC).
This model was studied in [6,19–22]. The power of this
dark bubble model is that all features in the 4D cosmology
will find an interpretation in the bulk:

(i) Four-dimensional gravity arises as an effective
description. Indeed, it was shown in [19] how the
4D Einstein equation follows from the junction
condition across the brane. The brane geometry is
sourced by the energy-momentum tensor of the
brane itself (which for empty branes acts as a
cosmological constant) and by contributions from
the higher dimensional geometry.

(ii) The value of the four-dimensional cosmological
constant is set by the differences among the AdS
scales on the inside and outside of the bubble and
by the brane tension. Its positivity is guaranteed by
the occurrence of a nucleation event. To construct
a phenomenological 4D cosmology with a small
vacuum energy, one requires a modest hierarchy
where the AdS scales are smaller that the 5D
Planck scale.

(iii) The familiar dust and radiation components of
the 4D cosmic fluid correspond to, respectively,
stretched strings and matter in the bulk [19].

(iv) What a lower-dimensional observer would call “the
big bang,” has the bulk interpretation of a well-
understood nucleation event a la Brown-Teitelboim
(BT) [23]. From the higher dimensional perspective,
the big bang does therefore not appear as a singu-
larity. This was explored in [22].
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The higher-dimensional interpretation of the big bang is
particularly interesting as it provides a connection with
quantum cosmology. In this inherently 4D framework, one
uses canonical quantization to derive the Wheeler-DeWitt
(WdW) equation

HΨ½g;ϕ� ¼ 0; ð1:1Þ

where H is the Hamiltonian and Ψ½g;ϕ� is the wave
function of the universe defined on the space of all
three-geometries g, as well as on the space of all matter
fields ϕ that are present. A common prediction of quantum
cosmology is that a spherical universe can spontaneously
nucleate out of “nothing,” similar to the nucleation event in
our dark bubble model. Importantly, any attempt to solve
the Schrödinger-like equation (1.1) requires the additional
input of boundary conditions, which is a highly nontrivial
issue. Two natural choices are Vilenkin’s tunneling pro-
posal [24,25] and the no-boundary proposal of Hartle and
Hawking [26]. From the 4D perspective of quantum cos-
mology neither one seems to be physically favored.1 In our
opinion this should not come as a surprise: boundary
conditions should be able to account for the UV behavior
of gravity (for an example see e.g., [27]), but this is not
encapsulated by any GR inspired HamiltonianH. The dark
bubble model has the advantage of providing a UV
completion of 4D gravity on the bubble making it possible
to explore the issue of boundary conditions. Keeping the
scale factor as the only dynamical variable, it was shown in
[22] that the BT amplitude in 5D perfectly matches
Vilenkin’s tunneling amplitude in 4D quantum cosmology.
This tunneling wave function has recently been subject

of debate when perturbations about a homogeneous and
isotropic background were included. The most natural
fluctuations to consider from the point of view of the dark
bubble, are of the gravitational type and we refrain from
introducing any other kinds of fields. The 4D Hamiltonian
is then of the form

H ¼ κ4
24π2a

∂
2

∂a2
−

κ4
2a3

∂
2

∂h2n
−
6π2

κ4

�
a −

Λ4

3
a3
�

þ 1

κ4
aðn2 − 1Þh2n; ð1:2Þ

where a is the scale factor and hn represents a specific
transverse tracefree tensor mode of S3 labeled by three
quantum numbers ðn;l; mÞ. We have defined κ4 ¼ 8πG4.
For notational simplicity, mode indices will generically
be suppressed. In [28–32] it was argued that such per-
turbations are unbounded and would ultimately destroy
Vilenkin’s quantum cosmology. However, in [33–36] it was

argued that this problem can be avoided by imposing
suitable boundary conditions on the perturbation ampli-
tudes. Our embedding of Vilenkin into the dark bubble also
suggests that such instability cannot be present since there
is no reason why the nucleation event in AdS would be
unphysical.
In this paper we will construct the uplift of 4D gravi-

tational waves to 5D ones. This is necessary if we want to
map a minisuperspace model of such perturbations onto a
dark bubble nucleation event. For the purpose of writing
down the junction condition, one is obliged to find the
backreaction of the waves on the bulk geometry. This is a
highly non-trivial task that we will tackle perturbatively in
the metric

gμν ¼ gð0Þμν þ ξgð1Þμν þ ξ2gð2Þμν þOðξ3Þ; ð1:3Þ

where ξ is a formal expansion parameter. The conventional
procedure is that one solves the Einstein equation order by
order in ξ. Plugging the previous expression into Einstein
equation, one finds:

Gμν þ Λgμν ¼ ðGð0Þ
μν ½gð0Þ� þ Λgð0Þμν Þ þ ξðGð1Þ

μν ½gð1Þ�
þ Λgð1Þμν Þ þ ξ2ðGð2Þ

μν ½gð1Þ� þGð1Þ
μν ½gð2Þ�

þ Λgð2Þμν Þ þOðξ3Þ ¼ 0; ð1:4Þ

where GðiÞ
μν ½gðjÞ� denotes the ith order variation of the

Einstein tensor evaluated on the jth order metric perturba-
tion. Formally this is a quantity of order maxfi; jg in ξ.
At zeroth order, the Einstein equation simply yields the

background geometry gð0Þμν . In the dark bubble scenario this
could, for instance, correspond to a gas of strings inside a
Schwarzschild-AdS space. We will, for simplicity, consider
a background of pure AdS.
Gravitational waves (GW) appear at first order in ξ

through the linearized Einstein equation (the GWequation),
which schematically can be understood as solutions to

Gð1Þ
μν ½gð1Þ� þ Λgð1Þμν ¼ 0: ð1:5Þ

The GW in the dark bubble model must satisfy specific
requirements given that the 5D bulk induces a 4D metric on
the dark bubble constrained by the junction conditions.
The second order Einstein equation can now be written as

Gð1Þ
μν ½gð2Þ� þ Λgð2Þμν ¼ −Gð2Þ

μν ½gð1Þ�: ð1:6Þ

This can in principle be solved to give gð2Þ. This tells us how
the geometry reacts to the presence of the gravitational wave
gð1Þ. The right-hand side (rhs) can be interpreted as an effec-
tive energy-momentum tensor hTμνi≡−κ−1D hGð2Þ

μν ½gð1Þ�i,
where κD is the gravitational constant in D dimensions.

1From a perspective based on swampland criteria, it is only
Vilenkin’s proposal that could be realized in string theory [17].
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This energy-momentum tensor is quadratic in gð1Þ. The
angular bracket h·i denotes an averaging procedure over
several wavelengths that is required for a proper interpreta-
tion, see e.g., [37]. Observe the overall minus sign in the
definition of this energy-momentum tensor hTμνi.Wewill see
the fundamental relevance of this sign’s presence through this
paper. This effective energy-momentum term can also be
captured by a backreacted background metric. This fact will
be of great importance as, once the backreaction is accounted
for, the junction condition will dictate how gravitational
waves in the bulk will affect the evolution of the four-
dimensional bubble.
The outline of the paper is as follows. In Sec. II we

review the dark bubble model and introduce the tools that
we need. In Sec. III we discuss 4D gravitational waves in an
expanding universe. In Sec. IV we perform the uplift into
the 5D bulk, and perform consistency checks between 4D
and 5D. This interplay between the bulk and boundary
features will be examined in Sec. V. Finally, we discuss the
importance and interpretation of our results.

II. REVIEW OF THE DARK BUBBLE MODEL

A. Friedmann cosmology

It was proposed in [6] that a dS4 cosmology can be
obtained as the induced 4D metric on a codimension one
bubble in AdS5. The 5D bulk geometries inside and outside
the bubble correspond to AdS5 vacua

ds2� ¼ g�μνdxμdxν ¼ −f�ðzÞdt2� þ dz2

f�ðzÞ
þ z2dΩ2

3; ð2:1Þ

where −ðþÞ refers to the inside (outside) of the bubble,
dΩ2

3 ¼ γijdxidxj is the metric on S3, and f� is for pure
AdS5 given by

f�ðzÞ ¼ 1þ k2�z
2; ð2:2Þ

In the following, we will omit the� subscript for notational
simplicity. The constant k defines the AdS5 scale (i.e.,
LAdS ¼ 1=k) and the 5D cc is given by Λ5 ¼ −6k2. A false
(outside) AdSþ5 vacuum can decay to a true (inside) AdS−5
vacuum via the nucleation of a spherical Brown-Teitelboim
(BT) instanton [23] provided k− > kþ. Once nucleated,
the bubble expands rapidly thereby eating all of AdSþ5 in a
finite time. The bubble can be described by specifying its
radius z ¼ aðτÞ, where τ is some time parameter on the
bubble. We will assume that the bubble is sufficiently large:
ka ≫ 1. The induced metric on the bubble wall is exactly of
the FLRW form

ds2ind ¼ −N2ðτÞdτ2 þ aðτÞ2dΩ2
3; ð2:3Þ

where a lapse function N has been introduced to make
time reparametrization invariance manifest. The relation
between bulk time t and brane time τ is given by

N2ðτÞ ¼ fðaÞ_t2 − _a2

fðaÞ ð2:4Þ

where a dot denotes a τ-derivative.
The expansion of the bubble is governed by Israel’s

junction conditions:

σ ¼ 3

κ5

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−ðaÞ
a2

þ _a2

N2a2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðaÞ
a2

þ _a2

N2a2

s !
; ð2:5Þ

where σ corresponds to the tension of the bubble wall. By
expanding the square root, the first Friedmann equation can
be extracted

1

N2

�
_a
a

�
2

¼ κ4
3
ρΛ −

1

a2
; ð2:6Þ

where the 4D gravitational constant is identified with

κ4 ¼
2k−kþ
k− − kþ

κ5; ð2:7Þ

and where the 4D cc is determined by ρΛ ¼ σcr − σ with σcr
the critical brane tension at which the bubble remains static

σcr ¼
3

κ5
ðk− − kþÞ: ð2:8Þ

The Friedmann equation only admits real solutions if
σ < σcr. From the 5D perspective, this means bubbles with
a tension greater than σcr can simply not nucleate.
For a more general bulk metric that corresponds to a gas

of strings in a Schwarzschild-AdS space, the function f is
given by

fðrÞ ¼ 1þ k2r2 −
κ5M
3π2r2

−
κ5α

4πr
: ð2:9Þ

Through the junction condition (2.5), one can identify
several different contributions to the Friedmann equation

1

N2

�
_a
a

�
2

¼ −
1

a2
þ κ4

3
ρΛ þ κ4

3
ρra−4 þ

κ4
3
ρma−3: ð2:10Þ

The vacuum energy ρΛ, the radiation density ρr and the
matter density ρm find their origin in the bulk geometry

ρΛ ≈ σcr − σ ρr ≈
1

2π2

�
Mþ
kþ

−
M−

k−

�
ρm ≈

3

8π

�
αþ
kþ

−
α−
k−

�
;

ð2:11Þ

We conclude that a bulk black hole with mass M gives rise
to radiation in the 4D world, while a gas of stretched strings
with average density α gives rise to dust.
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The proposed construction automatically yields a 4D
cosmology with spherical topology; this compactness is
yet another requirement for a nucleation event in AdS5 to
occur. The most phenomenologically relevant cosmologi-
cal scenarios consider universes with a flat topology. This is
in principle included in the dark bubble model as well:
when the bubble is sufficiently evolved the curvature term
in the Friedmann equation becomes negligible, and the
brane appears flat for a local observer (spatial curvature is
not observable within the observer’s Hubble radius). From
the 5D perspective, a sufficiently evolved bubble corre-
sponds to considering the region of AdS (2.1) with kz ≫ 1.
Formally, the metric in global coordinates (2.1) is then to be
replaced by the Poincaré patch of AdS.

B. The general case

In the following we will use Greek indices when
referring to the five-dimensional (bulk) geometry and
Latin indices for quantities associated to the induced
one. In general, the different bulk metrics across the
bubble’s wall cause the presence of an energy-momentum
tensor Sab on the brane. This can be captured by the (second)
Israel’s junction condition as:

κ5Sab ¼ ½Kab − Khab�j−þ; ð2:12Þ

where ½A�−þ ¼ A− − Aþ, Kab ¼ ∇βnαeαae
β
b, with nα being

an unit normal vector2 to the wall and eαa its tangent vector.
hab is the induced metric on the wall. Kab (with trace K)
represents the extrinsic curvature, which carries informa-
tion about the bubble’s embedding in the bulk geometry.
For the sake of simplicity, we will consider the case where
the wall is a simple empty brane with Sab ¼ −σhab with σ
the brane tension.
To extract the 4D Einstein equations in the general case,

one can make use of the Gauss-Codazzi equation

Rð5Þ
αβγδe

α
ae

β
be

γ
ceδd ¼ Rð4Þ

abcd þ KadKbc − KacKbd; ð2:13Þ

which connects the extrinsic curvature Kab and the intrinsic
curvature of the brane to the projected bulk curvature.
Inserting the Gauss-Codazzi equation (and contractions
thereof) into the junction condition (2.12) eliminates the
extrinsic curvature in favor of the energy-momentum
tensor. Eventually one finds

Gð4Þ
ab ¼ ðκ4σ − 3kþk−Þhab

þ kþk−
k− − kþ

�
J þ

ab

kþ
−
J −

ab

k−
−
1

2

�
J þ

kþ
−
J −

k−

�
hab

�
þOððκ4Λ4Þ2Þ; ð2:14Þ

where J ab is a tensor defined by

J ab ¼ Rð5Þ
αβγδe

α
ae

β
be

γ
ceδdh

cd; ð2:15Þ

and J ¼ habJ ab, its trace. Thus the four-dimensional
geometry is sourced by the bulk geometry through the
tensor J ab. One can verify that this expression reproduces
the FLRW-case reviewed in the previous section. Note that
even in pure AdS5, J ab has a contribution −3k2hab, which
contributes to a net cosmological constant given by

Λ4 ¼ 6kþk− − κ4σ ¼ κ4

�
3

κ5
ðk− − kþÞ − σ

�
: ð2:16Þ

In the 5D Einstein equation above we see how the bulk
geometry induces matter in the effective 4D theory, which
then sources the 4D Einstein equations. In [19] it was
shown how localized matter sources in 4D, such as a
massive particle, is uplifted into a string that stretches into
the bulk, similar to the hanging strings representing quarks
in holography. Contrary to Randall-Sundrum [7,8] or
Karch-Randall [9] models, neither gravity nor matter is
localized to the brane but extends holographically into the
bulk. It was shown in [20] how the gravitational attraction
between two stretched strings in the bulk projects down to
the gravitational attraction between two point particles
in 4D.
In the rest of the paper we will further study the interplay

between 5D and 4D. In particular, we will discuss gravi-
tational waves and their backreaction on the metric. In the
dark bubble model the AdS scale k is assumed to be a UV
scale that is somewhere between the scales of particle
physics and the Planck scale. In the present paper we will
for simplicity focus on regimes where the Hubble scaleH is
much smaller than any such UV-scale, i.e., H ≪ k. As we
will briefly mention, it is in principle possible to relax this
assumption.

III. GRAVITATIONAL WAVES IN A 4D
EXPANDING UNIVERSE

In this section will review gravitational waves in an
expanding FLRW cosmology with a flat or spherical
topology. When the wavelength is sufficiently small, waves
in a flat universe serve as a proxy for those in a spherical
universe. Indeed, high frequency waves only probes small
regions and do not feel the curvature at larger scales.
Gravitational waves are described by transverse-tracefree
(TT) perturbations to the metric (2.3). In the conformal time
gauge, these are3

ds2 ¼ a2ðηÞ½−dη2 þ ðγij þ ξhijðη; xÞÞdxidxj�; ð3:1Þ

2Pointing in the direction where the bubble’s volume increases.

3Note that in our conventions the coordinates ðη; xiÞ are
dimensionless and a has a dimension of length.
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where γij is the metric on a spatial slice in xi-coordinates
and hij is transverse and tracefree. In the following we will,
for simplicity, ignore contributions from matter and radi-
ation and consider a pure 4D dS cosmology with positive
cosmological constant Λ4 only. We then have that the 4D
Hubble constant is given by H2 ¼ κ4ρΛ=3 ¼ Λ4=3.

A. Flat universe

The scale factor for a flat dS universe is aðηÞ ¼ −1=ðHηÞ
with −∞ < η < 0. For concreteness, we will consider a
GW travelling in the x1 direction4 with either a þ or ×
polarization. The perturbation can be expanded into har-
monics on the spatial manifold. The first-order Einstein
equation then yields a wave equation for each mode
separately. For a single mode h4Dðη; x1Þ ¼ eiqx1h4DðηÞ,
labeled by some continuous wave number q, one finds

d2h4D
dη2

þ 2H
dh4D
dη

þ q2h4D ¼ 0; ð3:2Þ

where H ¼ −1=η is the conformal Hubble rate. Solutions
are easily found and given by

h4DðηÞ ¼ −η cosðqηþ ϕ0Þ þ
1

q
sinðqηþ ϕ0Þ; ð3:3Þ

where ϕ0 is an arbitrary phase. The wave h freezes out to a
constant at late times (which happens to be zero if ϕ0 ¼ 0).

B. Closed universe

A spherical dS universe is a bouncing cosmology with
scale factor aðηÞ ¼ −1=ðH sin ηÞ with −π=2 ≤ η < 0. The
moment η ¼ −π=2 is the bounce, which coincides with
the moment of nucleation. In a similar vein, one can expand
the perturbation in TT harmonics5 on S3. For a single mode
hijðη; xÞ ¼ h4DðηÞYijðxÞ, labelled by some discrete wave
number n, the GW equation is

d2h4D
dη2

þ 2H
dh4D
dη

þ ðn2 − 1Þh4D ¼ 0; ð3:4Þ

where a prime denotes a derivative to conformal time and
H ¼ a0=a ¼ − cot η is the conformal Hubble parameter. It
is useful to redefine the time coordinate to

v ¼ cos η; with v ∈ ½0; 1Þ: ð3:5Þ

The GW equation (3.4) then becomes

ð1 − v2Þ d
2h4D
dv2

þ v
dh4D
dv

þ ðn2 − 1Þh4D ¼ 0: ð3:6Þ

With three regular singular points (v ¼ −1;þ1;∞), it is
well known that this differential equation can be converted
to the hypergeometric kind. The solutions are thus given in
terms of these functions:

h4DðvÞ ¼ 2F1

�
−
nþ 1

2
;
n − 1

2
;−

1

2
; 1 − v2

�
; ð3:7aÞ

h̃4DðvÞ ¼ ð1 − v2Þ3=22F1

�
1 −

n
2
; 1þ n

2
;
5

2
; 1 − v2

�
:

ð3:7bÞ

At late times when v → 1, h freezes out to a constant value
while h̃ decays completely. Since n is an integer, these
hypergeometrics take a simpler form and can be rewritten
in terms of the Chebyshev polynomials

h4DðvÞ ¼ vTnðvÞ −
n

nþ 1
Tnþ1ðvÞ; ð3:8aÞ

h̃4DðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p �
vUn−1ðvÞ −

n
nþ 1

UnðvÞ
�
; ð3:8bÞ

where Tn and Un are the Chebyshev polynomials of the
first and second kind, respectively. One can also simplify
the Chebyshev polynomials:

h4DðvÞ ¼
1

nþ 1
cos ððnþ 1ÞηÞ þ sin η sinðnηÞ; ð3:8cÞ

h̃4DðvÞ ¼
1

nþ 1
sin ððnþ 1ÞηÞ − sin η cosðnηÞ; ð3:8dÞ

where we used that

TnðvÞ ¼ cosðnηÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
UnðvÞ ¼ sin ððnþ 1ÞηÞ:

ð3:9Þ

At late times, high-frequency GWs (large n) reduce to (3.3)
upon the identification q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p
≈ n. This requires

taking the limit η → 0 while keeping nη finite. Note that
h4D reduces to a wave with phase ϕ0 ¼ 0wile h̃4D will have
the phase ϕ0 ¼ π=2. Physically, this limit corresponds to a
late-time observer being able to see gravitational fluctua-
tions within his Hubble radius.

C. Energy-momentum tensor

The presence of these GWs affects the background
by sourcing an effective energy-momentum tensor as
explained in the introduction. Let us first consider this
backreaction from a pure 4D perspective. The purpose of

4It is a trivial modification to the given analysis to consider a
wave in any other direction.

5We adopt the convention that S3 harmonics Yij satisfy ΔYij ¼
−ðn2 − 3ÞYij with n ≥ 3 with Δ the Laplacian on S3. Note that
mode indices are suppressed. See e.g., [38,39].

GRAVITATIONAL WAVES IN DARK BUBBLE COSMOLOGY PHYS. REV. D 106, 024002 (2022)

024002-5



this paper is then to explain how this can also be found from
the 5D treatment. In particular, GWs in the bulk should
backreact on the bubble in the same manner. For phenom-
enological reasons, we will be interested in the limiting
case where the bubble appears to be flat (large wave-
number and late time) and where radiation is distributed
homogeneously and isotropically throughout the universe.
We will therefore restrict this analysis to the waves found in
Sec. III A.
By following the averaging procedure, i.e., integrating

over all the phases x1, one finds the energy-momentum
tensor

hTa
bi ¼

H2η2

8κ4

0
BBB@

7 − 2q2η2 �2q2η2 0 0

∓2q2η2 5þ 2q2η2 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð3:10Þ

where the� sign represents waves traveling in opposite x1-
directions. An uniform background of gravitational radia-
tion is realized by averaging this tensor over all sorts of
waves traveling in all possible ðx1; x2; x3Þ-directions with
different polarizations. The energy-momentum tensor that
describes an uniform background of gravitational radiation
is thus given by, in terms of the scale factor,

hTa
biiso ¼

7

8κ4

1

a2

0
BBB@

1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
3

1
CCCA

þ q2

4κ4H2

1

a4

0
BBB@

−1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
3

1
CCCA: ð3:11Þ

The first term corresponds to a form of energy with
equation of state p ¼ −ρ=3 whose energy dilutes as
ρ ∼ 1=a2. This behaves like curvature in the Friedmann
equation. The second term has the equation of state p ¼
ρ=3 and a dilution ρ ∼ 1=a4, which corresponds to radi-
ation. When the wavelength of gravitational waves is larger
than the horizon it becomes frozen, and the curvature
component is all that remains.

D. Backreaction

To address the problem of backreaction, we will make an
Ansatz of what the backreacted geometry should look like.
In particular, the geometry will now be sourced by a
perturbative amount of radiation and curvature (3.11)
without any spatial anisotropies or inhomogeneities. We
therefore take the backreacted geometry to be of the form

ds2back ¼ ðgð0Þμν þ gð2Þμν Þdxμdxν
¼ a2ðηÞ½−ð1þ ξ2QðηÞÞdη2 þ γijdxidxj�: ð3:12Þ

The second order Einstein equation then implies

QðηÞ ¼ 7

24
η2 −

1

12
q2η4: ð3:13Þ

By redefining the time coordinate as

dχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2QðηÞ

q
dη ≈

�
1þ 1

2
ξ2QðηÞ

�
dη; ð3:14Þ

the metric (3.12) is of the FLRW form. Expanding in small
ξ one finds

η ≈ χ þ ξ2
�
−

7

144
χ3 þ 1

120
q2χ5

�
: ð3:15Þ

By computing the Hubble rate for small ξ, one easily
recognises contributions from curvature and radiation
beyond the dominant cosmological constant

�
1

a2
da
dχ

�
2

≈H2 þ ξ2
�
−
7H2

24
χ2 þH2q2

12
χ4
�

≈H2 þ ξ2
�
−

7

24

1

a2
þ q2

12H2

1

a4

�
: ð3:16Þ

IV. UPLIFTING GRAVITATIONAL WAVES
TO THE BULK

We are interested in perturbations propagating in the
AdS5 bulk that correspond to the GWon the brane that were
found in the previous section. Clearly, there are different
possible fluctuations in the AdS5 geometry; the ones
relevant for the present discussion are TT perturbations
to the S3 that enter in the metric as6

ds2 ¼ −fðzÞdt2 þ dz2

fðzÞ þ z2ðγij þ ξhijðt; z; xÞÞdxidxj;

ð4:1Þ

where hij is transverse and tracefree. It is easily checked
that the induced metric on the brane in conformal coor-
dinates then corresponds to (3.1).

A. Finding the 5D wave

As before, the TT perturbations can be decomposed in S3

harmonics and for a single mode hij ¼ h5Dðη; zÞYij one
finds the GW equation:

6Note that in our conventions the coordinates t and z have the
dimension of length and the coordinates xi are still dimensionless.
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∂
2h
∂t2

− f2
∂
2h
∂z2

−
f
z
ð2þ 4k2z2 þ fÞ ∂h

∂z
þ n2 − 1

z2
fh ¼ 0;

ð4:2Þ

where we assume empty AdS5 with fðzÞ ¼ k2z2 þ 1. This
determines the evolution of a gravitational wave throughout
the AdS5 bulk. It is useful to work with a coordinate that
provides a 5D uplift of (3.5)

w¼ cosðktÞ ¼ cosηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðHkÞ2sin2η

q ¼ cosηþO
��

H
k

�
2

sin2η

�

ð4:3Þ
where the relation between bulk time and conformal time
on the brane (2.4) has been used. This means that in the
relevant limit for 4D GRwhereH=k ≪ 1, one has w ≈ v. In
particular,

kt ¼ ηþO
��

H
k

�
2

sinð2ηÞ
�

ð4:4Þ

Note that this relation is only meaningful once the bubble
has nucleated. This occurs at η ¼ −π=2 as alluded to in the
4D treatment. It corresponds to a bulk time t ≈ −π=2k. The
bulk time in principle has the full range −∞ < t < þ∞.
However, one has to take into account the composed inside-
outside geometry and the noneternity of the bubble. The
time range of outside geometry is −∞ < tþ < 0 where the
limit tþ → 0 corresponds to the bubble having eaten all of
AdSþ5 . The inside geometry is only present once a bubble
has nucleated after which it persists forever. Therefore
−π=2k < t− < þ∞.

The GW equation in the bulk is given by

k2
�
ð1 − w2Þ ∂

2h
∂w2

− w
∂h
∂w

�
− f2

∂
2h
∂z2

−
f
z
ð2þ 4k2z2 þ fÞ ∂h

∂z

þ n2 − 1

z2
fh ¼ 0: ð4:5Þ

This equation needs to be supplemented by suitable
boundary conditions. In particular, when h is restricted
to the brane (this will be called the “induced wave” hind),
we require that hind coincides with the 4D GW (3.8) found
before to leading order in H=k. This amounts to imposing
the boundary conditions at the location of the bubble
z ¼ aðwÞ, assuming ka ≫ 1,

hindðwÞ≡ h5D

�
w;

1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
�

¼ h4DðvÞ þO
��

H
k

�
2
�
;

lim
z→0

h5Dðw; zÞ ¼ 0: ð4:6Þ

The last condition is the requirement that there are no
sources inside the bubble. Note that, in principle, there are
two different waves: inside and outside the bubble. It would
therefore seem natural to insist that only the inside wave
decays and only the outside wave does not blow up as
z → ∞. However note that their evolution is governed by
the same wave equation (up to a difference in k) and that
the boundary condition at the location of the brane must
be imposed for both of them. This boundary condition
uniquely fixes the inside and the outside wave. This means
that if the outside wave would be extrapolated in the would-
be limit z → 0, it would still vanish.
As far as this uplift is concerned, one may verify that the

following meet the requirements

h5Dðw; zÞ ¼
ðkzÞn−1

ð1þ k2z2Þn−12
�
wTnðwÞ −

nðnþ 1þ 2k2z2Þ
2ðnþ 1Þð1þ k2z2ÞTnþ1ðwÞ

�
; ð4:7aÞ

h̃5Dðw; zÞ ¼
ðkzÞn−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p

ð1þ k2z2Þn−12
�
wUn−1ðwÞ −

nðnþ 1þ 2k2z2Þ
2ðnþ 1Þð1þ k2z2ÞUnðwÞ

�
: ð4:7bÞ

By using (3.9), these uplifted waves can be written as

h5Dðt; zÞ ¼
ðkzÞn−1

ð1þ k2z2Þn−12
�1
2
ð1þ nÞð2 − nÞ þ k2z2

ðnþ 1Þð1þ k2z2Þ cos ððnþ 1ÞktÞ þ sinðktÞ sinðnktÞ
�
; ð4:7cÞ

h̃5Dðt; zÞ ¼
ðkzÞn−1

ð1þ k2z2Þn−12
�1
2
ð1þ nÞð2 − nÞ þ k2z2

ðnþ 1Þð1þ k2z2Þ sin ððnþ 1ÞktÞ − sinðktÞ cosðnktÞ
�
: ð4:7dÞ

Just as for 4D gravitational waves, one might be tempted to
take the large n, late time (t → 0) limit to find an uplift of
the GW in a flat universe (3.3). However, one must also

take into account that, to reach this flat limit, the wave must
be considered near to the bubble. This means it is also
required to take the limit in which kz is large; it cannot
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probe curvature at large scales. The following waves thus
represent the correct uplift of (3.3), with phases ϕ0 ¼ 0
and ϕ0 ¼ π=2 respectively, under the identification
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p
≈ n,

h5Dðt; zÞ ¼
− 1

2
n2 þ k2z2

nk2z2
cos ðnktÞ þ kt sinðkntÞ; ð4:8aÞ

h̃5Dðt; zÞ ¼
− 1

2
n2 þ k2z2

nk2z2
sin ðnktÞ − kt cosðkntÞ: ð4:8bÞ

For large n, there are interesting corrections beyond the 4D
wave of general relativity at high momentum. At fixed kz,
there is a competition between n and kz in the first term.
The first modification to the 4D wave comes when kz ∼ n.
This translates into p ∼ n=z ∼ k, where p is the proper
momentum (or energy) of the wave. We therefore conclude

that the AdS-scale k represents a UV-scale where new
physics is introduced beyond 4D gravity on the brane.

B. Energy-momentum tensor in the bulk

In the same spirit as in subsection III C, we will compute
the energy-momentum tensor associated to the waves found
before in the flat limit. These waves are described by (4.8).
One aims to obtain an isotropic tensor hTμνiiso by an
average over several wavelengths, polarizations and propa-
gation directions; this superposition of waves represents
uniform gravitational radiation filling the bulk geometry.
This isotropic stress tensor consists of three identifiable
pieces (respectively curvature, radiation, and flux):

hTμ
νiiso ¼ hTμ

νic þ hTμ
νir þ hTμ

νif ð4:9aÞ

where each component is given by

hTμ
νir ¼

k2n2t2

4κ5z2

0
BBBBBB@

−1 0 0 0 0

0 1
3

0 0 0

0 0 1
3

0 0

0 0 0 1
3

0

0 0 0 0 0

1
CCCCCCA
; hTμ

νif ¼
n2

8κ5z2

0
BBBBBB@

0 0 0 0 − 2t
k2z3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2k2tz 0 0 0 0

1
CCCCCCA
;

hTμ
νic ¼

1

8κ5z2

�
7 −

n4

2k4z4

�
0
BBBBBBBB@

1 0 0 0 0

0 1
3
þOð n2

k2z2Þ 0 0 0

0 0 1
3
þOð n2

k2z2Þ 0 0

0 0 0 1
3
þOð n2

k2z2Þ 0

0 0 0 0 1þOð n2

k2z2Þ

1
CCCCCCCCA
: ð4:9bÞ

Recalling that the momentum of the wave is p ∼ n=z, we
see how the UV-corrections we commented on earlier, enter
in the curvature contribution but not in the radiation piece.
The flux contribution shows how these GWs represent a net
flow of energy in the positive z direction. We will comment
more on this nice feature in Sec. VI.

C. Backreaction

Along similar lines of III D, wewill compute the response
of the bulk geometry due to the presence of theGWs.Wewill
again limit ourselves to the casewhere the brane appears flat
such that (4.8) are the appropriate waves to use. The pre-
sence of the energy-momentum tensor (4.9) will generate a
deformation in the bulk’s geometry, which can be described
by a backreacted metric accounting for it. This backreaction
is determined by the second order Einstein equation (1.6).
To keep the calculation tractable, the GW background was
made isotropic in (4.9). To continue approaching this
problem from the simplest perspective, it is therefore

convenient to adopt the global coordinate system for the
backreated bulk geometry. We will make the Ansatz

ds2back ¼ ðgð0Þμν þ ξ2gð2Þμν Þdxμdxν
≈ −½1þ k2z2 þ ξ2ðq1 − q2k2t2Þ�dt2

þ dz2

1þ k2z2 þ ξ2ðq1 − q3k2t2Þ
þ z2dΩ2

3: ð4:10Þ

The set of coefficients fqigwill be determined later. It is easy
to see that in the ξ → 0 limit, we recover the AdS5 back-

ground. The backreaction piece gð2Þμν is given by the ξ2

coefficient in the small ξ expansion, in particular

gð2Þtt ¼ q1 − q2k2t2; gð2Þzz ¼ q3k2t2 − q1
ð1þ k2z2Þ2 : ð4:11Þ

In order to fix the value of the coefficients fqig, one needs to
compute the second order Einstein tensor and solve the
second order Einstein equation. This yields
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q1 ¼ −
7

24
; q2 ¼ −

q2

6
; q3 ¼

q2
2
¼ −

q2

12
: ð4:12Þ

This change in the bulk geometry will affect the evolution of
the bubble wall at z ¼ aðηÞ through the junction condition
(2.5). By computing the extrinsic curvature, one finds (in the
large k limit) that the brane’s energy-momentum tensor can
be written as

κ4Sab ¼ −ðκ4σ þ Λ4Þδab þ δab

�
3H2 þ 1

a2

�
þ 2

a2
δa0δ

0
b

þ ξ2
�
q1
a2

ðδai δib þ 3δa0δ
0
bÞ þ

2q2
H2a4

δai δ
i
b

−
3q3
H2a4

ðδa0δ0b þ δai δ
i
bÞ
�
; ð4:13Þ

where σ corresponds to the tension of the brane. If we then
impose the junction conditions using Sab ¼ −σhab, we
obtain the Friedmann equations. Alternatively, one can
use the Gauss-Codazzi equation (2.13), and the projection
of Einstein equations (2.14) as in [19], to obtain the same
result in the form

Gð4Þa
b ¼ −Λ4δ

a
b þ ξ2

�
q1
a2

ðδai δib þ 3δa0δ
0
bÞ þ

2q2
H2a4

δai δ
i
b

−
3q3
H2a4

ðδa0δ0b þ δai δ
i
bÞ
�
: ð4:14Þ

Covariant conservation ∇aSab ¼ 0 imposes the same rela-
tion between q2 and q3 that was found in (4.12). This
constraint can also be verified by comparing the covariant
derivative of the extrinsic curvature7 to the projection of the
bulk energy stress tensor using

∇aKa
b − ∂bK ¼ Gμνeμbnν: ð4:15Þ

Note that this result agrees with (3.16) upon using (4.12).
This implies that the junction conditions have taken care of
the gravitational perturbation in the bulk, providing a clear
connection between the bulk and boundary bubble’s
cosmological physics.
Let us summarize what we have done. It could be useful

to navigate through the conceptual diagram in Fig. 1. In the
upper left entry we find the five dimensional background
metric plus the gravitational perturbation contribution at
first order. The wave extends from z ¼ 0, where it vanishes,
through the interior of the bubble, across the bubble wall
and further out through the exterior of the bubble where the
wave remains finite. Computing its Einstein equations,
averaged over all directions, yields an energy-momentum
tensor of the form (4.9). This same tensor can be obtained if
the object sourced by these perturbations is accounted

through a “backreacted” bulk geometry at second order
as (4.10).
Restricting g5D to the boundary of the bubble (i.e.,

z ¼ −1
Hη), one can recover the induced four dimensional

metric of the expected form g4D, in the conformal time
gauge, as shown in (3.1). This geometry contains a four
dimensional wave that solves the Einstein equations at first
order in ξ. Solving these at second order, averaging over
wavelengths and imposing isotropic superposition, one
finds an energy-momentum tensor of the form (3.11).
On the other side of the diagram (upper right corner),
starting from the backreacted metric g5Dback, one can project
down this corrected background through the junction
conditions to source the Einstein equations in 4D, as
shown in (2.14). The tensor J ab is of the same form on
both sides of the brane (up to k�), but there is a jump in the
extrinsic curvature that will backreact on the induced 4D
metric. The associated energy-momentum tensor is exactly
the same as if you had solved the 4D Einstein equations
directly at second order (3.11), using the averaged 4D
waves. This demonstrates the self-consistency of the dark
bubble model. It is important to realize that it is not possible
to geometrically just project hTμνi from 5D to 4D to obtain
hTabi. The relation between the two involves the relation
between the 5D and 4D gravitational constants, which is
determined by the junction conditions.

V. THE DUALITY BETWEEN BRANE DYNAMICS
IN 5D AND EINSTEIN GRAVITY IN 4D

A. Two ways to look at brane dynamics

Examining the 4D Einstein equation (2.14), induced by
the junction conditions, we note the presence of the tension
σ and how it acts as a negative energy density. This is also
manifest in (2.11). This is physically correct: increasing σ
eventually brings the tension above its critical value
yielding a negative 4D cosmological constant that prevents

FIG. 1. Each section where the computation is performed is
indicated by the side of each arrow in the diagram. Horizontal one
refers to backreaction, while vertical ones relates the bulk and
boundary geometries. Diagonal ones stand for general relativity
calculations. The right most line represents the Gauss-Codazzi
projection onto the boundary.

7In the same regime as previous expressions.
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the bubble to nucleate. But what do the fluctuations of the
brane correspond to? These would seem to add energy to
the tension, thus contributing as a negative energy density
to the 4D energy-momentum tensor. This naively signals an
instability. As we will argue, such fluctuations are already
taken care of by the junction conditions.
To see this, one needs to recognise that there are two

equivalent ways to describe the motion and fluctuations of
the brane. From the 5D perspective one studies the brane
equations of motion, as we will see below, which make
sure that the backreaction on the 5D geometry is taken into
account. It is physically clear that there are no instabilities
in this system, beyond the accelerated expansion of the
bubble itself, and that all other perturbations will cost
energy. On the other hand, one can use the junction
conditions (2.12) as described earlier, where the motion
of the brane is captured by 4D Einstein gravity. Eventually,
the result should be the same.
If one considers a 5D bulk geometry that induces matter

with a positive energy density in 4D, it requires a response
from the 4D Einstein tensor with the same positive sign to
satisfy the Einstein equations. The brane will give rise
to such a geometric contribution that enters into the
Einstein equation through the 4D Einstein tensor.
However, one can also view the brane as a contribution
to the energy momentum-tensor by formally moving this
geometric contribution to the other side of the Einstein
equation, thereby picking up a sign. If it is to account for
adding matter with a positive energy density, the response
should be a negative energy density. This is precisely what
an increase in the brane energy will accomplish. The sign
only looks wrong if one, incorrectly, interprets the brane

term to be associated with 4D matter. Instead, it is precisely
this physical behavior of the brane that is responsible for
4D gravity. In the case of vibrational modes in the bulk, the
brane will start to vibrate and increase its energy as a
response. These vibrations are, through the junction con-
ditions, encoded into the 4D Einstein tensor and identical to
the response of gravity to a matter source.
The simplest illustration of the two points of view can be

found in pure FLRW. We start with the junction condition
(2.5) in proper time rewritten as

σ

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2− þ _a2

a2
þ Δ−ðaÞ

a2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ þ _a2

a2
þ ΔþðaÞ

a2

s !

¼ 3

2κ5
ðk2− − k2þ þ Δ−ðaÞ − ΔþðaÞÞ; ð5:1Þ

with the metric factor written as fðrÞ ¼ k2r2 þ ΔðrÞ. Here,
we simply have Δ� ¼ 1 in pure AdS. Multiplying with
the volume of the bubble, proportional to a4, this can be
interpreted as energy conservation, comparing the case with
and without the bubble. The energy of the brane is simply
set equal to the energy difference of the two vacua.
Following BT, we note that the energy of the brane itself
is given by the average of the energy obtained from the two
sides of the brane. This is dictated by the junction
conditions. This expression can be viewed as the integrated
equations of motion of the brane. If we express the
previously mentioned relation using bulk time (taking into
account that the time coordinates are different on the two
sides), this can be written as

σ

2

0
B@ k2−a2 þ Δ−ðaÞ
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−a2 þ Δ−ðaÞ − a02

k2−a2þΔ−ðaÞ
q þ k2þa2 þ ΔþðaÞ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þa2 þ ΔþðaÞ − a02

k2þa
2þΔþðaÞ

q
1
CA ¼ 3

2κ5
ðk2− − k2þ þ Δ−ðaÞ − ΔþðaÞÞ; ð5:2Þ

where the prime denotes a derivative with respect to the
bulk time. We recognize the relativistic energy of a brane in
a curved background (compare with the energy of a
relativistic particle, given by mffiffiffiffiffiffiffiffi

1−v2
p ). Hence, we see how

the junction conditions, interpreted as 4D gravity, are
equivalent to the equations of motion for the transverse
brane degree of freedom, and there are no issues with any
wrong sign kinetic terms.

B. Gravitational fields

The gravitational waves we have studied in the present
paper provide a nice example of the same phenomenon. To
see this, consider an oscillator exposed to a gravitational
wave that functions as an antenna and absorbs energy. In
particular, one can have a situation where the oscillator is in

sync with the wave, and sits in an excited state. This is how
one should think of the brane in the dark bubble model: in
the presence of the 5D gravitational wave the brane
becomes excited and this is how the 5D wave backreacts
on the brane. Hence, there will be contributions to the
energy of the brane corresponding to such excitations that
will contribute negatively in the effective energy density in
4D for the simple reason that they add to the tension.
However, these are precisely the terms needed to cancel the
induced energy-momentum tensor in 4D from the 5D
waves through the junction conditions (4.14). In fact, this
is the way you can argue for that those excitations have to
be present.
On the other hand, from our review of the network of

backreactions, it is clear how to interpret these terms. If we
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move them to the other side of Einsteins equations they
represent nothing else than the response of 4D gravity to
the presence of the waves. The point is that the excitations
of the brane can be viewed in two different and dual ways.
You either track the detailed and time-dependent fluctua-
tions of the brane, which will carry energy, and show up
through the nontrivial Einstein tensor in 4D. This balances
the effect of the 5D wave to make sure the junction
conditions are solved. Alternatively, you keep the brane
in its original position, and let the degrees of freedom of the
brane carry the energy.

C. Gauge fields

In string theory, this is not the whole story. T-duality
requires the existence of further degrees of freedom in the
form of gauge fields, which are described by the DBI-
action. Their gauge potentials are related to coordinates
parallel to the brane, which through T-duality correspond to
transverse degrees of freedom of lower dimensional branes.
According to T-duality, the number of such degrees of
freedom should not change. When excited, they should add
energy to the brane tension σ, and looking at the junction
conditions it seems as this should lead to a negative energy
density in 4D. How can this be?
It is crucial to understand that the brane is not a probe.

Adding gauge flux to the brane, will force the brane to bend
and it will move in response. This will, in turn, affect the
bulk geometry, which will give other contributions to the
4D effective energy momentum tensor. As we will argue,
the net contribution will always be positive in physically
interesting cases.
An instructive example is the case of charged BPS-

strings ending on the brane world. As shown in [40], such
strings can be described as spikes on the brane world,
which act as sources of gauge flux within the brane. The
transverse coordinate of the brane, which gives the shape of
the spike, also determines the gauge potential and the
electric field within the brane. The energy of this configu-
ration is fully captured by the brane action. It is a divergent
quantity, but by introducing a cutoff close to the spike one
discovers that the energy is proportional to the string
tension and the length of the spike up to the cutoff, i.e.,
the string. This is precisely what one would expect for a
BPS-string.
In [40], the case of a string going through the brane

world was discussed. In particular, what would happen if
the string were cut at the brane world, and the endpoints
were to move away from each other? Since the string is
BPS one would not expect any net force acting between the
endpoints. The attractive electric force between the end-
points is cancelled by a repulsive force due to the scalar
field describing the embedding. Similarly, if you consider
two strings on the same side of the brane, pulling upwards,
you would expect a repulsive electric force. This is,
however, canceled by an attractive force due to the

embedding in analogue with [40]. In fact, this attractive
force is nothing else than the gravitational force as studied
in [21,20], where it is interpreted as 4D gravity.
The case of a D3 brane in the background of a stack of

D3 branes (which is AdS5 × S5 in the near horizon limit)
was discussed in [41]. The spikes turn into strings with the
energy carried by the brane. Similar results were obtained
in [42] for a D5-brane in the same background. Both
references considered the brane with the spike being a
probe and neglected the backreaction on the bulk. For us
the backreaction is crucial.
By adding a gauge field like in the case above, we get an

increased energy density on the brane. One might worry
that this will contribute with the wrong sign in the 4D
Einstein equation. However, we must also take into account
that the brane deforms into a spike, and that this change in
shape backreacts on the bulk geometry. It is now very easy
to see what will happen.
For simplicity, let us consider a distribution of such

spikes. Relative to the unperturbed piece of the brane in
between the spikes, there is a cloud of strings stretching
outwards from the bubble. (See Fig. 2). The gravitational
backreaction from the 5D bulk through the junction
conditions leads to FLRW with dust, as discussed earlier
in the review of the dark bubble model. The net effect of the
spikes must therefore be a positive contribution to the
energy density. Hence, our initial conclusion was wrong
since we ignored the backreaction.
Let us summarize what happened. We added matter to

the brane, expecting the brane to sag down while yielding a
contribution to the energy in 4D with the wrong sign.
Instead, the coupling between the gauge field and the scalar
forces the brane to bend upwards. This backreacts on the
5D geometry, yielding an extra contribution to the junction
condition that pulls the brane up. The net 4D interpretation
is a net positive energy density.
It would be interesting to study the interplay between

the gauge fields on the brane and the physics of the
bulk-including 2-form fields to which the strings will
couple-to find a 5D uplift of electromagnetic waves and
Maxwell-Einstein theory in general. We leave this for
future work.

FIG. 2. Artistic representation of a distribution of spikes,
where the tips of these turns into strings, as if they were pulling
upwards.
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VI. DISCUSSION AND CONCLUSION

In this paper we have constructed the uplift of 4D
gravitational waves into 5D in the dark bubble model of
de Sitter cosmology. The waves extend outwards as well as
inwards from the bubble. The waves remains finite every-
where and, in particular, go to zero at the center of the
bubble.
The gravitational waves that we have constructed in 5D

have an interesting time dependence. Let us, for clarity,
focus on waves of high frequency compared to the size of
the bubble (this is equivalent to ignoring the positive
curvature of the dark bubble universe). In 4D, these reduce
to the familiar gravitational waves in a flat universe that at
late times exit the horizon and freeze. In 5D, as well as in
4D, there are oscillating terms with coefficients that are
constant as well as linear in conformal time η. The constant
piece is what remains after freezing as η → 0. Averaging
over many wavelengths, we find constant and quadratic
pieces in conformal time in the expressions for the averaged
energy density as well as in the backreacted metric.
Starting out at bulk time t ∼ η=k < 0, and increasing t,

we see that the energy density decreases toward t ¼ 0,
and then starts to increase again when t goes positive.
Physically, we have a cloud of radiation that is bound inside
the AdS-throat that expands toward maximum dilution
and then recollapses. This cloud is matched through the
junction conditions to the 4D physics on top of an
expanding bubble. Actually, the bubble will expand toward
infinity eating up the full AdS as proper time goes to
infinity, while conformal time η and global bulk time t goes
to zero. The recollapsing phase will therefore never occur in
the cosmology we study. Clearly, one can envision scenar-
ios with a 4D recollapsing cosmology that would corre-
spond to a recollapsing cloud of radiation in the bulk.
Viewed from the bulk, the time scale for the expansion is
set by 1=k in global time. This is the same as that of
oscillating geodesic motion in AdS. Due to the blueshift
this translates into cosmological times on the brane world.
The wave that we have constructed is crucial for the

applications to quantum cosmology that we initiated in
[22]. There, we studied the WdWequation for a minisuper-
space containing only the scale factor, and showed that the
dark bubble is a realization of Vilenkin’s quantum cosmol-
ogy. According to our interpretation, it is not quite a
creation out of nothing, but a creation out of something,
i.e., the already present AdS5. We argued that our embed-
ding of quantum cosmology into a higher dimension,
and the interpretation of the act of creation as simply a
CL transition, demonstrates the consistency of the model.

The instabilities argued for in [28,29] can therefore not be
there on physical grounds.
To make full contact with the Vilenkin version of

quantum cosmology, we need to extend the minisuperspace
to also include, e.g., gravitational perturbations. Formally,
one could do this directly in 4D, trusting that the dark
bubble fully reproduce 4D gravity. However, to make use
of the higher dimensions to throw new light on the problem,
we need the full 5D uplift. This is what we have achieved in
the present paper.
The next step would be to use these waves to investigate

the quantum vacuum and its regularization and renorma-
lization starting in 5D. In [34] a concern in [29] was
addressed, where it was argued that backreaction from
the scalars or gravitational modes would destroy the
model. As explained in [34], this backreaction is nothing
else than the vacuum energy of those modes. These
contributions need to be taken into account regardless of
whether you are studying quantum cosmology or not.
Vilenkin introduces a cutoff at fixed proper momentum
and obtains a finite result that is absorbed into the
cosmological constant.
While this is a standard procedure, which you always

need to invoke more or less implicitly when doing
cosmology with quantum fields, it is not quite consistent.
As reviewed in [43], the regularized vacuum energy does
not have the correct equation of state, and it is unclear how
to treat it. We believe that the uplift to 5D, which is the
subject of the present paper, can throw new light on the
important problem of quantum contributions to the vacuum
energy in an expanding universe. We hope to return to this
question in future work.
Finally, we have also commented on the negative sign

kinetic terms of brane excitations in the dark bubble model.
This sign is a direct consequence of the dark bubble having
an inside and an outside, contrary to RS. This changes the
physics in a dramatic way. Using a few examples, in
particular the gravitational waves, we have shown how the
excitations should not be interpreted as 4D matter but
instead as the 4D gravitational response mediated by
the brane.
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